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Abstract
Recommendation systems are primarily used in e-commerce and retail to guide the user
in a vast space of available items by providing personalized recommendations that fit the
user’s interests and need. Numerous types of recommendation systems have been introduced
over the years. The most recent development in the field is the sequential recommendation
system. Sequential recommenders account for the order in which the user has interacted with
items to infer the user’s intent, allowing them to provide recommendations accordingly. The
data analytic company Siftlab AB has already developed such a recommendation system;
however, its application has been limited to transaction data(data depicting only purchases).
As a result, the model cannot take advantage of the predictive values of different event types.
This thesis introduces a weighted multi-type technique that allows Siftlab’s recommendation
model to leverage page views alongside purchases in data from an interior design store. We
also developed tools and techniques, such as correlation and angle separation analysis, to
enhance our examination of user-item behavior. Our research findings indicate that including
page view events in training hurts recall, while their inclusion in the prediction stage yields
slight improvements. We discovered a rapid decline in correlation between purchases and
page views as we considered page views occurring relatively further back in time. Performing
a time-based correlation analysis, it became evident that there is a robust time dependency
between purchases and page views. Utilizing this time dependency, we enforced a time-
dependent threshold on the page views we included in the prediction stage to eliminate
irrelevant page view events, further enhancing the model’s predictions. We also captured
seasonalities phenomena distinctive for an interior design store. Although the result of this
work might only be valid for a single data set, we anticipate our work to be the first step
in the right direction since the technique we introduce here can be effortlessly adapted to
analyze other event types in other data, thus uncovering patterns that can further elevate
the model’s performance.
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1 Introduction
In e-commerce and retail, recommendation systems enhance user experiences by providing
personalized recommendations based on individual preferences and helping customers find
desired products. These systems are primary examples of machine learning and artificial
intelligence, showcasing their efficacy in delivering tangible benefits to businesses [1]. Rec-
ommendation systems should guide users in a personalized way to interesting objects in a
large space of possible options [2].To maintain relevance, recommendations must align with
the evolving user preferences discerned from past interactions since they are subjected to
change over time due to various factors such as shifts in hobbies or seasonal transitions.
Consequently, the Effectiveness of recommendation systems relies on their ability to detect
underlying sequential patterns, enabling them to recognize changes in user preferences and
generate appropriate recommendations [4].

However, different types of recommendation systems use different methods to infer pref-
erences. There are two primary types of recommendation systems: personalized and non-
personalized [3]. The non-personalized recommendation systems utilize techniques that
involve aggregating all users’ previous behavior to estimate the popularity of products at
different times [3]. Hence, the recommendations are based on how much a product is trend-
ing at a given time while neglecting the user’s interest, or in other words, approximating it
by the average interest of all users during a specific time frame.

There are many types of personalized recommendation systems [5, 6, 7, 8], such as tra-
ditional collaborative filtering [9] and content-based recommendation systems [10]. The
content base recommendation provides recommendations by matching characteristics and
attributes of items to the historical behavior of the user [2]. For instance, if the user has
predominantly watched action sci-fi movies, the model will mostly recommend movies in
the same genre. As a result, the model suffers from a phenomenon called user bubble [12],
which refers to the situation where users are continuously exposed to a limited set of rec-
ommendations that reinforce their existing preferences, preventing the exploration of new
items and reducing their chances of expanding their range of interests.

Collaborative filtering recommendation systems generate recommendations by harnessing a
group of users’ collective behavior and preferences [11]. This user group is determined based
on similarity measures, where the system identifies users exhibiting similar preferences and
groups them together. This similarity is calculated based on their interactions with items,
such as ratings, reviews, clicks, or purchases. For instance, if users A and B exhibit similar
interests in a particular product, they may also share the same interests in other products.
In this manner, the model approximates a user’s interest by considering the average pref-
erences of its corresponding user group. A common way to identify a collaborative filtering
recommendation system on online platforms is the statement ”Users who are similar to you
also liked”(user-based) [13] or ”user who liked this product also liked”(item based) [14].

While content-based and collaborative filtering recommendations have the potential to offer
personalized recommendations, they are regarded as traditional models in the field of recom-
mendation systems. This is primarily because these models statically treat user preferences,
meaning they generalize the user’s preference based on the features of items they have been
interacting with or the collective behavior of specific users. Generalizing user preferences
hinders the model from capturing the temporal dynamics of preferences, resulting in item
recommendations that are contextually unrelated to the user’s current need [4].

A new category of recommenders called sequential recommendation systems have been in-
troduced to address the issue. Sequential recommenders account for the order in which the
user has interacted with items. A sequential recommendation system suggests items by con-
sidering the history of a user’s interactions which we refer to as context. The system analyzes
the user’s context to understand their interests and behavior patterns. It then utilizes this
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information to suggest relevant items or content that aligns with the user’s current context
and anticipated needs.

Siftlab AB offers one such sequential recommendation model, which attempts to predict the
next item the user will buy using a model proposed for YouTube recommendations [17],
which is a modified derivation of Skip-Gram model [18, 16]. The model learns the context
of a user’s watch history and provides suitable recommendations accordingly. In addition,
Siftlab’s model employs time series analysis [22] to assess time-dependent popularity for
each item to prevent overestimating the personal affinity to those items.

