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Subgroups of adult‑onset diabetes: 
a data‑driven cluster analysis 
in a Ghanaian population
Ina Danquah 1*, Isabel Mank 1,2, Christiane S. Hampe 3, Karlijn A. C. Meeks 4,5, 
Charles Agyemang 5, Ellis Owusu‑Dabo 6, Liam Smeeth 7, Kerstin Klipstein‑Grobusch 8,9, 
Silver Bahendeka 10, Joachim Spranger 11, Frank P. Mockenhaupt 12, Matthias B. Schulze 13,14 & 
Olov Rolandsson 15

Adult‑onset diabetes mellitus (here: aDM) is not a uniform disease entity. In European populations, 
five diabetes subgroups have been identified by cluster analysis using simple clinical variables; 
these may elucidate diabetes aetiology and disease prognosis. We aimed at reproducing these 
subgroups among Ghanaians with aDM, and establishing their importance for diabetic complications 
in different health system contexts. We used data of 541 Ghanaians with aDM (age: 25–70 years; 
male sex: 44%) from the multi‑center, cross‑sectional Research on Obesity and Diabetes among 
African Migrants (RODAM) Study. Adult‑onset DM was defined as fasting plasma glucose 
(FPG) ≥ 7.0 mmol/L, documented use of glucose‑lowering medication or self‑reported diabetes, and 
age of onset ≥ 18 years. We derived subgroups by cluster analysis using (i) a previously published set 
of variables: age at diabetes onset, HbA1c, body mass index, HOMA‑beta, HOMA‑IR, positivity of 
glutamic acid decarboxylase autoantibodies (GAD65Ab), and (ii) Ghana‑specific variables: age at 
onset, waist circumference, FPG, and fasting insulin. For each subgroup, we calculated the clinical, 
treatment‑related and morphometric characteristics, and the proportions of objectively measured and 
self‑reported diabetic complications. We reproduced the five subgroups: cluster 1 (obesity‑related, 
73%) and cluster 5 (insulin‑resistant, 5%) with no dominant diabetic complication patterns; cluster 
2 (age‑related, 10%) characterized by the highest proportions of coronary artery disease (CAD, 18%) 
and stroke (13%); cluster 3 (autoimmune‑related, 5%) showing the highest proportions of kidney 
dysfunction (40%) and peripheral artery disease (PAD, 14%); and cluster 4 (insulin‑deficient, 7%) 
characterized by the highest proportion of retinopathy (14%). The second approach yielded four 
subgroups: obesity‑ and age‑related (68%) characterized by the highest proportion of CAD (9%); body 
fat‑related and insulin‑resistant (18%) showing the highest proportions of PAD (6%) and stroke (5%); 
malnutrition‑related (8%) exhibiting the lowest mean waist circumference and the highest proportion 
of retinopathy (20%); and ketosis‑prone (6%) with the highest proportion of kidney dysfunction 
(30%) and urinary ketones (6%). With the same set of clinical variables, the previously published aDM 
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subgroups can largely be reproduced by cluster analysis in this Ghanaian population. This method may 
generate in‑depth understanding of the aetiology and prognosis of aDM, particularly when choosing 
variables that are clinically relevant for the target population.

The worldwide upsurge of diabetes mellitus is mainly attributed to increases of adult-onset diabetes mellitus 
(aDM) in low- and middle-income  countries1. This comprises mainly type 2 diabetes, Latent Autoimmune 
Diabetes in Adults (LADA), and type 1 diabetes, and translates to 75% of all diabetes cases  worldwide2. Among 
adults in Ghana and Ghanaian migrants in Europe, aDM is highly prevalent, ranging between 4 and 15%3. 
Importantly, there are ethnic differences in the risk of diabetic complications. A recent systematic literature 
review demonstrates that individuals with diabetes mellitus of African ancestry are at significantly higher risk of 
diabetic complications than European populations, such as end-stage renal  disease4. At the same time, geographic 
context plays an important role for disease management and the prevalence of diabetic complications. Diabetes 
awareness, appropriate treatment, and good glycemic control are lower in non-migrants compared to Ghanaian 
 migrants5. Non-migrant Ghanaians show higher prevalence of diabetic complications than Ghanaian migrants 
in  Europe6. As a consequence, productivity and quality of life decrease among non-migrant Ghanaians diag-
nosed with aDM, translating into increased healthcare expenditure and elevated risk for premature  mortality7.

The classification into aDM subgroups based on clinical and anthropometric characteristics is a promising 
approach to understanding the disease aetiology and possibly  progression8,9. Ahlqvist et al.9 have performed a 
hierarchical cluster analysis with six common clinical variables and have identified five subgroups among Scan-
dinavian adults with newly diagnosed diabetes mellitus. These subgroups are characterized by distinct clinical 
and anthropometric features and show marked differences in the development of diabetic complications. Since 
then, several research groups have replicated this approach. In 2020, Sarria-Santamera et al.10 have synthesized 
the findings of 14 studies that identified subgroups by unsupervised learning methods. Five of them have applied 
hierarchical  clustering8,11–13, and five subgroups are  common10: severe autoimmune diabetes (SAID), severe insu-
lin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MORD), 
and mild age-related diabetes (MARD). Regarding complications, SIRD shows increased risk for kidney disease 
in  some9,11–13, but not all  studies14,15. SIDD and partly SAID show increased risks for retinopathy. The results 
are conflicting for proportions of macrovascular  complications10. In summary, these studies suggest that cluster 
analysis can be useful for identifying aDM subgroups early in the course of the disease, and thereby, contributing 
to understanding disease aetiology. Still, the verification of this approach is pending in more diverse populations 
and with variables that have established clinical relevance for them. For instance, anthropometric measures 
reflecting fat distribution might be more suitable than BMI in sub-Saharan African  populations16. So far, stud-
ies in African-descent populations are  scarce17, and virtually absent for populations from sub-Saharan Africa.

Therefore, the aim of this study was to establish the reproducibility of aDM subgroups by means of cluster 
analysis in a Ghanaian study population. The specific objectives were (i) to apply the previously published method 
by Ahlqvist et al. for the identification of aDM  subgroups9, (ii) to generate subgroups using Ghana-specific clini-
cal variables, and (iii) to determine the proportions of diabetic complications among the identified subgroups.

