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Abstract

This study introduces a dynamic approach to sorting, making use of predictions and
data gathered during run-time to optimize the sorting of the current data set. This
approach is used to develop a sorting algorithm called DynamicSort which partitions
data and calculates a partial standard deviation for each partition to determine which
of two sorting algorithms should be used to sort the partition. The algorithm is tested
against Quicksort and radix sort on data sets of different sizes and standard deviation
with the intent of finding advantages of the approach. In order to adapt to modern
applications, the algorithm is tested in an environment utilizing parallel processing on
multiple machines on data sets generated to mimic the characteristic size of big data.
To accommodate this the data is divided at start and merged together after sorting
using a k-way merge sort. While the tests conducted do not show any concrete gain in
performance there are several factors that could be further optimized and evaluated. We
find that it is not enough to simply consider the standard deviation in this approach.
While no real instance of big data was used the algorithm was adapted for limited cache
sizes and multiple hosts working in parallel.
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1 Introduction

Sorting is one of the most important and researched algorithms in computer science,
seeing use in nearly every mechanism that makes use of a data set. The main purpose of
sorting is to ease the retrieval of data, making it faster in the future. The ever growing
complexity and size of these data sets has brought new problems and possibilities for
optimization of these sorting algorithms. In this study we introduce a dynamic approach
to sorting, making use of predictions and data gathered during run-time to optimize the
sorting of the current data set. This approach is used to develop a sorting algorithm
called DynamicSort[1] which is evaluated with the intent of finding advantages of the
approach. In order to adapt to modern applications, the algorithm is tested in an
environment utilizing parallel processing on multiple machines using data sets generated
to mimic the characteristic size of big data.

1.1 Dynamic optimization

This study explores the possibility of dynamic optimizations done to a sorting algorithm
during run-time. This means that the sorting algorithm should be able to adapt to
data gathered so far during execution and change some constants to alter its behaviour.
For example if another sorting algorithm than the one currently used are deemed more
appropriate considering the observed characteristics of the data or its partitions it may
change the currently working sorting algorithm for future passes.

Other approaches to mutable sorting algorithms such as adaptive sorting usually only
take advantage of input characteristics identified at the start of execution or before, by
means such as heuristic analysis or predictive methods based on a preceding installation
phase. As these approaches do not encompass the dynamic runtime changes this study
aims to explore the difference in these definitions is important to note. Our approach
avoids having to do any preceding analysis before the sorting is started.

1.2 Previous work

While interesting, the goal of this work is not entirely new as there has been previous
work done analysing the optimization of sorting algorithms by combining already existing
algorithms.

One example which stands as the foundation to several choices made during this study
is [2] where the effect of empirical search, making choices depending on previous tests
and aquired data, at installation is used to optimize sorting for the given machine using
a number of pre-chosen sorting algorithm alternatives. Most relevant to this study
are their tests for how different sorting algorithms performance vary depending on the
standard deviation of the used data set. This work is then expanded upon in [3] where
they introduce a hierarchically organized hybrid sorting algorithm, an algorithm built
from specific parts of other sorting algorithms called ”sorting primitives”, making use
of genetic algorithms evolving through generations to construct an optimized algorithm
for a given data-set.

Another example is [4] where they use cumulative distribution functions (CDF), a func-
tion which when applied to a random variable X evaluated at x determines the proba-
bility that X is less than or equal to x, to try and predict an elements final position and
implement this into their own sorting algorithm.
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Common with these works is that they use some kind of machine learning (ML) to
enhance their algorithms, whether its to model the CDF[4] or aiding empirical search to
predict the best algorithm[2]. These enhancements are done before sorting.

These works provide a good basis for the development of a sorting algorithm capable of
changing dependent on the data set. Aspects that this work will handle that are not
handled in the previous works are the impacts on big data on the data sets and sorting
algorithms, the optimizations available through using parallel execution in a distributed
environment, and the possibility of making dynamic changes to the sorting during run-
time dependant on observations made and data gathered during sorting. This will be
aided by more predictive methods like those used in the previous works.

2 Sorting algorithms

This section contains the sorting algorithms chosen to be analysed and used in the
dynamic algorithm. The efficiency of a sorting algorithm can vary depending on the
data set it is used on which is why several algorithms are chosen.

