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Productivity-Based Indicators
for Nitrogen Use Efficiency

Tihomir Ancev, Moriah Bostian, and Brad Barnhart

Nitrogen use efficiency (NUE) is often used to evaluate an agricultural system’s relative ability
to process nitrogen (N) inputs. However, no universal indicator has simultaneously considered
both economic and environmental objectives. We develop Luenberger indicators of NUE that
incorporate both economic and environmental objectives to examine spatio-temporal changes in
NUE, which we apply to the Upper Mississippi River Basin (UMRB) for the period 2002–2012.
We find considerable spatial-temporal variation in NUE, which could be used to inform future
agri-environmental policy and conservation targeting decisions in the UMRB. Using this approach
could lead to more cost-effective targeting of areas for N reduction in the UMRB.
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Introduction

Nitrogen (N) facilitates plant growth and subsequent crop yields in agricultural production. However,
rates of N fertilizer application often exceed the ability of plants to transform those nutrients into
crop yields, contributing to water quality impairment and the loss of aquatic life (Carpenter et al.,
1998). The term nitrogen use efficiency (NUE) describes the relationship between N availability
and crop yield. Numerous measures of NUE exist, yet few consider the underlying production
technology driving N use and its effects on yields. Nor do existing definitions of NUE explicitly
consider environmental damages resulting from excess N use. We directly address these aspects of
NUE by using Luenberger (1995) productivity indicators to base NUE measures on the underlying
production technology and to incorporate environmental effects of N use. We explicitly consider
three dimensions of NUE: N use, production output, and N loading to the surrounding river subbasin.
We also contribute to the literature on NUE measurement by accounting for climate and soil
conditions.

We apply the Luenberger framework to the US Upper Mississippi River Basin (UMRB), which
contains some of the most productive agricultural land in the world but is also a leading source of
N to the wider Mississippi/Atchafalaya River Basin (MARB). N loading from the UMRB has been
linked to the Gulf of Mexico hypoxic area, making this region a focal point for recent efforts to
better manage N fertilizer use and to reduce N loading (Rabotyagov et al., 2010, 2014; Kurkalova,
2015; Kling et al., 2017).

Our empirical application combines spatially explicit estimates of N fertilizer use and N loads
resulting from agricultural runoff with agricultural production data for the period 2002–2012. This
period spans a number of important policy changes, including the imposition of biofuel mandates
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and the introduction of ethanol tax credits for fuel blenders. These changes led to increased and
more intensive production of corn (Hochman, Traux, and Zilberman, 2017) and, as a consequence,
increased N fertilizer use (Cao, Lu, and Yu, 2018).

Given the large geographic area of the UMRB, we carry out the analysis at the hydrological
subbasin scale, consistent with other recent studies in the region (Robertson et al., 2009; Robertson,
Saad, and Schwarz, 2014; Hale et al., 2015; Barnhart et al., 2016; Sinha, Michalak, and Balaji,
2017). Our focus at the subbasin scale also aligns with recent monitoring and policy planning
efforts in the region. This includes, most notably, the Mississippi River/Gulf of Mexico Hypoxia
Task Force (US Environmental Protection Agency, 2017). We decompose the NUE indicators into
underlying changes in production efficiency and production technology over time and map these
separate measures over the basin in order to better understand both the spatial and temporal dynamics
of NUE. We estimate the indicators nonparametrically, using data envelopment analysis (DEA)
methods.

Our findings indicate considerable spatial and temporal variation in both the production-oriented
and environmental aspects of NUE, which is particularly relevant for agri-environmental policy
targeting. Specifically, we find that reductions in efficiency were concentrated in the upper portion
of the basin for the 2002–2007 period, but part of efficiency loss was countervailed by technical
gains. Efficiency losses became more prevalent in lower regions of the basin during the 2007–2012
period and were again partly offset by technical gains. The decomposition to efficiency change
and technical change provides insights into where within the basin efficiency-enhancing policies
(e.g., extension outreach and training for existing practices) might be more appropriate and where
technology-enhancing policies (e.g., implementing new practices) might be called for.

We also compare our proposed Luenberger indicators to a set of commensurate existing ratio-
based NUE measures. We find that for many of the subbasins, as well as for the UMRB as a
whole, the Luenberger indicators and existing ratio-based measures yield diverging assessments
of NUE. In other words, the choice of NUE measure could lead to very different policy implications
and management decisions for N use and N pollution in practice. In our application, we find that
the ratio-based NUE measures tend to prioritize higher production-value areas for N reductions
compared to the Luenberger indicators for NUE. This is not surprising given that the ratio-based
NUE measures do not consider the production technology aspects of NUE, whereas the Luenberger
indicators do. By basing indicator values on the estimated production technology, rather than on a
ratio of observed outcomes, the Luenberger indicators prioritize N use or N loading reductions in
areas where feasible improvements can be attained. This corresponds to prioritizing areas where
greater feasible reductions to N use or loading could be achieved at lower cost in terms of reduced
production value.

Literature Review
Background on NUE

A number of ratio-based measures for NUE currently exist. Perhaps the most straightforward defines
NUE as the ratio of N taken up by the crop to the amount of N available to the crop (Hawkesford,
2014). Brentrup and Palliere (2010) define NUE as the ratio of applied N to the quantity of N
exported. Others define NUE as the ratio of grain weight to N supply, where N supply refers to the
amount of plant-available N in the soil (Dawson, Huggins, and Jones, 2008), and the inverse of N
concentration in the biomass (Berendse and Aerts, 1987). The EU Nitrogen Expert Panel (Oenema
et al., 2015) proposes the ratio of aggregate N output to aggregate N input as a way to consider N
surpluses and N output productivity levels.

Ribaudo et al. (2011) explicitly investigate NUE for US cropping systems. They find that
approximately 66% of US farmland is not managed according to the optimal application rate, timing,
and method prescribed for optimal fertilizer management. They find that these are the main causes
for the low NUE in cropping systems in the United States.
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Ranking and Prioritizing Conservation

NUE can be used to rank or prioritize conservation decisions. Existing analyses often base these
rankings on the amount of loading (delivered yield) of N and phosphorus (P) into the basin
(Robertson et al., 2009; Robertson, Saad, and Schwarz, 2014). However, a delivered yield-based
ranking tends to prioritize conservation on lands that are also more productive, increasing overall
conservation costs. In fact, many of the most productive agricultural areas in the United States lie in
our study region, the UMRB.

To address this trade-off between agricultural productivity and water quality, Barnhart et al.
(2016) develop an alternative environmental performance index (EPI) approach, following Färe,
Grosskopf, and Hernandez-Sancho (2004). The EPI uses productivity theory-based distance function
methods to jointly maximize production value from crops and livestock and minimize delivered N
and P yields. Comparing the productivity-based EPI to delivered yield-based rankings, they find
that while the EPI leads to higher acreages of conserved land, the EPI substantially reduces the
overall costs of N and P loading targets for the MARB as a whole by shifting more conservation
to less productive land. We follow a similar approach here, extending this productivity-based index
approach to a Luenberger framework for NUE, allowing us to further decompose the resulting NUE
indicators into separate measures of efficiency change and technical change over time.

