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Abstract

Mammalian DNA folds into 3D structures that facilitate and regulate genetic processes such

as transcription, DNA repair, and epigenetics. Several insights derive from chromosome

capture methods, such as Hi-C, which allow researchers to construct contact maps depict-

ing 3D interactions among all DNA segment pairs. These maps show a complex cross-scale

organization spanning megabase-pair compartments to short-ranged DNA loops. To better

understand the organizing principles, several groups analyzed Hi-C data assuming a Rus-

sian-doll-like nested hierarchy where DNA regions of similar sizes merge into larger and

larger structures. Apart from being a simple and appealing description, this model explains,

e.g., the omnipresent chequerboard pattern seen in Hi-C maps, known as A/B compart-

ments, and foreshadows the co-localization of some functionally similar DNA regions. How-

ever, while successful, this model is incompatible with the two competing mechanisms that

seem to shape a significant part of the chromosomes’ 3D organization: loop extrusion and

phase separation. This paper aims to map out the chromosome’s actual folding hierarchy

from empirical data. To this end, we take advantage of Hi-C experiments and treat the mea-

sured DNA-DNA interactions as a weighted network. From such a network, we extract 3D

communities using the generalized Louvain algorithm. This algorithm has a resolution

parameter that allows us to scan seamlessly through the community size spectrum, from A/

B compartments to topologically associated domains (TADs). By constructing a hierarchical

tree connecting these communities, we find that chromosomes are more complex than a

perfect hierarchy. Analyzing how communities nest relative to a simple folding model, we

found that chromosomes exhibit a significant portion of nested and non-nested community

pairs alongside considerable randomness. In addition, by examining nesting and chromatin

types, we discovered that nested parts are often associated with active chromatin. These

results highlight that cross-scale relationships will be essential components in models aim-

ing to reach a deep understanding of the causal mechanisms of chromosome folding.
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Author summary

The 3D organization of mammalian DNA affects genetic processes, such as transcription,

DNA repair, and epigenetics. To unravel the complexity of the 3D structure, researchers

developed numerous experimental methods, the most advanced being Hi-C. This method

enables scientists to create “contact maps” illustrating the 3D interactions among all pairs

of DNA segments across the genome. These maps unveiled a multi-scale organization,

ranging from megabase-pair compartments to short-range DNA loops. Common expla-

nations for this organization rest on nested hierarchies, where DNA regions of similar

sizes coalesce into larger structures. However, such a model is incompatible with compet-

ing molecular mechanisms, primarily loop extrusion and phase separation, that shape the

chromosomes’ 3D organization at different scales.

Our study aims to map out the actual chromosome folding relationships using Hi-C

data sets. Treating the data as a weighted network of pairwise DNA segment interactions,

we identified 3D communities across different network scales using the Generalized Lou-

vain method, a standard community detection algorithm. By building a tree linking these

communities, we discovered that chromosome organization is more intricate than a per-

fect hierarchy suggests. Instead, we found that chromosomes exhibit a mix of nested and

non-nested community pairs alongside considerable randomness. The nested parts often

associate with active chromatin. These results highlight that cross-scale relationships are

critical for understanding the causal mechanisms of chromosome folding.

Introduction

Mammalian genomes fold into a network of 3D structures that facilitate and regulate genetic

processes such as transcription, DNA repair, and epigenetics [1, 2]. Most discoveries derive

from chromosome capture methods, such as Hi-C, which measure the number of contacts

between DNA segment pairs and allow researchers to construct genome-wide 3D contact

maps [3–5]. These maps show that chromosomes comprise a spectrum of 3D structures span-

ning a range of scales: megabase-scale A/B compartments, sub-megabase-scale Topologically

Associated Domains (TADs), and short-ranged loops. Some of these structures are associated

with epigenetic marks, active genes, and architectural proteins that reshape chromatin, such as

CCCTC-binding factors (CTCF), cohesin complexes, and CP190 [6–9].

At first glance, Hi-C maps appear hierarchical, where DNA regions sharing high contact

counts fold into larger and larger structures. This scheme is appealing because it proposes a

simple folding mechanism leading to densely packed DNA without over-entanglement. It also

predicts the existence of alternating megabase-sized 3D structures appearing in most Hi-C

maps as plaid patterns [3, 6, 10]. More specifically, TADs tend to aggregate into sub-compart-

ments (denoted A1, A2, B1, . . ., B4) [11].

This folding scheme also posits that chromosomes form a perfect hierarchy. In other words,

once two DNA regions join, such as two TADs, they remain in the same super-structure

throughout the upstream folding hierarchy. This idea is the keystone assumption in several stud-

ies [12–15]. While it can explain how A/B compartments form and foreshadows the co-localiza-

tion of some functionally similar DNA regions, critical observations question the basic idea.

First, 3D communities are not necessarily contiguous DNA segments [16]. Assembling

such disconnected communities into larger and larger building blocks inevitably leads to a

non-perfect hierarchy. Second, if the hierarchy is perfect, it suggests that similar folding
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mechanisms act across several scales. However, this conclusion is inconsistent with the com-

peting mechanisms that seem to form TADs and A/B compartments: loop extrusion and

phase-separation [17, 18]. Third, in a recent paper [19], researchers fit a Gaussian polymer

model to Hi-C data and recovered several established sub-structures—TADs, subTADs, A/B

compartments, etc.—showing that they were not perfectly hierarchical.

This paper aims to unveil the actual folding by charting the cross-scale structural relation-

ships from empirical data. In particular, we use data from Hi-C experiments that we recast

into a weighted network of 3D interactions and use tools from network science to find the

optimal community assembly while scanning through the networks’ layers of organization. By

mapping the hierarchical relationships between these assemblies, we find that some nest, oth-

ers segregate, and still others are not significantly different from random. To better understand

these results, we propose a minimal folding model mixing perfect and random nesting. We

also relate community nesting to established chromatin states. We discovered that communi-

ties associated with active transcription are more distinct and show significant nesting relative

to the chromosome-wide average.

Materials and methods

Hi-C data treatment

We used Hi-C data for the human cell line GM12878 (B-lymphoblastoid) [4], downloaded

from the GEO database [20]. We used the MAPQG0 data set at 100 kilobase-pair (kb) resolu-

tion. Stored in matrix form, the Hi-C data contains the pairwise contact counts between DNA

loci. We omit inter-chromosome contacts due to their low signal-to-noise ratio [21, 22].

We treat the Hi-C data as a DNA contact network. Each network node represents a 100 kb

DNA segment, and the link weights are proportional to the number of measured Hi-C con-

tacts. We use network methods to extract communities harbouring densely connected nodes

that maintain fewer contacts with the rest of the network (the generalized Louvain method, see

Methods: The GenLouvain algorithm—detecting 3D communities in Hi-C data).