However, Siftlab’s implementation only uses users’ long-term transaction history(Purchases).
Consequently, the model carries three crucial limitations. First, it cannot distinguish be-
tween different event types during the training and prediction stages, meaning a ”deletion
from cart” event impacts the prediction as much as a ”transaction” event. Second, it de-
pends on long-term interaction sequences, which causes the model to underperform when it
comes to new users due to their short transaction history. Third, it defines an upper bound
for the number of previous interactions it considers in its predictions to avoid accounting
interactions that are too old and thereby irrelevant to the user’s current interest. However,
the chosen upper bound value is arbitrary and independent of time, meaning the model
solely relies on the internal order of interactions while disregarding how far back in time
the interaction has occurred. As a result, there remains a significant risk of incorporating
highly irrelevant interactions. This issue becomes even more evident since the model does
not consider the order or relative positions of the interactions included in the context. Thus,
all context interactions have the same weight in determining the user’s current interest re-
gardless of how long before they have occurred.

Siftlab AB has taken note of the model’s disadvantages and is eager now to investigate
the model’s performance on data that includes event types other than transactions. As a
first step in the right direction, they provided me with a data set consisting of event types:
transactions and page views. Siftlab is specifically interested in predicting only the next
transaction, meaning the page views are only allowed to assist the model in its prediction
task during both training and evaluation but are not considered prediction targets. Hence,
Siftlab’s primary wish is to investigate whether the model’s performance will improve by
adding page views to the data and, if so, what possible model enhancements we can imple-
ment to enable maximum leverage from page views in our predictions.

To achieve their objectives, I implemented a weighted multi-type approach in both the train-
ing and prediction stages. This approach enables the model to effectively differentiate and
assess the predictive values associated with the two types of events. To better understand
how page views can contribute to the model’s performance, I conducted a test where I
modified the context arrays by substituting older purchases with more recent page views.
The main goal is to compare the predictive values of recent page views with those of older
purchases.

We examined the impact of incorporating page views for users with limited purchase history
to investigate how adding page views can affect the model’s predictive capabilities for these
users. In addition to these empirical tests, we also employed correlation analysis and angle
separation analysis. These methods allowed for a more theoretical exploration of the rela-
tionship between page views and transaction events as a function of the time difference and
the number of interactions between the two events. The goal was to determine whether we
can extract more information from page views if we threshold their inclusion in the context
based on time or the internal order of interaction sequences. The reader should also be
aware that all we present in this thesis have been applied to only one data set belonging to
an interior design store.
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2 Theory
The recommendation algorithm I generalized solves a multi-class classification problem using
neural networks.

2.1 Multi-class classification problem
The multi-class classification problem is a machine learning problem where each input to the
model is assigned to one and only one class among multiple available classes. One discrete
example is utilizing ML models to identify the type of animal depicted in a picture. In this
case, the model’s task would become a multi-class classification problem, which seeks to
assign an animal class to a picture input. However, how is this concept related to recom-
mendation systems?

For simplicity, let us assume that we have a data set containing the total amount of 5 prod-
ucts, and then start by investigating a user that has first bought a product we refer to as A
and then proceeded to buy another product we refer to as B. We then define our prediction
task: Given that the user has bought product A, we wish to predict which product the user
will buy next.

By this definition, we are treating product A as an input to which we want to assign a
product class which should supposedly be the next product the user will buy. However, we
already know from the data that the true answer is B. Hence, we call product B the true
class/label, while we refer to other products as classes or negative classes.

In the context of recommendation systems, we refer A as context/history to the label B.The
context reflects the user’s previous interactions from which we want to estimate the user’s in-
tent or preference. Thus, our ultimate objective is to introduce a model capable of accurately
predicting labels based on their corresponding contexts. However, the term ”accurately” is
very vague since there are several different metrics used to evaluate the performance of a
machine learning model depending on the specific task or application area. Due to Siftlab’s
recommendation, we only used recall as a metric in my study, for which we refer the reader
to section 2.9 for an explanation.

Furthermore, it is essential to acknowledge that in a multi-class classification problem, the
model usually bases its predictions on the output of a Softmax function and returns the
product class with the highest probability as its primary prediction.

2.2 Softmax function
The Softmax function, also known as the normalized exponential function, takes any ar-
bitrary vector of real numbers Z = {z1, z2, ...., zn} ∈ Rn and converts it to a probability
distribution P = (p1, p2, ..pn) such that the probability for each value zi is given by

pi = Softmax(zi) =
ezi∑n
j=1 e

zj
, (1)

where we denote the sum in the denominator as a normalization constant since its task
is to normalize the exponentiated values. The exponentiation of each value ensures that
the outputs are always positive, while division by the normalization constant ensures the
values are within 0 and 1. Further investigation of equation 1 also reveals that summing all
probabilities will add up to 1 since

n∑
i

= pi =

n∑
i=1

ezi∑n
j=1 e

z
j

=

∑n
i=1 e

zi∑n
j=1 e

z
j

= 1.
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Figure 1: The figure illustrates a user’s interaction sequence. Each entry represents an interaction.
The capital letters denote items the user has interacted with, and the sequence is sorted, with older
interactions to the left. The context portrays the user’s previous behavior before the label. The
context array is mapped into the embedding space by equation 2 where, for instance, θ1 corresponds
to the embedding vector of the first interaction, which in this case, we refer to as C.

In machine learning, particularly within recommendation systems, the set of unnormalized
values {z1, z2, ...., zn} are produced by the model and are somehow connected to the prod-
ucts. However, incorporating product-ids in mathematical equations entails establishing
mathematical representations of them.

2.3 Embedding space
An embedding space in its core is a vector representation of an entity. In recommendation
systems, an embedding space is a vector space in which the products and users are mapped.
The embedding space offers a mathematical representation of products while reflecting the
extent of their similarity.

The similarity between two products is typically determined by the proximity of their re-
spective embedding vectors. This similarity quantifies the degree of resemblance or overlap
in characteristics, features, or patterns among products. Consequently, embedding spaces
play a critical role in depicting product similarities based on their latent features and char-
acteristics, serving as the primary foundation for the model’s predictions.

