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Abstract
Single-cell analysis is currently one of the most high-resolution techniques to study biology. The large complex datasets 
that have been generated have spurred numerous developments in computational biology, in particular the use of advanced 
statistics and machine learning. This review attempts to explain the deeper theoretical concepts that underpin current state-
of-the-art analysis methods. Single-cell analysis is covered from cell, through instruments, to current and upcoming models. 
The aim of this review is to spread concepts which are not yet in common use, especially from topology and generative 
processes, and how new statistical models can be developed to capture more of biology. This opens epistemological ques-
tions regarding our ontology and models, and some pointers will be given to how natural language processing (NLP) may 
help overcome our cognitive limitations for understanding single-cell data.

Keywords Single-cell · Statistics · Graphs · Neural networks · VAE · Generating processes · Topology · Markov chains · 
NLP · Graphs

Introduction

Single-cell datasets are among the most complex data cur-
rently generated, and the field is a major driver for new bio-
informatic methods. Datasets can now encompass up to one 
million observations, with 20–50,000 measurements per 
cell, making it hard to even visualize the data. Furthermore, 
the data is incredibly noisy, and relies on our ability to detect 
individual molecules. To overcome the noise and extract a 
meaningful interpretation, it is usually not sufficient to look 
at individual cells. Instead, the data is fitted to increasingly 
advanced statistical models.

Statistics are commonly concerned with data, or observa-
tions (what we measure), a model (what generates the data), 

and underlying variables (frequently hidden and abstract in 
nature). In this review, we will be concerned with the nature 
of the data and how different models can help us explain it. 
In modern statistical language, the relationship between data 
and variables can be recast in the following general form:

Single‑cell observationi~Model[latent 
variablesi]

Here, the model is the choice of the statistical distribution, 
parameterized by hidden (latent) variables. These abstract 
variables need to be given a meaning by the analyst, and a 
philosophical discussion cannot be avoided (discussed in 
the second part of this review). Most latent variables are 
for each observation (cell), while some variables may be in 
common for all observations or simply considered part of the 
model itself. The latent variable space typically has a lower 
dimension than the data space (Fig. 1a), representing the 
aggregation of knowledge. Both Frequentist and Bayesian 
statistics are in use, with Bayesian models becoming increas-
ingly popular. Their strength lies especially in their ability 
to model complex noise, which arises from both the biol-
ogy and the technical measurement. Bayesian models fur-
thermore support updating (i.e., adding data to a previously 
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fitted model), avoiding complete recomputation as new evi-
dence surfaces.

There is usually not an obviously “correct” choice of 
model for single-cell data, but model choice can be moti-
vated by a hypothesis of the nature of the data. However, 
one hypothesis can correspond to multiple models, and 
multiple models can correspond to one hypothesis (Gel-
man and Hill 2006) (Fig. 1b). For example, the abundance 
of RNA in a tube can increase both due to the number 
of molecules increasing, as well as if the gene switches 
to a longer isoform (Fig. 1c). How this affects RNA-seq 
depends on the precise chemical details in the library prep-
aration, which is why those are covered extensively in this 
review. The conceptual difference between hypotheses and 
models is also especially important to be aware of in the 
context of hypothesis testing, where the fit of one model 
is compared to another (Fig. 1d). Another way of motivat-
ing models is in terms of their interpretability—a model 
might fit the data very well, but because of its complexity, 

it might be hard to interpret. Finally, model choice can 
be motivated in terms of how well a model fits to not-
yet-seen data. The machine learning (ML) field has espe-
cially emphasized this aspect and provided tools such as 
cross-validation and penalization to improve upon it. It is 
now even possible to fit models for which classically there 
would not be enough data given the number of parameters. 
These general topics of statistics and ML are beyond the 
scope of this review.

This review is organized around our cognitive view of 
modeling (Fig. 1e). Beyond the general form equation, it will 
also cover how single-cell data is physically generated, how 
data is preprocessed, and how the latent space can be inter-
preted from topological and biological standpoints. A mini-
mum of mathematics has been used but readers are encour-
aged to visit dedicated literature to fill the gaps (Armstrong; 
Norris 1997; Debnath and Mikusinski 2005), especially in 
linear algebra (Eie et al. 2023) and statistics (McElreath 
2020).