Before investigating the community structure, we normalized the raw Hi-C counts to

reduce biases and to make fair comparisons between chromosomes that may vary in size up to

one order of magnitude. In particular, we use the Knight-Ruiz (KR) matrix balancing [23]

implemented in gcMapExplorer [24].

The GenLouvain algorithm—Detecting 3D communities in Hi-C data

To find communities in the Hi-C contact network, we use the generalized Louvain method

(GenLouvain) [25, 26]. It is a community detection method that takes advantage of so-called

modularity maximization to find the optimal community division of a network. By “optimal,”

we mean the community assembly that maximizes the number of internal contacts, measured

by a so-called modularity function, with respect to a null hypothesis. A common null model is

random rewiring keeping the node degree fixed. GenLouvain is a greedy optimization algo-

rithm that starts with single-node communities and then searches for the optimal solution by

generating trial node agglomerates and evaluating the modularity function.

We chose GenLouvain based on principled and practical aspects. First, it is a generalized

version of one of the most intensively tested algorithms: Louvain [25]. Second, for practicality,

the developer’s open-source codes are written in MATLAB, allowing us to modify essential

parts such as the null-model term, which we will elaborate on in the forthcoming paragraphs.

One critical feature of GenLouvain is its resolution (or scale) parameter γ. This parameter

allows us to sweep through the scales of the network and probe the network’s community spec-

trum. Furthermore, this parameter is closely related to the parameters capturing the relative
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tendency of intra- versus inter-group connections in the context of the stochastic block model

[27]. Mathematically, γ is a part of the modularity function M, defined as

M ¼
1

2m

X

i6¼j

Aij � gP
FG
ij

� �
dðgi; gjÞ

h i
; ð1Þ

where Aij is the network’s adjacency matrix representing the weight of the edge connecting

nodes i and j, and the summand is counted only if i and j belong to the same community, thus

the Kronecker delta δ(gi, gj). In our case, Aij corresponds to the KR-normalized Hi-C matrix.

Furthermore, the second term of the summand in Eq (1) represents our null hypothesis for

the network’s “background” connectivity. Building on previous work [16], we use the so-called

fractal-globule (FG) null-model term PFG
ij that assumes that the average interaction strength

between two DNA segments, i and j, decays as a power-law with exponent -1. The FG null

model term is

PFG
ij ¼

2mkikjji � jj� 1

P
i0 6¼j0ki0kj0 ji0 � j0j� 1

; ð2Þ

where the strength ki represents the sum of weights around node i, 2m = ∑iki is a normalization

constant, and/ 1/|i − j| is the expected amount of reduced interaction as a function of the

one-dimensional distance separating nodes i and j. This decay follows the fractal-globule scal-

ing [16, 28, 29] that agrees with chromatin contact decay in Hi-C experiments, where the expo-

nent is approximately −1.08 [3]. Note that we may use any decay exponent in Eq (2). For

example, −0.75 matches better with within-TAD contacts, [30], but we kept −1 as our 3D com-

munities are larger than TADs.

Network nestedness

By varying the resolution parameter γ embedded in the GenLouvain algorithm, we scan

through the scales of chromosomes’ 3D organization. While scanning, we keep track of unin-

terrupted DNA segments—we will refer to these segments as domains in Results—and how

they distribute between the communities as the scale changes. This allows us to chart cross-

scale folding relationships.

To better understand these relationships and quantify the deviations from a perfect hierar-

chy, we use an approach developed for ecological networks [31, 32]. Designed for interacting

species pairs, say plants and pollinators, this approach rests on a nestedness metric, called Nij,

measuring how many plants two pollinators have in common compared to a random bench-

mark. In our case, we track how many DNA segments (domains) two 3D communities share,

given that they appear at different hierarchical levels (different γ values)—by construction, two

communities at the same hierarchical level do not share any domains. We illustrate the philos-

ophy behind Nij in Fig 1.

The Nij metric benchmarks the community overlaps to a combinatorial link redistribution,

normalized to vary between −1 and +1. These endpoints indicate complete network segrega-

tion (Nij = −1) or perfect nesting (Nij = +1). When perfectly nested, the larger community

engulfs the domains in the smaller ones. When completely segregated, the communities do

not share any domains. In a perfect hierarchy, like a phylogenetic tree, the nestedness is either

+1 or −1, indicating full nesting or complete segregation. But in a more complex multi-scale

structure, Nij takes any value between these two extremes because the communities may share

more or fewer domains relative to a random overlap. We note that Nij is normalized so that

the midpoint Nij = 0 represents random overlap and that Nij = ±x indicates the same relative
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proportion x of segregation or nesting. We exemplify this property in Fig 1 using a small bipar-

tite network having varying nestedness: (a) mostly segregated (Nij = −0.5), (b) random overlap

(Nij = 0), and (c) mostly nested (Nij = 0.5).

We go through several steps to calculate Nij. First, we extract the overlap Sij between two

communities i and j from data—we study nestedness in empirical (Hi-C-derived) and simu-

lated data. Second, we calculate the expected overlap μij assuming a random arrangement.

Denoting di as community i’s internal number of domains, μij is [31]

mij ¼
Xminðdi ;djÞ

k¼1

k
n

k

 !
n � k

dj � k

 !
n � dj

di � k

 !

n

dj

 !
n

di

 ! ; ð3Þ

where n is the total and k is the shared number of domains. Next, we shift Sij by μij to center

the expected overlap for random arrangement at zero and normalize so that Nij 2 [−1, 1]:

Nij ¼
Sij � mij

Oij minðdi; djÞ
; ð4Þ

where Oij is the maximum or minimum achievable overlap, depending on if Sij> μij or Sij<
μij. In these cases, we calculate Oij as

(a) Sij> μij

Oij ¼
minðdi; djÞ � mij

minðdi; djÞ
ð5Þ

Fig 1. Three examples of nestedness (Nij) in a simple bipartite network. The networks in panels (a)–(c) have the same number of nodes in each layer

