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We introduce LOVELACE, a tool for creating corpora of semantic graphs. The system uses graph
expansion grammar as a representational language, thus allowing users to craft a grammar that de-
scribes a corpus with desired properties. When given such grammar as input, the system generates
a set of output graphs that are well-formed according to the grammar, i.e., a graph bank. The gen-
eration process can be controlled via a number of configurable parameters that allow the user to, for
example, specify a range of desired output graph sizes. Central use cases are the creation of synthetic
data to augment existing corpora, and as a pedagogical tool for teaching formal language theory.

1 Introduction

Semantic representations are formalisms designed to express the meaning of natural language data in a
clear and concise way, which is suitable both for manual inspection and for automated processing. A wide
range of representational formats has been considered in literature. Some of the more commonly used are
based on graphs, in which nodes correspond to concepts, and edges to relations between them. Prominent
examples are combinatory categorial grammar [19], abstract meaning representation (AMR) [12, 3] and
universal conceptual cognitive annotation [1].

It would be valuable for many applications if one could automatically translate natural language
sentences into semantic graphs. However, for developing, training, and testing such approaches, cor-
pora like the AMR corpora1 are required. The creation of high-quality corpora is work intensive and
requires both linguistic knowledge and a familiarity with the representational formalism at hand. More-
over, even skilled annotators tire, and hence the resulting translations are bound to contain errors and
inconsistencies. In addition to this, hand-annotated real-world data is of limited use for conducting con-
trolled experiments whose purpose it is to study the influence of particular structural properties of the
representation on a given machine learning technique.

To address these problems, we provide the software LOVELACE2 that generates well-formed graphs
with respect to a graph expansion grammar (GEG) [7]. GEGs are hyperedge replacement grammars [5,
10, 8] that have been extended by a type of contextual rules inspired by [9].

Technically, a GEG is defined as a regular tree grammar that generates terms over a particular graph
algebra, and these terms are then evaluated into a set of directed acyclic graphs. As usual, the evaluation
of a term is done recursively. Assuming that a given subterm has already been evaluated to a graph, which
will become a subgraph of the generated graph, the evaluation of an operation on top of it adds new nodes
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with edges pointing to already existing nodes of the subgraph. In [7], the placement of these edges can be
restricted by a formula in counting monadic second-order logic. LOVELACE does not currently make use
of such a powerful mechanism, which we leave for future extensions. In another respect (to be discussed
in Section 2), we generalise expansion operations slightly, which ensures that the formalism becomes
more powerful than hyperedge replacement. This deviation from the original definition [7] is motivated
by the fact that the focus in that work was on polynomial parsing, whereas LOVELACE is a generative
tool for which the well-known NP-completeness of hyperedge replacement languages is of no relevance.

There are several semantically annotated treebanks available, including PropBank [15], FrameNet [2],
and the Penn Discourse TreeBank [17, 16]. There are also tools that generate synthetic treebanks from
grammars, which can, if so designed, contain semantic information. In this category of tools we have
Grammatical Framework [18], a programming language specifically designed for writing string gram-
mars, but which also provides functionality for generating corpora of parse trees with respect to a given
grammar. Another example is Tiburon [13], a capable toolkit for processing weighted automata which
includes an algorithm for extracting N parse trees with optimal weight from a weighted string grammar.
Finally we have BETTY [6], which can extract both the N best derivation trees, but also the N best output
trees with respect to a tree grammar; cf. Section 3.

Turning specifically to graph banks, Hockenmeir and Steedman propose an algorithm for translating
the Penn Treebank into a corpus of CCG derivations augmented with local and long-range word–word
dependencies [11]. There is also the manually created AMR bank by [4]. The present paper adds to this
line of work by providing a method of creating synthetic corpora of semantic graphs from a specification
given in the form of a graph expansion grammar.

The paper contains the following main sections: Section 2 recalls the graph expansion grammar
formalism, Section 3 explains how to find and use the software, and Section 4 provides a summary of the
work presented here together with ideas for improvement.

2 Graph Expansion Grammar

To recall the graph expansion grammar formalism [7], we first fix a few standard definitions and related
notation from discrete mathematics and automata theory.