These algorithms each have their own advantages and disadvantages in certain relevant
areas such as speed and resource consumption relating to their different characteristics.
In addition the data sets they are used on also possess their own characteristics that
influence the performance of the sorting algorithms. Important characteristics to be
aware of are:

Number of operations required to sort a data set of size n. The upper bound for
an algorithms runtime is often measured proportionally to the size of the data set
(n) and is denoted using big-O notation. The number of operations may change
depending on best and worst cases, for example Quicksort has a best case scenario
of O(n log2(n)) where the minimal amount of comparisons are done and a worst
case scenario of O(n2) when all possible comparisons must be done[2].

Additional memory required to operate on a data set of size N . An algorithm
that requires no additional memory besides that reserved for the data set and
the program itself is of course optimal, but not very feasible when swapping of
elements is required. A realistic best case is an algorithm that requires a constant
memory size to operate on a data set of any size. Such algorithms are referred
to as ”in-place” and, while constant for a given data set, may vary depending
on characteristics of the data set such as element size[5]. Examples of in-place
algorithms include insertion sort and Quicksort. The opposite is called ”out-of-
place” (or ”not-in-place”) and refers to algorithms that require additional memory
when sorting. Examples of out-of-place algorithms are radix sort and merge sort.

Comparisons are usually done when sorting by comparing one element to another.
Algorithms that perform comparisons are called ”comparative” or ”comparison-
based”. There are however sorting algorithms that do not use comparisons be-
tween values in the data set to perform sorting and instead order the elements on
other factors. These algorithms are called ”non-comparative” or ”non comparison-
based”. An example of a non-comparative sorting algorithm is radix sort which
orders values by their significant numbers in separate buckets to sort the data.

Number of values to sort impacts the overall performance of sorting as sorting

Filip Almström 2 July 28, 2023



Umea University
Department of Computing Science

A dynamic approach to sorting
with respect to big data

a large data set implicitly takes a longer time than sorting a smaller data set. It
however does not affect the relative performance of the sorting algorithm chosen[2].

Standard deviation (σ) was determined by Li et al.[2] to impact relative per-
formance for certain sorting algorithms. Standard deviation is a measure of how
much the values in a data set varies. For data sets containing many values close to
the mean value of the whole data set the standard deviation will be low and vice-
versa for data sets with many values far away from the mean. Standard deviation
of a complete data set X of size n where X(i) denotes the i-th value and µ denotes
the mean value of all values in X can be computed as presented in equation 1.

σ =

√√√√ 1

n

n∑
i=1

(X(i)− µ)2 (1)

If X instead represents a partition of a larger data set Y the standard deviation
of Y is called a partial standard deviation and should be calculated by dividing by
n− 1 rather than n in equation 1.[6][7]

2.1 Insertion sort

Insertion sort is a simple, in-place sorting algorithm that works by starting at the be-
ginning of a data set X to be sorted from left to right and placing each element X[i]
in its correct position by successively moving elements to the left bigger than X[i] up,
making room for X[i] to move. An example can be seen in Figure 1 where a data set of
size 6 is sorted in 6 loops.

Figure 1: Insertion sort

This sorting algorithm, while simple, has a best case operation scenario of O(n) in the
case where all elements are already in their correct position. If the inverse is true and
the data set is sorted in the reverse order of what is desired the operation scenario
instead jumps to O(n2)[2]. It should therefore not be used on large datasets due to high
risk of elements being in incorrect positions, but may be worth to try using on smaller
partitions of a dataset.
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2.2 Quicksort

Quicksort is an in-place sorting algorithm that works by dividing the data set to be
sorted around a chosen pivot element with elements smaller than the pivot element
being placed before it and elements bigger than the pivot element being placed after,
thus resulting in the pivot element having found its final position. After the division
the algorithm then recursively applies itself to the smaller and bigger elements until all
elements have found their final positions. An example of how the division looks like with
the last element as pivot can be seen in Figure 2).

Figure 2: Quicksort division

On average Quicksort has an operation number of O(n log2(n)) with a worst case scenario
of O(n2). During their experiments, Li et al. determined Quicksort to be the best
algorithm tested for small values of standard deviation of elements in the data set when
working on 2M elements[2]. This means that Quicksort should be chosen as the active
sorting algorithm when we can determine a smaller standard deviation of the current
elements, but only when working on appropriately small data sets.