All recommendation systems start by randomising N dimensional vectors for each item,
which we denote as Θ = {θ1, θ2, ...., θn} ∈ RN and refer to them by embedding vectors or
product vectors.

The product vectors will then transform during the training such that the distance between
the product vectors and the users mapped into this embedding space reflect the similarity
between the user’s preference and the product they will interact with next. The model’s
user mapping method varies depending on the desired level of complexity and robustness
one wants the model to acquire.

In section 2.1, we took a simple interaction sequence consisting of two interactions. Now let
us take a user’s interaction sequence consisting of nine interactions, where we take the last
interaction as a label and the rest as context. To represent this sequence of previous inter-
actions in our embedding space, Siftlab’s model maps the context array into the embedding
space by L2 normalizing the sum of its products’ embedding vectors by

ec =
(
∑l

i=1 θi)

∥(
∑l

i=1 θi)∥L2(Ω)

, (2)

Where θi is the L2 normalized embedding vector of the product in the ith interaction of the
context array. l denotes the length of the context, and ec is the dense vector representation
of the context, which is how the model maps a user into the embedding space. See figure
1 for visualization. Note that applying equation 2 on the context array essentially creates
an aggregated representation of the user’s history. The assumption is that this aggregated
representation captures the average characteristics or preferences of the user.
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This approach is desirable when the order or sequence of the interactions is less important
than the overall user preferences or behavior. It simplifies the modeling process by reducing
the sequential nature of the interactions into a single representation.

2.4 Negative sampling
In most machine learning tasks, one usually deals with huge data sets, requiring methods to
reduce the computational load to achieve faster training without losing significant accuracy.
Negative sampling is a technique designed specifically for this task.

For simplicity, let us go back to the example presented in section 2.1 with an interaction
sequence consisting of only two interactions: first purchase of product A followed by a
purchase of product B. As mentioned before, product B becomes the label with a context
that consists only of a single product A. The context vector ec would according to equation
2 become

ec =
θA
∥θA∥

,

where θA is the vector representation of product A.

The conventional way a neural network would approach this would be solving an n-class
classification problem, where n = 5 is the total number of products within our data. A
softmax function would determine the final prediction task by

softmax(r|c) = p(r|c) = eθr·ec∑5
j=1 e

θj·ec
, (3)

where r is the target product with embedding vector θr and c is the context with dense
vector representation ec. Comparing equation 3 to equation 1, we see that zi = θi · ec indi-
cating that for each context vector, the set of values we convert to probabilities are the dot
products between the context vector ec and each product vector in Θ. The result from a
dot product describes how close two vectors are. Hence, for any given context vector ec, the
product with embedding vector closest to ec will attain the highest prediction probability
and thus will serve as the primary prediction of the model.

However, since we are dealing with a large data set, evaluation of equation 3 for each
context(which in our case should be in the order of 105) would be computationally intensive.
We could, however, reduce the problem to a binary classification problem by denoting the
actual target/label product as 1 and all other products as 0, which reduces the number
of classes to two and facilitates the classification task. See figure 2. The probability of a
particular product being next is then given by

p(y|r, c) = σ(θTr · ec),

where σ is a Sigmoid function [15] and y is the binary class that can take on values 1 or
0. The Sigmoid function returns a value between 1 and 0 on which the model will apply a
threshold of 0.5. Meaning for (θTr · ec) < 0.5, the sample r will be classified as a negative
sample, otherwise as a positive sample.

Further inspection reveals that the ratio between the positive cases (when the target is prod-
uct B) to negative cases is 1

(n−1) . Since the number of products one usually deals with in
a recommendation system is of the order n = 105, it is clear that a substantial imbalance
exists between the negative and positive instances.

The imbalance between negative and positive instances can lead to several issues. The
model may become biased toward predicting the negative class (majority class) due to its
overwhelming presence in the data. As a result, the model may struggle to identify and
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A B
classes(r) Binary

classes(y)

A 0

B 1

C 0

D 0

E 0

Figure 2: The figure shows an interaction sequence to the left, with B being the label. We aim to
classify the context with an item, and to this end, the left column on the table shows all available
classes. We can observe how the number of classes reduces from four (A, B, C, D, F) to two(0 and
1) when we go from a multi-class classification to a binary classification.

classify positive instances accurately.

Additionally, With many negative instances, the model may have limited exposure to pos-
itive instances, which can lead to insufficient learning of the characteristics and patterns
specific to the positive class, making it challenging to differentiate between positive and
negative instances effectively.

Negative sampling offers an efficient solution to this problem by sampling a subset of nega-
tive instances used during training [18]. Instead of explicitly including all negative instances,
negative sampling randomly selects a small number of negative examples per positive exam-
ple. This approach reduces the computational burden while maintaining a balanced training
set [19].

Regardless of how negative sampling improves efficiency, it still suffers several disadvantages.
One is that the selection of negative samples does not reflect the accurate distribution of
the products in question since it reduces the number of classes to two(ones and zeros). It
can also lead to the loss of information we could gain by considering the entire set of classes.
Hence, we employ a training procedure called sampled softmax to maintain the efficiency of
negative sampling and preserve useful information about the class relationships.

2.5 Sampled Softmax
Sampled Softmax approximates the softmax function in equation 1 by randomly sampling a
batch of classes (positive and negative samples) for each training example during the softmax
calculation. The sampled softmax function then becomes

softmax(r|c) = p(r|c) = eθr·ec∑k
j=1 e

θj·ec
, (4)

where k is the number of sampled classes.