The set of natural numbers (including 0) is denoted by N, and [n] = {1, . . . ,n} for n ∈ N. The set of
all strings (that is, finite sequences) over a set S is S∗, which in particular contains the empty string ε .
The subset of S∗ containing only those strings which do not have repeating elements is S⊛. For a string
w, we let [w] denote the smallest set S such that w ∈ S∗. We denote the canonical extensions of a function
f : S→ T to S∗ and to the powerset℘(S) of S also by f , i.e., f (s1 · · ·sn) = f (s1) · · · f (sn) for s1, . . . ,sn ∈ S,
and f (S′) = { f (s) | s ∈ S′} for S′ ∈℘(S).

A ranked alphabet is a pair A = (Σ,rk) consisting of a finite set of symbols Σ and a function rk : Σ →
N that assigns a rank to every symbol σ ∈ Σ. Writing σ (k) indicates that rk(σ) = k. If there is no danger
of confusion, we keep rk implicit and identify A with Σ.

The set TΣ of all trees over Σ is the smallest set of formal expressions such that σ [t1, . . . , tk] ∈ TΣ for
every σ (k) ∈ Σ and all trees t1, . . . , tk ∈ TΣ. Thus, the rank k of σ determines the number of subtrees of
every occurrence of σ in a tree. If k = 0, then f [] ∈ TΣ, which we abbreviate as f , omitting the brackets.

Given a ranked alphabet Σ as above, a Σ-algebra is a pair A = (A,( fA ) f∈Σ) consisting of a set
A, the domain of A , and a function fA : Ak → A for every f (k) ∈ Σ, the interpretation of f in A .
Now, if t = f [t1, . . . , tk] is a tree in TΣ, evaluating t with respect to A yields valA (t) ∈ A, defined as
valA (t) = fA (valA (t1), . . . ,valA (tk)).
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To generate trees over the operations of an algebra, we use regular tree grammars.

Definition 1 A regular tree grammar (over Σ) is a tuple g = (N,Σ,P,S) consisting of

• a ranked alphabet N of symbols of rank 0, called nonterminals,
• a ranked alphabet Σ of terminals, disjoint with N,
• a set P of productions A → f [A1, . . . ,Ak] where f (k) ∈ Σ for some k ∈ N and A,A1, . . . ,Ak ∈ N, and
• an initial nonterminal S ∈ N.

The regular tree language (rtg) generated by g is L(g) = LS(g) where (LA(g))A∈N is the smallest
family of subsets of TΣ such that, for A ∈ N, a tree f [t1, . . . , tk] is in LA(g) if (A → f [A1, . . . ,Ak]) ∈ P and
ti ∈ LAi(g) for all i ∈ [k]. (See Figures 3 and 4 for an example regular tree grammar and a tree in its
language, respectively.)

To generate languages other than tree languages using regular tree grammars, we follow the idea of
the seminal paper by Mezei and Wright [14]: the combination of a regular tree grammar g over Σ and a
Σ-algebra A generates the subset of A whose elements are all valA (t) such that t ∈ L(g). In our case, A is
the set of graphs (over a given set of labels). The operations are, thus, operations on graphs. However, the
central operation is nondeterministic, meaning that its application to a given graph can produce several
possible outputs. Formally, we model this by letting the operations work on sets of graphs instead of
individual graphs.

The graphs we work with are node- and edge-labelled directed graphs, each equipped with a se-
quence of so-called ports. From a graph operation point of view, the sequence of ports of a graph is its
“interface”: its nodes are the only ones that can individually be accessed by operations to attach new
edges to them. The number of ports is the type of the graph.

Definition 2 Let L = (L̇, L̄) be a labelling alphabet: a pair of finite sets of labels L̇ and L̄. A graph over
L is a tuple G = (V,E, lab,port) such that

• V is the finite set of nodes,
• E ⊆V × L̄×V is the set of edges,
• lab : V → L̇ labels the nodes, and
• port ∈V⊛ is the sequence of ports of the graph.