Methods
Study design and population. The Research on Obesity and Diabetes among African Migrants (RODAM) 
study is a multi-center cross-sectional study that was conducted between July 2012 and September 2015. It 
involved Ghanaian adults (25–70 years) living in rural and urban Ghana (Ashanti region), and three European 
cities (Amsterdam, London, and Berlin) (N = 6385)3, with a crude prevalence of aDM of 9%18. The primary 
objective of the RODAM study was to disentangle the relative contributions of (epi)genetic and non-genetic 
risk factors for obesity and diabetes mellitus. The study protocol and the procedures of the RODAM study have 
previously been  published19. Medical history, lifestyle and socio-economic factors were recorded either by ethni-
cally matched personnel in questionnaire-based interviews or were self-administered. Specifically, we included 
questions about the age of disease onset, previous diagnosis of diabetes mellitus, the start of medication prescrip-
tion, and the type of glucose-lowering medications.

Biomaterial collection and laboratory measurements. Adult-onset diabetes mellitus was defined 
according to WHO guidelines as fasting plasma glucose ≥ 7.0  mmol/L, documented use of glucose-lowering 
medication or self-reported diabetes. We excluded individuals with age of disease onset before 18 years. Fasting 
venous blood samples and urine samples were collected by trained personnel according to standard operating 
procedures; blood samples were centrifuged. Urine, serum and plasma samples were ultimately stored at − 80 °C. 
All biochemical analyses were performed using an ABX Pentra 400 chemistry analyser (ABX Pentra; Horiba 
ABX, Germany).

The biomarker profile of this study comprised HbA1c, serum insulin, blood lipids (total cholesterol, triglycer-
ide, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol), inflammatory markers (C-reactive 
protein), and liver enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl 
transferase (GGT)). We calculated the Homeostatic Model Assessment for insulin resistance (HOMA-IR) and for 
beta-cell capacity (HOMA-beta) according to Matthews et al.20; using fasting plasma glucose and fasting insulin 
in the assessments. Serum creatinine concentration was determined by a kinetic colorimetric spectrophotometric 
isotope dilution mass spectrometry calibration method (Roche Diagnostics). Estimated glomerular filtration rate 
(eGFR) was calculated using the 2009 CKD-EPI (CKD Epidemiology Collaboration) creatinine equation and the 
severity of kidney disease categorized according to the 2012 KDIGO  guidelines21. Urinary albumin concentration 
(in mg/L) was measured by an immunochemical turbidimetric method (Roche Diagnostics). Urinary creatinine 
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concentration (in μmol/L) was measured by a kinetic spectrophotometric method (Roche Diagnostics). Urinary 
albumin–creatinine ratio (ACR; expressed in mg/g) was calculated by taking the ratio between urinary albumin 
and urinary creatinine and stratified according to the 2012 KDIGO classifications: A1, < 3 mg/mmol (normal to 
mildly increased); A2, 3 to 30 mg/mmol (moderately increased); and A3, > 30 mg/mmol (severely increased).

Antibodies against glutamic acid decarboxylase (GAD65Ab) were determined by radioligand binding assay 
(RBA) using established cut-offs (Ghana: > 121 U/mL; Europe: > 97 U/mL), as previously described by Hampe 
et al.22.

Physical examinations. Trained study personnel performed the physical examinations. Anthropometric 
measurements were taken in light clothes and without shoes, including weight (kg) by a person scale, height 
(cm) by a stadiometer, and waist circumference (cm) using a measuring tape (all devices SECA, Germany). 
We calculated Body Mass Index (BMI) as weight over squared height (kg/m2). Blood pressure (BP) was meas-
ured three times using a validated semiautomated device (MicrolifeWatch BP home, Widnau, Switzerland), with 
appropriately sized cuffs after at least 5 min rest while seated. The mean of the last two BP measurements was 
used for the analyses. Hypertension was defined as systolic BP ≥ 140 mmHg and/or diastolic BP ≥ 90 mmHg, 
and/or being on antihypertensive medication treatment. Ankle brachial index (ABI), the ratio of the resting 
systolic blood pressure at the ankle to the resting systolic brachial pressure at the arm, was obtained from two 
blood pressure measurements on the left side (leg and arm) and two on the right side (leg and arm) using the 
Microlife Watch BP Office ABI with appropriately sized cuffs, after at least 10 min of supine rest. The cuffs for 
measuring the ankle and brachial pressures were placed just above the ankle and at the upper arm, respectively.

Definitions of diabetic complications. Validated methods were used to detect kidney dysfunction, 
peripheral artery disease (PAD) and coronary artery disease (CAD). Albuminuria was defined as urinary albu-
min ≥ 3 mg/mmol, and impaired eGFR was based on CKD-EPI eGFR criteria, comprising G3 to G5. Nephropa-
thy was defined as albuminuria or microalbuminuria (stages 2–4) according to the report from Joint Committee 
on Diabetic  Nephropathy23. PAD was defined as ankle brachial index (ABI) < 0.924. CAD was assessed using the 
WHO Rose angina  questionnaire25. We used self-reported data for retinopathy and stroke. Retinopathy was 
assessed by a positive response to the question ‘Have you ever been told by a doctor that you have eye disease or 
eye damage as a result of diabetes?’. Stroke was assessed by a positive reply to the question ‘Have you ever had a 
stroke?’.

Statistical analysis. All analyses were conducted using the software SAS, version 9.3 (SAS Institute, Cary, 
North-Carolina, USA).

Missing data handling. Among the 541 participants with aDM, there were 140 individuals with missing 
or implausible values (< 2nd and ≥ 98th percentile) in any of the variables of interest. These variables comprised 
socio-economic data (n = 140), anthropometric measures (n = 52), biochemical data (n = 40), and lifestyle infor-
mation (n = 24). To avoid selection bias and to improve statistical power, we applied multiple imputation using 
the discriminant fully conditional specification (FCS) method and derived 10 imputed datasets. FCS is also 
known as multiple imputation by chained equations (MICE) and uses separate conditional univariate imputa-
tion models specified for each incomplete variable, with other variables as predictors. Multiple imputation was 
applied under the assumption that the propensity of missing data can be explained by the observed data (missing 
at random, MAR). This assumption was supported by the good imputation efficiency (98.2–99.9%).

Cluster analysis. Two approaches were applied to derive aDM subgroups using exploratory cluster analysis. 
First, we re-constructed the clusters by Ahlqvist et al.9 using the same six clinical and anthropometric variables 
(first approach). These have been chosen because they are readily available in routine clinical practice: age at 
onset of diabetes mellitus, body mass index (BMI), HbA1c, HOMA-beta, HOMA-IR, and the presence of glu-
tamate decarboxylase antibodies (GAD65Ab). We centered all variables to a mean value of 0 and a standard 
deviation (SD) of 1. Then, a two-step cluster analysis was applied, in which the first step extracted a predefined 
number of clusters on the basis of silhouette width (n = 5). This step used log-likelihood as a distance measure 
and Schwarz’s Bayesian criterion for clustering. The second step involved k-means clustering to confirm the sta-
bility of clusters. In the k-means clustering, GAD65Ab presence was not included, because this analysis can only 
accommodate continuous variables. Cluster labels were assigned according to previously published subgroups 
by Ahlqvist et al.9.