—18 domains (small circles) and two communities (i and j, large circles)—and the same number of links (18) but connected differently to achieve

varying nestedness. Below each network, we illustrate how we calculate Nij using Eqs (4)–(7). On the horizontal k-axis, we indicate the number of

shared nodes Sij for the community pair and the expected overlap μij calculated from Eq (3). The panels (a)–(c) show three essential Nij regimes (μij = 4

for all of the cases). (a) Mostly segregated (Sij< μij, Nij = −0.5). Because Sij = 2 and μij = 4, the i and j communities are half-way to full segregation. We

illustrate this with a dark-blue stripe covering half the 0� k� 4 = μij range. (b) Random overlap (Sij = μij, Nij = 0). The number of shared nodes equals

the random expectation. (c) Mostly nested (Sij> μij, Nij = 0.5). Here i and j share one domain more than expected (Sij = 5). This yields Nij = 0.5 because

their overlap is at the midpoint between the random and the maximum overlap (Sij = 6) that would result in ideal nesting (Nij = 1). We illustrate this

with the orange stripe spanning half of the range μij(= 4)� k� 6. This example shows that Nij measures the relative overlap compared to what is

achievable given the link density rather than absolute numbers.

https://doi.org/10.1371/journal.pcbi.1011185.g001
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(b) Sij< μij, which is further classified into two cases:

(i) di + dj − n< 0

Oij ¼
mij

minðdi; djÞ
ð6Þ

(ii) di + dj − n� 0

Oij ¼
mij � ðdi þ dj � nÞ

minðdi; djÞ
ð7Þ

Significant community overlap and p-values. In addition to the expected overlap μij, we

calculate the likelihood that two communities share Sij domains given the random null hypoth-

esis. Under this hypothesis, the probability that Sij = k is [31, 32]

PðSij ¼ kÞ ¼

� n

k

�� n � k

dj � k

�� n � dj

di � k

�

� n

dj

�� n

di

� ð8Þ

To assign p-values to the observations, we sum PðSij ¼ kÞ over k. However, depending on if k
is smaller or larger than Sij, we must separate two cases

(i) kobs.� Sij,

p ¼
Xkobs:

k¼0

PðSij ¼ kÞ ð9Þ

(ii) kobs.� Sij

p ¼
Xminðdi ;djÞ

k¼kobs:

PðSij ¼ kÞ ð10Þ

In our analyses, we set the significance threshold to p� 0.025 to distinguish significant

from random overlap.

Chromatin states and folds of enrichment

In Results: Quantifying chromosome nestedness, we study cross-scale nestedness among com-

munities associated with specific chromatin states. To calculate chromatin enrichment, we

used published data integrating several resources (e.g., ChIP-seq and RNA-seq) to partition

the genome into 15 chromatin types. [33] Derived from a multivariate Hidden Markov Model

(HMM), these states are (S1–S15): Active Promoter (S1), Weak Promoter (S2), Inactive/poised

Promoter (S3), Strong Enhancer (S4, S5), Weak/poised Enhancer (S6, S7), Insulator (S8),

Transcriptional transition (S9), Transcriptional elongation (S10), Weakly transcribed (S11),
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Polycomb-repressed (S12), Heterochromatin (S13), and Repetitive/Copy number variation

(S14, S15).

We downloaded the HMM data from ENCODE (human cell line GM12878) [34]. The data

is a genome-wide list of start-and-stop coordinates for each HMM state, where each instance

is called a “peak”. To determine the HMM content in a long DNA stretch, say a community,

we count the number of peaks belonging to each of the 15 states. Because some HMM peaks

may cross community borders, we count the number of peak starts.

Next, to calculate the enrichment, we use a hypergeometric test that benchmarks the HMM

content in a community to the chromosome-wide random expectation (sampling without

replacement). The test goes through the following three steps.

1. Get community content from HMM data. We denote the number of peaks for each state as

kX, X = S1, . . ., S15.

2. Calculate the expected number of X peaks k 0X given the community’s total peak count n as

k0X ¼ nKX=N, where N is the total number of peaks in the chromosome (including all

HMM states), and KX is the number of X peaks in the chromosome.

3. Calculate the p-value for k 0X under the hypergeometric null hypothesis. If less than the sig-

nificance threshold of 0.05, we consider the community enriched or depleted in HMM state

X (two-sided test). However, because we make multiple comparisons, one for each HMM

state, we correct the p-value to reduce the false discovery rate. We do this using the Benja-

mini-Hochberg procedure [35] implemented in Python statsmodels [36]. We set the false

discovery rate to 0.05.

After going through all communities using this procedure, they get labeled as “enriched” or

“depleted” in each of the 15 chromatin states. We point out that one community can be

enriched in several HMM states.

In addition, to make our analysis more tractable when studying the nestedness of different

chromatin types, we make a coarser classification and partition the communities into four

large groups, A–D. These groups reflect the overall HMM state enrichment: A: Active promot-

ers (S1–S2), B: Enhancers (S4–S7), C: Transcribed regions (S9–S11), and D: Heterochromatin

(S3 and S12–S15).

Results

Distant domains aggregate into 3D communities spanning a range of scales

To illustrate how the 3D communities partition the chromosome, we superimpose GenLou-

vain-derived communities as squares along the Hi-C map’s diagonal in Fig 2A. By assigning

each community a unique color, we see that some 3D communities contain distant DNA seg-

ments. This community type—a distributed assembly of DNA segments—widens commonly

used 3D partitions, like TADs, that assumes contiguous DNA stretches.

Furthermore, Fig 2B shows that some DNA stretches rarely break across a wide range of γ.

We call these indivisible pieces “irreducible domains”. We collect them by we collecting bor-

ders of intact DNA segments across many γ values into one list. We show the domains in the

upper turquoise stripe in Fig 2B and their size distribution in S4 Fig. Admittedly, making γ
large enough, we break even the domains into smaller linear DNA pieces so that eventually

every Hi-C bin (100 kb) represents one domain. However, we do not cover this extreme limit

here.
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3D communities do not form perfect hierarchies

Fig 2 suggests that 3D communities have complex cross-scale relationships. To better visualize

such relations, we constructed a hierarchical tree from the same Hi-C data set (chromosome

10), showing how domains, the least divisible DNA regions, join into large 3D structures that,

in turn, make up 3D communities (Fig 3).

