
Department of Computing Science May 24, 2023
Umeå University

Degree Project in Computing Science Engineering, Spring 2023

Minimizing initial margin requirements using
computational optimization

Jacob Ahlman Bohm
jacobab@cs.umu.se

Course responsible
Henrik Björklund

Supervisors
Internal Patrik Eklund
External Jacob Titus

Project report

Abstract

Trading contracts with future commitments requires posting a collateral, called initial
margin requirement, to cover associated risks. Differences in estimating those risks and
varying risk appetites can however lead to identical contracts having different initial
margin requirements at different market places. This creates a potential for minimizing
those requirements by reallocating contracts.

The task of minimizing the requirement is identified as a black-box optimization problem
with constraints. The aim of this project was to investigate that optimization problem,
how it can best be tackled, and comparing different techniques for doing so. Based on
the results and obstacles encountered along the way, some guidelines are then outlined
to provide assistance for whomever is interested in solving this or similar problems.

The project consisted both of a literature study to examine existing knowledge within
the subject of optimization, and an implementation phase to empirically test how well
that knowledge can be put to use in this case. During the latter various algorithms were
tested in a number of different scenarios. Focus was put on practical aspects that could
be important in a real situation, such as how much they could decrease the initial margin
requirement, execution time, and ease of implementation.

As part of the literature study, three algorithms were found which were evaluated further:
simulated annealing, differential evolution, and particle swarm optimization. They all
work without prior knowledge of the function to be optimized, and are thus suitable for
black-box optimization.

Results from the implementation part showed largely similar performance between all
three algorithms, indicating that other aspects such as ease of implementation or paral-
lelization potential can be more important to consider when choosing which one to use.
They were all well able to optimize different portfolios in a number of different cases.
However, in more complex situations they required much more time to do so, showing a
potential need to speed up the process.

Jacob Ahlman Bohm i May 24, 2023

Project report

Acknowledgements

I would like to thank both my supervisors, Patrik Eklund and Jacob Titus, for the support
and feedback I have received during this project - it has been much appreciated. I would
also like to thank Eduardo Paludo Gomes at Nasdaq for providing valuable input and
helped explaining the financial parts that can be quite confusing for me as a computer
scientist.

Jacob Ahlman Bohm ii May 24, 2023

Project report Contents

Contents

1 Introduction 1
1.1 Problem formulation . 1

2 Background 2
2.1 Financial background . 2

2.1.1 Financial instruments . 2
2.1.2 Clearing house . 3
2.1.3 Initial margin . 4

2.2 Defining the optimization problem . 5
2.3 Dimensionality of the objective function 6
2.4 Categorization of optimization strategies 7
2.5 Related work . 7

3 Method 8
3.1 Evaluation criteria . 8
3.2 Literature study . 9
3.3 Implementation phase . 9

3.3.1 Constructing the objective function 10
3.3.2 Handling constraints . 11
3.3.3 Finding optimal parameters for the algorithms 12

3.4 Test design . 12
3.4.1 Test data and scenarios . 13

4 Optimization algorithms 14
4.1 Simulated annealing . 14
4.2 Differential evolution . 15

4.2.1 Mutation schemes and parameters 17
4.3 Particle swarm optimization . 18

4.3.1 Population size and other parameters 18
4.4 Other algorithms . 20

5 Results 20
5.1 Finding the solution in simple scenarios 20
5.2 Scaling up the problem . 22
5.3 Execution time . 23

6 Discussion 26
6.1 Limitations . 26
6.2 Potential for optimizing initial margin requirements 27
6.3 Choosing which algorithm to use . 28

7 Conclusion and future work 29

8 References 30

Jacob Ahlman Bohm iii May 24, 2023

Project report Contents

A Algorithm details and parameter values 32
A.1 Simulated annealing . 32
A.2 Differential evolution . 32
A.3 Particle swarm optimization . 33

B Full results 34
B.1 Portfolio C . 34
B.2 Portfolio D . 36
B.3 Portfolio E . 38

Jacob Ahlman Bohm iv May 24, 2023

Project report List of Algorithms

List of Tables

1 Common differential evolution mutation schemes 17
2 Number of times the optimal allocation is found by each optimizer 22

List of Figures

1 Visualization of bilateral trades between brokers and trading with a clear-
ing house . 3

2 Visualization of the differences between absolute and relative portfolio al-
location . 11

3 Simulated annealing in action . 15
4 Differential evolution in action . 17
5 Particle swarm optimization in action . 19
6 Portfolio A optimization process using different algorithms 21
7 Process of optimizing portfolio B using simulated annealing 21
8 Portfolio C optimization results . 22
9 Portfolio D optimization results . 23
10 Portfolio E optimization results . 23
11 Timing of the different parts of the optimization process 24
12 Execution time per evaluation when optimizing portfolio C 25
13 Execution time per evaluation when optimizing portfolio D 25
14 Execution time per evaluation when optimizing portfolio E 25
15 Portfolio C results, 200 evaluations . 34
16 Portfolio C results, 400 evaluations . 34
17 Portfolio C results, 800 evaluations . 35
18 Portfolio C results, 1,600 evaluations . 35
19 Portfolio D results, 200 evaluations . 36
20 Portfolio D results, 400 evaluations . 36
21 Portfolio D results, 800 evaluations . 37
22 Portfolio D results, 1,600 evaluations . 37
23 Portfolio E results, 200 evaluations . 38
24 Portfolio E results, 400 evaluations . 38
25 Portfolio E results, 800 evaluations . 39
26 Portfolio E results, 1,600 evaluations . 39

List of Algorithms
1 Simulated annealing . 14
2 Differential evolution (DE/rand/1) . 16
3 Particle swarm optimization . 19

Jacob Ahlman Bohm v May 24, 2023

Project report 1 Introduction

1 Introduction

There exist many different types of financial instruments traded at various market places,
many of which come with future obligations. One such instrument is the futures contract,
which is an agreement to buy something in the future. As there is always the risk of any
of the involved parties not being able to deliver on their part of the contract, exchanges
where futures and other similar instruments are traded require a collateral. This collateral
is called the margin requirement, a part of which is the initial margin (IM).

Different methods exist to calculate the IM requirement, and different market operators
may also have varying risk appetites, which means that the same set of instruments
and associated positions may have different IM requirements at different market places.
This creates opportunities for traders that want to minimize their margin requirements,
without changing their portfolio exposure. This opportunity can be described as an
optimization problem: How should the instruments be allocated among the different
available markets, in order to achieve an initial margin requirement that is as low as
possible?

There are, however, several complicating factors that leads to the mentioned optimization
problem being non-trivial to solve. The initial margin requirement needs to be calculated
on a whole portfolio and not as a sum of individual IM requirements for each product, and
the varying and often complex methods used for calculating the requirement means that it
is very difficult to use information about the function itself to alleviate the optimization.

It should also be mentioned is that while theoretical knowledge can provide good and
clean answers to many problems, and there has certainly been a vast amount of research
conducted in the field of optimization, reality often has a way of complicating things.
When attempting to apply the theory in a real situation, more often than not there exist
many unique challenges that need to be addressed.

This thesis was conducted in collaboration with Nasdaq, investigating how the optimiza-
tion problem could best be tackled. While doing this, focus was being put on addressing
both the unique set of challenges associated with the specific optimization problem itself,
and the obstacles of applying theoretical knowledge in a practical situation.

1.1 Problem formulation

The aim of this project is to investigate the feasibility of applying computational opti-
mization for the particular use case of minimizing initial margin requirements. While
building on a foundation of existing theoretical knowledge, the focus of the project lies in
identifying the unique obstacles encountered when putting that knowledge to use. The
first objective is to determine whether it is even practical to apply optimization in this
scenario. If it is, the secondary objective is to find information about the challenges that
exist in doing so, in order to provide guidelines for how they can be addressed.

As such, the purpose of this project will not necessarily be to implement the best possible
optimizer for this situation. Rather, the project can be regarded as a prestudy for such
an optimizer: By breaking down the problem and looking at potential solutions, guidance

Jacob Ahlman Bohm 1 May 24, 2023

Project report 2 Background

can be provided for someone faced with solving it. Also, while the primary focus is to
provide assistance for solving this specific optimization problem, hopefully the project
can provide some guidance for solving other but similar problems as well.

More specifically, the project attempts to answer the following questions:

• What are the characteristics of this optimization problem, and which techniques
exist for solving problems with those characteristics?

• How well do the techniques perform in terms of speed, accuracy, capabilities and
ease of implementation?

• What are the practical difficulties associated with solving this particular optimiza-
tion problem, and how can they be addressed?

• Based on the information gathered, is it practical to apply computational optimiza-
tion to solve this problem? If so, what would be a good approach forward?

2 Background

This section covers some background knowledge that is required in order to fully under-
stand the problem. It both describes some central financial terms and provides a more
precise definition of the optimization problem that is central for the thesis.

2.1 Financial background

This report focuses on the financial instrument known as futures, and the initial margin
related to trading that instrument. A futures contract is a kind of derivative, meaning
that its value is derived from some kind of underlying asset [1, p. 23]. While this project
focuses solely on futures, other derivatives such as options for example also work in a
similar manner. Therefore much of the theory and results may be applicable to those as
well.

2.1.1 Financial instruments

A futures contract is a normally exchange-traded agreement to either buy or sell a certain
asset for a predetermined price at some specific date in the future. The trader can take
one of two positions with a futures contract: A long position for buying the underlying
asset, or a short position for selling it [1, p. 30].