Hence, Instead of considering all classes, only a limited number of interactions are sampled,
reducing the computational burden. The underlying concept is that sampled softmax ap-
proximation captures the intricate relationships between sampled classes and can accurately
estimate the full softmax function by incorporating contributions from the sampled classes.
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2.6 Gradient decent
Gradient descent is an iterative optimization algorithm that determines local minimum
points of multi-variable functions. In machine learning, gradient descent minimizes the
loss function during each backpropagation in a neural network, which we have outlined in
section 2.7. The general idea is to take repeated steps in the inverse direction of the gradient,
which we will show is the steepest descent towards a local minimum.

Consider a two-variable function f(x, y). We denote the partial derivatives of this function
by

f1 =
∂f

∂x

f2 =
∂f

∂y
.

The partial derivatives f1 and f2 of a function f(x, y) determine how much the function
changes in the x and y direction. Letting v denote a unit vector in an arbitrary direction,
the directional derivative then becomes

∇f.v = ∥∇f∥∥v∥cos(θ),

where ∇f = (f1, f2) is the gradient vector of f(x, y) and θ is the angle between ∇f and v⃗.
The directional derivative is achieved if θ = 0. Hence, the direction of −∇f is the steepest
downward surface z = f(x, y).
Considering this, we can go down the surface utilizing the recursive scheme

xi+1 = xi − af1(a, b)

yi+1 = yi− af2(a, b)
(5)

where index i = [1, n] denotes the iteration number and a is a small constant. Repeating
this a sufficient amount of iterations reveals the position of a local/global minimum referred
to by (xn,yn) in the context of equation 5.

2.7 Neural networks
Neural networks(NN) are a class of machine learning models inspired by the structure and
functioning of the human brain. Here we will provide a basic description of neural networks,
their basic components, and their working principles to a level that guarantees comprehen-
sion of our work.

2.7.1 Overall structure

A neural network consists of three layer types: an Input layer, hidden layers, and an output
layer. The input layer receives and passes the input data to the subsequent hidden layers.
Dependent on the application, the inputs can represent different features or attributes of
the data.

The hidden layers are the intermediate layers between the input and output layers. They
consist of several neurons, and each neuron receives its input from the previous layer on
which it performs mathematical operations and applies a nonlinear activation function to
produce an output. The output of a hidden layer can either serve as input to another hidden
layer or input to the output layer. Forward propagation is the computation flow from the
input to the output layer.Figure 3 provides a visualization of a NN.

The output layer includes the predicted probabilities for each class in our classification prob-
lem. Hence, the number of nodes in the output layer should equal the number of classes in

7



x1

x2

b11

b12

b13

b14

b23

b22

b21

y1

y2

� (1)

Input layer Hidden layer Hidden layer Output layer

� (2)

Figure 3: A demonstration of a neural network with two inputs, two hidden layers, and two output
nodes. Neuron refers to the nodes in the hidden layer responsible for propagating the information
from the input to an output. The arrows show the inputs to each neuron from the previous
layer. The nodes in the output layer store probability P (y1|X) and P (y2|X) after each forward
propagation.

our classification problem, see figure 3.

The probabilities in the output layer are compared to the ground truth, and loss is calcu-
lated using a loss function. In machine learning, we denote the class we know from the data
as the ground truth as labels or true classes. We use labels as references to evaluate the
model’s recall and performance.

The network then minimizes the loss by doing a backpropagation [20] in which it starts
from the output layer and, for each layer, calculates the gradients of the loss with respect
to the weights and biases. The weights and biases are then updated using gradient descent
[21], which minimizes the loss. Hence, the model adjusts its weights and biases to predict
the labels according to the training data.

2.7.2 Neurons and activation functions

Neurons in a hidden layer accept multiple inputs on which they apply an activation function
on the weighted sum. Given an arbitrary activation function, the output of neurons in the
first layer is given by

Y(1) = factivation(W(1) ∗ X) + b(1))

Where Y(1) and b(1) denotes the outputs and biases from neurons in layer 1 ,respectively.
X are the set of inputs, and W(1) is the weight matrix associated with the connection
between the inputs and neuron in layer 1. The outputs will either be inputs to neurons on
subsequent layers or inputs to the output layer. In the case of several hidden layers, the
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Σ

b

Activation
function y1

Figure 4: The figure shows a perceptron with only one input. The
∑

will measure the weighted
sum of the input and add bias to it. It will later apply an activation function on it to produce a
predicted probability for the class denoted by y1.

output of neurons in layer j is determined by

Y(j) = factivation((W(j) ∗ Y(j−1)) + b(j)), (6)

where Y(j−1) represents the outputs from the previous layer, W(ij) represents the weight
matrix between neurons in layer j − 1 and j, and b(j) are the biases of neurons in layer j.

An activation function is a function that aims to introduce nonlinearity into the network.
By analyzing equation 6 in connection to the overall structure of NN in figure 3, we can
state that without an activation function, the output nodes will be a linear combination
of its inputs which essentially reduce the model to a linear model, restricting its ability to
detect complex nonlinear patterns [21].

2.7.3 Perceptron

A perceptron, in its most basic form, refers to a single computational unit or neuron that
takes multiple inputs, applies weights to them, and produces an output. It is a special case
of a neural network without any hidden layer with the difference that we can associate bias
with its output node. see figure 4.

For simplicity, let’s investigate a perceptron with only one input. According to figure 4, the
value in the output node is

y = w ∗ x+ b,

where x is the input, w is the weight, b is the bias and y if the output.

Assuming we are using a sampled softmax loss function and we have only one label among
the samples, the loss becomes

L = −log(P (l|x)), (7)

where l refers to the label and P (l|x) in our model is a sampled softmax function for k
samples as in equation 4 which results in

P (l|x) = e(wl·x+bl)∑k
j=1 e

(wj ·x+bj)
.