To construct the tree in Fig 3, we first extracted chromosome 10’s domain list and calcu-

lated the optimal community division associated with a few γ values. Next, we stored the fold-

ing pathways of all domains by tracing how their community memberships change with γ (Fig

3A, left). The circular tree illustrates the collection of all these pathways, where the links indi-

cate how domains (filled circles on the outer rim) assemble into 3D structures (filled circles on

Fig 2. Hi-C maps, 3D communities, and domains. (a) Hi-C maps where the red-to-blue pixel colors are a proxy for short-to-long 3D distances. The

squares decorating the map’s diagonals represent GenLouvain-derived 3D communities for three γ values (0.5, 0.6, and 0.7). Above each map, we show

the community coverage as a colored stripe. Having unique colors, we observe that the communities comprise scattered linear DNA segments. The

white cross shows the centromere. (b) Community borders and coverage across chromosome 10 for 16 γ values. The upper turquoise stripe shows DNA

stretches that never split for 0< γ≲ 1. We refer to these indivisible regions as domains. The smallest 3D domain is 100 kb long, which is the resolution

limit of the Hi-C data set we use.

https://doi.org/10.1371/journal.pcbi.1011185.g002
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Fig 3. Cross-scale community organization in chromosome 10. (a) Circular tree showing how domains (filled circles on the outer

rim) merge into larger and larger 3D structures (filled circles on the inner rings). Each ring represents one value of GenLouvain’s

resolution parameter γ, and the diameters of the filled circles are associated with their DNA length (measured by the number of Hi-C

bins). The red circles mark delocalized 3D structures forming a single 3D community at γ = 0.9 (denoted 100.9). The dark links show

folding trajectories for the domains passing through 100.9 towards the root. The left panel shows a two-domain folding path and

defines our label convention. We plotted the tree using RAW Graphs [37]. (b) Joining and splitting of the 13 domains belonging to

the community 100.9. These domains (filled dark-blue circles) pass through the 3D communities (open circles), joining other

domains (filled light-blue circles). The edges connect 3D communities with dark-blue domains. We also highlighted these folding

pathways in (a) (dark links).

https://doi.org/10.1371/journal.pcbi.1011185.g003
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the inner rings). Each ring corresponds to one γ value, i.e., one organization scale, and the

filled circles’ diameter symbolizes their DNA content.

The tree in Fig 3A looks hierarchical. But a more complex pattern emerges if factoring in

the 3D communities. To this end, we print the community ID next to a few filled circles (black

numbers). In addition to the ID, we add a subscript to indicate the γ value (e.g., IDγ). However,

we omit ID numbers for the domains on the outer rim. Instead, their numbering denotes

sequential ordering along the chromosome (e.g., domain 2 is next to domains 1 and 3, etc.).

Interestingly, the same community ID appears several times within one γ ring. One exam-

ple is the community 100.9, highlighted in red, that appears five times on the γ = 0.9 ring. This

community contains 13 domains scattered over the chromosome, as seen from their non-con-

secutive ID numbers. But even if scattered, they belong to the same 3D community that is a

part of the optimal network division (according to GenLouvain). Delocalized domains form-

ing communities this way is a hallmark of imperfect hierarchical folding.

To further exemplify this observation, we depict the folding pathways of the 13 individual

domains belonging to the community 100.9 in Fig 3B. By following the folding paths (edges)

from left to right, we see that these domains (filled dark-blue circles) start in the same commu-

nity and then split apart to become members of other 3D communities having different

domain content (light-blue circles). Going even further to the right, 10 out of 13 dark-blue

domains join yet again into one huge community (at γ≳ 0.6). Again, this complex merging-

and-splitting behavior is far from a perfect hierarchy. For clarity, we highlighted community

100.9’s folding pathways as dark lines in (a) connecting the violet circles.

Quantifying chromosome nestedness

Fig 3 shows that domains mix between 3D communities as they approach the tree’s root. This

finding suggests that the folding mechanics is not perfectly hierarchical. To quantify deviations

from being perfect, we calculate the pairwise community-domain overlap relative to random

chance between two communities, i and j, belonging to different tree rings. To this end, we use

a normalized nestedness metric, denoted Nij, that varies from −1 to +1. These two extreme

points indicate complete segregation (Nij = −1) and perfect nesting (Nij = 1). When Nij = 0, the

overlap is not different from being random. We outline the explicit calculations and some of

Nij’s critical properties in Methods: Network nestedness and show a schematic in Fig 4A.

To study the cross-scale nestedness in Hi-C-derived trees, like Fig 3, we calculated Nij across

several γ values in four chromosomes (3, 5, 10, and 22); we choose these to mix large, interme-

diate, and small chromosomes. Plotting the Nij histogram for all chromosomes in one graph,

we find that the distribution has two pronounced peaks at ±1 and a flat but slightly right-

skewed intermediate region (Fig 4B). These two peaks indicate that some communities segre-

gate (−1) while others nest (+1), just like in a perfect hierarchy that is either completely segre-

gated or fully nested. However, the histogram’s intermediate Nij region is not zero and thus

differs from an ideal hierarchy. This telltales that the 3D folding blends hierarchy-breaking

contacts where some are possibly random.

To separate significant from random overlaps in Fig 4B, we calculated the probability that

two 3D communities, having sizes di and dj, share k domains in a random assignment—we

defer all details to Methods: Network nestedness. Based on this probability, we associate p-val-

ues to each Nij observation. Setting the threshold to p� 0.025, we count the fraction of signifi-

cant observations and illustrate the relative proportions in Fig 4C. In orange, we highlight

significant overlaps. In blue-green, we indicate overlaps that are indistinguishable from being

random. From Fig 4C, we make three key observations. First, the most segregated part (−1) is

almost entirely blue-green and thus classified as insignificant. Second, roughly half of the
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perfectly nested communities (+1) share significant domain overlaps. Third, two regions show

substantial overlaps that err on the side of segregation (−0.95 < Nij< −0.8) and nesting (0.65

< Nij< 0.95). The remaining data points appear random, particularly those surrounding Nij =

0.

From Figs 2–4, we conclude that chromosomes fold into complex hierarchies that mix

nested and segregated parts. On average, however, the nesting is close to being random Nij �

0 if neglecting the -1 peak that skews the average (if included, it is Nij � � 0:8). But since the

distribution is so broad, community pairs show substantial differences where some are

completely segregated, others are perfectly nested, and the rest is somewhere in between. This

finding sheds new light on the hierarchical chromosome paradigm underlying several papers.

Finally, in S5 Fig, we show community overlaps between specific γ pairs.