2.3 Radix sort

Radix sort is a non-comparative sorting algorithm that works by arranging elements into
buckets by their significant numbers. The algorithm iteratively sorts the buckets taking
into account both the next significant digit and which bucket the element was previously
sorted into until all elements are in their sorted position. An example of radix sort can
be seen in Figure 3.

The advantage of radix sort is its low amount of required operations. Since no compar-
isons are done a single pass can be done in O(n) with the total sorting being done in
O(nw) where w is the amount of passes, determined by the amount of significant digits
in the elements. The disadvantage of radix sort is the space complexity required when
allocating buckets. Li et al.found out through their tests that radix sort is best used for
large values of standard deviation among the elements in the data set to be sorted[2].
Radix sort should therefore be applied when it can be determined that the standard
deviation of the current data is high, independent on the size of the dataset.
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Figure 3: Radix sort

2.4 Merge sort

Merge sort is a sorting algorithm that divides a data set into partitions of a smaller
size that are sorted either recursively until of size 1 or using another sorting algorithm
before merging the partitions into a sorted data set. The merging can either be done
two partitions at a time (referred to as binary) or using multiple partitions at once, then
referred to as multiway merge sort or k-way merge sort. When merging, an element from
each partition is compared and one is promoted to the new partition (or the final data
set). The element is replaced by the following element in the partition and the algorithm
continues iteratively until all partitions are empty.

The number of operations performed by a merge sort is O(n log2(n)) for a data set
of size n. If dividing the data set into p partitions, a heap of size (2p − 1) can be
used to merge using multiway merge sort and the complexity can then be described as
O(n log2(2p− 1))[2]. As partitioning and merging datasets are operations we will not be
able to avoid due to the large size of the datasets multiway merge sort is a integral part
to this study as it will always be used to merge the sorted partitions. As pure merge
sort can only be used if we divide the vector into partitions of size 1, something we will
avoid due to having access to other sorting algorithms that can be used with good results
for larger sizes, it will only be used when merging already sorted partitions. Multiway
merge sort is also well fitted for parallel execution in a distributed environment.

2.5 Comparison and summary

As a summary of this section, each presented algorithm together with their number of
operations and memory classification is presented in Table 1.

Comparing the different algorithms best use-cases we can see that insertion sort is pre-
ferred for sufficiently small datasets with a low average displacement. Radix sort is best
used for datasets with a high standard deviation while Quicksort is best used with a low
standard deviation.

Merge sort, specifically the multiway variant is also useful when working with distributed
processing as a way of merging the data between hosts.
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Algorithm Number of Operations Additional memory

Insertion sort O(n) (Best), O(n2) (Worst) In-place
Quicksort O(n log2(n)) (Average), O(n2) (Worst) In-place
Radix sort O(nw) Out-of-place
Merge sort O(n log2(2p− 1)) Out-of-place

Table 1: Summary of characteristics for presented sorting algorithms

3 DynamicSort

This section describes the design of the dynamic sorting algorithm DynamicSort. The
functionality is based on the study made by Li et al.[2] as well as adaptability to datasets
of similar size to big data (see Section 4.1). Big data adaptability has been implemented
through a limiting cache size as well as a distributed sorting approach utilizing multiple
hosts (see Section 3.2).

3.1 The algorithm

The initial step of the algorithm is to divide the data into partitions where the optimal
sorting algorithm is chosen between Quicksort and radix sort. Partitions are combined
using a k-way merge sort algorithm after they have been individually sorted. After
partitioning, or if no partitioning is needed, the first algorithm used for sorting is a
dynamic Quicksort algorithm that uses the dividing process around the pivot element to
help in calculating a partial standard deviation for the low and high data respectively. A
choice is then made whether to sort these partitions using Quicksort or radix sort based
on the calculated partial standard deviation. If any data to be sorted is determined to
be sufficiently small insertion sort is used.[2]

The algorithm for DynamicSort is described using pseudo code in Algorithm 1. The
algorithm for the k-way merge sort is shown in Algorithm 2. Finally the dynamic
implementation of Quicksort is shown in Algorithm 3. Base algorithms used for insertion
sort and radix sort remain unchanged from their descriptions in Section 2.