Two key insights that emerge from the broader nonpoint pollution literature concern the
importance of spatial distribution and the mix of agricultural management practices for reducing
overall conservation costs. The spatial aspects of the basin hydrology, coupled with differences
in land quality, lead to spatial heterogeneity of both production and N loading effects (Helfand
and House, 1995; Weinberg and Kling, 1996; Schwabe, 2001). More recently, Rabotyagov et al.
(2014) use a genetic algorithm to solve for the optimal spatial distribution of fertilizer reduction
and management practices in the MARB. They find that with spatial targeting, the costs of meeting
existing water quality targets for the MARB could be reduced by nearly $3 billion.

Incorporating Environmental E↵ects into NUE

Our approach to measuring NUE draws on a large and growing body of work to incorporate
environmental effects into more general measures of productivity and efficiency. For recent reviews
of this literature, see Dakpo, Jeanneaux, and Latruffe (2016), Ancev, Azad, and Akter (2017), and
Bostian et al. (2018). Agriculture comprises a large share of the empirical applications in this area,
with particular attention to N use and N loss (Ancev, Azad, and Akter, 2017). In this context, studies
generally treat agricultural N loss into the environment as an “undesirable output.”

Ball et al. (1994) adjust agricultural total factor productivity (TFP) growth calculations for the
effects of excess N. They find that standard US agricultural TFP growth should be adjusted down by
12%–28% due to the negative environmental effects from agricultural N use. Another early study
by Reinhard, Lovell, and Thijssen (1999) uses the term “environmental efficiency” to denote an
input-oriented technical efficiency measure of N surplus for a sample of Dutch dairy farms, finding
a large discrepancy between output-oriented technical efficiency—a measure that does not take into
account N surplus—and environmental efficiency—a measure that does.

Several studies use a materials balance approach to examine the efficiency of N use in
agriculture, (Hoang and Alauddin, 2010; Hoang and Coelli, 2011; Hoang and Wilson, 2017). These
studies generally find, for example across the OECD countries, that the same level of agricultural
output could have been produced using much lower levels of N fertilizer input. Many others link
negative environmental effects from agriculture in one way or another to the amount of N fertilizer
applied on farms (Falavigna, Manello, and Pavone, 2013; Koeijer et al., 2002; Mahammadi et al.,
2015; Mamardashvili, Emvalomatis, and Jan, 2016; Njuki, Ureta, and Mukherjee, 2016; Piot-Lepetit
and Moing, 2007; Tamini, Larue, and West, 2012; Urdiales, Lansink, and Wall, 2016). There is also
recent work to incorporate weather and changing climate conditions into measures of agricultural
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Figure 1. Joint Technology Process
Notes: The joint technology process uses inputs x (N fertilizer and other standard agricultural inputs) to produce outputs y
(crops and livestock) as well as pollution u (N loading), given environmental conditions (weather and soil) w and v.

TFP (O’Donnell, 2016; Wang et al., 2017; Njuki, Bravo-Ureta, and O’Donnell, 2019; Njuki, Ureta,
and Cabrera, 2020; Chambers and Pieralli, 2020; Chambers, Pieralli, and Sheng, 2020).

We contribute to this literature by developing a framework for assessing both productivity and
environmental aspects of NUE while also incorporating changing climate conditions. Our developed
indicators can be implemented with existing production data for both larger scale policy planning
and farm-level management decisions. This makes an important contribution to both the NUE and
environmentally adjusted productivity literature.

Methodology

The Underlying Production Technology

We draw on economic production theory to base our measure of NUE on the underlying production
technology. We begin by defining the production technology as

(1) T =
�
(x,y,u;w,v) : x can produce y and u, given w and v

 
,

where x = (x1, . . . , xN ) represents production inputs (including N), y = (y1, . . . , yM ) represents
intended production outputs (e.g., crop yields), and u = (u1, . . . , uJ ) represents unintended outputs
from production (e.g., pollution).1 Environmental conditions, including weather and soil quality, also
play an important role in both crop and livestock production as well as for unintended environmental
pollutants. Following Ray (2004), we let w = (w1, . . . , wL ) and v = (v1, . . . , vH ) represent favorable
and unfavorable nondiscretionary environmental factors, respectively. These environmental factors
constrain the production technology for chosen input factors. Figure 1 provides a schematic overview
of the joint production technology process.

A Productivity-Based Indicator for NUE

Given our interest in NUE, we begin with an input orientation to represent the production technology
in terms of the input requirement set,

(2) L(y,u;w,v) =
�
x : x can produce y and u, given w and v

 
,

which contains the minimal inputs needed to produce outputs y and u. We take a directional distance
function approach (Chung, Färe, and Grosskopf, 1997; Chambers, Chung, and Färe, 1996) to model
the input requirement set using the directional input distance function, defined as

(3)
!
DI (x,y,u; gx ,w,v) =max{� : (x � �gx ) 2 L(y,u;w,v)},

1 We suppress time indexing where it is not absolutely necessary to simplify notation. It should be understood that
the technology set, the input requirement set, and the output feasibility set are time variant, which is consistent with our
subsequent modeling. The capital letters N, M, J, L, and H denote the total possible number of inputs, outputs, undesirable
outputs, and favorable and unfavorable environmental factors, respectively.
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where the directional vector, gx , specifies the proportional reduction of inputs.
!
DI (x,y,u; gx ,w,v) =

0 on the input frontier, indicating efficiency, while
!
DI ((x,y,u; gx ,w,v) > 0 measures inefficiency

for input use above the frontier. Intuitively, the distance value tells us the potential to reduce input
use without sacrificing output.

Mathematically, the directional distance function provides a complete representation of the
production technology and satisfies key axiomatic properties from production theory. Chambers,
Chung, and Färe (1996) and Färe and Grosskopf (2003) review and prove these properties, also
showing that the more common radial or Shephard distance function models can be recovered
as a special case of the more general directional distance function. Chung, Färe, and Grosskopf
(1997) introduced the first environmental application of the directional distance function model,
highlighting another advantage of this approach when modeling pollution-generating technologies.

In order to focus on N specifically for NUE, we decompose the input vector into a single variable,
xN , which denotes the N input, and a vector, xO = (x1, . . . , xN�1), to denote all other inputs (e.g.,
land, seed, fuel), so that the input vector can be written as x = (xO ,xN ). Using this decomposition,
we transform equation (3) to measure NUE:

(4)
!
DI (xO ,xN ,y,u; gx ,w,v) =max{� : (xN � �gxN

,xO) 2 L(y,u;w,v)}.

In this form, equation (4) measures the feasible reduction in N use, given all other factors of
production and the production technology. Here, gxN

specifies the proportion of feasible reduction
in N use, given other inputs and output levels. The resulting distance value can be interpreted as N
inefficiency. This approach follows other, related studies which measure efficiency for specific input
factors, including energy efficiency (Wu et al., 2012; Bostian et al., 2016) and soil natural capital
(Azad and Ancev, 2020). We illustrate equation (4) conceptually in Figure 2a, where the distance
value at time t is the length of the arrow AtC.