Second, we repeated the cluster analysis using variables that have established clinical relevance for aDM 
among Ghanaian populations (second approach). More specifically, we have previously seen that anthropomet-
ric measures of abdominal obesity have the best discriminative ability for diabetes mellitus among Ghanaian 
 adults26,27, and thus, waist circumference was preferred over BMI. Also, we included FPG as a readily available 
biomarker in resource-poor settings. Calculations of HOMA-beta and HOMA-IR based on C-peptide do not 
reflect the important role of serum insulin in aDM. While C-peptide only describes pancreatic insulin release, 
fasting insulin also reflects impaired hepatic insulin clearance, which likely contributes to insulin  resistance28. 
Therefore, we preferred insulin values over C-peptide-based calculations of HOMA. In the second approach, we 
did not use GAD65Ab, because our previous work in the RODAM Study suggests that GAD65Ab may poorly 
discriminate for diabetes  mellitus22 and may not be readily available in sub-Saharan Africa. Age at onset of aDM 
was also included in this second approach. The same two-step cluster analysis was applied to the data as described 
above, with the modification that 2 to 5 cluster solutions were generated in step 1. The optimal number of clusters 
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to be extracted was identified based on cluster size (> 5% of the population) and the dendrogram of explained 
variance  (R2 > 0.25). Cluster labels were assigned by examining the phenotypic characteristics.

Two sensitivity analyses were performed. First, we repeated the cluster analysis after exclusion of individu-
als on insulin treatment to assess the stability of the subgroups. Second, we derived clusters stratified by study 
location (Ghana and Europe).

Characterization of clusters and proportions of diabetic complications. For each cluster descrip-
tion, we calculated means and SD for normally distributed variables, medians and interquartile ranges (IQR) 
for skewed variables, and proportions for categorical variables. The proportions of diabetic complications were 
calculated for each cluster and were compared by χ2-test.

Ethics statement. The RODAM Study was conducted according to the guidelines laid down in the 1964 
Declaration of Helsinki and its later amendments. All procedures involving human subjects were reviewed and 
approved by the respective ethics committees in Ghana (Committee on Human Research, Publication and Eth-
ics, Kwame Nkrumah University of Science and Technology, Kumasi), the Netherlands (Medical Ethics Review 
Committee, Academic Medical Centre, University of Amsterdam), the UK (Observational/ Interventions 
Research Ethics Committee, London School of Hygiene and Tropical Medicine), and Germany (Ethics Com-
mission, Charité—Universitaetsmedizin Berlin). Written informed consent was obtained from all participants.

Role of the funding source. The funders of the study had no role in study design, data collection, data 
analysis, data interpretation, or writing of the manuscript and in the decision to submit the paper for publication.

Results
General characteristics of the study population. Supplementary Table S1 shows the characteristics of 
the total study population (N = 5898), stratified by diabetes status. In brief, participants with aDM (n = 541) had 
a mean age of 53.2 years (SD: 9.5 years), and 56% were women. Most individuals with aDM lived in Amsterdam 
(32%), followed by urban Ghana (25%), London (19%), Berlin (13%) and rural Ghana (10%). Two-thirds had 
none or only elementary formal education and had manual occupations; 14% were smokers. The median dura-
tion of aDM was 5 years (IQR: 1–11 years), and many participants with aDM had a family history of diabetes 
(41%). The mean HbA1c was 7.7% (SD: 2.2%). The proportion of individuals with GAD65Ab-positivity was 
similar between participants with diabetes mellitus and individuals without the disease (5% versus 6%). More 
than two-thirds of individuals with aDM were overweight or obese (BMI ≥ 25.0 kg/m2) and 56% had abdominal 
obesity (waist circumference > 102 cm for men and > 88 cm for women).

Subgroups and their characteristics. Figure 1 displays the proportions of aDM subgroups derived by 
cluster analyses using two sets of clinical and anthropometric variables. Figure 1A shows the results for the first 
approach, based on age of disease onset, BMI, HbA1c, HOMA-beta, HOMA-IR, and the presence of GAD65Ab; 
Fig. 1B depicts the identified subgroups from the second approach, based on age of disease onset, waist cir-
cumference, FPG, and insulin. The distributions of cluster characteristics are shown in Fig. 2, and the detailed 
characteristics of the identified subgroups are presented in Table 1.

In the first approach, we reproduced the five subgroups reported by Ahlqvist et al.9: cluster 1 (obesity-related, 
73%), cluster 2 (age-related, 10%), cluster 3 (autoimmune-related, 5%), cluster 4 (insulin-deficient, 7%), and 
cluster 5 (insulin-resistant, 5%). The obesity-related subgroup was characterized by late age of disease onset. The 
age-related subgroup also showed late age of disease onset and high frequency of female cases. The autoimmune-
related subgroup (GAD65Ab-positive) had a younger age at disease onset and the least frequent family history 
of diabetes. The insulin-deficient subgroup was characterized by early age of disease onset, and the lowest serum 
insulin levels. For the insulin-resistant subgroup, the majority of cases were women with the highest serum insu-
lin levels, HOMA-IR and HOMA-beta. The stability of subgroups according to k-means clustering was robust, 

Figure 1.  Distributions of diabetes subgroups derived by cluster analysis (A) using six common clinical and 
anthropometric  variables according to Ahlqvist et al. (2018), and (B) using five variables with clinical relevance 
for Ghanaian populations.
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except for the discrimination between autoimmune and insulin-deficient subgroups. These were extracted as 
one subgroup by k-means analysis (Table S2).

In the second approach, we identified four subgroups: cluster 1 (obesity- and age-related, 68%), cluster 
2 (malnutrition-related, 8%), cluster 3 (body fat-related and insulin-resistant, 18%), and cluster 4 (ketosis-
prone, 6%). Despite the fact that we omitted GAD65Ab from this cluster analysis, 23 out of the 29 individuals 
with GAD65Ab clustered in the ketosis-prone subgroup. The malnutrition-related subgroup had the lowest 
serum insulin concentration and HOMA-beta, and showed the lowest BMI, waist circumference and fat mass. 
The body fat-related and insulin-resistant subgroup was characterized by female preponderance, high fasting 
glucose concentration, and high serum insulin levels. This was also seen for the ketosis-prone subgroup, who 
also showed high BMI and waist circumference; 6% of them had urinary ketone bodies. Again, the stability of 
subgroups was confirmed through k-means clustering, with some overlap between the obesity- and age-related 
subgroup and the body fat-related and insulin-resistant subgroup (Table S2).