This report mentions things such as a given instrument being available at several different
markets, but it should be noted that this is a simplification of the reality for practical
reasons. What is actually meant by this is that there exist instruments at those mar-
kets that are regarded as equivalent, i.e. they may be derived from the same underlying
commodity in a similar fashion, but they are still technically different contracts. A gold

Jacob Ahlman Bohm 2 May 24, 2023

Project report 2 Background

future at one market may for example be exchanged for another, but for all practical
purposes equivalent, gold future at another clearing market. In this thesis, “instrument
pairing” is used to denote two or more interchangeable contracts at different markets.

In the cases investigated as part of this thesis there are virtually be no difference between
the different instruments of a pairing, save for the fact that they may have different sizes
and as such may need a multiplicative factor when converting between them. However,
this may not always be the case in the real world. Especially with more complicated or
obscure contracts than those investigated here, it may be difficult or even impossible to
find true equivalents at other markets, and in such cases the differences between them
must be more carefully considered if they are to be paired.

2.1.2 Clearing house

Futures and other contracts are in general traded with the help of an intermediary called
a “clearing house”. Trading at a clearing house can only be done by members of the
clearing house, or with the help of one of its members. The clearing house acts as a
counter-party during a trade, meaning that the members only need to do business with
a single entity instead of having several bilateral agreements [1, p. 53-54], as visualized
by figure 1.

CLEARING
HOUSE

Figure 1: Visualization of bilateral trades between brokers (left) and trading with a
clearing house as counterparty (right)

Since the clearing house is acting as the counter-party during the trade of the contracts,
this also means that it takes on some of the risk associated with it. In particular it needs
to be able to cover the losses in case one of the members of the house defaults. In order to
do this, the house needs to have a guaranty fund. Each member will have to contribute
to this fund, with the amount depending on the size and risk of their positions.

This guaranty fund contribution is what constitutes the margin requirement mentioned
in the introduction of the report. While there exist several components of the margin
requirements, some of which are related to changes in contract price, this thesis focuses
solely on the initial margin component - which as the name suggests is the initial collateral
required for a given portfolio of contracts [1, p. 53-54].

Jacob Ahlman Bohm 3 May 24, 2023

Project report 2 Background

2.1.3 Initial margin

Different clearing houses often use different methodologies to calculate the initial mar-
gin (IM) requirement. Most methods fall into one of two different categories: Standard
Portfolio Analysis of Risk (SPAN) or Value-at-Risk (VaR). There are, however, many
variations of both methods, and together with differences in parameter values and risk
appetite between clearing houses this can result in different margin requirements at dif-
ferent houses for what is essentially the same portfolio.

Standard Portfolio Analysis of Risk based methods use market simulations to try to
estimate the maximum likely loss. The core of how the method works is to first group
instruments together by their underlying asset, and then look at a number of scenarios
(often 16) simulating changes in volatility and price of the underlying asset. The largest
loss from all scenarios, called the Scan Risk, is then used as a base for calculating the
initial margin [2].

Value-at-Risk based methods attempts to estimate the maximum possible loss in a given
time span with a certain confidence level. For example, a VaR method could estimate
something along the lines of “With 99% certainty the portfolio will at most lose X USD
in the coming N days”. The two most common ways of estimating this is to either use
historical data, or using a model-based method (which in turn use parameters derived
from historical data) [1, p. 514].

All these methods, both SPAN and VaR based ones, attempt to predict the future based
on historical data in some way or another. This is something which is inherently im-
possible to do perfectly. As they differ in how they do this, depending on the method
used the estimated risk and in extension the initial margin requirement may differ for the
same portfolio of contracts. It may also be the case that different clearing houses have
different risk appetites, and as such may require different initial margin requirements for
the same estimated risk.

The different methods used and various risk appetites is part of what creates an oppor-
tunity for optimization, but there are also more factors at play. Another major factor is
that contracts can offset each-other, and as such reduce the perceived risk and therefore
also IM requirement, but that this offset is only possible when those contracts exist at
the same clearing house.

As an example of this, a customer may be interesting in trading a gold futures contract.
They are interested in having both a long position of 100 and a short position of 50. If
both these positions are held at the same clearing house, they will offset each-other as
they are opposing positions. The risk will then be calculated based on the net 50 long
position. If the customer would instead place the 100 long position and 50 short position
at different clearing houses, they would not be netted against each-other and instead the
risk will be calculated for each of those two parts individually, resulting in a much higher
IM requirement.

It should be stated that the above-mentioned example is a very simple scenario, in real
situations may be much more complicated and as such the “correct” portfolio allocation
may not be so trivial. Different contracts may still be partially netted against each-other
if their values are correlated. For example gold and copper are two different assets, each

Jacob Ahlman Bohm 4 May 24, 2023

Project report 2 Background

having different market prices, but the prices may very well be correlated to a certain
degree. As such, their futures contract may still somewhat offset one another, resulting
in a lower calculated risk and IM requirement. This is called the inter-commodity spread
risk [2].

Exploiting this potential for lower initial margin requirements by having offsetting at the
same clearing houses is easy for very simple portfolios, but as the portfolios grow larger
and more complex instruments are used it becomes increasingly harder to do manually.
It is however yet another factor that creates potential for lowering the IM requirement,
creating many opportunities for an optimizer that is able to effectively find and exploit
this knowledge.

2.2 Defining the optimization problem

More formally, we have a set of n instruments P = {P1, P2, ..., Pn} that we can distribute
among m portfolios PF = {PF1, PF2, ..., PFm} at different clearing houses. Each avail-
able instrument-portfolio pair (note that not all instruments are necessarily available at
all clearing houses) has an associated net position. The position in portfolio i featuring
instrument j will be denoted as PPi,j ∈ R. This position can be zero, indicating that the
instrument is not present in that portfolio.

Given the m portfolios, each with their own method of calculating the IM requirement,
the IM requirement for a single portfolio 1 ≤ i ≤ m can be described as

IMi = MMi(PPi) , (1)

where MMi is the margin model used to calculate the IM for that portfolio, PPi is the
set of instrument positions in that portfolio and IMi is the resulting initial margin for
portfolio i. The total initial margin can then be described as

IMtotal =
m∑
i

IMi , (2)

which we want to minimize. In other words, we want to find the optimal portfolio
combination s.t. we have min(IMtotal).

Note that the initial margin must be calculated on a per-portfolio basis. It is not possible
to calculate the initial margins for all instruments in the portfolio individually and merely
sum them together, since the instruments affect each-other. For example, a portfolio
with both a long and short position of the same instrument and expiry date will have
a lower risk since they more or less cancel each-other out, thus the IM requirement for
the portfolio as a whole will be lower than the sum of the requirements of its individual
parts. As such, the optimization problem is non-separable.

The objective function IMtotal is very complex and is also subject to change as the
margin model or its parameters can change, so for all practical intents and purposes

Jacob Ahlman Bohm 5 May 24, 2023

Project report 2 Background

it can essentially be regarded as unknown. This type of optimization problem where
the function to be optimized is not known is commonly called black-box optimization, or
derivative-free optimization since we cannot use any derivative of the objective. Since no
assumptions are made about the objective function it must be regarded as non-convex,
meaning that a local minimum is not guaranteed to be a global minimum.

The problem also has constraints since the portfolio exposure, the values of its positions,
should remain constant - otherwise the optimal solution would always be to simply sell
all instruments since an empty portfolio is risk-free. The function is also limited in such
a way that no offsetting positions are allowed. That is, a net long position for example
can only be replaced with other net long positions. It cannot be increased by introducing
a net short position at another clearing house, and this creates another constraint that
needs to be handled.

To summarize, minimizing the objective function is in this case a non-convex, non-
separable black-box optimization problem with constraints.

2.3 Dimensionality of the objective function

As discussed in the previous section, the objective function consists of distributing n in-
struments continuously among m portfolios. This would indicate that the dimensionality
D of the objective function f : RD → R is D = n×m, where n is the number of instru-
ments and m the number of clearing houses. However, the reality is most often not that
simple. While it is true that the formula provides an upper limit for the dimensionality
of the function (i.e. D ≤ n ×m), it is often lower than that due to the fact that not all
instruments are available at all markets. Rather, a given instrument is commonly only
available at a subset of the available markets.

An effect of this fact is that just knowing the number of dimensions D may not provide as
much information about the objective function as it could have done. This is because that
it is possible that the nature of the function depends a lot on the underlying structure of
the problem, and given the above-mentioned situation that structure is poorly reflected
by the dimensionality alone.

To provide a concrete example of this, consider two situations:

(A) Ten instruments which are to be distributed among two portfolios, with all instru-
ments being available at all portfolios.

(B) Ten instruments which are to be distributed among 20 portfolios, but with each
portfolio only supporting a single instrument (meaning that each instrument can
be distributed among two portfolios, and no portfolio containing more than one
kind of instrument).

Situation A and B will both result in an objective function with 20 dimensions, but
given how initial margin calculations are done the nature of those functions could be very
different. Following from that, the prospects of finding a good optimization, as well as
the best way to do it, may differ a lot. This example is also just one of many. There are

Jacob Ahlman Bohm 6 May 24, 2023

Project report 2 Background

countless possible structures of the underlying problem, which may still have the same
dimensionality.

As a result, this raises the need for diverse test data to provide a decent indication of
how the optimizers perform in practice. While it will always be impossible to capture
all possible situations, it can be good to at least have not only a number of different-
dimensionality objective functions, but also cover a range of different instrument-portfolio
combinations.

2.4 Categorization of optimization strategies

There have been extensive work done in the field of optimization, which has lead to
numerous different techniques available. This creates a need to categorize them into
different groups in order to get an overview of and be able to compare the different
techniques.