Modeling non-nested chromosome folding

Several papers assume that linear DNA regions, like TADs, form higher-order structures by

folding into each other in a perfect hierarchy (e.g., [12–15]). However, our data show that the

nesting is more complex (Figs 2–4). To better understand this disconnect, we propose a model

for semi-nested chromosome folding. At the core, the model assembles ideally nested domain

groups, consistent with the significant nestedness seen in the Nij histograms (Fig 4). Then, we

break this pattern by reshuffling some domains among the communities. We denote the

Fig 4. Nestedness of community pairs in human chromosomes 3, 5, 10, and 22. (a) Schematic community-domain overlap in three cases: fully

segregated (Nij = −1, violet), random (Nij = 0, red), and fully nested (Nij = 1, yellow). Layer 1 contains communities belonging to different γ values

(dotted lines). The bottom layer shows the irreducible domains, and the edges indicate community memberships. (b) Nestedness histogram (Nij) for

chromosomes 3, 5, 10, and 22. For each chromosome, we derived communities from 16 γ values. The peaks at ±1 suggest that several communities are

segregated (−1) and nested (+1). However, there also exist significant intermediate levels of nestedness. The stripe overlaying the histogram indicates

what we classify as fully segregated or nested according to the nestedness metric outlined in Methods: Network nestedness. We show the nestedness of

individual chromosomes in S3 Fig, and we visualize Nij distributions for individual γ-pairs in Supplementary Material, S5 Fig (chromosome 10). (c)

Significant versus random community nestedness. As outlined in Methods: Network nestedness, we filter community overlaps having p-values� 0.025

and show the relative proportions of significant and random overlap associated with the Nij histogram in (a). The colors indicate significant (orange)

and random overlaps (blue-green).

https://doi.org/10.1371/journal.pcbi.1011185.g004
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critical reshuffling parameter Q that represents the probability that two domains will change

community memberships. Below, we outline the Q = 0 (perfect hierarchy) and Q> 0 limits

separately.

Perfect hierarchical folding (Q = 0). To achieve ideal hierarchical folding, we agglomer-

ate domains into superstructures and superstructures into yet larger superstructures, following

a few simple steps. First, we calculate the pairwise domain-domain interaction strength from

their average Hi-C contact frequency (domains typically consist of several Hi-C 100 kb bins).

Second, we select the domain pair having the strongest interaction and merge them into a

superstructure. Then we replace the two merged domains in the list of pairwise interactions

with the new superstructure and join the next most interacting pair. Regardless of choice, this

scheme yields a new superstructure at each iteration. Notably, the algorithm does not only

merge linearly adjacent domains.

Once we merge all domains into a giant superstructure, we use the domains’ folding paths

to organize the superstructures into a circular tree (Fig 5A). However, unlike the Hi-C derived

tree in Fig 3, the rings in Fig 5A do not represent different γ values as this model does not use

GenLouvain. Instead, they show consecutive mergers of the superstructures. Because some

branches are so deep (> 10 steps), we show only the last five merging events and put all the

domains on the outer (sixth) rim.

To illustrate that this scheme produces an ideal hierarchy, we select a group of 12 domains

(red-filled circles, outer rim) and highlight their folding paths across the tree with heavy links.

After forming one super structure (‘453’, dark violet), this domain group stays intact as it joins

more and more domains forming increasingly larger superstructures (violet circles). This exem-

plifies that domains never split apart once they end up in the same superstructure. However, this

behaviour contrasts with what we observed in Fig 3, where domains split and merge as they form

communities. Therefore, this simple description cannot explain actual chromosome folding. We

point out that the Q = 0 limit is nearly identical to the so-called metaTAD algorithm [12].

Hierarchical folding with randomness (Q> 0). The model yields a perfect domain hier-

archy when the reshuffling parameter Q is zero. However, the actual folding patterns appear

more complex. We exemplified this in Fig 2B, illustrating the cross-scale folding paths of 12

domains in chromosome 10. Following these paths, we note they do not perfectly correlate as

they would in a perfect hierarchy. While some domains often stay together, others split only to

reunite later. This represents the feature we aim to mimic by considering Q> 0.

To this end, we reshuffle a fraction of domains between the communities, restricting the

reshuffling to communities within the same level of organization. The number of domains we

interchange is proportional to Q. Algorithmically, we follow these three steps. (1) Go through

all superstructures in the same organizational level (one ring in Fig 5A) and identify the

domain IDs and superstructure memberships. We exclude domains that do not yet belong to

any community. (2) Select two of these domains randomly and swap their superstructure

memberships with probability Q. (3) Repeat (1)–(2) until we exhaust all domain pairs, exclud-

ing those we already interchanged. If one domain remains without a pair, we keep its super-

structure membership. Next, we pick another tree ring and repeat steps (1)–(3).

By varying the parameter Q, we retrieved several Nij distributions. To find the optimal Qopt.

—the Q that produces the Nij distribution that is most similar to the real data—we utilized a

Kolmogorov-Smirnov test. This test gave Qopt.� 0.3 (Supplementary Material, S8 Fig and S7

Text). Fig 5B shows the associated domain folding paths.

In contrast to Q = 0 in Fig 5A and 5B shows that the hierarchy breaks when Q> 0. We

highlighted the domains forming the same superstructure we studied in (a) (‘453’, dark violet)

to better see the difference. Like in (a), this superstructure has 12 domains (11 out of 12 are the

same). But unlike (a), superstructure 453 appears in different tree branches. This better
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reassembles the Hi-C derived tree in Fig 3B, where domains merge that do not have identical

domain-to-root folding paths.

We point out that the tree’s backbone formed in this way is identical to the Q = 0 case, but

the domain memberships differ. Therefore, we foreshadow that this model is valid for small Q.

Fig 5. Hierarchical and semi-hierarchical models of chromatin folding for human chromosome 10. (a) Ideal hierarchical folding (Q = 0). Filled

circles on the outer rim represent domains; the root symbolizes the entire chromosome. We align the domain aggregates (superstructures) with the

inner tree rings, each defining a scale of organization. We select a few domains (red-filled circles) and show their domain-to-root paths with thick

edges. These domains assemble into yet larger structures (violet) at every inner ring. As soon as the domains merge into a superstructure labeled ‘453’

(dark violet), they never split apart. (b) Semi-hierarchical folding (Q = 0.30). As in (a), we color the domains in red that merge into a superstructure

‘453’ and highlight their folding paths with thick edges going from the outer rim to the root. Unlike (a), node ‘453’ is scattered across seven tree

branches. Thus, ‘453’ only partially nests into larger structures and the domains split and reunite when approaching the root. (c) Nestedness histogram

when Q = 0 (ideal hierarchy, red bars) and Q = 1 (random nesting, open bars). When Q = 0, we see two peaks at Nij ± 1, indicating complete segregation

and full nestedness. When Q = 1, the domains are fully randomized between the superstructures. While there is still perfect nesting and segregation (as

we expect from the random null hypothesis in Methods: Network nestedness), there is also partial overlap for −0.8< Nij< 0.8. (d) Nestedness

histogram with some randomness (Q = 0.30, light-blue bars) overlaying the actual GenLouvain-derived data for chromosome 10 (dark-grey bars). We

produced (a) and (b) using RAW Graphs [37].

https://doi.org/10.1371/journal.pcbi.1011185.g005
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But as we show in the following section, this is enough to reproduce the actual nestedness dis-

tribution in Fig 4.