The goal is now to minimize L(W, b), where W and b are the set weight and biases used in
the sampled softmax function. Considering the gradient decent depicted in section 2.6, the
weights of all the samples will be updated according to equation 5 by

wj = wj − η ∗ ∂L

∂wj
, (8)

where η is the learning rate and wj is the weight for the sample j.
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Figure 5: An illustration of how the model assigns labels and contexts to a user’s interaction
sequence with MaxLen = 8. The model takes each interaction (except the first) as a label and
assigns them a context array.

Please note that minimizing L = −log(P (l|x)) will, in turn, maximize P (l|x), which is the
probability of the model predicting the label l given the input x. Since P is a probability
distribution, maximizing P (l|x) is equivalent to minimizing P (j|x) for all j ̸= l.Hence, during
each backpropagation, the perceptron adjusts its weight to minimize the loss and increase
the probability to predict the label and decreasing it for predicting negative samples.

2.8 Siftlab’s model
In this model, each product has a L2 normalized vector representation in a 32 dimensional
embedding space. The baseline idea is to learn the embedding space of products to map a
user’s sequence of preceding interactions with products to predict which product they will
interact with next. To this end, the model takes each interaction in a user’s sequence as
a label and assigns to it a context. To avoid accounting interactions that are too old for
predicting the label, we defined a parameter called maxLen which controls the maximum
length a context array can attain, see figure 5.

The model applies equation 2 to map the contexts into the embedding space. However, due
to the large number of products in the data, feeding all contexts and labels to the neural
network would result in a multi-class classification problem with millions of classes. This
approach would be computationally intensive and time-consuming. To address this issue,
the model splits the labels and their corresponding contexts into batches of size 32.

For each label, the model randomly selects k− 1 negative samples, i.e., products known not
to be the next item the user will interact with after a given context. Within each batch, the
model passes every context vector to a system composed of k perceptrons. Each perceptron
takes the same context vector ec as input and has a single output node. Among these output
nodes, k − 1 is responsible for storing the predicted probabilities of the negative samples,
while one node stores the predicted probability for the label.

In this process, the model sets the weights and biases of each perceptron to the embedding
vectors and trends of the corresponding product, aligning with their respective output nodes.

Ultimately, the model employs the sampled softmax function described in equation 2 to
calculate losses and gradients, as depicted in equation 7. Consequently, during each back-
propagation step, the weights (now the embedding vectors θr) of the labels and negative
samples are updated according to equation 8.

Thus, the embedding space will be shaped such that given a context vector ec, a product
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vector θr and a trend value tr the sampled softmax

softmax(r|c) = P (r|c) = e(θl·ec+log(tr))∑k
j=1 e

(θj·ec+log(tj))
, (9)

will give the highest values when r = l.

To accurately capture the relations between products, we train the model for several epochs
where each epoch consists of all batches in random order. The randomization of batches
order in an epoch prohibits the model from becoming biased toward certain patterns. To
avoid overfitting, we monitor the mean loss in training after each epoch and stop the training
if we do not observe any further decrease in loss.

The reader should also be aware that the model is supported by a baseline model based on
time series analysis [22], which aims to measure the popularity of a product at the time
of prediction. However, in this work, we will only focus on modifying and improving the
machine learning model.

Ultimately, the model calculates the probability of a certain product to be the next product
(which I will also refer to as predicting probability) the user interacts with by multiplying
the log of trends by the softmax probability resulting in

P (r|c) = tr · exp (θr · ec) · C,

where tr is the trend of product r.

To prevent numerical accuracy and performance problems, we perform these calculations in
log space

log(P (r|c)) = log(tr) · (θr · ec) · log(C). (10)
Investigating equation 10 by considering that ec and θr are L2 normalized, we can see that
the model bases its prediction on the direction of the vectors ec and θr, meaning if the user
interacts with products whose embedding points in a specific direction, then they are more
likely to interact with other products in that direction.

Now that we have established how the model functions, it is time to define a metric we
could use to evaluate the model’s performance. As mentioned before, several different met-
rics could serve as a valuable asset. However, Siftlab was mainly interested in the recall
metric for reasons described in the next section.

2.9 Recall
Recall in a machine learning model refers to the model’s ability to predict the labels. More
specifically, let us denote contexts for which the model has predicted labels correctly as
true positives(TP) and contexts for which it failed to provide accurate prediction for False
negatives (FN). More precisely, we call these cases FN since the model deems the label
irrelevant to the user. The recall is calculated by

Recall =
TP

TP + FN
.

However, it would rarely happen for the label class to achieve the maximum predicting
probability in equation 10 among millions of classes. Therefore, we approximate the recall
using a metric called recall in top k, which evaluates whether the label is present within the
top k predictions.

The recall measures the proportion of relevant items (labels or items we know from the
data to be in the user’s interest) recommended to the users. Therefore, Maximizing recall
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becomes imperative as it ensures that our recommendations are in harmony with users’
preferences, resulting in a personalized recommendation system. Ultimately, this enhances
user satisfaction and augments the likelihood of purchases, benefiting both users and the
platform.

2.10 Spearman’s correlation
Spearman’s correlation is a statistical measure that estimates the monotonic relationship
between the ranks of two variables. It is beneficial when the relative ordering of values is
more meaningful than their actual numerical values and also when one is sure the data sets
are not normally distributed.

Assume we have two data sets, X and Y . To calculate Spearman’s correlation, we use

rs =
COV (R(X), R(Y ))

σR(X) · σR(Y )
(11)

where R(x) and R(Y ) are ranked X and Y , COV (R(X), R(Y )) is the covariance of rank
variables, σR(X) and σR(Y ) are the standard deviations of rank variables.

3 Method

3.1 Data processing and cleansing
Siftlab provided us with a .csv file with interactions as rows and columns, including fea-
tures user-id,product-id, Timestamp, and weights. To distinguish between event types, the
transactions were assigned weights 1, and page views weight 0, allowing us to filter the data
during training and prediction stages.