One of the more general distinctions that can be made is categorizing algorithms as either
derivative-based or derivative-free methods [3, p. 5]. The former uses the derivative of
the objective function (or an approximation of it) in some way in order to improve the
process, which can result in very good results, but they are also very limited in terms of
which problems they can be applied to. The latter works regardless of any information
about the objective function or its derivative, which make it much more general at the
cost of performance. Since the objective function studied in this paper is regarded as an
unknown black-box function, we are limited to the use of derivative-free algorithms and
as such the study will focus on those.

There are also many other general characteristics which can be used to further differ-
entiate between and categorize different optimization algorithms. They can be either
deterministic or stochastic, where a deterministic algorithm will always result in the
same result given the exact same precondition, whereas stochastic algorithms include at
least some degree of randomness [3, p. 5]. Furthermore there are both trajectory-based
and population-based methods, where the former use a single agent and the latter use
multiple agents for traversing the search space.

The algorithms used in this study are discussed in more detail in section 4, where these
categorization terms are used to signify the similarities and differences between the dif-
ferent algorithms.

2.5 Related work

Countless studies have been conducted in the area of computational optimization, and
also specifically the sub-area of black-box optimization. Although these often feature
some of the very same algorithms that will be featured in this project, many of these
focus on the algorithms themselves [4]–[6], while this project will put emphasis on the
practical application of the algorithms. As such, insights from those studies will be used
as a foundation from which the practical problem this project focuses on can be solved.

Jacob Ahlman Bohm 7 May 24, 2023

Project report 3 Method

Certainly there also exists other research that focuses on the application of one or several
optimization algorithms, but something that should be mentioned with regards to this is
the so-called “no free lunch theorem” [7], which essentially states that no single algorithm
can be best for all optimization problems. Rather, if a given algorithm is well-suited
for a specific problem, this needs to be offset by it being ill-suited for another kind of
optimization problem.

The implications of this theorem is that all situations are unique, and that one algorithm
having shown good results in one situation does not necessarily mean that it will do so in
another. As such, even if the practical application of an algorithm has been investigated
in one situation, this research cannot be directly inferred to another situation. This
combined with the fact that no existing research has been found that focuses on the
specific task of IM optimization, there is an interest to investigate the topic and its
unique challenges.

3 Method

The thesis project consisted of two phases which are described in this section. The first
was a literature study aimed at identifying optimization techniques which were thought
to be relevant for this kind of problem. The second phase was the implementation phase,
where the most promising methods identified in the literature study were implemented
in order to test how well they performed in practice.

3.1 Evaluation criteria

Both the literature study and implementation phase aimed to filter out and analyse
different optimization algorithms, in order to find one that is suitable for the problem at
hand. The identified algorithms were evaluated based on a number of evaluation criteria,
which can be summarized with the following general criteria:

• How well the algorithm can minimize the objective function.

• Execution time required, putting an emphasis on algorithms that are able to receive
adequate results in a reasonable time-frame.

• Ease of implementation, the algorithm should not be difficult for the programmer
to understand and apply.

The listed criteria aimed to capture properties that are often important in a real situation.
While often not necessary to find the solution of the optimization problem in a strict sense,
i.e. the global optimum of the objective function, the user often wants a result that is
“good enough”. Although finding the best possible portfolio allocation would obviously
be good, this needs to be weighted against the cost of searching for it and the desire to
have the result in a reasonable amount of time. Taking those things into account it is
often better to have a decent result fast than waiting for the perfect result.

Jacob Ahlman Bohm 8 May 24, 2023

Project report 3 Method

In the project no hard limits were used for its evaluation criteria, as those rarely reflect
what is actually useful in a real situation. For example, there is no binary “cut-off” in
terms of execution time when the optimizer stops being useful, but of course it is beneficial
to make it as fast as possible. What is a reasonable amount of time is therefore not
strictly defined, rather being something that depends on the specific use case. However,
as a general guideline, an execution time of at most a couple of seconds would probably
be fast enough for most cases. Likewise, what is good enough performance and easy
enough to implement is also up to the reader to decide, this study merely attempts to
provide insights and guidelines to help with making an informed decision.

For each of the two phases of the project, the general criteria were broken down into more
specific criteria that were used to determine exactly what would be evaluated during that
phase.

3.2 Literature study

The first part of the project was a literature study, the purpose of which was two-fold.
It both attempted to identify and get an overview of the available algorithms, and filter
among them in order to select a few promising candidate methods. These candidates
were then subject to further evaluation during the implementation phase.

The filtering was done by examining existing research and determining whether a given
algorithm is suitable based on

• whether the algorithm works without any previous knowledge of the objective func-
tion or its derivative

• how well the algorithm handles non-convex objective functions, and whether it is
capable of escaping or avoiding the traps of local minima

• the complexity of the algorithm and whether it can be easily implemented for the
given problem.

The goal of those criteria was to select a few algorithms that were deemed effective and
suitable for the problem, while at the same time putting focus on practicalities such as
reducing development time. Another reason to strive for simple solutions to the degree
it is possible, is that it makes it easier to maintain the code and expand functionality.

3.3 Implementation phase

Theory does not take into account all the intricacies of reality, and as such it was not
possible to determine whether an algorithm is suitable for a given situation using literature
alone. The purpose of the implementation phase was to empirically test how well the
candidate algorithms identified during the literature study performed in practice.

Once all algorithms were implemented, they were tested in a number of different scenarios
(see section 3.4.1), using the relative change in initial margin as primary measurement of

Jacob Ahlman Bohm 9 May 24, 2023

Project report 3 Method

performance. In other words, the tests provided data which was examined to determine
how well the objective function could be minimized using the different algorithms in
different scenarios. More specifically, the scenarios that were examined were

• whether the implementations are able to find the global optima in a simple scenario

• how well the different algorithms scale with an increase in portfolios and/or instru-
ments, i.e. an increase in dimensionality of the objective function.

3.3.1 Constructing the objective function

While in theory constructing the objective function is trivial - simply choose how much
of a given instrument should be allocated to each portfolio - in practice there exist some
complicating factors and design choices that could affect the performance. This section
describes some general technical details of how the function was implemented.

With regards to how the actual portfolio allocations are handled there exist primarily
two alternatives, absolute and relative:

• Absolute allocation means the input to the objective function will directly decide
the positions of the different instruments in the different portfolios. For example,
the input could be that portfolio A should have a net short position of 100 of a
specific futures contract, and portfolio B a net position of 300 for the equivalent
contract.

• Relative allocation, on the other hand, only allows to set the relative weights of
the different portfolios. This could be done by allocating 25% of a short position
for a given futures contract to portfolio A, and 75% of the position to portfolio B.

Both of the mentioned examples would result in the same portfolios and as such also the
same resulting initial margin requirement (for the purpose of the example it is assumed
that the contract sizes and their prices are equal at both markets). The practical difference
between the two instead lie in the fact that an absolute allocation gives the caller the
ability to change the total size of the positions, whereas a relative allocation does not.
For example, given an absolute allocation it would be possible to take a net position
of 200 in portfolio A and 600 in portfolio B, something which would change the total
exposure. This is not allowed given the problem description and as such it would put a
lot of responsibility on the optimizer to prevent this.

The difference between the two allocation strategies is exemplified by figure 2, where with
the absolute allocation the optimizer can change the size of the bars, but with the relative
allocation it is only possible to change the proportion of the pie slices - not the size of
the pie itself.

The objective function used during this project used a relative allocation as its input.
This was chosen to reduce the need for constraint handling, thanks to exposure being
kept constant without needing to be explicitly accounted for. Translating the relative

Jacob Ahlman Bohm 10 May 24, 2023

Project report 3 Method

Portfolio A Portfolio B
0

50

100

150

200

250

300
Ne

t p
os

iti
on

Absolute allocation

(a) Absolute allocation

25%

75%

Relative allocation
Portfolio A
Portfolio B

(b) Relative allocation

Figure 2: Visualization of the differences between absolute and relative portfolio alloca-
tion

weights to actual positions and accounting for things such as different contract sizes are
done implicitly by the objective function.

As a performance-increasing measure, caching was also added to all optimizers. Every
time a new point in the search space is evaluated by an optimizer, that point and the
resulting value is added to a cache. If the optimizer then attempts to evaluate that
point again later on during its lifetime, the cached value will be fetched instead, thus
eliminating the need for re-evaluating that point. In the tests where a set number of
objective function evaluations was the limiting factor for the optimizers, cache fetches
did not count towards that limit - only new evaluations did.

3.3.2 Handling constraints

By using relative allocation of instruments at different markets the need for handling
constraints is reduced, but not eliminated.

One problem that can still arise is that the total weight of all allocations for a single
instrument could theoretically be zero. While naturally it needs to be possible to set the
weight of a single or several instrument-portfolio allocation pairs to zero, meaning that no
positions of that instrument will be present in that or those portfolios, this cannot be true
for all portfolios at the same time for that instrument. In other words, each instrument
must be allocated to at least one portfolio in order to keep the exposure constant.

Another problem is that the weights need to be kept within certain boundaries. More
specifically, no weight should be negative as offsetting positions are not to be used (as
explained in section 2.2). It should be noted, however, that if for some other use case off-
setting positions would be allowed, this constraint could be removed. A possible middle-
ground would also be to relax it to a soft constraint rather than a hard constraint, which
would allow offsetting positions only when there is sufficient gain.