We note that measuring NUE by using equation (4), rather than the joint reduction of all
inputs as in equation (3), we may not fully capture substitution relationships between N use and
other production inputs. However, we do include all other inputs jointly with N to model the
overall production technology, which does capture substitution relationships along the frontier.
We are specifically interested in NUE here, as opposed to more general input efficiency, but
relax this restriction to different degrees in the section on “Alternative Technology Orientations
for NUE,” when we consider two alternative technology orientations for NUE. We also allow for
constant returns to scale in each of the alternative technology orientations, to facilitate this selective
expansion/contraction of factors of interest over the technology set for the purpose of constructing
the associated indicators.

Both parametric and nonparametric methods are widely used to estimate equation (4). In this
context, the term “estimation” refers to estimating the true but unknown production technology.
Stochastic frontier analysis (SFA) (Aigner, Lovell, and Schmidt, 1977) employs parametric
estimation with error decomposition to identify production inefficiency. Kumbhakar and Lovell
(2000) remains the seminal text reference, while recent environmental applications to agriculture
include Zhou et al. (2015) and Njuki, Ureta, and Mukherjee (2016); Njuki, Bravo-Ureta, and
O’Donnell (2019). Data envelopment analysis (DEA) or activity analysis employ nonparametric
linear programming methods. While SFA allows for uncertain error, it also assumes a functional
form, which may be problematic in the context of NUE, especially when considering N loading.
DEA provides a more flexible representation, while also consistent with standard axioms of
production. Rather than assuming a parametric functional form (e.g., translog or quadratic), we
use DEA to estimate the technology nonparametrically as the piecewise linear convex hull of the
observed data. Recent environmental applications of DEA to agriculture include Bostian et al.
(2015), Barnhart et al. (2016), Chambers and Pieralli (2020), and Chambers, Pieralli, and Sheng
(2020).
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Our use of nonparametric estimation methods for the reference technology includes all
production factors jointly. We use this axiomatic framework to measure NUE in terms of feasible
reduction, given the production technology, rather than attempting to model producer behavior. Our
analysis considers NUE at the more aggregated subbasin scale, rather than at the level of individual
producers. This is consistent with other recent related work to measure agricultural TFP (O’Donnell,
2016; Chambers and Pieralli, 2020; Chambers, Pieralli, and Sheng, 2020). It is important to note,
however, that maximizing NUE does not necessarily conform to individual producer objectives in
practice, particularly in the absence of policy incentives.

We estimate equation (4) nonparametrically, using DEA. For each k 0th observation, k 0 =
1, . . . , K , we solve the following linear programming problem:

!
D

k 0

I (xO ,xN ,y,u; gx ,w,v) =max{�k 0 :(5)

yk
0

m 
KX

k=1

zk ykm ,m = 1, . . . , M, uk 0
j =

KX

k=1

zkuk
j , j = 1, . . . , J,

xk
0

On
�

KX

k=1

zk xkOn
,n = 1, . . . , N � 1, xk

0
N � � �

KX

k=1

zk xkN ,

wk 0
l �

KX

k=1

zkwk
l ,l = 1, . . . , L, vk

0
h 

KX

k=1

zkvkh ,h = 1, . . . , H,

zk � 0, k = 1, . . . , K },
where z = z1, . . . , zk , also known as intensity variables, are used to construct the input requirement
frontier as the convex combination of the innermost input values. To facilitate aggregation for
standardized comparisons, we specify a unit directional vector by setting �gxN

= �1 (Zelenyuk,
2002; Färe and Grosskopf, 2003). The ym constraints (second line of equation 5) allow for
strong or free disposability of desirable outputs; the constraints on xO ,xN (fourth and fifth lines
of equation 5) restrict inputs to lie within the requirement set (including any reductions in N
use). Similarly, the constraints on wl impose monotonically increasing production possibilities for
favorable nondiscretionary conditions (Ray, 2004). The u j constraints (third line of equation 5)
impose weak disposability for undesirable outputs.

Weak disposability implies that if (y,u) 2 T (x,y,u;w,v), then (✓ y,✓u) 2 T (x,y,u;w,v) for
0  ✓  1. In other words, a production unit operating at the production frontier cannot reduce
undesirable outputs without also reducing the production of desirable outputs for a given level of
input use (Färe and Grosskopf, 2003). A key point to note here is that weak disposability only
holds at a given level of input. If input levels change, then outputs might change at a different rate.
Nevertheless, if a given level of output can be produced with a given level of input, it can also be
produced with additional input.

The Luenberger Indicator for Changes in NUE over Time

The directional distance function in equation (4) provides a static measure for NUE for cross-
sectional comparison. To consider the dynamics of NUE over time, we draw on Chambers, Chung,
and Färe (1996, 1998) and Chambers (2002) to develop a Luenberger (1995) indicator for NUE.2
The Luenberger indicator can also be used to decompose overall NUE into efficiency change
and technology change components. For time periods t and t + 1, we define the corresponding
Luenberger NUE indicator as

2 See Färe and Grosskopf (2003) for the economic index theory underpinnings of the Luenberger indicator, as well as Färe
and Zelenyuk (2019) for a more recent review of the indicator properties.



184 January 2023 Journal of Agricultural and Resource Economics

LUENNUE(t, t + 1) =
1
2

"!
D

t+1

I (xtO ,x
t
N ,y

t ,ut ;gxN
,wt ,vt )

�
!
D

t+1

I (xt+1
O ,x

t+1
N ,y

t+1,ut+1;gxN
,wt+1,vt+1)

#
(6)

+
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2
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I (xtO ,x
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,wt ,vt )

�
!
D

t

I (xt+1
O ,x
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N ,y

t+1,ut+1;gxN
,wt+1,vt+1)

#
,

which we can decompose into efficiency change,

LECHNUE(t, t + 1) =
!
D

t

I (xtO ,x
t
N ,y

t ,ut ;gxN
,wt ,vt )

(7)
�
!
D

t+1

I (xt+1
O ,x

t+1
N ,y

t+1,ut+1;gxN
,wt+1,vt+1),

and technology change,

LTCHNUE(t, t + 1) =
1
2

"!
D

t+1

I (xt+1
O ,x

t+1
N ,y
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We estimate the Luenberger NUE and its separate LECHNUE(t, t + 1) and LTCHNUE(t, t + 1)
components by solving the corresponding version of equation (5) for each of the respective distance
functions in equations (6)–(8).

We illustrate the Luenberger decomposition conceptually in Figure 2, for the NUE indicator from
equations (6)–(8) in Figure 2(a). We consider the alternative orientations depicted in Figures 2(b)
and 2(c) in the next section. The efficiency change component measures the change in distance to the
input frontier, from time t to time t + 1, equal to AtC � At+1F. More efficient use of inputs over time
implies decreasing distance to the frontier, LECHNUE(t, t + 1) > 0, while LECHNUE(t, t + 1) < 0
implies increasing inefficiency. The technology change component measures the shift in the frontier
over time as average difference in distance to the frontier from time t to t + 1, equal to the average
of the differences At+1F � At+1D and At E � AtC. Technical advance implies an inward shift of
the input frontier, LTCHNUE(t, t + 1) > 0, while technical regress implies LTCHNUE(t, t + 1) < 0. In
Figure 2a, we see an overall improvement to NUE, where less N input is used for the same given
output over time, driven mainly by technical advance.