Nestedness for hierarchical and semi-hierarchical folding. To study how the Q parame-

ter in the model affects superstructure nestedness, we calculated and studied the Nij histo-

grams. Just as in Results: Quantifying chromosome nestedness, we calculate these histograms

by going through all superstructure pairs, omitting those belonging to the same tree ring, and

counting the number of shared domains (Methods: Network nestedness). We show three cases

in Fig 5C and 5D: perfect hierarchy (Q = 0), full randomness (Q = 1), and intermediate ran-

domness (Q = 0.30). All three cases build on domains derived from chromosome 10. Below,

we discuss each case separately.

As expected for the ideal hierarchy, Fig 5C has two isolated peaks at ±1 (red bars), indi-

cating that the communities are either fully nested or fully segregated. Put differently, the

structure is “modular.” These peaks also appear in the complete randomness limit (Q = 1).

However, the +1 bar is lower relative to the Q = 0 case, and there is a distribution of Nij val-

ues surrounding Nij = 0, albeit not as wide as the actual data. We interpret this as the

domain reshuffling split several nested communities while keeping the segregation primar-

ily intact.

To better mimic the real data, we tweaked Q to reassemble the actual Nij histogram. In Fig

5D, we show the Q = 0.30 case overlaying the empirical data for chromosome 10. Apart from

underestimating the histogram for negative Nij values and overestimating it for large values,

the two histogram lies on top of each other for the most part. This shows that the reshuffling

parameter must not be large for the model to reproduce the nestedness data in Fig 4B. About

30% domain redistribution seems enough.

Nestedness and chromatin states

In Fig 4, we found that some communities nest and others segregate. Also, Fig 5 showed that

we could reproduce the chromosome-wide nestedness distribution by slightly breaking an oth-

erwise perfect folding hierarchy. This section analyzes if this behavior is associated with spe-

cific chromatin types.

To this end, we take advantage of published data that partition the genome into 15 chroma-

tin states [33]. However, to make the analysis more tractable, we aggregate these states into

four groups A–D, and study their pairwise nestedness. The groups are: promoters (A), enhanc-

ers (B), transcribed regions (C), and heterochromatin (D) (see Methods: for complete defini-

tions). To assign communities to these groups, we calculate folds of enrichment for each of the

15 chromatin states relative to the chromosome-wide average. We then use the hypergeomet-

ric statistical test to judge the enrichment significance (see Methods: Chromatin states and

folds of enrichment for details). Notably, because one community may enrich several chroma-

tin states, it can belong to several A–D categories.

Next, we go through all community pairs to extract their nestedness Nij and chromatin

group (A–D). Then we plot Nij histograms for all paired combinations—AA, AB, AC, AD, BB,

etc. We show these histograms as panels in Fig 6B, where the light blue background portrays

the entire chromosome’s nestedness (we use data from chromosome 10). The diagonal panels

represent community pairs having the same chromatin type (AA, BB, CC, and DD). These

pairs nest more than the rest of the chromosome as the Nij distributions skew to the right. This

observation differs from DD, which seems to follow the chromosome’s overall nestedness dis-

tribution. To lend quantitative support to these observations, we performed a Kolmogorov-

Smirnov test, which compares the cumulative distribution functions of the histograms AA,

BB, CC, and DD (Supplementary Material, S6 Fig).

PLOS COMPUTATIONAL BIOLOGY Mapping the semi-nested structure of 3D chromosome contact networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011185 July 11, 2023 14 / 23

https://doi.org/10.1371/journal.pcbi.1011185


Fig 6. Chromatin type and cross-scale nestedness between community pairs in chromosome 10. (a, left) Each

chromatin cross pair (AB, AC, AD, etc.) has three community types. For example, these may enrich A (“Promoters”),

B (“Enhancers”), or A and B. The large dashed circles represent the Venn diagram of all A or B community types

(small filled circles). The set illustrates that one community can be in one of three categories: enriched with A (upper),

B (lower), or both (intersection). (a, right) Schematic illustrating the color codes used in the nestedness histograms

associated: complete overlap (dark blue), the difference (dark red), and the intersection (light blue). In pale blue, we

indicate the chromosome-wide average of chromosome 10. (b) Nestedness distributions (Nij) for 10 combinations of

chromatin types A–D. The diagonal panels show the nestedness histograms for community pairs belonging to the

same chromatin type (AA, BB, etc.). The off-diagonal panels show the other six paired combinations (AB, AC, AD,

etc.); see panel (a) for detailed descriptions. The faint pale blue background in all histograms portrays the complete

nestedness histogram from chromosome 10 (like Fig 4).

https://doi.org/10.1371/journal.pcbi.1011185.g006
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However, we could argue that the folding structure is segregated rather than nested because

the average Nij is negative in all diagonal panels; it becomes negative due to the large peak at

−1 skewing the average. But as we showed in Fig 4, this peak represents mostly random segre-

gation (admittedly, roughly half of the +1 peak is also random), and the significant overlaps

mostly appear for Nij> 0 where AA–CC histograms carry heavy weight. Therefore, we con-

clude that these chromatin groups nest more than the chromosome average and that the nest-

ing is significant.

Furthermore, the off-diagonal panels in Fig 6B show the Nij histograms for the six cross

pairs, AB, AC, etc. But as noted above, some communities may enrich two groups simulta-

neously, say A and B. So when studying the AB cross-pair, it is natural to analyze separately

communities enriched in A, B, or both, those enriched in A and B simultaneously, or those

enriched in only A or only B. We depict these combinations and the color coding in Fig 6A,

where the large dashed circles encompass all communities flagged as A or B. At the circles’

intersection, communities are enriched in A and B (half-filled circles).

The blue histograms in the lower triangular part of Fig 6B show the nestedness among com-

munities belonging to the broadest class (e.g., A, B, or both). These off-diagonal histograms

show that A, B, and C types tend to nest with each other (panels AB, AC, and BC), similar to

AA–CC along the diagonal. In contrast, their overlap with D shows a wider variability reas-

sembling the chromosome-wide Nij distribution, apart from the dip close to Nij = 1, hinting

that A–C nest less with D than is expected. This observation likely reflects that A–C broadly

belongs to what is commonly referred to as “active chromatin” and D is “inactive chromatin”

(e.g., measured by low or high RNA expression levels). In addition, a more granular study ana-

lyzing all 15 chromatin states showed that the five states making up group D rarely enrich

more than random alongside the others in A, B, and C. This differs from the A–C communi-

ties, where the internal chromatin states often co-appear. This explains why the significant

nesting with group D is relatively scarce (see AD, BD, and CD panels).