Handling constraints when optimizing can be done in many ways which all have their
pros and cons. In this study two simple but popular methods were be combined in order

Jacob Ahlman Bohm 11 May 24, 2023

Project report 3 Method

to handle the constraints: clamping and penalty terms. The clamping will ensure all
values are within the allowed search space, for example to ensure no negative weights are
used, and the penalty term is used to penalize any unwanted or illegal allocation that
may occur within the search space.

3.3.3 Finding optimal parameters for the algorithms

Many optimization algorithms make use of different parameters that affect their perfor-
mance and allow for fine-tuning their behaviour. In most cases these are simple numerical
parameters, such as the population size in the case of population-based methods or values
determining how fast the algorithm will converge and switch from global to local search.
However, in some cases there also exist choices for controlling the more general strategy
of a method. The different differential evolution schemes constitute one example of this
(see section 4.2.1). Research shows that which values are chosen for these parameters can
possibly have a major impact on how well an algorithm performs [8].

One thing to keep in mind when choosing the correct parameters is that just as when
choosing algorithm, there is no silver bullet solution. No set of parameters will always
perform best in all situations, as exemplified by the no free lunch theorem discussed in
section 2.5. Rather, there are many factors that will affect which parameters work best
in a given situation. Two examples of such factors are the nature of the function to be
optimized, and how many objective function evaluations the optimizer is allowed to make.

Attempting to find the the optimal parameters for a given type of problem is a whole
research topic on its own. In fact, there have been several studies using different tools to do
just that, including the application of neural networks to optimize differential evolution
parameters [9]. Due to the immense work associated with attempting to identify the
optimal parameters, this paper does not focus on that. Instead, attempts were made to
identify some “good enough” parameters for each algorithm based on a combination of
existing research as well as some limited testing. The focus was not to provide the best
possible performance, but rather to ensure that each algorithm has parameters allowing
at least decent performance. This was done in order to increase the quality of comparisons
between the different methods.

3.4 Test design

The implemented algorithms were tested in a number of scenarios. The primary mea-
surement of performance was the average relative reduction in IM requirement, i.e. how
well the objective function could be minimized. Secondary aspects that were measured
were execution time and consistency. All tests were repeated 100 times unless otherwise
noted.

All tests were performed on a MacBook Pro featuring an Intel i9-9880H CPU @ 2.30 GHz
and 32 GB RAM. For all tests where the execution time was relevant, care was taken
to reduce the risk of other applications running on the computer hogging resources as it
could skew the data. Those tests were also never run concurrently, but rather one at a
time.

Jacob Ahlman Bohm 12 May 24, 2023

Project report 3 Method

3.4.1 Test data and scenarios

Underlying information such as the instruments themselves and other information rele-
vant for the IM calculations are based on real, historic data. The portfolio constitutions
however were artificially constructed as there were no real data available. The portfolios
were constructed either manually or semi-randomly with the intent to create situations
where there is potential for optimization. In some cases noise was added to make the
situation more challenging for the optimizer algorithms, and also to be able to identify
how well they scale as the problem size increases.

The following portfolios were constructed:

(A) Consists of one instrument (fuel oil futures) that is available at two markets, as well
as another offsetting instrument position (futures spread) statically placed at one
of those markets. This is a trivial situation where there should be great potential
for optimization simply by having the two instruments at the same market. D = 1.

(B) Similar to portfolio A, this portfolio also features two correlated instruments (gold
and silver futures contracts) with offsetting positions available at two markets.
There are however two differences to portfolio A: The instruments are different,
and they can both be swapped between the markets. D = 2.

(C) Based on portfolio B, but with several more or less unrelated instruments added
to provide noise. This puts pressure on the optimizers’ ability to navigate through
that noise and still be able to find the optimization potential. D = 40.

(D) A static portfolio containing a number of different futures using various metals and
energy products as underlying assets, spread across three clearing houses. The idea
was to create a more complex situation where there are several different instruments
with many correlations, meaning that the optimal solution is not trivial to find.
D = 80.

(E) A large, randomized portfolio. The primary purpose of this one is to test the
scalability of the optimizers, testing their ability to find the solution in reasonable
time even in more complex situations. While the portfolio will always use the same
instruments, their positions were randomized for each test run with this portfolio,
so a larger variance in the outcome was expected. D = 222.

While the different portfolios attempt to capture a number of different situations that can
be interesting to look at, the construction of them was somewhat constrained by limita-
tions in the underlying data. A concrete example of this is that it could be interesting to
investigate how the optimizers perform when there are many different available markets
to choose between, but alas there are few instruments that have good pairings between
more than two markets.

The tests conducted with the portfolios focused on how well the algorithms were able to
minimize the objective function and the execution time required to do so given different
number of objective function evaluations. They were designed with the aim to both find
out how well the implementations can tackle the challenge, and if there are any differences
between the algorithms when doing so.

Jacob Ahlman Bohm 13 May 24, 2023

Project report 4 Optimization algorithms

4 Optimization algorithms

This section describes the optimization techniques that were identified as part of the
literature study which were deemed promising according to the evaluation criteria. The
section aims to provide an overview of these candidate algorithms and the reasoning
behind choosing them for further evaluation during the implementation step. Featured
here are also short descriptions of the parameters each algorithm require and how their
values were chosen. The actual parameter values used are however not here, instead an
overview of them can be found in appendix A.

Of the three algorithms chosen for further evaluation, two are population-based and one is
trajectory-based. One thing that is not investigated further in this report, but should still
be mentioned is that population-based algorithms are generally much easier to parallelize.
Each individual of the population can in theory be evaluated concurrently, whereas in
most trajectory-based methods the evaluation of each new iteration is dependent on the
result from the previous one.

4.1 Simulated annealing

Simulated annealing (SA) is a well-established optimization algorithm, being developed
by Kirkpatrick, Gelatt, and Vecchi as one of the first meta-heuristic algorithms back in
1983 [10]. It is an extension of the traditional hill climbing, with an added a degree
of randomness that lets it escape local minima. This is an important feature for this
problem, as it allows the algorithm perform well for objective functions with several local
optima.

Algorithm 1 Simulated annealing
s← s0 ▷ State
T ← T0 ▷ Temperature
evaluations← 0
while evaluations < maxEvaluation do

snew ← random neighbour of s
Change← Eval(snew)− Eval(s)
if Change ≤ 0 then

s← snew
else if random(0, 1) ≤ e−Change/T then

s← snew
end if
T ← newTemperature(T)
evaluations← evaluations+ 1

end while
return s

There are many variations of the SA algorithm, but the pseudo-code for one basic im-
plementation is shown in algorithm 1. The core of the algorithm lies in that it does
not always move to a better solution, but rather it has a chance to accept worse states.
The probability to do so depends on an ever-decreasing temperature, meaning that the

Jacob Ahlman Bohm 14 May 24, 2023

Project report 4 Optimization algorithms

algorithm starts by spending more time exploring the function in the beginning when
the temperature is high, and then increasingly focusing on exploitation as the tempera-
ture becomes lower. It is this feature that stops it from getting stuck in local minima,
thus making it interesting for optimization with non-convex objective functions. A vi-
sualization of the algorithm in action in a very simple situation can be seen in figure
3.

Figure 3: Visualization of simulated annealing when optimizing a simple portfolio con-
sisting of two different futures contracts, both available at the same two markets

It can be noted that the algorithm itself is very straight-forward and easy to implement,
with the base algorithm being short and concise. This corresponds well with the criterion
that the algorithm should be simple to program, while at the same time also having a
very low overhead.

As for the temperature scheme which decides how the new temperature will be calculated
(called cooling schedule), abstracted as newTemperature() in algorithm 1, there exist a
few alternatives [11]. In this study, the original exponential cooling schedule as proposed
by Kirkpatrick, Gelatt, and Vecchi was used. The temperature during iteration n using
this schedule can be seen in equation 3 and it depends on an additional constant, α,
which decides the cooling speed.

Tn = αnT0 (3)

4.2 Differential evolution

Differential evolution (DE) is an evolutionary search algorithm that exist in many different
variants and is well capable of optimizing non-convex and non-differentiable functions [12].
The algorithm can be described as a population-based, stochastic, and derivative-free.

Jacob Ahlman Bohm 15 May 24, 2023

Project report 4 Optimization algorithms

Algorithm 2 Differential evolution (DE/rand/1)
NP ≥ 4 ▷ Population size
F ∈ [0, 2] ▷ Mutation factor
CR ∈ [0, 1] ▷ Crossover probability
initialize all NP individuals x ∈ RD randomly ▷ RD=Search space
evaluations← 0
while evaluations < maxEvaluations do

for i← 1 to NP do
Choose three random distinct individuals xr1, xr2, xr3 s.t. r1 ̸= r2 ̸= r3 ̸= i

vi ← xr1 + F (xr2 − xr3) ▷ Mutate
for j ← 1 to D do ▷ Crossover

ui,j ← vi,j if (random(0, 1) ≤ CR) else xi,j

end for
if Eval(ui) ≤ Eval(xi) then

xi ← ui

end if
end for
evaluations← evaluations+NP

end while
return best individual in population

Pseudo-code for the differential evolution variant denoted “DE/rand/1” can be seen in
algorithm 2. Regardless of variant, all implementations of differential evolution function
in the same general way. As it is population-based, it consists of a population of individ-
uals that will be updated one generation at a time. Each individual resembles a vector
in the search space, which in this case corresponds to one possible portfolio allocation of
the financial contracts.

The idea is that all individuals in the population are initialized with random positions
in the search space, or random portfolio allocations in this particular application, which
will then balance exploring the search space with exploiting previous knowledge in order
to find and move towards the best possible solution.