Alternative Technology Orientations for NUE

We now turn our attention to the relationship between NUE and crop yield on one hand and
environmental quality effects on the other. For this purpose, we construct two additional production
indicators, maintaining the general Luenberger framework given in equation (6).

To examine NUE in relation to both desirable and undesirable outputs, we take an output
orientation in our second indicator by incorporating crop yield expansion and subbasin N load
reduction into the production objective. We refer to this as the environmental performance indicator,
LUENENV. We begin with the feasible output set,
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(a) Nitrogen Use E�ciency (LUENNUE) (b) Environmental Performance (LUENENV)

(c) Nitrogen Use and Emissions E�ciency
(LUENNU)

Figure 2. Directional Distance Technologies and Luenberger Indicator Decompositions
Notes: The rays connecting interior points to their respective frontiers represent the directional distance functions for each
model, in the g direction.

(9) P(x;w,v) =
�
(y,u) : y and u can be produced by x, given w and v

 
,

which constrains the level of both desirable and undesirable outputs that can be produced by the
inputs used.3 We model P(x) using a directional output distance function, defined in this case as

(10)
!
DO (xO ,xN ,y,u; gy ,gu ,w,v) =max{� : (y + �gy ,u � �gu ) 2 P(x;w,v)}.

The directional output distance function represents the production technology by measuring joint
feasible expansion of good outputs and contraction of bad outputs, for a given level of inputs, where
the directional vector (gy ,gu ) specifies the direction of expansion/contraction.

3 Note that the output set, P(x;w, v), and input set, L(y, u;w, v), provide alternative orientations to the same production
technology, T . Taking the input orientation allows measurement of feasible input reduction for a given level of output
produced, while taking an output orientation allows measurement of feasible output expansion/contraction for a given level
of input usage. These separate orientations can also be useful in applying duality theory to distance function technology
representations, where the directional input distance function is dual to the cost function and the directional output distance
function is dual to revenue. Färe, Grosskopf, and Margaritis (2019) provide a recent overview of the duality theory for
distance function models, as well as applications to shadow pricing non-marketed goods and bads.
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We construct the Luenberger environmental performance indicator, LUENENV, as

LUENENV(t, t + 1) =
1
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,

with corresponding decomposition into efficiency and technology change components. Figure 2(b)
illustrates the technology and the associated decomposition of the LUENENV. Intuitively, LUENENV
provides a measure of environmentally-adjusted productivity, for given N use. In Figure 2(b), we
see overall improvement over time, driven again by technical advance, which in this context might
include changing other management practices, such as tillage or N application timing.

We estimate the corresponding distance function components by solving for each k 0th
observation,

!
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specifying the unit direction vector (gy ,�gu ) = (1,�1) for aggregation purposes.
Our third indicator takes a purely environmental perspective to consider NUE in terms of N

loading to the surrounding subbasin. We refer to this as the environmentally adjusted NUE indicator,
LUENNU. We use the directional technology distance function to represent the production frontier
for emissions, defined as
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and illustrated conceptually in Figure 2(c). Intuitively, N use serves as an input to N loading, for
given production levels. This final NUE indicator measures the potential to both use less N and
generate fewer emissions without sacrificing agricultural output. This NUE indicator also reflects the
close relationship between input N use and output N loading, where reductions to N use generally
result in some reduction to N loading, as opposed to our original indicator, which reduces N use for
a fixed level of N loading. In Figure 2(c), we again see overall improvement, driven by technical
advance.

We estimate each of the component distance functions, specifying (�gxN
,�gu ) = (�1,�1):

!
DT (xO ,xN ,y,u;gxN

,gu ,w.v) = max
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Empirical Application and Results

Upper Mississippi-Atchafalaya River Basin (UMRB), 2002–2012

We apply the Luenberger NUE indicator approach to the US UMRB, one of the most productive
agricultural regions, both nationally and globally. The UMRB is also the leading source of nutrient
runoff in the greater MARB (US Environmental Protection Agency, 2017; Kling et al., 2014). We
integrate our production model with a biophysical model of N loading (Sinha, Michalak, and Balaji,
2017) at the subbasin scale, following recent work related to prioritizing N reduction in the larger
MARB (Robertson et al., 2009; Robertson, Saad, and Schwarz, 2014; Barnhart et al., 2016) as well
as other regional analyses of N loading (Hale et al., 2015). Figure S1 in the online supplement (see
www.jareonline.org) illustrates the UMRB study region and the greater MARB.

We use a geographic information system (GIS) to match county-level production data from
the USDA Census of Agriculture for production years 2002, 2007, and 2012 to the 8-digit
subbasin hydrologic unit code (HUC-8) boundaries provided by the US Geological Service (USGS),
following Barnhart et al. (2016).4 We combine the USDA production data with USGS estimates of
N fertilizer use (Brakebill and Gronberg, 2017). To control for differences in soil quality, we use
the USDA’s GIS-based National Commodity Crop Productivity Index (NCCPI) soil quality index
(Dobos, Sinclair, and Hippie, 2008), matched to the HUC-8 subbasin scale. Finally, we match the
production and nutrient use data at the HUC-8 scale to annual estimates of N loading drawn from
Sinha, Michalak, and Balaji (2017). This gives us a balanced panel of 123 HUC-8 subbasins in the
UMRB.5 Table 1 summarizes the data.

The production data includes sales values for crop and livestock output, as well as expenditure
values for purchased inputs. Each subbasin serves as a production unit, jointly producing both crop
and livestock output, as well as N loading emissions. Along with other inputs, N use serves as an

4 The USDA conducts the Census of Agriculture every 5 years.
5 We note that we exclude four of the subbasins due to insu�cient production data.

www.jareonline.org
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Table 1. Production and Nutrient Data for the UMRB 123 HUC-8 Subbasins, 2002–2012
Variable Mean Std. Dev. Min. Max.
N load (kg/km2) 1,328.13 844.24 31.73 4,316.62
Farm N use (tonnes) 18,495.55 13,038.33 280.61 63,957.98
Nonfarm N use (tonnes) 262,589 586,362 5,823 6,996,253
Farm P use (tonnes) 2,877.47 1,979.90 49.13 9,054.83
Nonfarm P use (tonnes) 61,662 127,046 944 1,269,765
Crop sales ($thousands) 199,216 211,283 2,003 1,498,892
Livestock sales ($thousands) 130,315 128,769 1,403 903,928
Cropland (acres) 479,664 382,953 12,681 2,201,915
Pasture land (acres) 56,457 54,834 1,289 338,521
Aggregate expenditures ($thousands) 226,264 210,999 3,301 1,420,972
NCCPI soil index 0.581 0.169 0.165 0.817
Oury crop index 30.56 8.81 7.71 51.03
THI livestock index 63.52 2.54 57.74 69.84

Price Index (2011 = 100) 2002 2007 2012
Crop expenditure prices 59.1 78.2 102.8
Livestock expenditure prices 62.3 80.2 106.1
Crop sales prices 59.7 81.0 107.0
Livestock sales prices 57.5 78.3 103.9
Index of corn and soy sales prices 39.7 60.0 110.5

Notes: All revenues and expenditures reported in the top portion of the table are in raw current year values, as reported in
the USDA Census of Agriculture. We use the respective price index values in the lower portion of the table to deflate the raw
revenue and expenditure data for inclusion in the productivity models.

input to this joint production at the subbasin scale. This joint inclusion of all production factors
for aggregate productivity measures is consistent with other related work on agricultural TFP and
the environment (Barnhart et al., 2016; O’Donnell, 2016; Chambers and Pieralli, 2020; Chambers,
Pieralli, and Sheng, 2020), as well as with the index methods used by the USDA to construct
the national agricultural productivity accounts (Shumway et al., 2016). Table 1 summarizes the
production variables.