We converted the CSV file to binary and memory mapped on files for faster data processing.
Memory mapping grants us efficient memory usage since we only load the needed portions
instead of loading the entire file into memory. It also provides us with faster memory access
making it a suitable technique to apply to large data sets.

Moreover, before starting with the main work, we needed to eliminate noise sources in the
data. One noise source is the website refreshes recorded as several consecutive page view
events between the same user and item. We identified these instances and merged all such
page view events into one to prevent website refreshes from distorting the user’s preference.

Another noise source is transaction events involving the same user and product transpiring
simultaneously. Such occurrences signify purchases of the same product in quantities ex-
ceeding one. We again merged these transactions to avoid inducing biases in dense vector
representations of contexts.

3.2 Training and Testing
To create training and testing samples, we first sorted the data by time and splited the data
into training and test sets by 80% to 20% such that the training set consisted of the older
data set.

Using the weights as event-type indicators, I included or excluded page-view events during
the training and prediction stages. Thus, I could explore different scenarios to discover the
case where incorporating page views improved the model’s recommendation.
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Figure 6: (a) and (b) show the same interaction sequence where the transactions and page views
are marked by dark blue and light blue cells, respectively. The arrows indicate the transactions and
page views we count. In (a), we count page views in the range [1, 2] leading up to a transaction,
and in (b), we count page views happening 2 interaction before a transaction. Charts (c) and (d)
show the counted transactions(dark blue column) and page views(light blue column) per product
for case (a) and (b), respectively. We count each interaction only once. The interaction sequence
is sorted with older interactions to the left.

3.3 Weight incorporation
The model described in section 2.8 predicts the next product based on previous interactions
but does not account for interaction types and their distinct prediction values. Therefore, the
model will fail if the data consist of different event types. To account for the disadvantage,
we modified equation 2 to instead measure the weighted context vector for each label by

ec =
(
∑l

i=1 wi · θi)

∥(
∑l

i=1 wi · θi)∥L2(Ω)

, (12)

where wi is the assigned weight for interaction i.
We should notify the reader that due to simplicity and shortage of time, we kept the weights
for transactions at a constant value of 1 while only varying the weights for page views.

3.4 Correlation analysis
As we increase the length of the context arrays, we are considering older interactions that
might be irrelevant to the user’s intent. Given that the primary focus is predicting the user’s
next transaction, we want to know how long page views remain relevant for this prediction
task.

To answer this question, we devised a correlation study to examine the correlation between
transactions and page views within a certain range. The range is either based on the time
difference or the number of interactions between the two events. Once the range was defined,
we counted the number of page views and transactions for each product accordingly and
employed equation 11 to measure Spearman’s correlation between the counted values.

We measured the correlation in several ways. First, we counted the pageviews occurring
exactly d interactions before the transaction. Second, we counted page views within the
[1, d] leading up to each transaction. See figure 6. Finally, we counted the pageviews within
a defined time range to investigate potential temporal dependencies.
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Figure 7: The figure illustrates an interaction sequence of a user on the top and the resulting
context arrays below it with MaxLen = 8. The context array corresponds to the label marked as
yellow, and the interaction sequence is sorted with older interactions to the left. Parameter Thresh
defines how many older transactions we push out and replace with a recent page view in the context.
We should note that the only interaction we will take as a label in this study will be the last one
since it full fills the criteria nt ≥ MaxLen and np ≥ MaxLen.

The correlation study is one of the tools we introduce to examine the relationship between
page views and transactions through time or interactions. The study aims to reveal the
average behavior of users and enable us to use page views most efficiently.

3.5 Angle separation
As mentioned in section 2.8, the model predicts the next product based on the direction of
the vectors in the embedding space. Therefore, products whose vectors point in the same
direction are more similar. An effective measure of two vectors’ alignment is the angle
between them. We can measure the angle between two product vectors by

ϕij = arccos(
θi · θj

∥θi∥ · ∥θi∥
),

where θi and θj are vectors for products i and j, and ∥∥ is the L2 norm.
Hence, to explore the relevancy of page views, we measured the angle between each transac-
tion product and products associated with page views occurring d interaction before. The
average angle between transactions and page views is then given by

ϕ̂d =
1

N

N∑
i=1

ϕid, (13)

where N is the number of transactions with a page view event d interactions before them,
and ϕid is the angle between transaction i and a page view happening d interactions prior.

3.6 Old transactions versus recent page views
To study how we can best leverage page views, we examined the impact of replacing an
older transaction event in the context with the most recent page view on recall. For the
experiment to produce accurate results, we filtered labels where the number of previously
occurring transactions nt and pageviews np is lower than MaxLen. By doing so, we will
investigate the recall over the same set of labels each time we introduce a recent page view
and eliminate an older transaction.Refer to figure 7 for visual presentation.

To distinguish between the effect of pushing out an old transaction and replacing it with a
recent page view, we performed once again the same study where we instead only eliminated
the oldest transaction, see figure 8.
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Figure 8: The figure shows the context arrays from the same interaction sequence and labels as
in figure 7. The Thersh parameter in this study only describes the number of oldest transactions
eliminated from the context.
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Figure 9: An example demonstrating how we perform the new user study for Nt = 2 and MaxLen =
8. The user’s interaction sequence is shown on the top, while The arrays below it are context arrays
to the label marked yellow.

3.7 New users
Another interesting feature is the users who have just started their journey on the website.
To identify new users, we defined a new parameter called Nt, which we used to filter labels
with less than Nt preceding transactions. Afterward, we constructed the context arrays by
first adding the Nt most recent transactions following it by adding the Np most recent page
views and monitoring the recall of the model. The goal here is to explore the predictive value
the preceding page views introduce for new users. Look at figure 9 for a visual description.