Fig. 1  Introduction to single-cell data representation. a A smaller 
space of latent variables can through a model represent a larger space 
of single-cell observation data. Several data points can be represented 
by the same point in the latent space. b One hypothesis can corre-
spond to multiple models, and multiple models can correspond to one 
hypothesis. c Two hypotheses about the abundance of RNA in a tube 

lead to the same statistical model. d Hypothesis testing can be done 
by comparing the fit of one model to another; here, the left model 
corresponds to no difference between the samples, while the right 
model enables there to be a latent difference between group 1 and 2. e 
The data modeling procedure from the perspective of this review
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The standard analysis pipeline

In the beginning of single-cell analysis, tools were 
reused from bulk RNA-seq, such as the Bowtie2 aligner 
(Langmead and Salzberg 2012), and DESeq2 (Love 
et al. 2014) for differential expression. Single cell is 
however fundamentally different in that there are many 
more samples (cells) compared to bulk (tissue averages). 
Thus, techniques from unsupervised ML were borrowed 
to aid visualization and comparison. While this worked 
well, it required a rather skilled bioinformatician. This 
has led to the development of several user-friendly R and 
Python packages, which streamline the historically most 
common operations. Among the most well-known such 
packages are Seurat (Satija et al. 2015), Signac (Stu-
art et al. 2021), monocle (Cao et al. 2019), and ArchR 
(Granja et al. 2021) for R, and Scanpy (Wolf et al. 2018) 
for Python.

The standard pipeline (Fig. 2a) proceeds as follows: (1) 
alignment of sequencing data to a reference genome, (2) 
gathering data for each cell, (3) reducing the sequencing 
data into per-cell features, e.g., gene expression levels, 
transcription factor binding level, or enhancer accessibil-
ity, (4) further quality control with doublet removal and 
feature selection, (5) dimensional reduction and cluster-
ing, (6) comparison of cells and clusters. In every step, 
data is removed (Fig. 2b). Ideally, there would only be 
one step, but it would be too slow to be practical. Thus, in 
fact, there are several data representations, and the process 
should be seen as a funnel to a p-value or plot. Each data 
representation thus needs to contain enough information 
to be reduced into the next representation (e.g., the nor-
mal count reduction makes it impossible to distinguish 

the scenario outlined in Fig. 1c in later steps). This review 
thus inevitably covers most steps in the analysis process. 
One aspect not covered is that there are specific file for-
mats for the intermediate representations (e.g., Anndata 
(Wolf et al. 2018), loom, https:// github. com/ mojav eazure/ 
loomR, or Arrow (Granja et al. 2021)), which limits one 
from easily making changes in these representations.

The archetype single‑cell chemistries

Before delving into how data is represented, one must under-
stand how the data arises and to what it physically corre-
sponds. Two archetype library preparation methods (RNA-
seq and ATAC-seq), colloquially called “chemistries,” will 
be covered in this section. These chemistries can now be per-
formed on the same input cell, enabling close comparison of 
these modalities and sharing of the latent space (Argelaguet 
et al. 2018; Gayoso et al. 2021). The principles behind the 
multiome protocols (Lee et al. 2020) (simultaneously meas-
uring more than one biological aspect of the same cell) are 
virtually the same as for RNA-seq and ATAC-seq separately.

Single‑cell RNA‑seq

scRNA-sequencing is a method to quantify which genes 
are transcribed. The focus is normally on mature mRNA, 
which at the end contains a 5′ nucleotide cap and a 3′ poly 
adenine (3′ polyA) tail. Furthermore, introns will at some 
point be spliced out. Because the mRNA levels enable such 
broad interpretation of the function and behavior of a cell 
at a given moment, RNA-seq has become the workhorse for 
much biological exploration. scRNA-sequencing is also the 

Fig. 2  The standard analysis pipeline. a All the common steps in the analysis of RNA-seq or ATAC-seq data. b Information is reduced, and lost, 
in every step of the analysis; but the value or complexity of the remaining information increases

https://github.com/mojaveazure/loomR
https://github.com/mojaveazure/loomR
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basis of more complex protocols, such as single-cell ribo-seq 
(VanInsberghe et al. 2021), which can tell where ribosomes 
are located. RNA-seq was the first omics protocol minia-
turized for single-cell applications, with multiwell plate 
Smart-seq2 (Picelli et al. 2013) becoming the most popular 
protocol. Other competing protocols existed; for example, 
CEL-seq2 (Hashimshony et al. 2016) only captured the 3′ 
part, while STRT-seq (Islam et al. 2012) captured the 5′ part 
(in the idealized scenario). The first step in any protocol is 
reverse transcription (RT). Because of the abundant ribo-
somal RNA, virtually all protocols so far have used oligo-
dT RT primers which bind to the 3′ polyA of the mRNA. 
However, oligo-dT primers can also bind anywhere inside 
the RNA but with lower efficiency, typically in stretches of 
3xA or more (Kozak 1991) (which is essential for estimating 
“RNA velocity” (La Manno et al. 2018; Bergen et al. 2021) 
from the quantification of unspliced mRNA that would not 
be included if only 3′ polyA mRNA was included).

Almost all single-cell protocols require early addition 
of flanking PCR handles, which enable a first PCR (pre-
amplification) using cDNA-sequence-independent PCR 
primers. The first PCR handle is included in the RT primer. 
A key innovation is the use of template switching, where 
RT can continue from the 5′ end of the RNA to another 
oligo. This preferentially occurs if the RNA has a 5′ cap, 
and if the RT enzyme adds additional nucleotides past the 
RNA, which can be made complementary to an oligo (“the 
template switching oligo, TSO”). The TSO can be designed 
to carry a second PCR handle. With known common 5′ and 
3′ flanking sequences, the first PCR is then easily designed 
(Fig. 3a). To aid in read deduplication (discussed later), this 
is also the step in which a unique molecular identifier (UMI) 
is introduced, as a stretch of random nucleotides in either the 
RT primer or TSO.