Algorithm 1 DynamicSort

Input: list
Output: list

Ensure: size of list ≤ CACHE LIMIT
P ← CHOICE LIMIT
S ← size of list
if S > P then

k ← d SP
kwayMergeSort(list, k) . See Algorithm 2

else
dynamicQuicksort(list) . See Algorithm 3

end if
return list . Old reference still works

3.2 Distributed functionality

This section describes the distributed functionality and structuring used in the sorting.
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Algorithm 2 KwayMergeSort

Input: list, k
Output: list

P ← CHOICE LIMIT
pList ← partition list into k partitions of size CHOICE LIMIT or smaller
for p in pList do

dynamicQuicksort(p) . See Algorithm 3
end for
list← merge pList using k-way merge sort algorithm
return list . Old reference still works

Algorithm 3 DynamicQuicksort

Input: list

P ← INSERTION LIMIT
S ← size of list
N ← MAX AMOUNT USED FOR DEVIATION
L← DEVIATION LIMIT FOR CHOICE
if S ≤ P then

sort list using insertion sort algorithm
else

pivot ← last element of list
low, high ← one cycle of Quicksort algorithm on list
lowDev ← standard deviation (partial) of max N elements in low
if lowDev < L then

dynamicQuicksort(low)
else

sort low using radix sort algorithm . With check for INSERTION LIMIT
end if
highDev ← standard deviation (partial) of max N elements in high
if highDev < L then

dynamicQuicksort(high)
else

sort high using radix sort algorithm . With check for INSERTION LIMIT
end if
list ← low, pivot, high

end if
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The distributed structuring of the sorting involves 3 kinds of hosts: a data provider,
a coordinator (also referred to as a server) and a sorter (also referred to as a client).
The data provider is responsible for providing the data to be sorted in appropriately
sized chunks based on the cache limits of the system. The sorters are responsible for
downloading the chunks of data, sorting them using the DynamicSort algorithm (see
Section 3.1) and uploading them in appropriately sized chunks (based on the cache
limits of the system) to the coordinator. The coordinator is responsible for applying the
final k-way merge sort used to combine the sorted chunks uploaded by the sorters. This
is done with respect to cache limits using partial chunks of the data from each sorter
stored in buffers. The sorting used by the coordinator is presented in algorithm 4.

The distributed structuring is made in order to simulate working with a big data dataset
without having actual access to such a dataset in order to theoretically evaluate the
performance of the sorting on the real datasets.

Algorithm 4 Coordinator (server)

Require: buffer from each sorter
Require: buffer for output
Ensure: buffer size ≤ CACHE LIMIT

NUMBER OF BUFFERS
while at least one sorter-buffer has data do

m← minimum value of first values in sorter-buffers
remove m from sorter-buffer B
add m to out buffer
if B is empty AND sorter has more data then

wait for B to refill
end if
if out buffer is full OR all sorter-buffers are empty then

empty out buffer by sending data to data provider
end if

end while

4 Data

This section presents relevant classification, characteristics and limitations on the data
used to test the result in Section 5. The sorting algorithm produced by this study is
focused on big data and as such the definitions and limitations of this classification of
data is presented.

4.1 Big data

Big data can generally be defined as a data set that is too big to be efficiently handled
in a reasonable amount of time. As the concept of Big data is relative no specific
quantitative definition exists. For example when it was first introduced during the
late 1990’s a quantitative definition might have been ”any dataset greater than 1 GB”,
today that is an insignificant amount of data. Today we may be looking at datasets
sized in peta-, exa-, and zetabytes[8]. An accurate quantitative definition depends on
the machine handling the data and could thus refer to the data sets size being too large
for the machine to handle. The general definition may however also refer to the type
of data being stored being too complex. Data generated by different sources driven by
complex things such as AI, mobile devices, social media and IoT are often generated at
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large scales in real time and thus require non-traditional means of capture, management,
processing and storing[9].

Big data is described around 5 characteristics, collectively refered to as ”The 5 V’s”:

Volume, the size or volume of the data set.

Velocity, the speed of data generation and need of analysis.

Variety, the diversity of data types.

Variability, the measure of how data delivery and capture varies depending on
context.