Overlaps between the two approaches are presented in Supplementary Figure S1. Most individuals in the 
obesity-related subgroup of the first approach remained in the obesity- and age-related subgroup of the second 
approach. Individuals who were clustered in the age-related subgroup (first approach) transitioned to the body 
fat-related and insulin-resistant subgroup (second approach). Also, most participants in the insulin-deficient 
subgroup (first approach) were relocated to the malnutrition-related subgroup (second approach).

Medication and diabetic complications by subgroups. We describe the distributions of medications 
across subgroups in Table 1 and present the proportions of diabetic complications by subgroup in Fig. 3. The 
majority of study participants received—with overlap—oral glucose-lowering medication (79%), followed by 
lifestyle modifications (55%), and insulin injections (15%). Almost half of the participants with aDM received 
insulin treatment immediately after diagnosis (48%), and one-third during the first 6 months after diagnosis 
(Table 1). Regarding diabetic complications, microvascular conditions (retinopathy, nephropathy, albuminuria) 
were more common than macrovascular complications (Coronary Artery Disease (CAD), Peripheral Artery 
Disease (PAD), stroke; Fig. 3). Kidney disease was most prominent with about one-third of the participants who 
fulfilled the criteria for nephropathy. This was followed by self-reported retinopathy amounting to 14% in the 
total study population. Macrovascular complications were seen in 7% for estimated CAD, 4% for PAD, and 3% 
for self-reported stroke.

Among the subgroups derived from the first approach, the following diabetic complications were observed 
(Fig. 3A,C). The age-related subgroup showed the highest proportions of estimated CAD (18%) and self-reported 
stroke (13%). Liver enzymes were increased in this subgroup (Table 1). In the autoimmune-related subgroup, 
markers of kidney dysfunction and PAD were more prominent than in other subgroups. The insulin-deficient 
subgroup showed the highest proportions of retinopathy (24%). Yet, neither the proportions of complications 
nor the distributions of diabetes medication were significantly different between the subgroups.

Figure 2.  Cluster characteristics in 541 Ghanaian individuals with adult-onset diabetes (A) using six common 
clinical and anthropometric variables according to Ahlqvist et al. (2018), and (B) using five variables with 
clinical relevance for Ghanaian populations.
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Table 1.  Clinical and anthropometric characteristics of adult-onset diabetes subgroups by two different cluster 
analysis approaches among 541 Ghanaian adults. Data are presented as means ± standard deviations, medians 
(interquartile ranges) or percentages. ALAT, alanin-aminotransferase; ASAT, aspartate-aminotransferase; 
BMI, body mass index; FPG, fasting plasma glucose; GAD65Ab, glutamic-acid decarboxylase dehydrogenase 
65 auto-antibody; GGT, gamma-glutamyl-transferase; HOMA-IR, homeostasis model assessment of insulin 
resistance; HOMA-beta, homeostasis model assessment of beta-cell function. * comprises all medication with 
ATC codes A10.

Characteristics

Approach 1: age at onset, BMI, HbA1c, HOMA-IR, HOMA-beta, GAD65Ab Approach 2: age at onset, waist circumference, FPG, insulin

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Obesity-related Age-related
Autoimmune-
related

Insulin-
deficient

Insulin-
resistant

Obesity- and 
age-related

Malnutrition-
related

Body fat-
related and 
insulin-
resistant Ketosis-prone

N 394 56 29 35 27 366 43 98 34

Age (years) 53.4 ± 9.3 53.1 ± 9.0 53.9 ± 10.2 53.7 ± 10.6 50.0 ± 11.8 53.4 ± 9.5 51.9 ± 11.7 53.4 ± 8.8 52.4 ± 8.4

Sex (male) 46.2 33.9 48.3 45.7 29.6 47.3 48.8 30.6 44.1

Clinical

Age at diabetes 
diagnosis (years) 48.6 ± 9.1 47.7 ± 10.1 43.8 ± 11.7 42.4 ± 7.8 46.6 ± 10.0 46.0 ± 12.3 44.9 ± 13.3 46.1 ± 13.9 46.2 ± 11.3

Family history 
of diabetes (yes) 40.9 43.6 37.9 43.7 45.2 40.5 43.5 42.7 45.0

Diabetes medication

 Insulin 15.0 14.6 15.9 19.7 11.9 15.6 15.8 12.1 19.1

Glucose-lower-
ing drugs* 77.5 73.8 85.9 84.6 90.0 78.6 77.7 77.9 81.8

 Diet and physi-
cal activity 52.7 59.6 55.9 58.0 71.9 53.1 55.8 63.7 47.9

 Insulin treat-
ment immedi-
ately

48.5 51.8 50.0 58.0 46.7 49.3 42.8 46.2 50.3

 Insulin treat-
ment in first 
6 months

27.7 32.1 30.0 41.1 36.3 27.3 30.9 31.1 33.8

Fasting glucose 
(mmol/L) 7.4 (5.9–9.9) 7.5 (5.5–11.8) 8.5 (6.0–11.4) 7.7 (6.0–11.6) 7.3 (4.2–8.5) 7.3 (5.7–9.6) 7.4 (6.0–10.8) 8.1 (5.7–11.1) 8.1 (5.8–12.3)

HbA1c (mmol/
mol) 50.6 (42.0–62.0) 52.9 (42.4–74.6) 54.9 (44.1–68.1) 51.0 (43.1–74.0) 63.9 (44.1–79.3) 52.6 (44.0–69.4) 52.6 (40.9–73.9) 57.2 (43.8–74.0) 56.8 (45.2–84.0)

HbA1c (%) 7.1 (6.2–8.4) 7.0 (6.0–9.0) 8.1 (6.3–9.8) 7.4 (6.4–9.7) 6.7 (6.2–8.8) 7.0 (6.2–8.5) 7.0 (5.9–8.9) 7.4 (6.2–8.9) 7.3 (6.3–9.8)

Insulin (mU/L) 6.5 (4.3–9.7) 8.2 (5.5–12.3) 6.4 (4.4–10.4) 5.5 (3.5–9.4) 28.6 (11.3–44.1) 6.7 (4.4–9.7) 6.0 (3.5–9.5) 8.5 (4.7–13.4) 8.3 (4.3–11.7)