The type of G is type(G) = |port|. The set of all graphs of type k is denoted by Gk.

If the components of a graph G are not explicitly named, they are denoted by VG, EG, labG, and
portG, respectively.

Graph expansion grammars generate graphs using two types of graph operations: disjoint union
and the more complex graph expansion operations. Disjoint union just combines two graphs into one
by placing them next to each other (after making their node sets disjoint) and concatenating their port
sequences. Formally, let k,k′ ∈ N. Then ⊎kk′ : Gk ×Gk′ → Gk+k′ is defined as follows: for G ∈ Gk and
G′ ∈ Gk′ with disjoint sets of nodes, ⊎kk′(G,G′) yields the graph (V,E, lab,port) ∈ Gk+k′ given by V =
VG ∪VG′ , E = EG ∪EG′ , lab = labG ∪ labG′ , and port = portGportG′ .3 If VG ∩VG′ ̸= /0, we silently rename
nodes before we apply ⊎kk′ , because we are only interested in generating graphs up to isomorphism. Note
that ⊎kk′ is not commutative because of the concatenation of port sequences. We usually write G⊎kk′ G′

instead of ⊎kk′(G,G′). We extend ⊎kk′ to ⊎kk′ : ℘(Gk)×℘(Gk′) → ℘(Gk+k′) by letting G ⊎kk′ G
′ =

{G⊎kk′ G′ | G ∈ G , G′ ∈ G ′} for G ⊆ Gk and G ′ ⊆ Gk′ .

3Here, labG ∪ labG′ is the usual union of binary relations.
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The other type of operation, the graph expansion, extends an existing graph with an additional struc-
ture placed “on top” of that graph. Expansion is specified by a template graph with an additional sequence
of designated nodes called docks. Applying an extension operation adds the template graph to the argu-
ment graph and identifies the docks with the ports of that graph. The ports of the template become the
ports of the combined graph. The template also contains a number of context nodes that can be identified
with arbitrarily chosen nodes with matching labels in the argument graph. Formally, a graph expansion
operation is a unary operation given by a tuple Φ = (V,E, lab,port,dock) where (V,E, lab,port), hence-
forth denoted by Φ, is the underlying graph and dock ∈ V ∗ is the sequence of docks. Note that dock, in
contrast to port, may contain repetitions. Similarly to our notation for the components of graphs, we use
the notations VΦ, EΦ, labΦ, portΦ, and dockΦ if these components are not explicitly named. Furthermore,
we let CΦ =V \ ([port]∪ [dock]) denote the set of context nodes of Φ.

An expansion operation Φ as above can be applied to an argument graph G = (V,E, lab,port) ∈ Gℓ if
|dockΦ|= ℓ. It then yields a graph of type |portΦ| by identifying the nodes in dockΦ with those in port,
and each context node with an arbitrary node in V that carries the same label. The port sequence of the
resulting graph is portΦ.

Formally, let |portΦ| = k and |dockΦ| = ℓ. Then Φ is interpreted as the nondeterministic operation
Φ : Gℓ →℘(Gk) defined as follows. For a graph G = (V,E, lab,port) ∈ Gℓ, a graph H ∈ Gk is in Φ(G) if
it can be obtained by the following stepewise procedure:

1. Rename the nodes of Φ to make the set of nodes of Φ disjoint with V . (As in the case of ⊎, we
will in the following assume that this is done silently “under the hood”.)

2. Add the nodes and edges of Φ to G.
3. Identify the i-th node v of port with the i-th node of dockΦ for all i ∈ [ℓ] and label the resulting

node with labΦ(v).
4. Identify every node u ∈CΦ with any node v ∈V \ [port] for which lab(v) = labΦ(u).
5. Define portH = portΦ.

Note that the process of identifying docks of Φ with ports of the argument graph G may merge ports
of G if dock contains repetitions. The expansion operations defined here are thus more general than those
in [7]. In fact, readers familiar with hyperedge replacement grammars will easily be able to see that this
allows us to simulate hyperedge replacement. Together with the fact that context nodes can be used to
create graphs of unbounded treewidth, this implies that graph expansion grammars, to be defined below,
are strictly more powerful than hyperedge replacement grammars.