4 Results

4.1 Weight optimisation
We trained the model once on the data containing only transactions, and once on the
combined data both with and without weights incorporation demonstrated in section 3.3.
Subsequently, we evaluated each trained model on four distinct prediction tasks.

The first task was predicting the next interaction, meaning we were not interested in the
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Figure 10: The figure shows how changing the weights assigned to page view changes recall.

interaction type and wanted only to identify the item the user interacted with.

The Second task centered around predicting the next transaction, for which we employed
three different techniques. Firstly, we included only previous transactions as the basis for
our prediction by including only transactions in context arrays. Secondly and thirdly, with
both event types included, but with and without incorporating weights when constructing
the context arrays demonstrated in equation 2. Table 1 illustrates the results.

Table 1: The table shows the recall of Siftlab’s model with Maxlen = 8. Each row represents recall
values corresponding to the predictions of the same trained model. Each column shows recall for
the same prediction task. Combined data denotes accounting page views in context arrays during
training, while weights incorporation refers to section 3.3 where transaction(T) and page views(P)
weigh 1 and 0.5, respectively.

Prediction task
Training
data

Next interac-
tion(P+T)

Next trans-
action

Next trans-
action based
on previous T
and P

Next trans-
action based
on previous
T and P
with weights
incorporated

Combined
data

0.0571 0.1901 0.1927 0.1928

Combined
data with
weights incor-
porated

0.0485 0.1914 0.1928 0.1927

Transaction
data

0.059 0.2135 0.2152 0.2152

Based on our observation that the model trained only with transactions and incorporating
weights in the prediction task yields the best outcome, we decided to investigate the opti-
mization of the model by adjusting the weights we assign to page views while keeping the
weights for transactions constant at 1. By monitoring the recall, we found that a weight of
0.8 gives the highest recall. see figure 10.
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4.2 Older transaction VS recent page view
Replacing an old transaction with a recent page view enhanced the model’s recall. However,
as the page views we are considering becomes older, their positive impact on the recall
metric gradually diminishes. As for the case where we only eliminate the earlier transaction
without adding any page views, we observe a continuous increase in the model’s recall. See
figure 11.

4.3 New users’ behavior
Filtering new users and performing experiments as described in section 3.6 showed that one
can always expect a decrease in recall for Np > Nt while taking the last two-page view is
always beneficial, see figure 12.
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(a)

(b)

(c)

Figure 11: The figures show the results from the experiments described in section 3.6. The blue line
depicts the scenario where we substitute Thresh old transactions with Thresh recent page views,
while the red line corresponds to the case where we solely eliminate Thresh oldest transactions.
Consequently, for each value of Thresh, the context arrays corresponding to the red line and the
blue line contain the same transaction events, but the blue line also adds Thresh most recent page
views to the context arrays, see figure 7 and 8.
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Figure 12: The figure demonstrates the variation in recall as we add Np most recent page views for
users with only Nt number of transactions in their history. Contexts arrays are not allowed to be
longer than MaxLen = 8, which explains the constant recall after the point where (Np+Thesh) ≥ 8.

Figure 13: The plots show the same study as in figure 12 but without the upper bound constraint.
The points where Nt = Np are marked red. We can see that the recall will certainly decrease after
these points.

Another interesting thing we explored was taking Nt >= 8 values, see figure 9, and remov-
ing the constraint of the MaxLen parameter on the context arrays, allowing them to be
Nt +Np long. The aim is to study all users and extend the study in figure 12 by avoiding
the constant recall measurements due to contexts’ upper bound constraints on their length.
Figure 13 illustrates the results.

4.4 Correlation analysis
The results from the correlation analysis using approaches described in figure 6 showed that
as we go further back, the correlation between page views and transactions starts to de-
crease, see figure 14.
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Figure 14: The plot on the left shows the correlation between transactions and page views at the
exact distance d. The figure on the right shows the correlation between transactions and page views
occurring in the distance range [1, d].

Figure 15: The plots show the correlation as a function of different periods. We can see that the
correlation behaves periodically when we divide page views into 6 hours periods.

The time-dependent correlation analysis in section 3.4 showed that the correlation between
page views and transactions decreases as the time difference between transactions and page
view increase while taking a 6 hours period window frame showed periodic behavior, see
figure 15.

4.5 Angle separation
We also measured the average separation angle for item vectors as depicted in section 3.5.
The result is visualised in figure 16.

Finally, we measured the average angle separation based on time. The results are demon-
strated in figure 17.

4.6 Optimised recall
To achieve the highest recall, we redid the transaction prediction task where we only took
1 recent transaction and 2 recent page views and monitored the recall to get 0.2154. The
difference between this study and the one performed in section 3.7 is that we are not filtering
the contexts but evaluating it on the whole data.

Finally, to investigate the robust time dependency between the event types, we thresholded
the inclusion of page views by only allowing page views that occurred within the past 1500
hours before the purchase. We got 0.2155 as a recall.
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Figure 16: The figure shows the average separation angle ϕd for vector items associated with
transactions and page views occurring d interactions before them.

Figure 17: From left to right, the plots show the average separation angle ϕd for item vectors
associated with transactions and page views occurring a certain number of weeks, days, and 6hours
periods.

5 Discussion

5.1 Result analysis
Table 1 shows that training with only transactions gives the best recall values for all predic-
tion tasks. When considering page views with weights incorporated, there is a slight increase
in recall for all prediction tasks compared to not using weights. Additionally, considering
page views in prediction improves recall for all three models.