HOMA-IR 2.32 (1.29–3.87) 2.84 (1.71–6.04) 2.63 (1.54–4.86) 2.78 (1.22–4.43) 13.39 (2.25–
17.26) 2.33 (1.33–3.84) 2.78 (1.15–3.95) 3.16 (1.54–6.61) 2.90 (1.22–5.38)

HOMA-beta 36.2 (18.4–63.4) 41.4 (22.5–77.9) 20.3 (12.0–55.8) 24.2 (13.4–45.6) 228.3 (142.0–
370.8) 38.6 (18.7–70.4) 25.1 (17.2–68.0) 41.0 (22.4–68.8) 29.6 (11.6–78.0)

GAD65Ab 
(positive) 0.0 0.0 100 0.0 0.0 6.3 4.7 3.1 2.9

Urinary ketones 
(positive) 2.8 8.9 0.0 2.9 7.7 2.7 2.3 6.2 5.9

Hypertension 
(yes) 78.2 73.2 75.9 71.4 74.1 79.0 76.7 70.4 73.5

ASAT (U/L) 29.7 (24.2–36.4) 33.2 (26.2–41.0) 31.3 (23.4–38.7) 29.0 (23.5–38.8) 30.6 (25.2–27.6) 28.9 (24.1–36.3) 29.0 (23.5–41.2) 33.2 (26.9–40.7) 30.3 (25.6–38.9)

ALAT (U/L) 21.0 (16.3–27.6) 25.0 (15.6–32.3) 20.9 (16.3–29.4) 20.8 (15.8–25.8) 21.9 (15.5–32.3) 21.1 (16.3–27.6) 20.4 (14.6–25.8) 22.2 (16.1–29.7) 20.5 (16.9–31.7)

ASAT/ALAT 1.39 (1.16–1.73) 1.43 (1.09–1.74) 1.45 (1.17–1.73) 1.55 (1.25–1.90) 1.34 (1.03–1.65) 1.37 (1.14–1.72) 1.56 (1.31–1.85) 1.44 (1.20–1.83) 1.32 (1.19–1.56)

GGT (U/L) 37.9 (27.7–53.7) 40.8 (32.2–57.9) 40.7 (29.1–62.2) 36.4 (29.0–47.6) 37.1 (26.4–51.3) 38.9 (28.7–53.7) 36.4 (26.6–44.1) 37.7 (27.9–55.7) 41.2 (27.2–58.3)

Anthropometric

Body mass 
index (kg/m2) 28.9 ± 5.3 25.2 ± 5.1 31.0 ± 5.0 29.0 ± 7.2 28.5 ± 5.4 28.7 ± 5.5 26.5 ± 6.3 29.3 ± 4.9 28.7 ± 6.1

Waist circumfer-
ence (cm) 97.0 ± 12.8 97.6 ± 13.9 96.6 ± 11.7 93.8 ± 14.2 102.3 ± 11.7 97.3 ± 13.1 93.3 ± 14.6 97.9 ± 12.0 97.3 ± 11.0

Fat-free mass 
(kg) 52.5 ± 9.7 50.8 ± 7.9 52.3 ± 10.3 51.2 ± 10.7 54.1 ± 7.9 52.8 ± 9.7 51.5 ± 11.3 50.6 ± 8.5 52.8 ± 7.6

Fat mass (kg) 25.1 ± 10.6 27.7 ± 11.3 23.2 ± 10.8 22.4 ± 11.4 30.6 ± 12.2 25.1 ± 10.9 21.7 ± 10.9 27.6 ± 10.2 25.7 ± 12.1

Fat percentage 
(%) 31.7 ± 8.6 34.3 ± 9.3 29.9 ± 9.7 29.7 ± 8.4 35.2 ± 8.0 31.5 ± 8.7 29.0 ± 8.2 34.5 ± 8.4 31.9 ± 9.6
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The four subgroups derived from the second approach were characterized as follows (Fig. 3B,D). The ketosis-
prone subgroup showed preponderance of albuminuria and nephropathy. The malnutrition-related subgroup 
had the highest proportion of retinopathy. Yet again, none of the between-group differences were statistically 
significant. Regarding medications, almost two-thirds of the body fat-related and insulin-resistant subgroup 
received diet and physical activity, while this applied to less than half of the ketosis-prone subgroup. Both, insulin 
and glucose-lowering medication, were most frequently prescribed in the ketosis-prone subgroup (Table 1).

Sensitivity analyses. We performed two sensitivity analyses. First, we repeated the second cluster analysis 
approach to account for the influence of insulin treatment on serum insulin concentration. For this analysis, 87 
out of 541 individuals who were on insulin medication were excluded. Supplementary Table S3 shows the cor-
responding subgroups. Again, the largest cluster was the obesity- and age-related subgroup (40%), followed by 
malnutrition-related diabetes (39%), body fat-related and insulin-resistant diabetes (18%), and ketosis-prone 
diabetes (3%).

Also, we derived aDM subgroups using the Ghana-specific set of variables and stratified by location (Ghana 
versus Europe) to account for contextual differences. The proportions of subgroups in the two locations are 
shown in Supplementary Figure S2, and their characteristics are presented in Supplementary Table S4. The 
subgroups derived per location were similar in their characteristics but differed in proportions. Malnutrition-
related diabetes was more common in Ghana (14%) than in Europe (1%), while this was the opposite for the 
obesity- and age-related subgroup (Ghana: 29%; Europe: 47%). The proportions of ketosis-prone diabetes and 
the body fat-related and insulin-resistant subgroup were similar between Ghana and Europe (Table S4). Finally, 
the distributions of complications across the site-specific subgroups are presented in Supplementary Figure S3. In 
Ghana and Europe, kidney dysfunction was most prevalent in the subgroups characterized by insulin-resistance. 
Macrovascular complications were rather common in ketosis-prone diabetes. The occurrence of retinopathy did 
not dominate in any subgroup.

Discussion
Summary of main results. Here, we reproduced, for the first time among sub-Saharan African adults, 
subgroups of aDM using data-driven cluster analysis with six simple clinical variables. We extracted the same 
five clusters as in the original  study9: obesity-related (73%), age-related (10%), autoimmune-related (5%), insu-
lin-deficient (7%), and insulin-resistant (5%). In comparison to European and Asian  populations10, there were 
marginal differences in the characteristics of subgroups, their proportions, and the distributions of diabetic com-
plications across clusters. In a second approach, we derived subgroups by employing variables with established 
clinical relevance for Ghanaian populations. This approach yielded four subgroups that had only some overlap 

Figure 3.  Microvascular (upper panel) and macrovascular complications (lower panel) among diabetes 
subgroups derived from six common clinical and anthropometric variables (A,C) and from five variables with 
clinical relevance for African descent populations (B,D). None of the percentages were significantly different 
from those in the first cluster, according to χ2-test.
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with the five initial clusters regarding clinical, treatment-related and complication profiles: obesity- and age-
related (68%), malnutrition-related (18%), body fat-related and insulin-resistant (8%), and ketosis-prone (6%).