Further deviations from [7] are that the definition above does not make use of the cloning of context
nodes, and that the logic formula that determines which mappings of context nodes to nodes in the
argument graph are allowed has been replaced by the much simpler condition that node labels must
match. The cloning ability is not needed here since we consider expansion operations rather than the
special case of extension operations as in [7] (see below), which means that cloning can be implemented
by repeated application of expansion. The latter has been dropped in the current paper for simplicity, and
because it is not yet implemented in LOVELACE anyway.

The major result of [7] applies to a restricted form of expansion operations, the so-called extension
operations. By using only extension operations, we can make sure that graphs are built bottom-up, that
is, that Φ always extends the input graph by placing nodes and edges “on top”, with edges being directed
downwards, and that all nodes of generated graphs are reachable from the ports. For a brief explanation,
let NEWΦ = [portΦ]\ [dockΦ] denote the set of nodes that an application of Φ adds to the graph, i.e. those
nodes of Φ which are not identified with nodes of the argument graph when Φ is applied. Then Φ is an
extension operation if it satisfies the following requirements:
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(R1) EΦ ⊆ NEWΦ × L̄× (VΦ \NEWΦ) and
(R2) every node in [dockΦ]\ [portΦ] has an incoming edge.

By induction, (R1) ensures that all graphs generated by a graph extension grammar (i.e., a GEG
all of whose expansion operations are extension operations) are directed acyclic graphs. Likewise by
induction, (R2) ensures that every node in a graph generated by a graph extension grammar is reachable
from a port. While these restrictions are not employed in the current paper (since they are not needed
unless one is interested in efficient parsing), they are well justified when generating semantic graphs such
as AMR, because these typically consist of directed acyclic graphs in which all nodes are reachable from
the roots (which would translate to ports in the graph grammar formalism). Thus, while LOVELACE does
not enforce (R1) and (R2), our examples will actually obey these requirements.
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Figure 1: The figure on the left shows an expansion operation Φ with four ports (indicated with numbers
above the nodes), three docks (indicated with numbers in parentheses below the nodes), and two context
nodes (the ones that are neither ports nor docks). Docks 2 and 3 coincide. Applying the expansion
operation identifies docks with corresponding ports of the argument graph and each context node with
a non-port in the input graph that carries a matching label. The application of Φ to the graph G (on the
right) yields a non-empty number of possible results because the number of ports of G coincides with the
number of docks of Φ, and since there are nodes labelled b and c in G which are not ports.
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Figure 2: Three graphs in Φ(G) where Φ and G are as in Figure 1. The differences between the graphs
reflect how the context nodes in Φ were chosen to be mapped to nodes in G.

Figure 1 depicts an expansion operation together with a graph to which it can be applied. Figure 2
shows three different graphs, all resulting from the application of the expansion operation to the (now
argument) graph in Figure 2. The resulting graphs differ because different mappings of context nodes to
nodes in the argument graph were chosen. Note that Φ fuses ports 2 and 3 of the argument graph, which
become port 3 of the result, because docks 2 and 3 coincide.
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A graph expansion algebra is a Σ-algebra A = (℘(G),( fA ) f∈Σ) where every symbol in Σ is inter-
preted as an expansion operation, a union operation, or the set {φ}, where φ is the empty graph ( /0, /0, /0,ε).
As previously mentioned, the operations of the algebra act on sets of graphs rather than on single graphs,
due to the nondeterministic nature of expansion. This also takes care of the fact that operations are only
defined on graphs of matching types: we simply use the convention that the application of an operation
to a graph of an inappropriate type returns the empty set.

Definition 3 A graph expansion grammar is a pair Γ = (g,A ) where A is a graph expansion Σ-algebra
for some ranked alphabet Σ and g is a regular tree grammar over Σ.

L(Γ) =
⋃

t∈L(g)

valA (t)

is the graph language generated by Γ.