More specifically, during each iteration the algorithm will go through all individuals xi

and create a corresponding mutation vector vi for each and all of them. Exactly how this
mutation vector is formed is defined by the mutation scheme, but all schemes combines
the current individual with a number of other individuals from the population, with at
least some of them being randomly selected. A new candidate individual ui is then formed
by randomly taking some values from the current individual, and others from the formed
mutation vector. If this candidate results in a better value, in this case a lower initial
margin requirement, it will replace the current individual - else the candidate is simply
discarded. Figure 4 shows this process in action.

Empirical results show that the performance of differential evolution can be heavily depen-
dent on the configuration used, meaning that it is important both to choose appropriate
values for the control parameters (NP , F and CR) and mutation scheme, depending on
the nature of the function to be optimized [5].

Jacob Ahlman Bohm 16 May 24, 2023

Project report 4 Optimization algorithms

Figure 4: Visualization of differential evolution with population size 40 when optimizing
a simple portfolio consisting of two different futures contracts, both available at the same
two markets

4.2.1 Mutation schemes and parameters

There exist a number of mutation schemes, which determine how the mutant vector vi is
constructed (see algorithm 2). Some of the most common schemes can be seen in table
1.

Table 1: Some common differential evolution mutation schemes [12]

Name Mutation vector
DE/rand/1 vi = xr1 + F (xr2 − xr3)
DE/best/1 vi = xbest + F (xr1 − xr2)
DE/rand/2 vi = xr1 + F (xr2 − xr3) + F (xr4 − xr5)
DE/best/2 vi = xbest + F (xr1 − xr2) + F (xr3 − xr4)
DE/current-to-best/1 vi = xi + F (xbest − xi) + F (xr1 − xr2)
DE/current-to-rand/1 vi = xi + rand(xr1 − xi) + F (xr2 − xr3)

As seen in the pseudo-code for the algorithm, there are a number of different param-
eters that need to be set, and there have been a number of research papers published
investigating which values are appropriate.

First and foremost, NP is perhaps the most straightforward parameter, but finding the
correct value for the problem at hand may still be far from trivial. Indeed, finding the
optimal value for any given situation is a whole research topic in itself. Piotrowski has
written a paper testing different values using various DE implementations in a number of
situations, and using the results to outline a few guidelines for choosing an appropriate
NP value [13]. In general, the number of individuals should increase as the dimensionality
D of the problem or the allowed objective function evaluations increase. However, for

Jacob Ahlman Bohm 17 May 24, 2023

Project report 4 Optimization algorithms

practical reasons a fixed population size was chosen instead, based on an estimation of
the typical number of dimensions and evaluations available.

Secondly, the values chosen for the other parameters F and CR were based largely on the
results from [14], with some preliminary testing conducted to verify that they provide at
least decent performance in this case as well.

4.3 Particle swarm optimization

The particle swarm optimization (PSO) algorithm is a population-based optimization
method with stochastic elements, having been developed by Kennedy and Eberhart in
1995 [15]. It is inspired by phenomena found in nature, more specifically the behaviour
of bird flocks and fish schooling. The agents in its population, which are called particles,
have a positions and velocity. Their movement is determined both by a deterministic part
taking into account the best known location by the swarm, and a stochastic component
to ensure sufficient exploration. The algorithm has since its development seen wide
popularity and sparked interest in the research field of swarm intelligence [3, p. 21].

While PSO exist in many different variants, including hybrid methods combining it with
other strategies [4, p. 1257], the pseudo code for one basic variant can be seen in algorithm
3. The core of the algorithm lies in that each particle has knowledge not only about its
own best visited position, but also the best position seen by the swarm as a whole. During
each update step the particles will update its velocity, moving towards both the particle’s
own best point, and the swarm’s best point. How much it will move will depend on the
distance to said points as well as a random factor.

This method will result in a behaviour where the particles start spread out in the search
space, covering a large area in the beginning attempting to find the area of the global
optimum, and then gradually converging to what is thought to be that area. As the time
goes on, the swarm will converge towards that point and increasingly focus on a local
search in the area, as seen in figure 5. This allows for effective coverage of non-convex
functions, even when nothing is known about the function itself.

4.3.1 Population size and other parameters

The population size N is perhaps the most intuitive parameter used by the particle swarm
optimization algorithm, but it can still be difficult to find good values. Just like with
differential evolution, finding the optimal values is a whole research focus by itself. This
study will not delve deeper into finding the best values for each situation, but instead
base the parameters on some guidelines from existing research on the topic [16], [17].

The other three parameters used by PSO, W , Cp and Cg, are also quite straight-forward.
They all decide the weights used when determining the new velocity of a particle. For
example, Cg is a constant deciding how much the particles will be drawn towards the
globally best known position. The values for these three parameters will be loosely based
on the guidelines found in [17], but with some adjustments made to account for differences
being made based on preliminary testing.

Jacob Ahlman Bohm 18 May 24, 2023

Project report 4 Optimization algorithms

Algorithm 3 Particle swarm optimization
Choose values for W,Cp, Cg ▷ Constant coefficients
for i← 1 to N do ▷ Initialize all particles

initialize xi to random position in search space ▷ Position
pi ← xi ▷ Particle’s best position
g ← pi if Eval(pi) < Eval(g) ▷ Swarm global best
vi ← 0 ▷ Particle velocity

end for

while evaluations < maxEvaluations do
for i← 1 to N do ▷ N = Number of particles

for j ← 1 to D do ▷ D = Number of dimensions
rp ← random(0, 1)
rg ← random(0, 1)
vi,j ← Wvi,j + Cprp(pi,j − xi,j) + Cgrg(gj − xi,j)

end for
xi ← xi + vi
if Eval(xi) < Eval(pi) then

pi ← xi ▷ New particle best
if Eval(pi) < Eval(g) then

g ← pi ▷ New swarm best
end if

end if
end for
evaluations← evaluations+N

end while
return g

Figure 5: Visualization of particle swarm optimization with population size 40 when
optimizing a simple portfolio consisting of two different futures contracts, both available
at the same two markets

Jacob Ahlman Bohm 19 May 24, 2023

Project report 5 Results

4.4 Other algorithms

There exist many more optimization algorithms than those that are evaluated in this
report. Some algorithms have been deliberately omitted as they have been deemed unfit
for the problem according to the evaluation criteria. Other algorithms have been left
out simply because there exist too many optimization algorithms for it to be practical to
find and evaluate them all, especially so given the vast number of recent nature-inspired
meta-heuristic algorithms [18]. Therefore, an algorithm being left out from this paper
does not automatically mean that it performs poorly or is unfit for this problem, on the
contrary they may be just as good as or even better than the algorithms evaluated here.

5 Results

As the algorithms were implemented they were tested in a number of scenarios, and the
results from those tests can be found in this section. Details about the different portfolios
used for testing can be found in section 3.4.1.

5.1 Finding the solution in simple scenarios

Both portfolio A and B constitute simple enough objective functions that their global
optima can be found by a human, which makes it possible to test whether the optimizers
are also able to find it as well. With the optimal allocation, initial margin requirements
can be decreased by 23.74% and 62.41% for portfolio A and B, respectively.

Figure 6 shows the process of optimizing portfolio A using the different implemented
optimizers. They were each given a budget of 400 objective function evaluations. It should
be noted that the objective function takes on an extremely simple shape, essentially a
straight line.

Portfolio B takes on a slightly more complex shape. It is also harder to visualize due to it
being two-dimensional, but it can be noted from figure 7 that its shape roughly resembles
a valley.

All optimizers were able to find the optimal solution (maximum deviation of 0.01% ac-
cepted) of portfolio A in 1,000 out of 1,000 test runs with as little as 120 objective function
evaluations.

In the case of the slightly more complex portfolio B the optimizers are not always as
reliable, as shown by table 2. Especially PSO has some difficulties finding the solution,
although its performance does improve as it is given more evaluations. It should be noted
that the optimizer may still get very close to the optimal solution even when it “fails”, as
the maximum deviation of 0.01% is a quite strict requirement.

Jacob Ahlman Bohm 20 May 24, 2023

Project report 5 Results

0.0 0.2 0.4 0.6 0.8 1.0
Fuel oil allocation

0

1

2

3

4

5

In
iti
al
 m

ar
gi
n
re
qu

ire
m
en

t

1e6 Simulated Annealing

0

50

100

150

200

250

300

350

400

Ite
ra
tio

n

(a) Simulated Annealing

0.0 0.2 0.4 0.6 0.8 1.0
Fuel oil allocation

0

1

2

3

4

5

In
iti
al
 m

ar
gi
n
re
qu

ire
m
en

t

1e6 Differential Evolution

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ge
ne

ra
tio

n

(b) Differential Evolution

0.0 0.2 0.4 0.6 0.8 1.0
Fuel oil allocation

0

1

2

3

4

5

In
iti
al
 m

ar
gi
n
re
qu

ire
m
en

t

1e6 Particle Swarm Optimization

0

2

4

6

8

10

Ge
ne

ra
tio

n

(c) Particle Swarm Optimization

Figure 6: Portfolio A optimization process with 400 objective function evaluations using
different algorithms

Figure 7: Process of optimizing portfolio B using simulated annealing

Jacob Ahlman Bohm 21 May 24, 2023

Project report 5 Results

Table 2: Number of times (out of 1,000 attempts) the optimal allocation of portfolio
B is found by each optimizer, given different numbers of maximum objective function
evaluations

Evaluations SA DE PSO
400 1,000 989 869
800 1,000 998 928

1,600 1,000 998 951

5.2 Scaling up the problem

Portfolios C, D and E all scale up the problem, increasing the number of dimensions. As
the objective function becomes more complex with those portfolios, the optimal portfolio
allocation is no longer known beforehand. Therefore the tests performed with those
portfolios focus not whether on the solution is found, but rather on quantifying how
much the IM requirement is minimized.