Value, the measure of value gained from the analysis of the data and its accuracy.[10]

For the purpose of this study, volume will be the main characteristic considered.

4.2 Impact

As the data sets would be classified as big data their volume is too big to be processed
in one go. This results in having to divide the data set into smaller chunks before they
can be processed individually. After processing these data chunks are combined into a
new data set of the same size as the original.

Lacking access to hardware for storing such large amounts of data this study instead
implements the ability to divide the data into limited chunks and accounting for these
limits when sending the data between hosts. As the study is focused towards the volume
of big data and the optimization of sorting using distributed processing and dynamic
changes this is deemed as a suitable alternative to using a real big data collection.

To increase efficiency the partitioned data chunks are processed in parallel on different
hosts. After sorting, the processed chunks are combined again using an implementation
of k-way merge sort to preserve order while restoring the data set to its original size.

As the hosts are limited by a chunk size smaller than the size of the complete data set
the final combination of sorted partitions (using k-way merge sort) is done remotely and
iteratively towards the data provider where the final data would be stored, enabling each
machine to only have to handle an appropriate subset of the data. The data provider
in the tests done by this study (see Section 5) possesses the capability of storing the
complete data set which it uses to have the data chunks ready before testing starts and
to validate that sorting has been done correctly as the data is sent back. Used data is
discarded when no longer needed.

5 Results

This section presents the results gathered from this study. Only the results as well as
explanations of how and why they were done are presented. Further motivation and
discussion of the results are presented in Section ??.

Tests were designed to test the performance of the DynamicSort algorithm when ap-
plied in a distributed environment. Performance was measured against the internally
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used sorting algorithms Quicksort and radix sort in order to analyse whether the dy-
namic approach could provide an increase in performance. All tests were run using an
implementation of the algorithm in Java 8. The source code can be found on github[1].

Data providers were hosted on a machine running Debian 11 x86 64, 128 x 3.35GHz cores
(AMD EPYC), 128GB RAM. Servers were hosted on a machine Debian 11 x86 64, 32 x
2.1GHz cores (AMD Opteron), 128GB RAM. Sorters were hosted on machines running
Debian 11 x86 64, 4 x 3.9GHz cores (Intel(R) Core(TM) i5-6600 CPU @ 3.30GHz),
31.9GB RAM.

For tests, the cache limit was set to the total dataset size divided by the amount of
sorters plus the coordinator. The limit for choosing insertion sort was set to 10, the
limit for partitioning the complete data was set to 3000000, amount of element used for
standard deviation calculation was set to 1000 and the limit for choosing radix sort over
Quicksort was set to a standard deviation of 1000000. These values were all based on
the tests made by Li et al.[2]

Figure 4: Test 1, functionality of a full computation of standard deviation

Shown in Figure 4 is a test made in order to determine whether a full calculation of the
standard deviation could be used. While no concrete conclusion about the growth of the
result can be reliably drawn from this small sample size, the much higher execution times
when compared to similar tests done with a partial standard deviation (see Figure 5)
caused this approach to be deemed as not suitable. The data was generated using a
normal distribution with a value range of 0-16M.

Filip Almström 10 July 28, 2023



Umea University
Department of Computing Science

A dynamic approach to sorting
with respect to big data

Figure 5: Test 2, relative performance of sorting algorithms using 1 sorter

Test 2, shown in Figure 5 was made to compare the different sorting algorithms when
used on the same data for smaller sizes of data. This test was run using only 1 sorter in
order to provide a comparison with as little distribution as possible. As is seen in the
figure DynamicSort keeps a steady pace with both Quicksort and radix sort displaying
similar execution times as radix sort with Quicksort displaying slightly faster results.
The data was generated using a normal distribution with a value range of 0-16M.
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Figure 6: Test 3, relative performance of sorting algorithms using 3 sorters plotted
against the distribution of the dataset, about size 2M

Figure 6 shows test 3 which was done in order to compare the algorithms similarly to
the tests done by Li et al.[2] This test plots the execution time against the standard
deviation when applied using 3 sorters. As can be seen DynamicSort has a significantly
higher execution time for all values except for 10M. The cause of this is discussed in
Section ??. Similar tests on bigger datasets were discarded early as they presented no
additional information. The data was generated using a Gaussian distribution with a
mean of 8M for all standard deviations except for 10M where the mean 30M was used,
this was done to keep most generated values positive. The value 1999998 was used
instead of 2M in order to equally divide the data between 3 hosts.
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Figure 7: Test 4, relative performance of sorting algorithms using 3 sorters on a ran-
domized dataset of about size 16M