In the upper triangular part in Fig 6B, we show stacked Nij histograms for the other two

more restricted cross pairs (e.g., communities simultaneously enriched in A and B, or only A

or B). In blue-green, we represent the intersection (e.g., A and B), and orange symbolizes the

difference (e.g., only A or only B). Admitting that the sample size is relatively small, we note

that the AB, AC, and BC histograms have a more significant fraction of data points for positive

Nij values than those in the lower triangle, indicating more nesting. However, the AD, BD, and

CD histograms remained almost identical.

In summary, when studying the cross-scale community nestedness, our data suggest that 3D

communities belonging to “active chromatin” tend to nest more than the chromosome-wide

average and appear to segregate from “inactive chromatin.” The data also indicates that commu-

nities embedded in inactive chromatin seem to have substantial random cross-scale overlaps.

Active chromatin appears more hierarchical than inactive

To better understand the implications of the results in Fig 6 regarding the chromosome’s 3D

organization, we quantified how well different 3D communities partition the Hi-C network

and if solid or weak divisions are associated with the chromatin groups A–D. To this end, we

calculated the modularity associated with the GenLouvain-derived communities (Mc). To cal-

culate Mc, we use Eq (1) and sum only those terms belonging to the same community. If the

modularity scores high, the internal nodes interconnect more than the background. If scoring

low, they connect less (see Methods: The GenLouvain algorithm—detecting 3D communities

in Hi-C data for an explanation). We recover the global modularity M in Eq (1) by summing

over all communities, M ¼
P

cMc.
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The community modularity varies significantly within and between chromatin groups A–D

(S9 Fig). We also found that Mc grows linearly with the community sizes (number of

domains) (S9 Fig). Therefore, to make a fair comparison, we plotted the median modularity

rescaled with the community sizes (Fig 7). The solid lines represent each chromatin group,

including the global median modularity as a reference curve (dashed). These curves show that

A–C communities (“active chromatin”) have higher modularity than chromatin group D

(“inactive chromatin”) and the entire Hi-C network. This implies that A–C communities parti-

tion the network better than the D communities. To complement Fig 7, we show the M vari-

ability in S10 Fig.

In addition to forming tighter node clusters, A–C communities tend to nest with each other

(as shown in Fig 4 and exemplified on a subset of domains in Supplementary Material, S7 Fig).

These findings argue that active chromatin is hierarchical. At least it is more hierarchical than

the D communities that form less convincing communities with substantial random nested-

ness Nij. As we concluded from our simple folding model (Results: Modeling non-nested chro-

mosome folding), random nesting breaks ideal hierarchies.

Conclusion

In this paper, we have mapped out the semi-hierarchical organization of chromatin in human

cells. Viewing the Hi-C data as a DNA contact network, we extracted significant 3D structures

using the GenLouvain community detection algorithm that allows us to scan seamlessly

through different organization scales. Contrasting common assumptions, the communities

form non-hierarchical structures, where some organizational levels show substantial random-

ness. To better understand this result, we developed a model blending hierarchical folding and

random contacts. This model reproduces the degree of nestedness we observe in actual data.

We also study the nestedness in terms of chromatin states. We uncover that transcriptionally

active states tend to nest more with each other and form more distinct 3D communities rela-

tive to the chromosome-wide average and inactive or repressed chromatin.

Our results derive from 100 kb Hi-C data. However, our approach is not restricted to any

specific resolution or interaction matrix. It can efficiently analyze various chromatin interac-

tion matrices such as single-cell Hi-C (scHi-C [38]), HiCap [39], HiChIP [40], and distance

matrices [41]. Nevertheless, modifications to the GenLouvain null model may be necessary for

Fig 7. Median community modularity (rescaled with community size) for four chromatin groups A—D (solid

lines) across different scale parameters γ. The dashed line shows the median for the entire network. A, B, and C

communities have higher modularity than D and the whole network.

https://doi.org/10.1371/journal.pcbi.1011185.g007
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some of these scenarios. For instance, if using Hi-C at higher resolution, e.g., 1 kb, numerous

contacts appear inside TADs where the contacts decay as a power-law with an exponent of

−0.75, rather than approximately −1 [42].

Next, we use the GenLouvain method to extract 3D communities. However, generating

communities this way is a random process, meaning that the nodes’ community membership

will differ between realizations even if the scale parameter γ is the same. Interestingly, the com-

munity–node correlation varies with γ, indicating that some communities are more stable

than others. This problem exists in most complex networks where multi-scale interactions

govern the organization [43]. Therefore, depending on algorithm design, two community

detection methods focusing on slightly different connectivity features may disagree on the

optimal node assembly. This aspect is mainly unexplored for chromosome organization and

worth pursuing in future work.

Furthermore, different community detection algorithms may disagree on the hierarchical

levels. For instance, the Leiden algorithm [44] could yield a more strict community hierarchy

than GenLouvain (the Leiden algorithm was developed to “solve” the non-hierarchical features

of the original Louvain method). One of the authors of this paper tried the Leiden algorithm to

study general community inconsistency problems [43]. That experience showed that the spe-

cific property of reducing the inconsistency does hamper proper detection of scale-dependent

inconsistency. While studying the effects of other algorithms is a reasonable research direction,

it does not invalidate our approach, which is agnostic to the specific algorithm choice.

There are several TAD-finding methods [45]. These can be broadly categorized into fea-

ture-based algorithms, clustering methods, and graph-partitioning tools [46]. In this paper, we

use a technique that falls into the graph-partitioning category, which includes perhaps the

most popular community-detection algorithm based on modularity maximization. For exam-

ple, Ref. [47] finds TADs using Louvain but assumes that the background connectivity is a ran-

dom network under given node degrees (the Newman-Girvan model). In contrast, we use the

fractal-globule null model, which better agrees with the empirical distance decay in contact

probability in human Hi-C maps. Although the approach is similar to ours—varying γ and

extracting communities—there are meaningful quantitative differences. For example, the frac-

tal globule model tends to capture widely spread and delocalized 3D communities, while the

Newman-Girvan model typically groups contiguous DNA stretches into local communities,

like TADs. In addition, another reference combines maximum modularity and Hi-C-like dis-

tance decay and extracts communities for different γ values [48]. However, they treat TADs as

unbroken DNA stretches, not delocalized as we do here. Using polymer simulations [16], we

demonstrated that this generalization partitions spatially close monomers into meaningful 3D

communities.

We interpret our data as active chromatin being more hierarchical than inactive chromatin.