The results from optimizing portfolio C with 400 and 800 objective function evaluations,
respectively, can be seen in figure 8. More complete results, including runs with 200 and
1,600 evaluations as well, can be found in appendix B.1.

30.8

30.9

31.0

31.1

31.2

31.3

IM
 im

pr
ov

em
en

t (
%
)

Portfolio C, 400 evaluations

SA DE PSO
Optimizer

0

(a) 400 evaluations

30.8

30.9

31.0

31.1

31.2

31.3

IM
 im

pr
ov

em
en

t (
%

)

Portfolio C, 800 evaluations

SA DE PSO
Optimizer

0

(b) 800 evaluations

Figure 8: Result from 100 optimization runs on portfolio C with different optimizers and
maximum number of objective function evaluations

Similarly, the results from running the optimizers on portfolio D with 400 and 800 objec-
tive function evaluations can be found in figure 9. Additional data with 200 and 1,600
evaluations as well can be seen in appendix B.2.

The results from the random-generated portfolio E with 400 and 800 objective function
evaluations are found in figure 10. As noted in section 3.4.1, the instrument positions are
generated randomly before each test run, introducing a stochastic factor in the potential
for optimization not present with the other portfolios. The full results, including 200 and
1,600 objective evaluations as well, can be seen in appendix B.3.

Jacob Ahlman Bohm 22 May 24, 2023

Project report 5 Results

66

68

70

72

74

76

78

80
IM
 im

pr
ov

em
en

t (
%
)

Portfolio D, 400 evaluations

SA DE PSO
Optimizer

0

(a) 400 evaluations

70

71

72

73

74

75

76

77

78

79

IM
 im

pr
ov

em
en

t (
%

)

Portfolio D, 800 evaluations

SA DE PSO
Optimizer

0

(b) 800 evaluations

Figure 9: Result from 100 optimization runs on portfolio D with different optimizers and
maximum number of objective function evaluations

SA DE PSO
Optimizer

−40

−20

0

20

40

IM
 im

pr
ov

em
en

t (
%
)

Portfolio E, 400 evaluations

(a) 400 evaluations

SA DE PSO
Optimizer

−20

−10

0

10

20

30

40

50

IM
 im

pr
ov

em
en

t (
%

)

Portfolio E, 800 evaluations

(b) 800 evaluations

Figure 10: Result from 100 optimization runs on portfolio D with different optimizers
and maximum number of objective function evaluations

5.3 Execution time

Both qualitative and quantitative tests were conducted to provide insights into the tem-
poral performance of the implemented algorithms. The qualitative test focuses on delving
deeper into the optimization process and identifying which parts are the most time con-
suming. The quantitative tests attempt to provide information on how long the process
as a whole takes in different situations, and whether there are differences between the
algorithms.

Detailed timing information of the optimizers was generated based on a randomized
scenario featuring 34 instruments spread among three markets, which can be seen in
figure 11. The figure breaks down the total execution time of the optimization process
into four distinct categories:

Jacob Ahlman Bohm 23 May 24, 2023

Project report 5 Results

SA DE PSO
Optimizer

0

2000

4000

6000

8000

10000

Ti
m
e
[m

s]

Timing
Objective function
Algorithm
Overhead
Other

Figure 11: Timing of the different parts of the optimization process

1. Time spent evaluating the objective function (excluding time spent fetching from
cache).

2. Time consumed by the optimization algorithms themselves.

3. Implementation overhead for tying different parts together.

4. Other time which could not be directly tracked down, but can probably be at-
tributed to the algorithm and/or overhead.

As the timing numbers are based on very limited data they are quite unreliable, and as
such the reader should be careful to make direct comparisons between the optimizers.
What should be noted is however the difference in magnitude of the different parts of the
optimization process. The overwhelming majority of the execution time is not consumed
by any part of the optimizers themselves, but rather spent evaluating the objective func-
tion. Roughly 98% of the execution time is spent evaluating the objective function in
this case.

The average execution time per evaluation when optimizing portfolios C, D, and E, can
be seen in figures 12, 13, and 14, respectively. The figures show both the mean value
(the circle) and the 95% confidence interval. Note that in no situation were any of
the algorithms significantly faster or slower than the others. The figures also indicate
that the evaluation time increases linearly as the number of evaluations increase, since
the execution time per evaluation stays roughly the same as the number of evaluations
increase. Furthermore, the execution time per evaluation increases as the dimensionality
increases, although the rate of increase is not clear from the results.

Jacob Ahlman Bohm 24 May 24, 2023

Project report 5 Results

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Ex
ec

ut
io

n
tim

e
pe

r e
va

lu
at

io
n

[m
s]

Execution time - Portfolio C

Simulated Annealing
Differential Evolution
Particle Swarm Optimization

200 400 800 1600
Evaluations

0

Figure 12: Execution time per evaluation when optimizing portfolio C

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

Ex
ec

ut
io
n
tim

e
pe

r e
va

lu
at
io
n
[m

s]

Execution time - Portfolio D

Simulated Annealing
Differential Evolution
Particle Swarm Optimization

200 400 800 1600
Evaluations

0

Figure 13: Execution time per evaluation when optimizing portfolio D

11

12

13

14

15

16

17

18

Ex
ec

ut
io
n
tim

e
pe

r e
va

lu
at
io
n
[m

s]

Execution time - Portfolio E

Simulated Annealing
Differential Evolution
Particle Swarm Optimization

200 400 800 1600
Evaluations

0

Figure 14: Execution time per evaluation when optimizing portfolio E

Jacob Ahlman Bohm 25 May 24, 2023

Project report 6 Discussion

6 Discussion

This section discusses the limitations of the work, the potential for optimization in this
situation, and advantages and disadvantages of the three algorithms evaluated. The idea
is to provide some insights into the optimization process and provide some guidelines for
the reader wanting to apply the knowledge gained from this project.

6.1 Limitations

Many parts of this project could have been investigated in far more detail, but limitations
were necessary to accommodate for time constraints and keep the scope realistic. These
limitations can broadly speaking be divided into one of two categories, algorithmic and
financial.

In terms of algorithmic limitations it was necessary to minimize both the number of
algorithms tested and the level of details with which they were investigated, due to time
constraints. As there exist a vast number of optimization algorithms and often many
variations of each and one of them, it is highly impractical to test them all. Thus only a
select few were chosen and investigated, meaning that possibly superior algorithms may
have been overlooked.

It was also not practical to search for the best possible variant of each algorithm, or
the ideal parameters for each and one of them for that matter. Indeed, as shown by
papers like [12]–[14], [16], [17], these things are whole research topics of their own. What
this means however is that there may be additional potential with all of the investigated
algorithms, in that they could potentially perform much better if more time was spent
tweaking them.

As for the financial aspect, the primary limitations were mostly linked to limits with the
test data in various ways. The fact that artificially constructed rather than real portfolios
had to be used is important to keep in mind when analysing the results. It means that
while this paper can provide good insights into the potential of using computational
optimization for finding and exploiting IM minimization opportunities, the reader should
be highly careful with making any conclusions about the magnitude of such opportunities.
This becomes even more important when considering the fact that the instrument pairings
may not be perfect, even as care was taken to choose instruments that were as similar as
possible.

The nature of the test data also put some limits on which situations could be tested. It
was not always possible to test all situations which could be challenging from a techni-
cal standpoint, such as multi-market portfolios with instruments that can be swapped
between several markets. Combined with the fact that only SPAN markets with only
futures contracts were tested, both being due to time constraints, this means that there
may exist additional challenges that were not encountered during this project.

Jacob Ahlman Bohm 26 May 24, 2023

Project report 6 Discussion

6.2 Potential for optimizing initial margin requirements

What the results indicate is that all three algorithms are well able to minimize the initial
margin requirements by reallocating instruments, whenever there is a potential for doing
so. However, what was also shown was that as the problem became increasingly complex,
the optimizers needed more evaluations in order to reliably produce good results. Whereas
with the simple portfolios A and B the global optima could reliably be found, in the more
complex situations there is a much larger variance. There the optimizers rarely, if ever,
seem to find the global optima. However, even if there is a larger variance in those
situations the IM requirement still often gets lowered by a large amount. If finding the
global optima is not the priority, the optimizers seem to still provide quite good results
in medium-complex situations with relatively few evaluations available.

The only exception to this is the large, random portfolio E. In some cases the optimizers
were not able to improve the objective value at all, only finding allocations that were
worse than the initial one. It should, however, be noted that this portfolio was much
larger than the other ones, and the results also did seem to improve as the number of
evaluations increased. It should also be stated that the results are not directly comparable
between the portfolios, since the potential for optimization differ.

Still, portfolio E signifies one potential obstacle. As the objective function becomes
increasingly complex, the optimizers will require more evaluations to operate reliably.
This may not be a large issue in itself, but the results also showed that the execution
time per evaluation increased with the portfolio complexity. While the execution time for
one optimization process was typically a couple of seconds for the medium-sized portfolios
C and D, it could easily become a lot higher if the number of instruments and/or clearing
houses increase. Therefore there may be a need for speeding up the process. For this
there exist a number of options, including

• utilizing better hardware

• using better algorithms or improved variants of the algorithms investigated here

• optimizing the parameter values used

• parallelizing the algorithm implementations.