We deflate the sales and expenditure values using USDA national price index values, listed in
the lower portion of Table 1. To supplement the national price indexes, we use the USDA NASS
cropland data layer (US Department of Agriculture, 2019) to construct a corn and soybean price
index based on acreage shares and annual average crop prices for each of the HUC-8 subbasins.
We note that corn and soybean crops comprise the vast majority of UMRB cropland in production,
covering roughly 90% of all cropland during the 2002–2012 study period. Figure S2 illustrates the
UMRB CDL.

We construct the aggregate expenditure variable by including standard agricultural inputs (e.g.,
labor, capital, seed, fuel) but not including the combined fertilizer purchases given in the USDA
Census of Agriculture dataset, as these combined purchases do not distinguish between N and P
fertilizer application. Our use of a single aggregate expenditure variable for all nonfertilizer inputs
also helps us avoid any dimensionality problems resulting from our sample size of 133 subbasins. We
note that the use of aggregate expenditures is consistent with other large-scale studies of agricultural
productivity. For recent related examples, see Chambers and Pieralli (2020) and Chambers, Pieralli,
and Sheng (2020). Given our primary interest in NUE, we instead work with more detailed data on N
and P use, provided by the USGS (Brakebill and Gronberg, 2017). The USGS N and P use data are
estimated at the county level from both farm and nonfarm reported fertilizer purchases and observed
levels of N and P pollution. We restrict to farm use for our application, summarized in Table 1
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Figure S3 in the online supplement illustrates the spatial distribution of NCCPI soil quality
values, ranging from 0 to 1. We include the NCCPI value as a desirable environmental factor in
our technology model, as defined for equation (1). Figures S4 and S5 in the online supplement
illustrate the time trends in production values, N use, and N loading for the sample. Farm-related N
use averages roughly 18.5 million metric tonnes, and N use steadily rises over the 2002–2012 study
period (see Figure S5). Aggregate expenditures also increase, though to a lesser extent, over the
course of the study period. N loading levels average roughly 1.3 metric tonnes/km2 in the UMRB
for the 2002–2012 study period, but as Figure S5 illustrates, average N loads fell sharply between
2007–2012, down from a high of nearly 1.5 tonnes/ha in 2007 to just over 1.1 tonnes/ha in 2012,
despite the continued increase in N use. We note that this decrease in N loading, alongside increased
N use, is likely due to the 2012 drought in the UMRB. Drought conditions can reduce N loading, due
to less runoff of fertilizer from rainfall, as well as more biomass uptake from warmer temperatures
and a lengthened growing season (Ballard, Sinha, and Michalak, 2019). At the same time, aggregate
crop output also decreased. Livestock output, though lower in absolute terms, follows a similar
trajectory over the study period. The observed reduction in agricultural output and N loading in the
2007–2012 period is likely due to the drought conditions in the UMRB in 2012.

We include the spatial distribution of N use, N loading, and total sales in Figure 3. We note
that the HUC-8 regions colored in white were excluded from our analysis due to confidentiality
restrictions in the census data. Looking at these maps, several patterns emerge. Perhaps most notable,
the three values (N use, N load, sales) move largely in tandem, both spatially and temporally. We
see that all three values remain concentrated over a swath extending from the northwest to southeast
midsection of the basin. In contrast, the northern-most region and southern tip of the basin maintain
the lowest values. Referring to Figure S3 in the online supplement, we also see that areas in the
northeast and southwest regions of the basin, which have lower soil quality, correspond to the
relatively lower sales and lower N use for these same regions depicted in Figure 3.

To control for changing weather conditions over the UMRB and across study years, we add two
separate weather indexes, following Wang et al. (2017). The first is the widely-applied Oury (1965)
index, which uses temperature and precipitation metrics to measure relative aridity conditions for
crop production. The Oury index for time t is constructed as

(16) Oury =
Precipitation
1.07Temperature ,

where temperature is measured in degrees Celsius and precipitation in millimeters. The second is
the temperature-humidity index (THI) (Wang et al., 2017), which measures heat-stress conditions
for livestock production and is constructed as

(17) THI = (Dry Bulb Temperature) + (0.36 ⇥ Dew Point Temperature) + 41.2,

where temperature is again measured in degrees Celsius.
The Oury index value decreases with aridity, so that higher Oury index values indicate more

favorable crop production conditions, while the THI value increases with temperature–humidity
stress, so that higher THI values indicate less favorable livestock production conditions.6 Thus, we
include the Oury index value as a desirable environmental factor and the THI as an undesirable
environmental factor in our technology model, as defined for equation (1). Importantly, the Oury
and THI weather indexes satisfy monotonicity of the production technology with respect to
environmental factors, in contrast with using raw temperature and rainfall metrics, which can
entail thresholds that violate monotonicity conditions. For instance, below a given low-precipitation
threshold, more rain might improve yields, while above a given high-precipitation threshold, any
additional rain might lead to lower yields (e.g., losses from flooding).

6 Oury index values below 20 indicate drought conditions, while THI values greater than 70 indicate stress to cattle
livestock (St-Pierre, Cobanov, and Schnitkey, 2003; Wang et al., 2017).
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Figure 3. UMRB Subbasin N Load, 2002, 2007, 2012
Notes: In tonnes/ha (left), N use in tonnes/ha (center), and total sales in $1,000/ha (right) for study years.

We draw on the PRISM climate data from the PRISM Climate Group at Oregon State University
(http://prism.oregonstate.edu, created November 2019) to compute the weather indexes. The PRISM
dataset includes monthly observations for each of the underlying weather variables at a 4 ⇥ 4 km grid
scale. We use GIS to overlay the weather data grid to our HUC-8 subbasins and then compute the
average index values for growing-season months (April–August). Figure S6 in the online supplement
illustrates the spatial-temporal variation in weather conditions for the UMRB, while Table 1 displays
the weather index values for our sample.