Figure 8: Test 5, average performance of sorting algorithms using 3 sorters on a ran-
domized dataset of about size 32M
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Tests 4 and 5, shown in figures 7 and 8 respectively were made to determine the aver-
age performance of sorting algorithms on a fully random dataset of size 16M and 32M
respectively. As can be seen DynamicSort has a generally worse performance than both
Quicksort and radix sort for both of the cases. However one can also see that deviation
in execution times of DynamicSort seems to decrease as the amount of keys to sort in-
creases. This is different from the cases for Quicksort and Radixsort where the deviation
instead seems to increase. The data was generated using a normal distribution with a
value range of 0-16M. The value 15999999 was used instead of 16M and 31999998 instead
of 32M in order to equally divide the data between 3 hosts.

6 Result Discussion

This section discusses the results gained from the study (presented in Section 5), future
development possibilities as well as choices made regarding development and restrictions
of the study.

For test 1 (Figure 4) the approach was quickly discarded in favour of better execution
times obtained using the partial standard deviation approach. We should however note
that the sample size is to small to be able to draw any concrete conclusions about the
growth of an algorithm using the full standard deviation approach. The cause for the
growth may for example be influenced by the access to data through a cache versus
through main memory. This would mean that tests on bigger data sets may show
a smaller growth than expected and the algorithm could be optimized through other
means than switching to a partial standard deviation calculations. We leave these tests
as a possible further evaluation.

For test 2 (Figure 5) the results for Quicksort and readix sort match up with our ex-
pectations. While radix sort grows as O(nw) with an expected value for w at 7 or 8 for
the values generated Quicksort should grow as O(n log(n)), which would result in log(n)
falling between 5.6 and 7.2 and Quicksort growing slower than radix sort for most cases.
Also note that the case where w is equal to 7 for radix sort is practically non-existant
due to the high amount of values generated (only 1 needs to have 8 significant digits for
w to equal 8). Another factor that contributes to the growth of radix sort is the memory
allocation required for the buckets. The performance of DynamicSort being so close to
radix sort can be explained by the fact that it was the most commonly chosen algorithm
when performing DynamicSort. Any deviation is due to Quicksort being chosen and
thus resulting in another calculation of standard deviation.

For test 3 (Figure 6) the results were more unexpected. We would have expected the
growth of DynamicSort to be closer to the growth of the other algorithms independent
of standard deviation as this is what determines the algorithm to be chosen. The cause
of this is most probably the cost of calculating standard deviation combined with the
amount of repeated elements in a data set. When standard deviation of a set is sig-
nificantly lower than the amount of elements in the set it can be deduced that the set
must contain a multitude of repeated elements. For example consider the smaller case
where a data set of size 100 has a standard deviation of 10 with a mean of 50. This
means that over 99% of all values lie within the range 20-80 containing 60 values. If
each of these values are represented once that only contributes for 60% of the data set
meaning meaning that at least 33 values have to be repeats of these values in order to
reach 99% representation of the data set. For our case a data set roughly of size 2M
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with a standard deviation of only 1000 would require roughly 333 repeats of each ele-
ment to fill the data set. As the standard deviation is still low DynamicSort will choose
Quicksort as the algorithm. Quicksort will group all repeats into the same partition
when dividing the dataset around a pivot. As the partitions get smaller and smaller
eventually the partitions will only contain repeats which will result in Quicksort only
removing 1 element per pass (the pivot) until our limit for insertion sort is reached.
This results in a large amount of unnecessary calculations of standard deviation as it is
still done despite a partition being filled with repeats and would explain the difference
observed when compared to regular Quicksort. As the standard deviation increases the
amount of repeats as well as amount of unnecessary calculations decrease which matches
the results obtained. As the difference in execution time for DynamicSort between 100k
and 1M is much less than those between lower standard deviations we could assume
that that is the point where repeat calculations become negligible and the difference in
performance to regular Quicksort is only caused by the regular calculations of standard
deviation. This is further supported by the last case where the difference in execution
drastically decreases. Not seen in the figure is the fact that the 10M case was the point
where DynamicSort started favouring radix sort, thus decreasing the amount of standard
deviation calculations done as a result of choosing Quicksort. A future implementation
of DynamicSort could perhaps determine when a partition contains a large amount of
repeats and adapt accordingly.