Next, all libraries aimed for Illumina short-read sequenc-
ing require fragmentation of the cDNA down to sizes that 
can bind to the flow cell (below 1.5 kb, ideally 700 bp). 
Smart-seq uses Tn5, an enzyme that simultaneously frag-
ments the cDNA and adds new PCR handles (Fig. 3b). 
This protocol is simple, but the ends of input DNA are 
lost unless 3′/5′ adapters are added somehow (such as by 
extended TSO and RT primers in Smart-seq3 (Hagemann-
Jensen et al. 2020)). Furthermore, because Tn5 adds s5/s7 
tags randomly, 50% of the fragments being s5-s5 or s7-s7 
will be suppressed in the PCR after tagmentation. As an 
alternative to Tn5, some protocols instead use enzymatic 
shearing, dA-tailing, and sticky adapter ligation (Fig. 3c). 
CEL-seq2 (Hashimshony et al. 2016) and STRT-seq (Islam 
et al. 2012) also fragment the cDNA, but targets either the 
5′ or 3′ PCR handle from the cDNA preparation to enrich 
for the corresponding fragments. This is possible only if dif-
ferent adapter sequences are used for 5′ and 3′ respectively 
(s5 + s7). After a second PCR, the fragments will contain 

cDNA, library indices, and sequences that will bind to the 
Illumina flow cell (Fig. 3d).

Single-cell protocols can also be performed with micro-
fluidics, where a cell is encapsulated in a droplet containing 
enzymes, buffer, and a bead with oligos (Klein et al. 2015; 
Macosko et al. 2015). These protocols have severe con-
straints: buffers cannot be changed, adding liquid to drop-
lets is challenging, and somehow each cell has to obtain a 
unique library index. For multiwell plates, different index 
oligos are added to each well, and the well-index relation is 
known. Droplets instead depend on beads having oligos that 
carry a random library index (in this context called the “cell 
barcode”), with sufficiently many indices such that no cells 
obtain the same index (Fig. 3e and f). Because it is hard to 
add liquid to droplets, PCR is rather performed after droplets 
have been de-emulsified and pooled. This limits the possibil-
ity of adding the cell barcode to the RT-step. Because the 
barcode can only be added to the 3′ or 5′ of the cDNA (RT 
primer or TSO), only these parts of the cDNA are normally 
sequenced after preparation with the 10 × Genomics Chro-
mium (Fig. 3g).

Finally, split-and-pool-type protocols should be briefly 
mentioned (Vitak et al. 2017; Rosenberg et al. 2018). These 
use the cell itself as the “droplet,” by careful permeabiliza-
tion. The cell barcode is made up of a combination of oli-
gos, with each extra oligo added after pooling the cells and 
splitting them into a new 96/384 well plate. These protocols 
are less constrained than microfluidic droplet based proto-
cols, but overall share the limitation of only capturing 3′ or 
5′ RNA. Split-and-pool protocols can also be implemented 
using the 10x Genomics Chromium (Datlinger et al. 2021).

While this section only covers a fraction of the chemis-
tries ever made, knowing this much about RNA-seq is suf-
ficient to be able to statistically model most of existing data. 
Recent advances in chemistry will however introduce new 
statistical challenges, e.g., there are alternatives to oligo-dT 
RT. For example, microSPLiT uses in vitro polyadenylation 
to also capture bacterial mRNA efficiently (Kuchina et al. 
2021). Similarly, this can be done on eukaryotic fragmented 
mRNA, enabling full-RNA capture also in the 10 × Genom-
ics Chromium droplet system (as in VASA-seq (Salmen 
et al. 2022)). Because Tn5 also digests RNA:DNA hybrids, 
the PCR before tagmentation can also be avoided (Di et al. 
2022; Xu et al. 2022). As a benefit, the fragmentation sites 
for each input RNA molecule is virtually unique, simplify-
ing deduplication and the relation between reads and input 
RNA molecules.