From the distance base correlation analysis in figure 14, we deduced that the page views
become, on average, rapidly irrelevant as we go further back in a user’s sequence. We can
further approve this observation by considering the logarithmic increase in average angle
separation as we consider older page view events in Figure 16. These irrelevant page views
in training decreased recall since it shifted the context vector ec in directions away from the
label.

The question is then: why does the performance degrade when considering page views dur-
ing training but improve when using them for prediction? The answer to this question lies
within the underlying dynamics of training and prediction.

During training, we infer the embedding space with respect to the given context vectors,
which involves adjusting the embedding of the items to minimize the discrepancy between
the predicted items and actual labels. If the page views we incorporate during the training
phase are uncorrelated with the labels, we might introduce noise to the model’s ability to
predict labels.
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On the other hand, the embedding space is constant during the prediction phase, and we are
only deciding what items to involve in our context vectors which we calculate using equation
2 or equation 12 depending on whether we are incorporating weights. Hence, the improved
performance during the prediction is due to the model’s ability to leverage the established
embedding space and use items relevant to the prediction task.

The results depicted in figure 11 demonstrate that adding page views improve results as
long as the number of transactions is equal to or less than the number of page views in
context arrays. We also observe the same behavior in figure 13, where incorporating more
page views than transactions in the context arrays will harm the model’s performance. In-
specting the correlation values in figure 14, we can state that each transaction is, on average,
mostly correlated with their preceding page view before them. The same conclusion can also
be derived from the angle separation in figure 16. Since the predictions are based on the
average direction of previous interactions, considering more page views than transactions is
equivalent to introducing vectors that point in directions far away from any other vectors
in the context array, which shifts ec in the wrong direction, reducing the model’s recall.

Higher correlation values in Time-based correlation analysis in figure 15 compared to distance-
based correlation in figure 14 indicate a strong time dependency between page view events
and transactions. Meaning we would extract more information from page views if we add
them based on how long before the transaction they have happened.

Another intriguing observation from the time-based correlation is the periodic behavior
when taking six hours as time units, which could reflect that the users exhibit different
behavior patterns during the day. One explanation is that the users may be more likely to
purchase items during the day than late at night, and since some of the users in the data
are companies, there is a work time dependency that we should account for.

Taking weeks as time windows in figure 15, we see the correlation decreasing followed by
a sudden jump at week 15. The correlation then starts to oscillate around a mean value.
Considering the data includes interior design items and the decline of recall as Nt increase
in figure 12 could indicate the existence of the research and consideration Phase. Interior
design purchases often involve careful planning, research, and consideration. Customers
may explore various options and compare designs, colors, and styles before making a final
decision. The significant increase in page views around 15 weeks before the purchase could
indicate the start of this research and consideration phase. The very high correlation values
observed for page views occurring only several hours before the purchase indicate the phase
where the user has decided. Thus, the items the user views are similar to what he will
eventually purchase.

Looking back at figure 11, we can observe the positive impact of incorporating the most
recent page views on recall(Blue line in figure 11) and the positive effect of eliminating only
the oldest transactions(red line in figure 11 ). However, As Thresh increases, we start to
take older page views, which degrades the model’s ability to predict. On the other hand,
increasing Nt also corresponds to eliminating more recent purchases. Hence, we expect the
recall to start to decrease at some point. However, we do not observe such a turning point,
and the recall continuously increases until we are only left with the latest purchase. The
same behavior is depicted in figure 12 where higher Nt results in lower recall. Such obser-
vation is not intuitive since erasing information results in better predictions, which brings
me to my next point.

All results and the discussion derived from it differ if we applied the model to other data.
For instance, the relevance and usefulness of past purchase data in a recommendation model
depend on the nature of the products and the behavior of the customers in that particular
domain. In the field of interior design, the major factor that could contribute to the fast-
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diminishing relevancy of purchases is one-time or infrequent purchases. Once a customer
makes a significant purchase, they might not need that item until they change their house,
which is a long time and therefore does not reflect the user’s current need.

Although the results are only valid on this particular data, we have introduced techniques
and studies that we could apply to any data to extract useful information about customer
behavior. We can observe the average length of seasonality, deduce the time and internal
order dependency between event types and the performance of the model on users new to
the platform, which are crucial for optimizing the hyperparameters of the model or any
other model Siftlab wish to introduce in the future.

5.2 Future work
One major improvement approach would be applying the model to several different data
and investigating whether the customer behavior stays the same within each e-commerce
domain. If so, Siftlab can introduce an optimized version of its model depending on the
client’s e-commerce domain.

The second improvement is using the techniques in this work to implement and test time-
decaying weights, both in the prediction training stages using separate functions for different
event types. How these functions should look needs further thought, but the baseline is to
introduce something aligned with the observed user behavior.

Ultimately, exploring the effect of including event types other than page views would be
an interesting suggestion. Using the methods presented in this work, one should be able
to enhance the model such that each event type contributes the most to perdition the next
transaction.

6 Conclusion
The results indicate that we can expect minor improvements if we include page views in the
prediction stage and exclude them during training. In addition, incorporating page views
in the prediction stage can result in further enhancements. We have shown a strong time
dependency between the page views and transactions for this particular data. Hence we can
predict better if we use time instead of the sequence’s internal order when choosing the page
views we want to include in the contexts.

Furthermore, by commencing several empirical tests, we demonstrated that older purchases
lose relevancy fast due to the data representing interior design items. We also observed
periodic behavior by doing a time-based correlation analysis, which reflected the existence
of seasonality in the data.

Our work here is the first step in the right direction for enhancing Siftlab’s model. By
utilizing the techniques I presented here, Siftlab can provide their clients with the most op-
timized version of their model based on the e-commerce domain and the event type included
in the data. However, optimizing the model is very time-consuming, and whether the slight
improvement is worth the effort is up to Siftlab to decide.
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