Another aspect to consider, while not directly related to the actual optimization process,
is that creating the objective function is in this case far from trivial. In particular, finding
good instrument pairings is far from trivial and was perhaps the most challenging part
of the overall process. The semi-manual approach that was used in this project does not
scale well as the number of instruments become much larger and complex. Therefore
it is important to keep in mind that constructing the optimizer itself is only one part
of the overall process, other parts such as creating the objective function should not be
neglected.

To summarize, there seems to be a good potential for optimizing IM requirements as
in most cases the optimizers were able to provide good results within only a couple of
seconds at maximum. However, there also exist some possible obstacles, and there is an
inevitable trade-off between accuracy and execution time.

Jacob Ahlman Bohm 27 May 24, 2023

Project report 6 Discussion

6.3 Choosing which algorithm to use

According to the results there is not much difference between the algorithms in per-
formance. They were all well able to decrease the IM, and no statistically significant
difference in execution time could be found. The results do show slightly worse perfor-
mance for simulated annealing than the other algorithms with portfolios C-E, though it
is not clear whether this is due to the algorithm itself being worse or simply that it had
slightly less optimal values for its control parameters. It should also be noted that SA was
the most reliable at finding the global optima for portfolio B. However, if performance is
so similar, it raises the question: Which algorithm should actually be chosen?

That question does not have a simple answer, but the quite similar performance in terms
of relative IM improvement does show that it may be wise to instead look at other
factors when deciding for an algorithm. Indeed, achieving only marginally lower IM
requirement may not provide much benefit. Instead, other factors like ease-of-use, possible
parallelization, and potential for improvement could be considered.

Simulated annealing has an advantage in that its control parameters are both fewer and
less abstract, making the configuration process more forgiving for the user. On the other
hand it is much harder to parallelize than either PSO or DE, due to being sequential
in nature. With both PSO and DE it should be relatively easy to evaluate a complete
generation in parallel, allowing for potentially huge performance improvements on multi-
threaded systems.

The differences between PSO and DE, at least in their basic forms, are quite subtle. They
provide similar strengths and weaknesses, with both being population-based metaheuris-
tic algorithms. The results seem to show that DE is more consistent than PSO, although
more research is needed to determine whether this is due to differences in algorithm or
parameters. DE is also slightly simpler and easier to implement, although neither of
them should pose any real challenge. DE does however have a disadvantage in that it
may be slightly harder to parallelize, since updating one of its individuals requires the
values of other individuals - introducing a race condition if not handled properly. Still,
this is nothing that cannot be addressed, and both algorithms have good potential for
parallelization.

Also, as stated previously there exist countless additional alternative algorithms, some
of which can probably prove to be quite good for this application. Should this option be
pursued, it can be good to keep in mind the fact that the vast majority of the execution
time in this case was spent evaluating the objective function. As such, it is very likely that
it is much more beneficial to reduce the number of objective function evaluations needed
to achieve good results, rather than reducing the overhead of the implementations.

In summary it comes down to first identifying the needs of the situation. Then, an
algorithm can be chosen whose strengths and weaknesses fit together well with those
needs. There is no silver bullet solution, no single algorithm which will always be the
best choice.

Jacob Ahlman Bohm 28 May 24, 2023

Project report 7 Conclusion and future work

7 Conclusion and future work

In this project, the possibility for using computational optimization in order to mini-
mize initial margin requirements was investigated. In particular, the project focused on
whether the algorithms tested were able to find and exploit potential for optimization,
whether they are able to do so in a reasonable time frame, and what the differences
between the different implementations were. It was found that all three implemented
algorithms - simulated annealing, differential evolution, and particle swarm optimization
- performed well in the scenarios tested. As such, the results indicate that there is a
good potential for optimization and that it seems to be practical to apply any of these
algorithms in a real world scenario.

There are, however, also some caveats with the results that should be kept in mind and
preferably looked into in more detail. These are mostly related to limits in the test data
which creates some uncertainty in the result, but it was also shown that in more complex
situations there may be a need to speed up the optimization process in order to achieve
good results in reasonable time. Given those caveats, there are many ways in which this
project could be expanded upon to provide more insights into the subject.

It could be interesting to test more algorithms or more variants of the existing algo-
rithms, as well as additional parameter choices. It would also be interesting to run the
tests in more situations, perhaps with additional types of instruments, multi-way instru-
ment pairings, and with clearing houses using more types of methods for calculating IM
requirements. That would provide a more complete picture of the situation, and as such
probably provide slightly more definitive answers to which approaches are good.

If the optimizers are to be applied in a real situation, depending on the situation it may
be necessary to speed up the process. Except testing the previously mentioned things
to perhaps find slightly “smarter” optimizers, making increased use of parallelization is
probably one of the main areas of potential improvement. Therefore looking into how
the different algorithms can be parallelized, which benefits and challenges lie therein, and
quantifying just how much the process can be sped up with parallelization is one possible
topic for future work.

Another thing that can be investigated is if it is possible to make the optimizer better at
adhering to the wishes of the investor. For example, an investor probably wants to limit
the number of trades to minimize transaction costs. This could be done by expanding the
functionality of the penalty term, penalizing changes in the portfolio. Perhaps the investor
also wants to prioritize some markets over others, only deviating from the “favourites”
if the IM reduction potential is large enough. The optimal way of doing this is likely
non-trivial, and warrants further investigation.

A related topic which could be highly beneficial to investigate further is how instruments
are paired with each other. This is not part of the optimization process itself, but it
is still a highly connected topic since having pairings is necessary for actually having
something to optimize. Being able to find the pairings in a fully automatic, data-driven
way is more or less necessary in order to apply the optimizers in a broader setting, lest
many man-hours are to be spent manually finding pairings.

Jacob Ahlman Bohm 29 May 24, 2023

Project report 8 References

8 References
[1] J. C. Hull, Options, Futures, and Other Derivatives, 11th ed. Pearson Education

Limited, 2022, isbn: 978-1-292-41065-4.

[2] CME Group. “CME SPAN, Standard Portfolio Analysis of Risk.” (2010), [Online].
Available: https://www.cmegroup.com/clearing/files/span-methodology.
pdf (visited on 02/22/2023).

[3] X.-S. Yang and S. Koziel, Computational Optimization, Methods and Algorithms,
1st ed. 2011, vol. 356, isbn: 978-3-642-20858-4. doi: 10.1007/978-3-642-20859-1.

[4] L. Rios and N. Sahinidis, “Derivative-free optimization: A review of algorithms and
comparison of software implementations,” Journal of Global Optimization, vol. 56,
Nov. 2009. doi: 10.1007/s10898-012-9951-y.

[5] A. Auger, N. Hansen, J. Pérez Zerpa, R. Ros, and M. Schoenauer, “Experimental
comparisons of derivative free optimization algorithms,” Jun. 2009, pp. 3–15, isbn:
978-3-642-02010-0. doi: 10.1007/978-3-642-02011-7_3.

[6] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimization methods,”
Apr. 2019. doi: 10.1017/S0962492919000060.

[7] D. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, Apr. 1997,
issn: 1941-0026. doi: 10.1109/4235.585893.

[8] R. Gamperle, S. Muller, and A. Koumoutsakos, “A parameter study for differential
evolution,” Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Compu-
tation, vol. 10, pp. 293–298, Aug. 2002.

[9] M. Centeno-Telleria, E. Zulueta, U. Fernandez-Gamiz, D. Teso-Fz-Betoño, and A.
Teso-Fz-Betoño, “Differential evolution optimal parameters tuning with artificial
neural network,” Mathematics, vol. 9, no. 4, 2021, issn: 2227-7390. doi: 10.3390/
math9040427. [Online]. Available: https://www.mdpi.com/2227-7390/9/4/427.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated anneal-
ing,” Science, vol. 220, no. 4598, pp. 671–680, 1983. doi: 10.1126/science.220.
4598.671. eprint: https://www.science.org/doi/pdf/10.1126/science.220.
4598.671. [Online]. Available: https://www.science.org/doi/abs/10.1126/
science.220.4598.671.

[11] T.-C. Publishing. “A comparison of cooling schedules for simulated annealing.” (),
[Online]. Available: http://what-when-how.com/artificial-intelligence/a-
comparison-of-cooling-schedules-for-simulated-annealing-artificial-
intelligence/ (visited on 04/25/2023).

[12] M. Georgioudakis and V. Plevris, “A comparative study of differential evolution
variants in constrained structural optimization,” Frontiers in Built Environment,
vol. 6, 2020, issn: 2297-3362. doi: 10.3389/fbuil.2020.00102. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fbuil.2020.00102.

[13] A. P. Piotrowski, “Review of differential evolution population size,” Swarm and
Evolutionary Computation, vol. 32, pp. 1–24, 2017, issn: 2210-6502. doi: https:
//doi.org/10.1016/j.swevo.2016.05.003. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2210650216300268.