Estimation and E�ciency Results

We estimate all distance function values using mean-weighted data in order to accommodate
differences in unit of measurement across model variables (e.g., revenue/expenditure in USD vs.
acres, vs. N kg/km2). We can thus interpret the magnitude of the estimated values as the feasible
expansion or contraction of inputs and outputs, expressed as a percentage of their respective sample
mean values. This normalizes the results to be independent of unit of measurement. Using the
LUENNUE model to illustrate, mean weighting implies the following relationship for each k th
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Table 2. Estimated Directional Distance Functions by Year
Variable Mean Std. Dev. Min. Max.
2002
!
DI (xO, xN , y, u;gxN

) 0.180 0.248 0.000 0.885
!
DO (xO, xN , y, u;gy, gu ) 0.025 0.039 0.000 0.157
!
DT (xO, xN , y, u;gxN

, gu ) 0.156 0.219 0.000 0.691

2007
!
D I (xO, xN , y, u;gxN

) 0.233 0.312 0.000 1.099
!
DO (xO, xN , y, u;gy, gu ) 0.038 0.055 0.000 0.195
!
DT (xO, xN , y, u;gxN

, gu ) 0.169 0.269 0.000 1.072

2012
!
D I (xO, xN , y, u;gxN

) 0.211 0.274 0.000 0.989
!
DO (xO, xN , y, u;gy, gu ) 0.030 0.051 0.000 0.244
!
DT (xO, xN , y, u;gxN

, gu ) 0.172 0.228 0.000 0.768

Notes: Estimated directional distance functions by year, used to construct the three corresponding Luenberger indicators.
Distance is equal to 0 for e�cient observations. Values greater than 0 can be interpreted feasible percentage
reductions/contractions from sample mean.

observation, relative to the sample mean, ¯xN :

(18)
xkN
x̄N
� ~DI

k
=

xk⇤N
x̄N

and

(19) xkN � ~DI
k

¯xN = xk
⇤

N ,

so that the distance value for a hypothetical observation at the mean can be interpreted as the
percentage decrease in N use, xkN , required to reach the corresponding frontier value xk

⇤
N . A similar

relationship holds for LUENENV and LUENNU.
We turn first to the directional distance function model results displayed in Table

2, which serve as the base model for the composite Luenberger indicators. Recall that
!
DI (xO ,xN ,y,u;gxN

) measures feasible contraction of N fertilizer use,
!
DO (xO ,xN ,y,u;gy , gu )

measures feasible joint expansion of desirable output and contraction of undesirable N loading,

and
!
DT (xO ,xN ,y,u;gxN

,gu ) measures feasible joint contraction of N use and N loading. As Table
2 shows, mean estimated distance values tend to increase over the 2002–2007 period and then
decrease over the 2007–2012 period. We consider this loss of efficiency further when we move
to the Luenberger productivity decomposition in the next section. These directional distance values
correspond to the conceptual values AtC and At+1F in Figure 2.

We observe a similar trend for the maximal estimated distance values, where maximal values
denote the least efficient HUC-8 subbasins. It is also interesting to note in Table 2 that estimated
values (both means and maxima) of the distance functions are largest for the input oriented model
(LUENNUE), closely followed by the input and output-oriented model (LUENNU). The output-
oriented model (LUENENV) also has much lower estimated distance values relative to the other
technology orientations. This suggests relatively greater potential for improving efficiency of N use
than efficiency of output production in the basin, particularly when also accounting for N loading.
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Productivity Results

While the estimated directional distance values indicate changing distances from the frontier in each
year, they provide little insight into how the frontier itself is changing through time, the other key
component of overall productivity. To explore this, we turn to the Luenberger decomposition results
in Table 3. Recall that the Luenberger indicator measures the change from one period to the next,
so that we first evaluate performance for the period 2002–2007 and then for 2007–2012. Consistent
with the estimated directional distance values, we see decreasing mean efficiency from 2002–2007
and increasing mean efficiency from 2007–2012.

However, we also see that the frontier itself is expanding (technology is improving on average)
over the 2002–2007 period for the first two indicators: LTCHNUE and LTCHENV. To interpret the
magnitudes, using LECHNUE as an example, the mean value of LECHNUE for 2002–2007 indicates
an average decline in NUE of roughly 5.2% of the mean N fertilizer use. The corresponding mean
value for LTCHNUE indicates an average frontier shift improvement across the subbasins equal to
roughly 4.1% of the mean N fertilizer use. Adding these together in the composite Luenberger
indicator, LUENNUE, the loss to efficiency outweighs the technical gains, resulting in a net average
productivity loss of roughly 1.2% of mean N use (with rounding). The remaining LECH , LTCH ,
and LUEN values can be interpreted in a similar fashion.

We present the distribution of the estimated Luenberger indicators for both study time periods
in Figure S7 in the online supplement. We also include the spatial distribution of the results for
LECH , LTCH , and LUEN in Figures S8 and S9 in the online supplement, which illustrate the
spatial heterogeneity of NUE in the study area.

Ratio-Based NUE Measures and Productivity

In this section, we compare our Luenberger indicators of NUE to a set of common ratio-based
measures of NUE that are frequently used in practice. We consider three ratios, roughly comparable
to our three Luenberger indicators described above:

i. �(Sales/N Use) = Total Sales(t+1)
N Use(t+1) /

Total Sales(t )
N Use(t ) ;

ii. �(Sales/N Load) = Total Sales(t+1)
N Load(t+1) /

Total Sales(t )
N Load(t ) ;

iii. �(N Use/N Load) = N Use(t+1)
N Load(t+1) /

N Use(t )
N Load(t ) .

For each of the three ratios above, a value greater than 1 indicates improved performance. Table 4
summarizes the ratio values and corresponding Luenberger indicator for reference. �(Sales/N Use)
most closely compares to our first Luenberger indicator, LUENNUE(t, t + 1). On average, both
�(Sales/N Use) and LUENNUE(t, t + 1) indicate worsening performance over the 2002–2007 period
but then diverge over the 2007–2012 period, with the ratio measure indicating continued worsening
performance but the Luenberger indicator indicating improvement.

The two remaining ratios, �(Sales/N Load) and �(N Use/N Load), indicate improved average
performance over the entire period, while their productivity counterparts, LUENENV(t, t + 1) and
LUENNU(t, t + 1), indicate more mixed performance. Taken together, the ratio-based measures
paint a very different (and often rosier) picture of changing NUE in the UMRB compared to the
Luenberger indicators.

We also compare the spatial distribution of the ratio-based and Luenberger indicators in Figures
4 and 5. Beginning with the 2002–2007 results, we see that the ratio-based NUE measures tend to
exhibit more extreme values across HUC-8 subbasins, indicating either significant improvement or
significant degradation, compared to the Luenberger indicators. Overall, the spatial patterns of the
values of the ratio-based NUE measures and the Luenberger indicators also differ. While there are
some HUC-8 subbasins where the two approaches produce similar results, we see more cases where
they diverge.
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Table 3. Luenberger Indicator Results by Year
Variable Mean Std. Dev. Min. Max.
2002–2007

LECHNUE (t, t + 1) �0.052 0.217 �1.074 0.569
LECHENV (t, t + 1) �0.014 0.039 �0.185 0.106
LECHNU (t, t + 1) �0.013 0.219 �0.854 0.691

LTCHNUE (t, t + 1) 0.041 0.292 �0.351 2.800
LTCHENV (t, t + 1) 0.023 0.084 �0.042 0.800
LTCHNU (t, t + 1) �0.036 0.155 �0.740 0.397

LUENNUE (t, t + 1) �0.012 0.307 �0.593 2.800
LUENENV (t, t + 1) 0.010 0.089 �0.130 0.800
LUENNU (t, t + 1) �0.049 0.155 �0.533 0.345

2007–2012
LECHNUE (t, t + 1) 0.022 0.313 �0.789 1.074
LECHENV (t, t + 1) 0.008 0.056 �0.192 0.185
LECHNU (t, t + 1) �0.003 0.283 �0.717 1.009

LTCHNUE (t, t + 1) 0.069 0.205 �0.600 0.622
LTCHENV (t, t + 1) �0.004 0.060 �0.190 0.331
LTCHNU (t, t + 1) �0.021 0.198 �0.847 0.621

LUENNUE (t, t + 1) 0.091 0.219 �0.352 1.208
LUENENV (t, t + 1) 0.004 0.062 �0.167 0.331
LUENNU (t, t + 1) �0.024 0.150 �0.664 0.421

Notes: All values represent change in percentage terms, where positive values indicate improvement and negative values
deterioration.