Single‑cell ATAC‑seq

ATAC-seq (Assay for Transposase-Accessible Chroma-
tin using sequencing) is a method that assesses which 
regions of the chromatin are accessible (“open”) using the 
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Fig. 3  The archetype single-cell chemistries. a During reverse tran-
scription, any choice of flanking sequences  H1 and  H2 can be added 
to 5′ with template switching, and 3′ by an extended RT primer. This 
aids subsequent PCR. b Tagmentation, fragmentation, and addition of 
flanking tags by Tn5. The 5′ and 3′ flanking parts will only be tagged 
on one side and lost in subsequent PCR. c Addition of adapters by 
enzymatic digest, dA-tailing, and ligation. d A typical final library 
DNA molecule ready for sequencing by Illumina short-read sequenc-
ers. e Multiwell protocols have per well-defined cell barcodes, while 
droplet protocols rely on random cell barcodes. f The chance of pick-

ing the same random index twice depends on the number of avail-
able indices as compared to how many indices are used. g The final 
10x Genomics Chromium RNA-seq library structure differs from a 
typical Illumina library, only capturing 3′ or 5′ part of the cDNA. h 
The expected number of overlapping fragments differ between RNA-
seq and ATAC-seq. i cDNA fragmentation can cause overlapping 
fragments because of the pre-amplification. j Proteins can be meas-
ured by RNA-seq and ATAC-seq protocols using oligo-tagged anti-
bodies
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transposase Tn5 (Yan et al. 2020). This technology relies 
on the assumption that inactive transcribing (and repli-
cating) regions of the DNA tend to be highly compacted 
around histones (“closed”), while active regions are not. 
When Tn5 tagmentation is done on genomic DNA (gDNA), 
before purification, the fragmentation patterns will thus be 
dictated by gDNA-binding proteins, marking unshielded 
gDNA as open (Fig. 3h). Since tagmentation is well-suited 
for small-input single-cell applications (Buenrostro et al. 
2015), it has been adapted to also enable scChIP-seq (e.g., 
single-cell CUT&Tag (Bartosovic et al. 2021)). By adding 
a H3K9me3-targeting chromodomain to the Tn5 enzyme, 
both open and closed regions can be assessed in parallel, 
enabling the measurement of “chromatin velocity” (Tedesco 
et al. 2022). scATAC-seq is thus the basis for a family of 
related protocols.

Because mitochondrial DNA (mtDNA) is abundant 
and highly accessible, a key first step in ATAC-seq is the 
extraction of the nuclei. This step can however be relaxed 
for niche protocols that use somatic mutations in the mtDNA 
for lineage tracing purposes (Ludwig et al. 2019). During 
nuclei extraction, the nuclei are also permeabilized, giving 
access to the gDNA. Because Tn5 binding is separate from 
the subsequent gDNA fragmentation, which is induced by 
heating or denaturing agents, Tn5 can be added to nuclei in 
bulk prior to nuclei single-cell separation (Chen et al. 2018). 
The individual separation of nuclei can then be done both in 
multiwell plates as well as in microfluidic droplets. A PCR is 
finally performed to attach library indices, or cell barcodes 
in the case of droplets. This is thus unlike 10x Genomics 
Chromium droplet RNA-seq, where cell barcodes are instead 
added by RT.

Comparison of readout methods

One major difference between RNA-seq and ATAC-seq 
is the number of possible molecules overlapping the same 
genomic region (Fig. 3h). In ATAC-seq, assuming a diploid 
genome, there can be at most 2 fragments. For RNA-seq, 
there is however no limit on the amount of RNA for one 
gene. Furthermore, more than one RT primer can bind to one 
RNA molecule, even if oligo-dT primers are used. Thus, the 
UMI represents the number of RT events, not the number 
of RNA molecules.

Another difference is that there are more steps in the 
RNA-seq chemistry. Assuming that one RNA molecule 
results in one cDNA molecule, the subsequent fragmentation 
step still produces more than one sequenceable fragment per 
RNA molecule. This is not just the case for Smart-seq2, but 
also for 5′ and 3′ capture methods, which produce overlap-
ping fragments of different lengths (Fig. 3i). This must be 
kept in mind during UMI-based deduplication. In principle, 
the overlapping fragments can be combined into one single 

read based on the UMI, but the authors do not know of any 
such software.

Based on RNA-seq and ATAC-seq, additional steps can 
lead to new types of readouts. Metabolic RNA labeling pro-
tocols to measure rate of transcription (Qiu et al. 2020) are 
effectively RNA-seq protocols. Protein levels can be meas-
ured by using oligo-tagged antibodies, thus turning protein 
detection into a sequencing problem. CITE-seq and REAP-
seq are two ways in which antibody-attached oligos enable 
detection by RNA-seq protocols (Stoeckius et al. 2017; 
Peterson et al. 2017; Mimitou et al. 2019) (Fig. 3j). As an 
alternative, tagged lipids (such as 10x Genomics CellPlex) 
can label a variety of cells. All of these follow the chemis-
try expected for RNA-seq, except since the fragments are 
already sufficiently small to fit Illumina sequencers, no frag-
mentation is needed. Instead, a separate enrichment PCR 
is sufficient to selectively extract them from the pre-ampli-
fied cDNA library. Labeling of cells can also be done in 
an ATAC-seq-compatible manner through a different oligo 
design (Mimitou et al. 2021). In addition, the ATAC-seq 
protocol can be modified for detection of CRISPR sgRNAs 
(Pierce et al. 2021), and for quantification of other genomic 
regions (unpublished).