From a biological standpoint, this has exciting implications. In active chromatin, there is a

menagerie of specific proteins, like transcription factors, that coordinate transcription regula-

tion. These proteins interact with chromatin elements at all distances, bringing some in 3D

proximity to regulate transcription. These interactions are not random, so they could contrib-

ute to shaping the 3D structure toward a perfect hierarchy. While we lack data to validate this

hypothesis, we note that our simple folding model requires fine-tuned interactions to create an

ideal hierarchical order and that a slight degree of arbitrary nesting causes noticeable

deviations.

While specific proteins regulate transcription in active chromatin, inactive chromatin is

often epigenetically repressed. The proteins managing epigenetic repression decorate chroma-

tin with chemical tags over large DNA regions (e.g., methylation of specific histone sites). In

this respect, epigenetic repression is not relying on characteristic long-range attractions. It is
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enough if the right chromatin type is close. If so, this idea foreshadows many random contacts

manifesting as a broad nestedness distribution, as in Fig 4, and a less hierarchical structure

than active chromatin.

Several lines of evidence indicate that compartments and TADs emerge from distinct

mechanisms, like loop extrusion and phase separation, and are not a hierarchy that stems from

identical phenomena operating on different scales. Our paper sheds new light on the hierarchi-

cal organization resulting from these phenomena. While large sections nest, others segregate,

and there is a significant portion of randomness. We anticipate that cross-scale relationships

capturing these features will be essential components in future models aiming to reach a deep

understanding of the causal mechanisms of chromosome folding. In the short perspective, our

results further open questions worthy of research, including the reliability of 3D communities

or what biological factors govern the different organization scales, such as DNA-binding pro-

teins, epigenetic marks, or general chromatin types.

Supporting information

S1 Fig. Division of the Hi-C network into 3D communities and domains across 16 γ values

for human chromosomes 22(a), 5(b), and 3(c). Each stripe represents a community partition

for a single γ value. Within each stripe, vertical lines separate two adjacent DNA segments that

belong to different communities. The white area shows the centromere. The top turquoise

stripes in (a)—(c) show the domains. These are DNA segments that did not break across the

shown γ range. In (a), we label two domains ‘1’ and ‘96,’ representing the first a last domain

along chromosome 22. The domain IDs follow sequential order along the chromosome so that

domain 2 is a linear neighbor of domains 1 and 3.

(TIF)

S2 Fig. Community-domain network. (a) We illustrate the domains as a chain of circles start-

ing from ‘1’ and ending with ‘96.’ With colored links, we show domain memberships in two

communities: 70.9 and 40.7. (b) Example of community pair overlap in a bipartite graph. The

domains in the bottom layer connect to communities in the upper layer. White circles show

domains that do not belong to any community (excluded from the nestedness analysis).

(TIF)

S3 Fig. Individual chromosome nestedness. (top) Nestedness histograms for chromosomes

3, 5, 10, and 22. (bottom) The fraction of Nij scores that are significant (orange) or random

(blue-green).

(TIF)

S4 Fig. Characterization of domains and communities (human chromosome 10). (a) Let-

ter-value plot showing the size distribution of irreducible domains. The domain sizes vary

between *1 − 30 Hi-C bins. The median domain size is 1 Hi-C bin (100 kb). (b) The scale-

dependent number of communities (defined by γ). The number of communities grows expo-

nentially with γ (red).

(TIF)

S5 Fig. Nij histograms for individual γ-pairs (stacked bars with colors specified in legend).

To better illustrate range −1< Nij< 1, we truncate the bars at Nij ± 1 if their counts exceed

100. a) pairs between γ = 0.6 and all other γ. Cross-scale interaction between communities

found at γ = 0.6 and all other communities are fully nested, fully segregated, but also their nest-

edness is close to random (−0.5 < Nij< 0.5); b) for γ = 0.7 and all other γ. The distribution

changes for Nij* 0), showing that communities tend to be more nested (more counts in the
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range: 0< Nij< 0.5); c) and d) for γ = 0.8 and 0.9 versus all other γ. We observe that distribu-

tion peaks near Nij = 0 when comparing to other distributions.

(TIF)

S6 Fig. Nestedness and chromatin type. (a) Nestedness distributions (Nij) between communi-

ties of the same type (either A, B, C, or D). (b) CDF of Nij distributions. The vertical bars indi-

cate the Kolmogorov-Smirnov distance between ‘DD’ distribution (thick pink line) and all

others.

(TIF)

S7 Fig. Rearrangements of chromatin domains across structural scales. Color codes repre-

sent their dominant chromatin types. Red domains are enriched in A/B/C states, blue domains

in the D-group, green domains in a combination of A/B/C and D-group states, and gray

domains show no significant enrichment (p-value set at 0.025). The domain content of com-

munities varies, with some dominated by active chromatin types and others suppressed, simi-

lar to the well-known A/B compartmentalization. As resolution increases from γ = 0.6 to γ =

0.9, domains reorganize into a community dominated by A/B/C chromatin. At intermediate

scales, domains preferentially exchange between structural scales while maintaining biological

similarity.

(TIF)

S8 Fig. Optimal Q analysis for chromosome 10. (a) CDF for nestedness score for the real

data (black thick line) and models associated with varying Q. In all CDFs, the extreme Nij = ±1

values are excluded. (b) Kolmogorov-Smirnov distance, D, versus the reshuffling parameter Q.

We find the minimal distance when Q = 0.3. This represents the optimal Qrmopt.. (c) Normal-

ized Nij distributions for chromosome 10 and Q = 0.3 with Nij = ±1 removed from the plot. (d)

Same as panel c), but including all Nij counts. We use log-scaled axes to fit the ±1 peaks.

(TIF)

S9 Fig. Community modularity for four γ values: (a) γ = 0.9, (b) γ = 0.8, (c) γ = 0.7, (d) γ =

0.6. The top panels show a linear regression fit between community size (number of domains)

and modularity (Eq (1), main text); We observe a nearly linear relationship. The bottom panels

show the community modularity rescaled with the community size. We define the A—D chro-

matin groups in Methods: Chromatin states and folds of enrichment (main text). The ‘NA’

group represents communities that are not enriched in any chromatin group.

(TIF)

S10 Fig. Community modularity (rescaled with community size) for chromatin groups A

—D across different scale parameters γ. The top four plots visualize community modularity

as bar plots, where values of median modularity are connected across γ. In bar plots, we com-

pare groups A (blue), B (yellow), and C (green) with group D (red bar plot). However, the D

group we compare with the modularity of all communities (light blue plot).

(TIF)

S1 Text. Communities and domains for chromosomes 3, 5, and 22.

(DOCX)

S2 Text. Community nestedness for chromosomes 3, 5, 10, and 22.

(DOCX)

S3 Text. Characterization of irreducible domains and structural scales.

(DOCX)
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