3 LOVELACE

Let us now make use of the capacity of graph expansion grammars for expressing semantic graph lan-
guages to create a semantic graph generator. We named the software tool that implements this func-
tionality LOVELACE4. To use LOVELACE, one needs to have access to, or themselves define, a graph
expansion grammar describing a language that contains the wanted corpora. In the rest of this section,
we explain in greater detail how to combine LOVELACE with the tool BETTY5 to generate graph corpora.

BETTY operates on weighted regular tree grammars, that is, on rtgs in which the rules are equipped
with weights. In the case of BETTY, these must be taken from the tropical semiring. The resulting
grammars work precisely like those in Definition 1, but assign an additional weight to every generated
tree, computed as follows. The weight of a derivation is the sum of all weights of the rules applied to
generate the tree. The weight of a tree in the language is the minimum of all weights of derivations
that yield that tree. BETTY takes as input such a weighted grammar and some natural number N, and
outputs N best trees, that is, N pairwise distinct trees of least weight (in the order of increasing weight).
Thus, in this context, lesser weight is better. In the case of ties, BETTY gives precedence to smaller trees.
In particular, assigning all rules the same weight results in picking N smallest possible trees from the
generated language. It is in fact unnecessary to provide rules with an explicit weight as BETTY interprets
rules without a weight as rules of weight 0. For simplicity, the example we use below in order to illustrate
the generation of corpora makes use of this possibility.

To generate the semantic graph corpora, a two-step approach is used: First N best trees are extracted
from the (now weighted) regular tree grammar component of the graph expansion grammar, and these
are then evaluated with respect to the algebra. As there is currently no direct integration of BETTY and
LOVELACE, this pipeline must be set up manually. Syntactically, the input format to BETTY is the rtg
format of [13]; see that paper for more information. An example regular tree grammar on rtg format
can be seen in Figure 3, and Figure 4 shows an example tree in the corresponding language. The trees
that BETTY then outputs are the derivation trees that comprise the basis of the corpus.

In the next step of the generation process, the derivation trees are translated into graphs using
LOVELACE. To do this, we must specify the graph expansion algebra. In other words, we must as-
sociate an operation with every terminal in the regular tree grammar and gather them in an operation file.

4https://github.com/tm11ajn/lovelace/
5https://github.com/tm11ajn/betty/

https://github.com/tm11ajn/lovelace/
https://github.com/tm11ajn/betty/
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1 S
2 S -> op1(C)
3 C -> op2(U)
4 U -> op3(S’ S)
5 S’ -> op4
6 S -> op5

Figure 3: A regular tree grammar (on rtg
format). The first nonterminal in the file
represents the starting nonterminal.

op1

op2

op3

op4 op5

Figure 4: A visual representation of the unique tree
op1[op2[op3[op4, op5]] in the language generated by
the regular tree grammar in Figure 3 on the left.
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op3 : S′⊎11 S op4 : they
1
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1

Figure 5: A definition of five graph operations. Here, op3 is a union operation that takes two argument
graphs with one port each, and the remaining operations are graph expansion operations.

Such a set of operations for the tree of Figure 4 is depicted in Figure 5. Union operations and expansion
operations have similar textual formats. Both use the keyword operation together with the name of
the operation (i.e., the corresponding terminal in the regular tree grammar) and curly brackets to enclose
the operation specification. A union operation is specified – as seen in Figure 6 – using a single line of
two numbers referring to the number of ports of the two input arguments. An expansion operation must
necessarily specify a graph with ports and docks, which is why we found it convenient to base the repre-
sentation on the gv digraph format used by the open-source tool Graphviz1 (see Figures 9 and 10 for an
example). In Figure 7, we provide an example expansion operation that corresponds to the operation op1
of Figure 5. The only addition to the Graphviz format is that the user must specify which nodes are ports
and docks by enumerating them using the keywords port and dock, respectively. We see that node 0
is the only port of the operation, and that nodes 2 and 3 are its docks.