To the author’s knowledge, there are only two fundamen-
tally different archetype readouts not covered by this review. 
Single-cell HiC generates a map of location-to-location 
abundances (Nagano et al. 2013; Stevens et al. 2017; Zhang 
et al. 2022). The other readout is single-cell whole-genome 
sequencing (Gawad et al. 2016). These are both rather niche 
protocols, requiring complex statistics tailored for the pur-
pose, and thus not covered in this review.

From single‑cell chemistry to statistics

Sequencing data preprocessing and initial data 
reductions

Independently of the chemistry used, the first steps of align-
ment and barcode-to-cell association are largely the same. 
If the data stems from a multiwell experiment, then clas-
sical bulk RNA-seq or ATAC-seq tools have commonly 
been used. For droplet data or more complex chemistries, 
dedicated tools exist that scale better for large datasets. 
CellRanger operates on 10x Genomics Chromium data, 
but can be replaced by the faster and more flexible STAR-
solo (Blibaum et al. 2019) pipeline (which is also suitable 
for multiwell plates). The output alignment will, for each 
sequencing read, contain information about position (chro-
mosome name, from, to), and sequence differences vs the 
reference genome (Fig. 4a). This is more information than 
is commonly used, and to speed up later algorithms, most 
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Fig. 4  From single-cell chemistry to statistics. a The number of 
reads overlapping a feature (gene or accessible region) is summa-
rized as a single count value. This representation is much simpler but 
loses information about read alignment coordinates (red) and align-
ment mismatches (green). For RNA-seq, gaps (green) are expected 
due to introns. b Molecules can be deduplicated based on UMIs; if 
the sequence is the same, including the UMI, then they must have 
the same origin. c The continuous normal distribution (blue) is not 
appropriate for discrete count data, such as for sequencing reads. 
Instead, the discrete Poisson distribution is a common choice (red). 
d The number of events from a memory-less radiative process, dur-
ing a certain time, is Poisson distributed. Sequencing is analogous to 
a radiative process when the number of molecules is large, and thus 

the chance of picking copies of the same original DNA/RNA mol-
ecule is then low. The count for a gene (red) are then ~ Poi (Total-
MoleculesSequenced * FractionBelongingToGene). e A zero-inflated 
distribution (top). If the amount of zero inflation is low then it can 
be hard to fit (bottom). f Full-length RNA-seq gives rise to multiple 
cDNA fragments per RNA molecule, causing complex correlation 
between the counts, or alternatively modeled, zero inflation. g RNA 
might be produced in bursts, which can be modeled as polymerase 
on–off kinetics. h ATAC-seq data also has information about the pre-
cise binding site locations of TFs, and possibly other aspects of TF 
activity yet to be understood. i Example pileups of bulk ChIP-seq and 
ATAC-seq, where some binding sites as measured by ChIP-seq (high-
lighted) have no corresponding peaks in ATAC-seq data



 Biophysical Reviews

1 3

information is filtered/reduced in a manner that depends on 
the needs of subsequent steps.

For RNA-seq, only information about which gene the 
read overlaps is typically retained. Any UMI is used to fur-
ther deduplicate reads. The result is counts of fragments per 
gene and per cell, called the count table. Some computa-
tional methods retain more information about the read. RNA 
velocity, for example, stores if the read is intronic or exonic, 
and thus reduces the reads to two counts per gene and cell. 
Interestingly, the 10x Genomics software Cellranger only 
counts exonic reads by default, but can optionally count eve-
rything (recommended for single-nuclei protocols). More 
information exists, including about isoform usage, but novel 
computational approaches need to be developed to make bet-
ter use of this.

ATAC-seq analysis is more challenging because, unlike 
for genes, there is no accepted “list of enhancers.” Instead, 
this list is defined for each dataset by collecting fragments 
across all cells and performing peak calling in a manner 
identical to bulk ATAC-seq or ChIP-seq. MACS2 (Zhang 
et al. 2008) is commonly used, while Cellranger has its own 
algorithm. With peaks defined, it is then possible to collect 
fragment counts per peak. It is an open question as to what 
other information can be extracted; after later analysis steps, 
it is possible to reanalyze the raw reads to detect transcrip-
tion factor (TF) binding sites (“TF footprinting” (Bentsen 
et al. 2020)). This shows that in some cases, even if infor-
mation is not retained in a reduction, it may be possible to 
backtrack to the raw data to extract further information.

It is sometimes possible to skip the slow alignment step 
and immediately count the feature overlaps. Alevin (Srivas-
tava et al. 2019) does so for RNA-seq by instead solving a 
k-MER deconvolution problem over all reads. This requires 
a reference of expected sequences of high confidence, 
which cannot be fulfilled for variable regions such as the 
T cell receptor (TCR). This approach is however particu-
larly promising, as it avoids the problems of non-uniquely 
aligned reads, and the counting speed is sufficiently high that 
downstream statistics can be done by bootstrapping. One can 
thus expect a future single-cell pipeline that is entirely based 
on a k-MER sequencing data representation instead of the 
current count matrices.