For tests 4 and 5 (Figure 7 and 8 respectively) the obtained results show an interesting
development when compared against eachother. For test 4 the deviation in performance
of Quicksort and radix sort are quite small when compared to DynamicSort which is to be
expected as they do not perform the same dynamic adaptions which could lead to greater
deviation. However for test 5 the deviation in performance of Quicksort and radix sort
slightly increases while the deviation for DynamicSort decreases. If this trend continues
DynamicSort would be shown to have a higher predictability than the other algorithms
which would be a nice characteristic of the algorithm. We should however also note that
the sample sizes for each algorithm was low for these tests, using 5 runs of DynamicSort
and 3 runs each of Quicksort and radix sort. This was done to accommodate for time
constraints when performing the study. To be able to concretely determine whether this
trend of a shrinking deviation continues more testing with these data set sizes as well as
others must be done. These were not done in this study partially due to the mentioned
time constraints but also due to constraints in the equipment used when handling larger
data sets than those presented. We leave these tests as a further evaluation possibility.

All of the results shown in Section 5 all fail to show any gain in performance when apply-
ing DynamicSort instead of Quicksort or radix sort. As has previously been mentioned,
in most cases this is probably due to the cost of calculating the standard deviation when
combined with the amount of times it is calculated. The study was originally intended
to evaluate determining factors other than the standard variation which might prove less
costly to calculate and which could thus be used in a better way to increase performance.
This was however dropped in favour of evaluating the performance of calculating stan-
dard deviation, mainly because of time constraints. Future development might look into
other factors available during runtime. Another test that may provide better insight
into DynamicSorts possible performance could be a test made after a standard deviation
calculating test where the calculation is dropped but the order of choices for sorting
algorithms are kept and applied on the same data set to see just how much impact the
calculation has on the final result.
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One result that is not shown in the tests is how many times each sorting algorithm
was used within DynamicSort. In most of the cases for tests 2, 3 the most commonly
used algorithms were Quicksort and insertion sort, beating out radix sort by several
thousands. The cause of this inequality is partly due to the fact that radix sort does not
divide into more possibilities for additional algorithms, meaning if data is chosen to be
sorted by radix sort it fully sorted independent of size. An alternative approach could
be to extract other possibilities using the buckets created together with a merge sort.
This however proved to be too finicky and time consuming for the project and is thus
left as a future development possibility.

Li et al.[2] implemented several optimizations for Quicksort suggested by Sedgewick [11]
and radix sort proposed by Jiménez et al.[12]. DynamicSort was originally intended to
also implement these optimizations to as accurately as possible match the algorithms
used during testing by Li et al. This was dropped as the optimizations proved more
complex than what had originally been determined. This should not have had any
significant impact on our study even though DynamicSort is largely based on their tests.
This is because the optimizations were determined to not significantly impact the results
used for this study as well as the optimizations for radix sort only being for memory
allocation at low standard deviations where our study does not use radix sort. Worth
noting is that one of the suggested optimizations was implemented, the utilization of
insertion sort for data sets containing 10 or less elements.

7 Conclusion

The study developed and tested an implementation of a dynamic sorting algorithm with
the purpose of evaluating whether this approach could be used to increase performance
for sorting. The sorting was mainly focused on the possible application on big data
datasets to accommodate an ever developing society.

While the tests conducted did not show any concrete gain in performance when compared
to other sorting algorithms there were several factors that could be further optimized
and evaluated, thus not giving a conclusive answer to whether or when the approach is
advantageous. We found that it is not enough to simply consider the standard deviation.
Other approaches that consider different factors as well must be taken if an increase in
performance for sorting an arbitrary dataset is to be attained.

The adaptions to a distributed architecture was a success. While no real instance of big
data could be used the algorithm was able to adapt for limited cache sizes and multiple
hosts working in parallel. Further development possibilities exist in using distributed
tools most significantly for storing data but also for communicating between hosts.
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