Reproducibility of subgroups. The first approach generated similar clusters compared to those initially 
discovered in Scandinavian  populations9. However, the RODAM Study population showed differences in the 
occurrence and some characteristics of these clusters. A recent systematic review summarizes data of 14 studies 
that have employed unsupervised learning methods to derive subgroups of adult-onset diabetes in populations 
from Asia, Europe, the USA, and  Australia10. In five of them, the same five subgroups were extracted. While the 
obesity-related subgroup is also highly prevalent in previous studies (20–34%), this cluster amounted to 73% 
among the present Ghanaian sample. Further, the age-related subgroup constitutes the most common cluster 
in non-Ghanaian populations (34–45%). Yet, only 10% of individuals with aDM in the RODAM Study exhib-
ited an age-related phenotype. Another difference is discernible for the insulin-resistant subgroup. This yielded 
7–24% in previous studies but only 5% in the present population. These findings might be explained by the poor 
discriminative ability of BMI for diabetes mellitus among  Ghanaians26,27 and the suggested large proportion of 
metabolically healthy obesity among African  populations29. In fact, all subgroups in this study, except for the 
age-related cluster in the first approach, showed high BMI values and low HOMA-IR (Table 1). Further, the pro-
portions of the insulin-deficient (7%) and the autoimmune subgroups (5%) in our study ranked at the lower end 
of the previously reported occurrences (3–22%). The subgroup of autoimmune diabetes mellitus might include 
individuals with LADA or type 1 diabetes mellitus. Yet, the concentrations of GAD65Ab and the proportions 
of autoantibody-positive individuals are similar between participants with and without  aDM22. Hence, this bio-
marker may not discriminate well for diabetes status in this population, and the meaning of GADA positivity 
in the latter subgroup remains unclear. Further, the small proportion of the insulin-deficient subgroup may 
result from the presence of ketosis-prone diabetes, possibly hidden within the age-related cluster (Figure S1). A 
considerable proportion of individuals with aDM from sub-Saharan Africa have ketosis-prone diabetes, char-
acterized by urinary ketone bodies and reserved beta-cell function after stabilization of blood glucose through 
initial insulin  treatment30.

In fact, the second approach appears to separate these so-called atypical forms of diabetes mellitus from the 
conventional types. Many features of the ketosis-prone subgroup (6%) from the second approach accord with 
previously published features of this atypical phenotype: Age at onset was in the fourth decade, family history 
of diabetes was common, BMI, and body fat percentage were high, 6% of these patients presented with urinary 
ketones, half of the participants received insulin immediately at diagnosis, and beta-cell reserve was moder-
ate (Table 1). In addition, the malnutrition-related sub-group (8%) exhibited characteristics of the previously 
described protein-deficient pancreatic diabetes and fibro-calculous pancreatic  diabetes30: Age at onset was rather 
young, family history of diabetes was less prominent than in other clusters, BMI and body fat percentage were 
low, and beta-cell function was impaired. Notably, the malnutrition-related subgroup was more common in 
Ghana, and corroborates our hypothesis that environmental triggers may outweigh genetic predisposition in 
 aDM22. Further, the obesity- and age-related subgroup presented as the largest cluster (68%). This subgroup 
resembled the obesity-related subgroup identified in the first approach, particularly mean BMI and mean HbA1c 
were high, while insulin resistance was moderate. The cluster characteristics largely overlapped with the body 
fat-related and insulin-resistant subgroup (18%), except for the high values of mean HOMA-IR in the latter. 
Therefore, the body fat-related and insulin-resistant subgroup is similar in proportion and features to SIRD 
derived in other  populations10.

Therapeutic strategies for glycaemic control and prevention of diabetic complica‑
tions. Recently, Tanabe et al.30 have suggested therapeutic strategies for the observed subgroups along a con-
tinuum of insulin demand and secretory capacity for the prevention of diabetic complications. For insulin-defi-
cient subgroups, including the autoimmune-related and the insulin-deficient clusters, insulin therapy appears to 
be the treatment of choice, possibly in combination with oral insulin secretagogues, to stabilize long-term blood 
glucose (HbA1c) and to prevent the development of retinopathy—the most common diabetic complication in 
these  subgroups12. This is corroborated by our findings in the RODAM Study for both analysis approaches. Yet, 
we also noticed some discrepancies between our results and the previously reported treatment and complication 
profiles of those clusters characterized by insulin deficiency. Among Ghanaians, kidney dysfunction and PAD 
were also common in those subgroups characterized by high proportions of GAD65Ab; they were mainly pre-
scribed oral glucose-lowering medication. This difference may stem from our cross-sectional study design and 
the inclusion of prevalent aDM cases with existing diabetic complications. Indeed, disease duration affects the 
cluster allocation, as individuals potentially transition from one subgroup to another over  time13. This remains to 
be investigated when follow-up data of the RODAM study population will be available. For subgroups character-
ized by older age of disease onset, metformin and dipeptidyl peptidase-4 inhibitors (DPP4i) have been proposed 
to prevent the observed risks of coronary  events31. In the RODAM Study population, similar treatment profiles 
and diabetic complications (stroke, CAD, PAD) were discernible in the age-related subgroup (first approach) 
and in the obesity- and age-related subgroup (second approach). Yet, lifestyle modifications were also frequently 
prescribed for the obesity- and age-related subgroup derived in the second approach, possibly due to the large 
proportion of individuals with insulin resistance and obesity. In other studies, this subgroup emerged as the 
obesity-related cluster with high BMI and frequent occurrence of liver dysfunction. For diseases management, 
literature suggests to emphasize on weight control with diet and physical exercise plus metformin, and other 
oral glucose-lowering  medication31. This strategy is promoted even stronger for insulin-resistant subgroups, and 
comprise a combination of weight-loss through lifestyle and surgery, as well as insulin-sensitizing drugs for the 
prevention of microvascular complications, mainly kidney  dysfunction31. Our results from the first approach 
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confirm these treatment and complication profiles, whereas the body fat-related and insulin-resistant subgroup 
from the second approach was dominated by liver dysfunction and cardiovascular events.