Filtering cells and features

The resulting count table is, in more general terms, said 
to consist of quantified “features” for each cell. To speed 
up computation and avoid false positives, the number of 
features can be reduced (Fig. 2a panel 4). For example, if 
across all cells, a gene is always expressed or an enhancer is 
always open, then it does not contribute much information. 
In the early days, ERCC (External RNA Controls Consor-
tium) spike-in RNA was used to estimate technical variance. 

However, these days, features are selected by pure compari-
son of their dispersion to other similar features. For gene 
expression, this means other transcripts of similar abundance 
(Brennecke et al. 2013). Genes having less variance than 
the expected technical variance can also be ignored. This 
approach does however not apply to ATAC-seq data which 
is of rather binary nature (open or closed). Instead a weight-
ing scheme such as TF-IDF is later applied to emphasize the 
most informative features (described later).

Another useful reduction is to remove observations of low 
quality. Cells for which there are few reads (low coverage) 
do not contribute much information and are usually removed 
based on a lower cut-off (no gold standard exists). There may 
also be free floating RNA or DNA, which may enter droplets 
of other cells (background). The background can be modeled 
and its effect removed to a certain extent (Young and Behjati 
2020), but cells with few reads are particularly vulnerable to 
this bias. RNA also sticks to cells, and this may cause bias 
if it preferentially sticks to neighboring cells, since cells are 
not randomly distributed in the tissue. Finally, more than one 
cell can enter a library, especially if droplet microfluidics is 
used. Such droplets can be detected by ML after simulating 
the mixing of all cells. Several such packages exist (Wolock 
et al. 2019).

Unique molecular identifiers and barcode correction

Because of the limited amount of input DNA/RNA, 
after PCR, it is highly likely that some fragments will be 
sequenced more than once. To avoid double counting, some 
fragments are equipped with unique molecular identifiers 
(UMIs). These are simply stretches of N-nucleotides (ran-
dom mix of ATCG), with a suitable length depending on the 
expected number of duplicate fragments. If two fragments 
are equal, and also share a UMI, then they are assumed to 
have the same origin (Fig. 4b). Removal of extra copies is 
called deduplication. UMIs cannot be attached during PCR, 
but rather only at steps which can only happen once: ligation, 
reverse transcription and template switching. In Smartseq2-
style protocols, it is impossible to add UMIs representing 
RT events for all final fragments, as fragmentation by Tn5 
separates most inner cDNA fragments from 5′ or 3′ UMIs. 
Smartseq3 has, however, also added UMIs to the 3′- and 
5′-most fragments (Hagemann-Jensen et al. 2020).

The handling of UMIs is generally a matter of preprocess-
ing, as is done by Cellranger. Because sequencing errors can 
occur, UMIs may need to be bioinformatically corrected. 
If a small number of reads contain UMIs similar to highly 
abundant UMIs, then reads can be assumed to be due to 
sequencing errors (Smith et al. 2017). If many of the pos-
sible UMIs are used, then the assumption of UMIs being 
unique breaks down, and it may be necessary to treat them 
with more advanced statistics. This is because the birthday 
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paradox (Wikipedia contributors 2022)—the chance of at 
least two UMIs being shared, if picked randomly from a 
large pool—increases surprisingly fast. The details are not 
covered here, but it is important to be aware of the problem 
such as to design UMIs and experiments accordingly.

Cell barcodes in droplet data can be corrected similarly 
to UMIs, but with higher confidence if the random sequence 
comes from a predefined list (called a whitelist). In this case, 
there are several algorithms enabling the design of oligo 
sequences that can be corrected efficiently (Buschmann and 
Bystrykh 2013). As an example, the 10x Genomics Chro-
mium RNA-seq chemistries use whitelists of up to 1.4 M 
cell barcodes.

Toward a statistical model

In early days of model fitting, little or no regard was given 
to statistical distributions. For simplicity, the Euclidean 
distance (data vs fitted value) was commonly minimized, 
which in hindsight was a good choice—it actually has strong 
links to the normal distribution. The normal distribution is 
frequently a correct choice because it arises naturally for 
any variable that is the average of several other stochastic 
processes—a result denoted the central limit theorem. In 
biology, such averaging is common (e.g., a phenotype is 
usually the total result of many interacting genes). That said, 
the average might rather be on a log-scale. This happens if 
the results are multiplicative (e.g., one mutation increases 
length by 10%, and another mutation 10% on top, resulting 
in 1.1*1.1 = 1.21, which is more than 1 + 0.1 + 0.1 = 1.20 in 
the additive case). This is also implicit to any use of “fold 
change” in gene expression analysis, as it ignores the abso-
lute gene expression level. Normal and log normal distri-
butions are thus reasonably good and common choices to 
model biological processes. However, these are continu-
ous distributions while sequencing data is discrete and has 
a rather different shape near zero (Fig. 4c). Luckily, mod-
ern computing has enabled the use of more appropriate 
distributions.