Once we have both a file specifying the operations and a file of derivation trees, we can input
them to LOVELACE by using the mandatory parameters -g and -t, respectively. An example usage
of LOVELACE is thus given by

java lovelace.java -g file-of-operations.txt -t file-of-trees.txt

LOVELACE will then evaluate the trees into graphs (by interpreting the nodes of the trees as graph op-
erations) and output them. The process of evaluating the tree in Figure 4 with respect to the operations

1https://graphviz.org/

https://graphviz.org/
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1 operation op3 {
2 1 1
3 }

Figure 6: A textual representation of the union
operation op3 that takes two graphs with one
port each and turns them into a single graph
with two ports.

1 operation op1 {
2 0 [label="persuade", port=1]
3 1 [label="she"]
4 2 [dock=1]
5 3 [dock=2]
6 0 -> 1 [label="arg0"]
7 0 -> 2 [label="arg1"]
8 0 -> 3 [label="arg2"]
9 }

Figure 7: A textual representation of the expansion
operation op1 in Figure 5. The name of the operation
is op1, which is also the label that is used in a tree
grammar file to refer to this operation.

in Figure 5 is depicted in Figure 8. Each output graph is saved as a single text file in gv format (one
such file resulting from our running example is depicted in Figure 9), which makes their visualisation by
Graphviz easy. We recommend using the Graphviz online tool6 for quick and easy graph visualisation.
An example of a visualisation of the graph in Figure 9 by Graphviz is shown in Figure 10.

In addition to its basic functionality, LOVELACE allows the user to generate graphs with abstract
labels, which are then replaced by concrete labels when the generated graphs are outputted. More pre-
cisely, the user can provide definitions of one-to-many label replacements, and the system will then
output all possible instantiations based on these replacements. Such definitions are provided in a text
file passed as an argument to LOVELACE via the -d option. This text file should include definitions for
every label that shall be replaced by one or more labels. For example, we can generate graphs with the
abstract label sing-pronoun which is then replaced by singular pronouns to generate various valid
semantic graphs from a single result of the generation process. As a more sophisticated example, we
can expand an abstract label representing the VerbNet class conjecture-29.5-1 (which contains,
for example, the verb believe) by any verbs in the same class. In Figure 11, we provide a definition
file in which the concepts they, she and believe have been expanded to provide a richer variety of
semantic graphs. When such a file is provided to LOVELACE, all combinations of the replacements are
used to create more semantic graphs. This naturally yields a combinatorial explosion, which is why this
option should be used with care. An alternative way of instantiating graphs is discussed in Section 4.

The three remaining parameters of the program are quite straight-forward: -L specifies the minimum
number of nodes that a generated graph can have, -H is similar but instead provides an upper bound of
nodes, and -k takes an operation name as an argument and forces every generation to use that particular
operation at least once. In Section 4, we discuss other potential parameters for fine-tuning the output
data that a user might be interested in.

To summarise the above information, we have collected the parameters implemented thus far in a
cheat sheet, see Figure 12.

6https://dreampuf.github.io/GraphvizOnline/

https://dreampuf.github.io/GraphvizOnline/
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Figure 8: The bottom-up evaluation of the tree in Figure 4 produced by the regular tree grammar in
Figure 3 into a graph, using the operations defined in Figure 5. When the operation corresponding to a
node in the tree is applied, the node is marked to make the derivation process clearer.

4 Conclusion and Future Work

We have presented the software LOVELACE that generates corpora of semantic graphs; it is based on
the formalism of graph expansion grammar. To improve the software, we would appreciate input as to
what features would be useful to the natural language processing community. Below, we list some of the
currently planned improvements.

As described in the previous section, BETTY and LOVELACE are currently not integrated. The user
first applies the N-best extraction software BETTY to a weighted regular tree grammar and then inputs
the resulting list of trees to LOVELACE, together with a file specifying graph operations and other pa-
rameters, to output a graph corpus. To make the process smoother, we plan on integrating BETTY into
LOVELACE so that the transition between both steps happens automatically. This integration would
require LOVELACE to take additional input parameters such as the desired size of the corpus.