Strengths and limitations. This analysis uniquely adds to understanding the aetiology of aDM, and 
thereby, contributes to improved clinician counseling and pharmacological interventions. We provide evidence 
that subgroups of diabetes mellitus may be reproduced in sub-Saharan African populations, when using the 
previously published clinical variables and methodological approach. Clearly, our results need to be interpreted 
with caution, as we studied prevalent aDM with different disease durations. These factors might have influ-
enced cluster allocation, proportions, and complication profiles. As a research prospect, we aim at verifying 
our results in the follow-up data, 5 years after baseline. Here, we have applied hierarchical clustering followed 
by k-means clustering, which are more suitable when aiming to separate subgroups. Other colleagues have 
used soft-clustering as an  alternative32, which allows participants to represent in more than one subgroup—an 
approach that might have less clinical relevance but could facilitate the study of disease aetiology. Also, future 
work might expand to classify various states of dysglycemia, including impaired glucose tolerance and pre-
diabetes. Reassuringly, the clusters in our study remained stable when individuals on insulin treatment were 
excluded from the analysis (Ghana-specific approach). Additional variables can aid the derivation of aDM sub-
groups, including metabolomics and  genomics9,10. Yet, we refrained from these approaches as they are unlikely 
to be incorporated into clinical practice. Also, we acknowledge that HOMA-beta and HOMA-IR were based 
on fasting insulin, not on fasting C-peptide, which contrasts the methodology by Ahlqvist and colleagues. For 
HOMA-IR, insulin-based values may overestimate insulin resistance among individuals on insulin medication. 
Still, sensitivity analysis excluding participants on insulin treatment (16%) produced similar subgroups. For 
HOMA-beta, insulin-based calculations might underestimate beta-cell function due to hepatic insulin storages, 
but they reflect impaired hepatic insulin clearance, which likely contributes to insulin  resistance28. In this cross-
sectional study, we cannot comment on the stability of these clusters, as individuals can migrate over time and 
clinical features overlap between the identified subgroups. The RODAM Study population has been thoroughly 
phenotyped regarding biomarkers of glucose metabolism, anthropometric measurements, and several diabetic 
complications. Yet, we acknowledge that retinopathy, stroke and CAD were assessed by self-report only. Just as a 
large proportion of individuals with aDM from sub-Saharan Africa remains  undiagnosed3, so do their diabetic 
complications. Therefore, self-reported complications might have underestimated the true proportions in our 
study population, particularly for microvascular complications, and thus, contributed to type II error. Similarly, 
the various oral glucose-lowering medications were not documented in this study; this limits the interpretation 
of treatment-related characteristics across subgroups.

Conclusion
In this Ghanaian study population, the first approach (replication from Ahlqvist et al.9) provided subgroups 
that separated well between diabetic complications, but differentiated less sharp between phenotypes. This was 
the opposite for the second approach (Ghana-specific variables): It produced well-known diabetic phenotypes 
among African populations, which however, did not separate well for diabetic complications. Pending verifica-
tion in prospective studies with incident aDM among sub-Saharan African populations, our findings suggest 
that cluster analysis based on routinely collected clinical data can contribute to the understanding of diabetes 
aetiology and possibly disease progression.

Data availability
The study protocol and statistical analysis plans were previously  published19. Individual participant data will 
be shared with researchers in a deidentified or anonymized format upon submitting a research proposal and 
requesting data access to Prof. Charles Agyemang, UMC Amsterdam (c.o.agyemang@amsterdamumc.nl). Data 
will be made available for analyses as approved by the data access committee.

Received: 4 October 2022; Accepted: 22 June 2023

References
 1. Guariguata, L. et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103(2), 

137–149 (2014).
 2. IDF. IDF Diabetes Atlas 2021 (10th edition). International Diabetes Federation (IDF); 2021.
 3. Agyemang, C. et al. Obesity and type 2 diabetes in sub-Saharan Africans—Is the burden in today’s Africa similar to African 

migrants in Europe? The RODAM study. BMC Med. 14(1), 166 (2016).
 4. Ezzatvar, Y., Ramírez-Vélez, R., Izquierdo, M. & García-Hermoso, A. Racial differences in all-cause mortality and future com-

plications among people with diabetes: A systematic review and meta-analysis of data from more than 2.4 million individuals. 
Diabetologia 64(11), 2389–2401 (2021).

 5. Bijlholt, M. et al. Type 2 diabetes mellitus management among Ghanaian migrants resident in three European countries and their 
compatriots in rural and urban Ghana—The RODAM study. Diabetes Res. Clin. Pract. 136, 32–38 (2018).

 6. Hayfron-Benjamin, C. et al. Microvascular and macrovascular complications in type 2 diabetes Ghanaian residents in Ghana and 
Europe: The RODAM study. J. Diabetes Complicat. 33(8), 572–578 (2019).

 7. Rawshani, A. et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 379(7), 
633–644 (2018).

 8. Dennis, J. M., Shields, B. M., Henley, W. E., Jones, A. G. & Hattersley, A. T. Disease progression and treatment response in data-
driven subgroups of type 2 diabetes compared with models based on simple clinical features: An analysis using clinical trial data. 
Lancet Diabetes Endocrinol. 7(6), 442–451 (2019).

 9. Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of 
six variables. Lancet Diabetes Endocrinol. 6(5), 361–369 (2018).



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10756  | https://doi.org/10.1038/s41598-023-37494-2

www.nature.com/scientificreports/

 10. Sarría-Santamera, A., Orazumbekova, B., Maulenkul, T., Gaipov, A. & Atageldiyeva, K. The identification of diabetes mellitus 
subtypes applying cluster analysis techniques: A systematic review. IJERPH 17(24), 9523 (2020).

 11. Ahlqvist, E. et al. Clustering of adult-onset diabetes into novel subgroups guides therapy and improves prediction of outcome. 
Epidemiology https:// doi. org/ 10. 1101/ 186387 (2017).

 12. Tanabe, H. et al. Factors associated with risk of diabetic complications in novel cluster-based diabetes subgroups: A Japanese 
retrospective cohort study. JCM 9(7), 2083 (2020).

 13. Zaharia, O. P. et al. Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: A 5-year follow-up 
study. Lancet Diabetes Endocrinol. 7(9), 684–694 (2019).

 14. Safai, N., Ali, A., Rossing, P. & Ridderstråle, M. Stratification of type 2 diabetes based on routine clinical markers. Diabetes Res. 
Clin. Pract. 141, 275–283 (2018).

 15. Zou, X., Zhou, X., Zhu, Z. & Ji, L. Novel subgroups of patients with adult-onset diabetes in Chinese and US populations. Lancet 
Diabetes Endocrinol. 7(1), 9–11 (2019).