The most important distribution for discrete sequencing 
data is the Poisson [λ] distribution. The Poisson distribution 
can be physically motivated to model the number of decays 
(happening with rate λ) under a certain time from a radioac-
tive source (Fig. 4d). This is because of an intrinsic physical 
property, namely that any radiative event is uncorrelated to 
when the last radiative event happened. In other words, it is 
a memory-less process. Such processes are widely modeled, 
even if not completely memory-less, because they are easy to 
handle mathematically. Sequencing can be thought of as a pro-
cess of picking random DNA molecules from a semi-infinite 
tube. Even if the DNA has been PCR amplified, the probability 
of picking a copy of a previous molecule is approximately 
non-existent. This makes it approximately a memory-less 

process, where the Poisson rate parameter is dictated by the 
total number of reads, and how many percent of the molecules 
are expected to come from the gene/enhancer of interest.

The Poisson distribution is relevant to any sequencing con-
text, but does not take biological properties into account. As 
such, it usually underestimates the variance. The Negative 
Binomial distribution, NB [rate, dispersion], is a natural exten-
sion that in addition to rate also has a dispersion (variance) 
parameter. It is a well-studied distribution that is the de facto 
standard for bulk RNA-seq analysis (Love et al. 2014). NB is 
also equivalent to a Poisson distribution, when the NB rate 
parameter in turn is Gamma distributed. Thus, NB-distributed 
counts can be expected from a sequencer, if the continuous 
Gamma distribution represents the biological variation, and 
Poisson the sampling by sequencing. This makes the NB dis-
tribution a first choice when analyzing data from new sequenc-
ing protocols.

Statistics for RNA‑seq

Single-cell data is highly noisy and begs for more complex 
models than bulk equivalents. The memory-less assumption 
behind Poisson is less appropriate because the pool of DNA is 
no longer semi-infinite. Rather, in our experience, up to 30% or 
more of the final DNA molecules from a 10x Genomics Chro-
mium scRNA-seq library can be duplicated (calling for UMI-
based deduplication). To motivate the best statistical models, 
it is thus necessary to understand details of the central dogma, 
how the final DNA molecules arise in the library preparation, 
and what physical properties thus can be expected.

It was noticed early on that RNA-seq counts for a gene 
follow a zero-inflated distribution (large number of 0 values, 
Fig. 4e), starting a heated debate on the nature of single-cell 
data and whether there are biological reasons why some genes 
“drop out.” One study suggests that the zero inflation problem 
is rather overrated, and that no zero inflation is observed for 
ERCC spike-in RNA (Svensson 2020). However, it is easy to 
see that zero inflation is a concern for plate-based full-length 
RNA-seq (Fig. 4f). When a single-RNA molecule is present, 
it can give rise to multiple counts; however, when the RNA 
molecule is not present, the count will be exactly zero. Our 
group has noticed that a single-RNA molecule can give rise 
to multiple cDNA molecules, even in regular 10x Genomics 
Chromium droplet chemistry (unpublished). Statistically, the 
problem can also be seen as zero inflation (dropout rate q) of 
count C (Poisson distributed):

Letting the variable Z denote the presence of the RNA 
molecule, and C the cDNA count distribution during 

Count ∼ Z ∗ C,withC ∼ Poisson[�], p (Z = 0) = q, p (Z = 1) = 1 − q

Or equivalently ∶ Count ∼ ZeroInflatedPoisson[�, q]
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presence. However, this only applies to the case of a sin-
gle-RNA molecule, and as such is likely to fit best to lowly 
expressed genes. Alternatively (and more correctly), the 
count can be seen as a sum of highly correlated variables. 
However, this treatment is difficult mathematically. A practi-
cal serious concern is identifiability (can the parameters be 
fitted given the data?): the ZINB model has three parameters 
(mean, dispersion, dropout rate), while NB has two (mean, 
dispersion) and Poisson only one (mean). If the dropout rate 
cannot be reliably fitted, then this might affect later steps, 
such as differential expression (Kharchenko et al. 2014; 
Finak et al. 2015).