The graph expansion operations used in this paper are a modified version of those used in [7]. In
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1 digraph G {
2 0 [label="they"]
3 1 [label="she"]
4 2 [label="believe"]
5 3 [label="persuade"]
6
7 2 -> 0 [label="arg0"]
8 2 -> 1 [label="arg1"]
9 3 -> 1 [label="arg0"]

10 3 -> 0 [label="arg1"]
11 3 -> 2 [label="arg2"]
12 }

Figure 9: A file in the Graphviz format gv repre-
senting the graph resulting from evaluating the tree
in Figure 4 with respect to the operations in Figure 5.

Figure 10: A visualisation of the output file de-
picted in Figure 9, created using Graphviz.

1 conjecture-29.5-1 = presume trust guess believe
2 sing-pronoun = they he she

Figure 11: Example definition file.

some respects they are more general, while in others they are more restricted. The major differences are
the following ones:

• Graph expansion operations are allowed to contain repetitions in the sequence of docks. This
ensures that graph expansion grammars can generate all hyperedge replacement languages. For a
generation system such as LOVELACE, this is desirable whereas in the context of [7], which focuses
on parsing, it is detrimental as it implies that NP-complete graph languages can be generated.

• In this paper, context nodes can be mapped to arbitrary nodes in the argument graph of a graph
expansion operation, provided that labels match. In [7], admissible mappings are specified by
counting monadic second-order logic, which is a much more powerful mechanism not yet imple-
mented in LOVELACE.

• Finally, we do not make use of the mechanism of cloning context nodes. The reason is that we
consider expansion operations rather than the more restricted graph extension operations (cf. the
earlier discussion of requirements (R1) and (R2)). The former can implement cloning by iterated
application of rules, which makes the use of this concept unnecessary. However, cloning may be
added as an optional feature in the future to enable the user to make the rule set more compact.

Another planned area of improvement concerns the implementation of mapping the context nodes to
nodes in the argument graph. Currently, this is done by randomly choosing a node in the argument graph
with a matching label. If there is no matching candidate, then the expansion operation cannot be applied,
and the program returns an error message. This is a deviation from the formal definition in two ways. On
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-t <tree file> Mandatory parameter whose argument should be the file that lists
the derivation trees.

-g <operation file> Mandatory parameter whose argument specifies the input
expansion operations. Note that for every label of the input regular tree grammar
file, there should be exactly one expansion operation specified.

-L <min num nodes> Sets the minimum number of nodes in the tree. For in-
stance, if the argument is 4, then the program skips every derivation tree that
has less than 4 nodes.

-H <max num nodes> Sets the maximum number of nodes in the tree. Its func-
tionality is analogous to that of L’s, but it sets an upper bound of nodes instead of
a lower bound.

-d <definition file> This argument allows the user to replace labels in the
generated graphs to create the combination of all defined label replacements.

-k <operation name> Only generates the graphs whose generation process in-
cludes the specified operation. An example usage is -k op3.

Figure 12: Parameter cheat sheet.

the one hand, only a single graph is returned, even though there may in fact be several results due to the
nondeterminism in the formal definition. Second, if there is no matching candidate at all, the tree should
simply contribute zero resulting graphs to the generated corpus instead of producing an error message.
(A warning message should, however, be issued as the situation may indicate a modelling error.) One
possibility would be to implement an option to have all of the formally generated graphs being outputted.
Of course, this may in general cause a combinatorial explosion, similarly to how instantiating nodes using
a definition file may result in a combinatorial explosion.

The possibility, mentioned above, to use logical formulas to guide the mapping of context nodes is
not the only way in which to improve the user control of the context node mapping. In fact, such a control
mechanism may be seen as an independent module which can be implemented in whatever way suitable.
In particular, we are planning to study ways of instantiating it by neural mechanisms, which would make
it possible to use machine learning to learn valid context node mappings.

Finally, future work includes developing more options to more easily fine-tune the graph generation.
There are plenty of ways in which we could extend the parameters that can be used to tweak the semantic
graph corpora. One idea is to fine-tune the -d parameter: one may want the system to pick a random
concept from each definition set for each instance of the concept instead of using all of the combinations.
Another idea is to control more in detail what concepts should show up in the output corpus and also to
what extent, that is, a type of filtering of the corpus. There are several options to achieve such filtering
functionality, and future work will investigate these possibilities.
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