Table 4. A Comparison of Ratio-Based NUE Measures to the Luenberger Indicator Results
Variable Mean Std. Dev. Min. Max.
2002–2007
� (sales/N use) 0.892 0.106 0.641 1.139
� (sales/N load) 1.259 0.809 0.385 5.052
� (N use/N load) 1.410 0.878 0.395 5.669
LUENNUE (t, t + 1) �0.012 0.307 �0.593 2.800
LUENENV (t, t + 1) 0.010 0.089 �0.130 0.800
LUENNU (t, t + 1) �0.049 0.155 �0.533 0.345

2007–2012
� (sales/N use) 0.792 0.138 0.520 1.330
� (sales/N load) 1.099 0.446 0.426 2.554
� (N use/N load) 1.402 0.541 0.379 2.977
LUENNUE (t, t + 1) 0.091 0.219 �0.352 1.208
LUENENV (t, t + 1) 0.004 0.062 �0.167 0.331
LUENNU (t, t + 1) �0.024 0.150 �0.664 0.421

Notes: For the ratio NUE measures, a ratio greater than 1 indicates relative improvement; for the Luenberger index, a value
greater than 0 indicates relative improvement.
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Figure 4. UMRB Subbasin Luenberger Indicator Values and N-Ratio Values, 2002–2007
Notes: Yellow denotes little to no change, green improvement, and red deterioration.

Table 5. Spearman Rank-Order Correlation for Luenberger Indicator and Ratio-Based
Measures

Variables LUENNUE LUENENV LUENNU � Y
XN

�Y
U �

XN
U

LUENNUE 1.000

LUENENV 0.481 1.000

LUENNU 0.463 0.510 1.000

� (Sales/N Use) 0.140 0.162 0.133 1.000

� (Sales/N Load) 0.122 0.059 0.074 0.750 1.000

� (N Use/N Load) 0.065 �0.045 0.004 0.372 0.866 1.000

We observe similar, but less stark patterns between the Luenberger indicators and the ratio-based
measures of NUE for 2007–2012 in Figure 5. The �(Sales/N Use) results in smaller NUE losses
across most HUC-8 subbasins, whereas the corresponding values from the Luenberger indicator vary
more spatially. In contrast, the �(N Use/N Load) results indicate improved NUE throughout large
portions of the basin, while the corresponding Luenberger indicator again varies more spatially.

Table 5 presents the Spearman rank-order correlations for the ratio-based and Luenberger NUE
indicators. Across the three Luenberger indicators, these values range between 0.458 and 0.510,
exhibiting relative consistency. By comparison, the Spearman rho values range between �0.111 and
0.941 among the ratio-based NUE measures. Directly comparing the Luenberger indicators to the
ratio-based NUE measures, the Spearman rho values range between 0.047 and 0.38, highlighting the
divergence between the two approaches.

This divergence can lead to very different rankings in practice. For example, focusing on the
2002–2007 period in our sample, we can compare the lowest-performing (bottom 10% NUE)
subbasins according to the ratio-based measure, �(Sales/N Load), versus the bottom 10% least
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Figure 5. UMRB Subbasin Luenberger Indicator Values and N-Ratio Values, 2007–2012
Notes: Yellow denotes little to no change, green improvement, and red deterioration.

efficient subbasins under the commensurate Luenberger indicator, LUENENV(t, t + 1). While
average N loading levels for these worst performing subbasins are relatively similar when using
the ratio-based measure and Luenberger indicator (1,290 vs. 1,248, respectively), the average
total revenues per subbasin diverge substantially ($3,541,562 under the ratio-based vs. $2,771,677
under the Luenberger). This highlights the difference between basing the ranking simply on
observed quantities (ratio-based) and basing the rankings on the underlying production technology
(Luenberger). To put it differently, the lowest ranked sites under the Luenberger approach represent
the least productive subbasins, relative to the production frontier, whereas the lowest ranked
subbasins under the ratio-based measure are simply those subbasins that have the highest N loading
levels. The consequences are that policy targeting based on the ratio-based measure would target
subbasins with higher sales revenues relative to the subbasins targeted under the Luenberger
indicator, thereby unnecessarily increasing the overall costs of N loading reduction for a given
level of N loading. This is consistent with previous empirical findings for the same region, from
comparison of productivity-based indicators to ranking systems based on nutrient loading. Barnhart
et al. (2016) find that rankings based on nutrient loading tend to unnecessarily inflate the overall
costs of nutrient-loading reductions in the MARB, relative to productivity-based indicators, by
indiscriminately targeting subbasins with the highest N loading, even though many of those same
subbasins have some of the highest agricultural productivity in the region.

Policy Implications

Given the divergence of results for NUE between the ratio-based measures and Luenberger
indicators, the choice of approach would likely lead to very different policy recommendations in
practice. For example, when applied to the data for the UMRB, the ratio-based measures indicate on
average improved NUE of N use relative to N loading, for both periods in our sample (Table 4) This
might suggest that current policy is working or that there is less need to implement more stringent N-
load control measures. In contrast, the declining Luenberger indicator values for N loading indicate
that more of the HUC-8 subbasins could do better, which would suggest the need for more stringent
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control measures. These might include new management practices, such as conservation tillage
or planting vegetative buffers to reduce N runoff, as well as retiring marginal lands. If we limit
policy objectives to N use and crop and livestock output, then both models suggest the need for
additional measures to improve performance in the basin. These might include reducing fertilizer
use or changing production to less N-intensive crops.

In addition to differing assessments of overall performance, the two types of indicators also
offer differing guidance for where to focus conservation efforts when targeting lower-performing
sites. For instance, focusing on the models involving N loading for the 2002–2007 period, both the
LUENENV(t, t + 1) and LUENNU(t, t + 1) would prioritize conservation efforts along the northwest
to southeast transect of the basin, where we see deterioration in NUE. In contrast, the corresponding
ratio measures, �(Sales/N Load) and �(N Use/N Load), would prioritize conservation efforts
along the west to east transect, and going through the center of the basin. This divergence in the
implications for spatial targeting likely stems from the spatial heterogeneity of both soil and climate
conditions (see Figures S3 and S6), which are included in the Luenberger indicators but omitted
from the ratio measures.