 16. Goedecke, J. H. & Olsson, T. Pathogenesis of type 2 diabetes risk in black Africans: A South African perspective. J Intern Med. 
288(3), 284–294 (2020).

 17. Pigeyre, M. et al. Validation of the classification for type 2 diabetes into five subgroups: A report from the ORIGIN trial. Diabeto-
logia 65(1), 206–215 (2022).

 18. Danquah, I. et al. Early-life factors are associated with waist circumference and type 2 diabetes among Ghanaian adults: The 
RODAM Study. Sci Rep. 9(1), 10848 (2019).

 19. Agyemang, C. et al. Rationale and cross-sectional study design of the Research on Obesity and type 2 Diabetes among African 
Migrants: The RODAM study. BMJ Open 4(3), e004877 (2015).

 20. Matthews, D. R. et al. Homeostasis model assessment: Insulin resistance and ?-cell function from fasting plasma glucose and 
insulin concentrations in man. Diabetologia 28(7), 412–419 (1985).

 21. Lamb, E. J., Levey, A. S. & Stevens, P. E. The Kidney Disease Improving Global Outcomes (KDIGO) guideline update for chronic 
kidney disease: Evolution not revolution. Clin. Chem. 59(3), 462–465 (2013).

 22. Hampe, C. S. et al. Geographic location determines beta-cell autoimmunity among adult Ghanaians: Findings from the RODAM 
study. Immunity Inflamm. Dis. 8(3), 299–309 (2020).

 23. Haneda, M. et al. A new Classification of Diabetic Nephropathy 2014: A report from Joint Committee on Diabetic Nephropathy. 
J. Diabetes Invest. 6(2), 242–246 (2015).

 24. Aboyans, V. et al. Measurement and interpretation of the Ankle-Brachial index: A scientific statement from the American Heart 
Association. Circulation 126(24), 2890–2909 (2012).

 25. Rahman, M. A. et al. Rose Angina Questionnaire: Validation with cardiologists’ diagnoses to detect coronary heart disease in 
Bangladesh. Indian Heart J. 65(1), 30–39 (2013).

 26. Darko, S. N. et al. Anthropometric indices and their cut-off points in relation to type 2 diabetes among Ghanaian migrants and 
non-migrants: The RODAM study. Diabetes Res. Clin. Pract. 173, 108687 (2021).

 27. Frank, L. K. et al. Measures of general and central obesity and risk of type 2 diabetes in a Ghanaian population. Trop. Med. Int. 
Health 18(2), 141–151 (2013).

 28. Najjar, S. M. & Perdomo, G. Hepatic insulin clearance: Mechanism and physiology. Physiology 34(3), 198–215 (2019).
 29. Perini, W., Kunst, A. E., Snijder, M. B., Peters, R. J. G. & van Valkengoed, I. G. M. Ethnic differences in metabolic cardiovascular 

risk among normal weight individuals: Implications for cardiovascular risk screening. The HELIUS study. Nutr. Metab. Cardiovasc. 
Dis. 29(1), 15–22 (2019).

 30. Bavuma, C. et al. Atypical forms of diabetes mellitus in Africans and other non-European ethnic populations in low- and middle-
income countries: A systematic literature review. J. Glob. Health 9(2), 020401 (2019).

 31. Tanabe, H., Masuzaki, H. & Shimabukuro, M. Novel strategies for glycaemic control and preventing diabetic complications applying 
the clustering-based classification of adult-onset diabetes mellitus: A perspective. Diabetes Res. Clin. Pract. 180, 109067 (2021).

 32. Wesolowska-Andersen, A. et al. Four groups of type 2 diabetes contribute to the etiological and clinical heterogeneity in newly 
diagnosed individuals: An IMI DIRECT study. Cell Rep. Med. 3(1), 100477 (2022).

Acknowledgements
The authors are grateful to the volunteers participating in the RODAM Study. We also thank all research staff who 
were involved at the various study sites. Our thanks go also to Dr. Erik Beune from the Department of Public and 
Occupational Health at Amsterdam UMC, University of Amsterdam, The Netherlands, as the coordinator of the 
RODAM study. The funding bodies had no role in the acquisition, analysis and interpretation of the data. Authors 
were not precluded from accessing data in the study, and they accept responsibility to submit for publication.

Author contributions
I.D. and O.R. conceived this study. I.D. analyzed the data. I.D., O.R. and I.M. wrote the first draft of the manu-
script. I.M. also accessed and verified the underlying data and analyses. C.S.H. measured GAD65Ab and inter-
preted the findings. C.A., E.O.D., L.S., S.B., J.S., F.P.M., M.B.S. and O.R. acquired the funding. K.A.C.M., L.S., 
K.K.G., S.B., J.S., F.P.M. and M.B.S. contributed to interpreting the data. All authors critically reviewed and 
revised the manuscript; they agreed to be accountable for all aspects of the work, and approved the decision to 
submit for publication.

Funding
Open Access funding enabled and organized by Projekt DEAL. This study was supported by the European 
Commission under the 7th Framework Program (Grant Number 278901), and by Region Västerbotten, Umeå 
University, Sweden to OR. KACM is supported by the Intramural Research Programme of the National Insti-
tutes of Health in the Centre for Research on Genomics and Global Health (CRGGH). CA is supported by the 
European Research Council Consolidation (grant number 772244). Ina Danquah is supported by the Robert 
Bosch Foundation (grant number 01000035-002).

Competing interests 
The authors declare no competing interests.

https://doi.org/10.1101/186387


11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10756  | https://doi.org/10.1038/s41598-023-37494-2

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 37494-2.

Correspondence and requests for materials should be addressed to I.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-37494-2
https://doi.org/10.1038/s41598-023-37494-2
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Subgroups of adult-onset diabetes: a data-driven cluster analysis in a Ghanaian population
	Methods
	Study design and population. 
	Biomaterial collection and laboratory measurements. 
	Physical examinations. 
	Definitions of diabetic complications. 
	Statistical analysis. 
	Missing data handling. 
	Cluster analysis. 
	Characterization of clusters and proportions of diabetic complications. 
	Ethics statement. 
	Role of the funding source. 

	Results
	General characteristics of the study population. 
	Subgroups and their characteristics. 
	Medication and diabetic complications by subgroups. 
	Sensitivity analyses. 

	Discussion
	Summary of main results. 
	Reproducibility of subgroups. 
	Therapeutic strategies for glycaemic control and prevention of diabetic complications. 
	Strengths and limitations. 

	Conclusion
	References
	Acknowledgements