Jacob Ahlman Bohm 30 May 24, 2023

https://www.cmegroup.com/clearing/files/span-methodology.pdf
https://www.cmegroup.com/clearing/files/span-methodology.pdf
https://doi.org/10.1007/978-3-642-20859-1
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/978-3-642-02011-7_3
https://doi.org/10.1017/S0962492919000060
https://doi.org/10.1109/4235.585893
https://doi.org/10.3390/math9040427
https://doi.org/10.3390/math9040427
https://www.mdpi.com/2227-7390/9/4/427
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://www.science.org/doi/pdf/10.1126/science.220.4598.671
https://www.science.org/doi/pdf/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.science.org/doi/abs/10.1126/science.220.4598.671
http://what-when-how.com/artificial-intelligence/a-comparison-of-cooling-schedules-for-simulated-annealing-artificial-intelligence/
http://what-when-how.com/artificial-intelligence/a-comparison-of-cooling-schedules-for-simulated-annealing-artificial-intelligence/
http://what-when-how.com/artificial-intelligence/a-comparison-of-cooling-schedules-for-simulated-annealing-artificial-intelligence/
https://doi.org/10.3389/fbuil.2020.00102
https://www.frontiersin.org/articles/10.3389/fbuil.2020.00102
https://doi.org/https://doi.org/10.1016/j.swevo.2016.05.003
https://doi.org/https://doi.org/10.1016/j.swevo.2016.05.003
https://www.sciencedirect.com/science/article/pii/S2210650216300268
https://www.sciencedirect.com/science/article/pii/S2210650216300268

Project report 8 References

[14] M. E. H. Pedersen, “Good parameters for differential evolution,” Magnus Erik Hvass
Pedersen, vol. 49, 2010.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of
ICNN’95 - International Conference on Neural Networks, vol. 4, 1995, 1942–1948
vol.4. doi: 10.1109/ICNN.1995.488968.

[16] A. P. Piotrowski, J. J. Napiorkowski, and A. E. Piotrowska, “Population size in par-
ticle swarm optimization,” Swarm and Evolutionary Computation, vol. 58, p. 100 718,
2020, issn: 2210-6502. doi: https://doi.org/10.1016/j.swevo.2020.100718.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2210650220303710.

[17] M. E. H. Pedersen, “Good parameters for particle swarm optimization,” Hvass Lab.,
Copenhagen, Denmark, Tech. Rep. HL1001, pp. 1551–3203, 2010.

[18] I. F. Jr., X. Yang, I. Fister, J. Brest, and D. Fister, “A brief review of nature-inspired
algorithms for optimization,” CoRR, vol. abs/1307.4186, 2013. arXiv: 1307.4186.
[Online]. Available: http://arxiv.org/abs/1307.4186.

Jacob Ahlman Bohm 31 May 24, 2023

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/https://doi.org/10.1016/j.swevo.2020.100718
https://www.sciencedirect.com/science/article/pii/S2210650220303710
https://www.sciencedirect.com/science/article/pii/S2210650220303710
https://arxiv.org/abs/1307.4186
http://arxiv.org/abs/1307.4186

Project report A Algorithm details and parameter values

A Algorithm details and parameter values

The parameters used and other details of the implemented algorithms are mentioned
here. These values were used for all tests unless otherwise stated. In general, the values
were chosen primarily based on existing research (see section 4), and secondarily based
on limited preliminary testing. As the test cases had between 1 and 222 dimensions and
were given roughly 1,000 objective function evaluations, the values were chosen with this
in mind. It should also be noted that the objective function allows inputs in the [0, 1]
range, as that also affects the values chosen.

A.1 Simulated annealing

The initial temperature used by the simulated annealing implementation was set depend-
ing on the original initial margin requirement, i.e. the objective function value prior to
optimization. The aim was to set the initial temperature approximately equal to the
maximum possible difference in value between two points in the search space, but this
can vary greatly depending on the case. As such, it was approximated very roughly that
the maximum possible difference is equal to half the original IM.

There is also the matter of how neighbours were chosen. According to the preliminary
tests, using a Gaussian distribution with a standard deviation of 0.4 from the current
value seemed to perform decently. Other alternatives that were investigated but which
performed more poorly were a) uniform distribution within a certain range from the
current value, and b) global uniform distribution.

• Initial temperature (T0) = IMpre−optimization/2

• Cooling factor, alpha (α) = 0.995

• Neighbour standard deviation (σ) = 0.4

A.2 Differential evolution

For the differential evolution optimizer implementation, the mutation scheme “DE/rand/1”
was used. As for the crossover part of the algorithm, a fine-grained approach was used
where the crossover was decided for each individual instrument-portfolio pair (as opposed
to applying the crossover on an instrument as a whole).

The following parameter values were used:

• Population size (NP) = 20

• Mutation factor (F) = 0.9

• Crossover probability (CR) = 0.7

Jacob Ahlman Bohm 32 May 24, 2023

Project report A Algorithm details and parameter values

A.3 Particle swarm optimization

The following parameter values were used for the PSO implementation:

• Population size (N) = 40

• Velocity modifier (W) = -0.4

• Particle best attraction modifier (Cp) = -0.6

• Global best attraction modifier (Cg) = 2.0

Jacob Ahlman Bohm 33 May 24, 2023

Project report B Full results

B Full results

B.1 Portfolio C

29.50

29.75

30.00

30.25

30.50

30.75

31.00

31.25

31.50

IM
 im

pr
ov

em
en

t (
%
)

Portfolio C, 200 evaluations

SA DE PSO
Optimizer

0

Figure 15: Result from 100 portfolio C optimization runs, each given 200 objective func-
tion evaluations per optimizer

30.8

30.9

31.0

31.1

31.2

31.3

IM
 im

pr
ov

em
en

t (
%
)

Portfolio C, 400 evaluations

SA DE PSO
Optimizer

0

Figure 16: Result from 100 portfolio C optimization runs, each given 400 objective func-
tion evaluations per optimizer

Jacob Ahlman Bohm 34 May 24, 2023

Project report B Full results

30.8

30.9

31.0

31.1

31.2

31.3

IM
 im

pr
ov

em
en

t (
%

)

Portfolio C, 800 evaluations

SA DE PSO
Optimizer

0

Figure 17: Result from 100 portfolio C optimization runs, each given 800 objective func-
tion evaluations per optimizer

30.9

31.0

31.1

31.2

31.3

31.4

IM
 im

pr
ov

em
en

t (
%
)

Portfolio C, 1600 evaluations

SA DE PSO
Optimizer

0

Figure 18: Result from 100 portfolio C optimization runs, each given 1,600 objective
function evaluations per optimizer

Jacob Ahlman Bohm 35 May 24, 2023

Project report B Full results

B.2 Portfolio D

64

66

68

70

72

74

76

78

80

IM
 im

pr
ov

em
en

t (
%
)

Portfolio D, 200 evaluations

SA DE PSO
Optimizer

0

Figure 19: Result from 100 portfolio D optimization runs, each given 200 objective func-
tion evaluations per optimizer

66

68

70

72

74

76

78

80

IM
 im

pr
ov

em
en

t (
%
)

Portfolio D, 400 evaluations

SA DE PSO
Optimizer

0

Figure 20: Result from 100 portfolio D optimization runs, each given 400 objective func-
tion evaluations per optimizer

Jacob Ahlman Bohm 36 May 24, 2023

Project report B Full results

70

71

72

73

74

75

76

77

78

79

IM
 im

pr
ov

em
en

t (
%

)

Portfolio D, 800 evaluations

SA DE PSO
Optimizer

0

Figure 21: Result from 100 portfolio D optimization runs, each given 800 objective func-
tion evaluations per optimizer

68

70

72

74

76

78

80

IM
 im

pr
ov
em

en
t (
%
)

Portfolio D, 1600 evaluations

SA DE PSO
Optimizer

0

Figure 22: Result from 100 portfolio D optimization runs, each given 1,600 objective
function evaluations per optimizer

Jacob Ahlman Bohm 37 May 24, 2023

Project report B Full results

B.3 Portfolio E

SA DE PSO
Optimizer

−40

−20

0

20

40

IM
 im

pr
ov

em
en

t (
%
)

Portfolio E, 200 evaluations

Figure 23: Result from 100 portfolio E optimization runs, each given 200 objective func-
tion evaluations per optimizer

SA DE PSO
Optimizer

−40

−20

0

20

40

IM
 im

pr
ov

em
en

t (
%
)

Portfolio E, 400 evaluations

Figure 24: Result from 100 portfolio E optimization runs, each given 400 objective func-
tion evaluations per optimizer

Jacob Ahlman Bohm 38 May 24, 2023

Project report B Full results

SA DE PSO
Optimizer

−20

−10

0

10

20

30

40

50
IM

 im
pr

ov
em

en
t (

%
)

Portfolio E, 800 evaluations

Figure 25: Result from 100 portfolio E optimization runs, each given 800 objective func-
tion evaluations per optimizer

SA DE PSO
Optimizer

0

10

20

30

40

50

IM
 im

pr
ov
em

en
t (
%
)

Portfolio E, 1600 evaluations

Figure 26: Result from 100 portfolio E optimization runs, each given 1,600 objective
function evaluations per optimizer

Jacob Ahlman Bohm 39 May 24, 2023

	Introduction
	Problem formulation

	Background
	Financial background
	Financial instruments
	Clearing house
	Initial margin

	Defining the optimization problem
	Dimensionality of the objective function
	Categorization of optimization strategies
	Related work

	Method
	Evaluation criteria
	Literature study
	Implementation phase
	Constructing the objective function
	Handling constraints
	Finding optimal parameters for the algorithms

	Test design
	Test data and scenarios

	Optimization algorithms
	Simulated annealing
	Differential evolution
	Mutation schemes and parameters

	Particle swarm optimization
	Population size and other parameters

	Other algorithms

	Results
	Finding the solution in simple scenarios
	Scaling up the problem
	Execution time

	Discussion
	Limitations
	Potential for optimizing initial margin requirements
	Choosing which algorithm to use

	Conclusion and future work
	References
	Algorithm details and parameter values
	Simulated annealing
	Differential evolution
	Particle swarm optimization

	Full results
	Portfolio C
	Portfolio D
	Portfolio E