Finally, there are practical considerations for policy design, such as tractability and ease of
implementation. One advantage, from a policy standpoint, of the ratio-based measures is their
relative simplicity. They are straightforward to calculate and interpret. But this simplicity comes
at the cost of information, particularly a better understanding of what is actually feasible in terms
of the production technology. The ratio-based measures reflect observed outcomes of interest,
without relating those outcomes to the production technology. The Luenberger indicator adds this
information by explicitly basing NUE measures on the production technology, where indicator
values are constructed from estimated distance to the production frontier, but it is also more complex
to calculate and communicate to a broader audience. These two approaches might be considered
complementary in a policy context, where one provides an initial assessment that might be used to
identify areas of interest, and the other might be used to then add insight into the components of
changing NUE.

Conclusion

We develop a new framework for measuring nitrogen use efficiency (NUE), based on the Luenberger
productivity indicator, commonly applied to multifactor production processes. This framework
allows us to incorporate both economic and environmental outcomes of N use and to assess these
outcomes in a standardized way across space and time. To demonstrate the framework in practice,
we construct a novel dataset for the UMRB production region, spanning the 2002–2012 production
period. We match county-level USDA Census of Agriculture production data to a panel of subbasin
estimates of N loading as well as soil and climate characteristics. We then compare the Luenberger
indicator results to a set of common ratio-based measures for NUE.

To summarize our main findings, first, we find considerable heterogeneity of NUE for both
the Luenberger indicators and ratio-based measures. On average, the Luenberger NUE tended
to decrease from 2002–2007 and then increase from 2007–2012, while the ratio-based measures
implied greater general improvement to NUE over the entire 2002–2012 period. Rank-order
comparison reveals that the two approaches lead to very different prioritization of subbasin areas
for NUE improvement. We find the Luenberger indicators for N use, production output, and N
loading are more closely correlated to one another in their NUE rankings than the corresponding
ratio measures in this case. We also find that ratio-based measures tend to generate more extreme
values for our sample.

Luenberger indicators of NUE allow for decomposition of the observed changes in NUE into
efficiency changes and technical changes. Efficiency changes refer to the movement of NUE for
a particular area (HUC8 subbasin in this case) over time away or towards a given benchmark
(i.e., the frontier). Our findings indicate reduction of efficiency, meaning that numerous areas have
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experienced worsening of their NUE performance relative to the benchmark. Technical change refers
to the movement of the benchmark (the frontier) itself over time. We find positive technical change
for most areas over time, as expected. This positive technical change on average offsets some of the
negative efficiency change. The decomposition can also be useful for policy in the sense that it could
help identify the areas where policies for efficiency change improvements should be prioritized and
areas where policies stimulating technical change are needed.

While our application is primarily intended to illustrate the Luenberger indicator framework,
comparison to existing ratio-based measures highlights the differences in these two approaches to
NUE. Namely, we should not expect the two frameworks to yield similar measures, as they are
derived in very different ways. While both assess the same data for N use, N loading, and production
output, the Luenberger indicator bases NUE on the estimated underlying production technology,
including varying soil and climate conditions. In other words, the Luenberger indicator assesses
NUE in terms of feasible improvements, given the production technology. The ratio-based measures
report changes in observed outcomes.

This difference in frameworks does not make one or the other universally superior. Indeed, there
are advantages and drawbacks to each. The Luenberger is more informative from a production
theoretical perspective. It provides an estimate of the underlying production technology, as well
as the dynamic components of productivity, efficiency and technology change. The Luenberger
indicator is also grounded in economic index theory. That said, the Luenberger indicator is also more
data intensive, mathematically complex, and more difficult to communicate to a broad audience.

Ratio-based NUE measures are especially useful for identifying targeted outcomes, including
N use, yields, and N losses, but they often omit economic concepts of efficiency and productivity.
From a policy perspective, these two approaches might be considered complements. For instance,
while ratio-based measures may be more useful for identifying outcomes, such as high N use or
high N losses, the Luenberger framework is arguably more informative for designing and targeting
economic policy incentives to improve NUE.

[First submitted November 2021; accepted for publication December 2021.]
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Figure S1. HUC-8 and HUC-2 Delineation of the Conterminous United States Used for
N-Loading Model
Notes: The smaller HUC8 subbasins of the Upper MARB (UMRB) serve as the unit of analysis for this study.
Source: Sinha, Michalak, and Balaji (2017)
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Figure S2. UMRB Cropland Data Layer
Notes: Dominant crops are corn (yellow) and soy (green).
Source: US Department of Agriculture (2019).
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Figure S3. NCCPI Soil Quality Index Values for the UMRB
Notes: Index values range in quality from 0–1. Areas in red denote lower quality soil, yellow denotes moderate soil quality,
and green denotes high quality soil. Soil quality serves as an environmental condition in the joint production technology.

Figure S4. Mean HUC8 Sub-Basin Production Values (price-deflated) and Farm-Related
Nitrogen Use for the 2002–2012 Sample
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Figure S5. Mean Price-Deflated HUC8 Sub-Basin Production Values and Nitrogen Loading
for the 2002-2012 Sample

Figure S6. Oury Aridity and Temperature-Humidity Index (THI) Average Daily Values for
the Growing Season Months, April–August, Years 2002, 2007, 2012
Notes: For the Oury index, higher values denote less arid conditions, more favorable to crop production. For the THI,
higher values denote more heat-humidity, less favorable for livestock production. These index values serve as environmental
conditions in the joint production technology.
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(a) LUENNUE, 2002–2007 (b) LUENNUE, 2007–2012

(c) LUENENV, 2002–2007 (d) LUENENV, 2007–2012

(e) LUENNU, 2002–2007 (f) LUENNU, 2007–2012

Figure S7. Distribution of Luenberger Indicator Values for NUE, 2002–2007 and 2007–2012
Periods
Notes: All values represent change in percent terms, where positive values indicate improvement and negative values
deterioration. The distributions for LUENNUE and LUENENV for 2002–2007 indicate that a majority of subbasins exhibit
little change in these two indicators of NUE for that time period. For LUENNU, we observe much greater mass in the left
tail, indicating that many subbasins in the UMRB exhibit substantial losses to NUE in terms of N use and nitrogen loading
specifically. For 2007–2012, we observe similar distributions across the three indicators. The shape of the distributions is
more or less symmetrical, with somewhat more pronounced left tails for LUENNUE and LUENNU.
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Figure S8. UMRB Sub-Basin Luenberger Indicator Values and Productivity Decomposition,
2002–2007, for E�ciency Change (top row), Technology Change (center row), and Overall
Productivity (bottom row)
Notes: Yellow denotes little to no change, green improvement, and red deterioration. For the 2002-2007 period we see losses
to e�ciency concentrated in the center and upper portions of the UMRB, across the three indicators. We also see overall
productivity losses concentrated more in these regions, despite commensurate technology improvements.
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Figure S9. UMRB Sub-Basin Luenberger Indicator Values and Productivity Decomposition,
2007–2012, for E�ciency Change (top row), Technology Change (center row), and Overall
Productivity (bottom row)
Notes: Yellow denotes little to no change, green improvement, and red deterioration. For the 2007–2012 period, losses to
e�ciency and overall productivity are more concentrated in the lower portion of the UMRB.
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