Zero inflation can also have biological origins. It has been 
proposed that cells produce RNA in bursts (Fig. 4g) and 
the kinetics of polymerase binding/releasing has been fitted 
(Kim and Marioni 2013). We have noticed that the kinetics 
depends on the promoter type and that burstiness is higher 
for immune genes (Hagai et al. 2018). Others have seen that 
broadly, enhancers control burst frequency, while core pro-
moters control burst size (Larsson et al. 2019). More work 
is needed to make good statistical use of what we know so 
far, and one must be aware that p-values produced by com-
mon differential expression software are greatly inflated; and 
some genes fit the statistical distributions less than others. 
The need for biological replicates to obtain correct p-values 
has been raised (Squair et al. 2021). As sequencing and 
library preparation prices have dropped, and multiplexing 
has become easier, biological replicates must again become 
the norm. Statistically, p-values can be calculated over pseu-
dobulk samples, where the counts for a gene are taken over 
several similar (clustered) cells, and the resulting pseudob-
ulks are compared using bulk RNA-seq tools (Robinson 
et al. 2010; Love et al. 2014). This is a straight-forward, 
albeit arbitrary method compared to a hierarchical statistical 
single-cell model, e.g.:

A model that explicitly models each step of the biol-
ogy and library preparation process can better integrate 
knowledge about, e.g., promoter/enhancer architecture, and 
make differential expression more about a specific biologi-
cal aspect (promoter binding, enhancer use). As more data 
becomes available, and computing power increases, more 
elaborate statistical models can be expected.

Statistics for ATAC‑seq

ATAC-seq is fundamentally different from RNA-seq, and 
while there is a standard workflow (Baek and Lee 2020), the 
statistics have been much less discussed. Because there is no 
fragmentation, there is less concern about zero inflation. The 
counts have a rather firm upper limit, but regular Poisson 

Counts ∼ NB [�, �], with � ∼ LogNormal (...)

statistics still fit the data well; however, some authors have 
preferred to binarize the data, resulting in a binary statistical 
distribution (e.g., done by Signac (Stuart et al. 2021)).

The open questions about ATAC-seq are rather about the 
meaning of the data. Tn5 has been shown to have a sequence 
bias and yields different data than the older DNase hyper-
sensitivity assay (Karabacak Calviello et al. 2019). It is also 
possible to pinpoint transcription factor binding sites (or 
DNA binding proteins in general) as “holes” in the ATAC-
seq peaks (Fig. 4h). In comparison to ChIP-seq data, we 
have also seen sites with strong ChIP-seq peaks but no cor-
responding ATAC-seq peak (Henriksson et al. 2019), show-
ing that Tn5 cannot always access TF sites (Fig. 4i). One 
should thus ask what a “site” is. Enhancers are still defined 
using bulk ATAC-seq peak detection methods (Zhang et al. 
2008; Granja et al. 2021; Stuart et al. 2021), applied to the 
single-cell data but ignoring which cell each fragment origi-
nates from. This simplifies analysis but likely misses out on 
discoveries the single-cell ATAC-seq data yet has to offer. 
Thus, much more work remains in the area of scATAC-seq 
analysis.

Size factors and sequencing depth

Cells may differ in terms of the depth to which they are 
sequenced (i.e., the number of molecules counted). The rea-
sons for this are unclear, but can be affected by inefficient 
cell lysis, unevenness in droplet size and content, stochastic 
enzymatic effect, and stochasticity of sequencing. What is 
clear is that if cells are compared using any Euclidean-type 
measure, then they will be organized according to the total 
amount of molecules rather than which molecules are pre-
sent. All packages thus normalize cells using a correcting 
factor, termed a “size factor”—in the simplest case, it is 
simply a division by the total number of molecules. More 
elaborate corrections are used for bulk RNA-seq (Love et al. 
2014), but they take more time to compute and appear to be 
unnecessary for single-cell data.

Not much attention is given to the size factor, but some 
statistical notes are in order. First, RNA abundance differs 
between cell types, e.g., activated T cells can contain over 
ten times more RNA than naive T cells. Such differences are 
currently normalized away. Second, the less RNA/DNA that 
stems from the cell, the more reads might stem from back-
ground free RNA/DNA (Young and Behjati 2020). Divid-
ing by the total number of molecules per cell is thus not a 
correct normalization for cells of low abundance. A quick 
solution is to remove such cells; however, because there is 
no clear cut-off for what constitutes a “low abundance cell,” 
this is not a perfect solution. Overall, the current size factor 
normalization appears to work well in practice but analysts 
must be aware of potential exceptions when this ceases to 
be the case.
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From statistics to the underlying dimensions

Even for something as simple as the Normal distribution N 
(μ,σ), we assume that the parameters μ and σ have some sort 
of interpretable meaning (i.e., here, mean, and variance). 
While single-cell data can be described by a distribution, 
which has over 20,000 dimensions (genes or enhancers), 
understanding the data means that we can find a significantly 
smaller set of “hyper parameters,” making up a latent space 
to which we can assign meaning. This can be expressed as:

Finding a suitable latent space, and a transformation from 
this small space to the larger data space, is called dimen-
sional reduction (DR). Because there is no best way of 
doing this, and there are tradeoffs in latent space size and 
shape vs interpretability, a plethora of approaches has been 
developed.

Linear dimensional reductions

The simplest form of dimension reduction is linear DR. All 
linear transformations from latent space X to data Y can be 
described by matrices:

where the matrix W decides how the space is reshaped by 
combining rotations, translations, and skews of the data 
(Fig. 5a). For DR, the aim is to choose W such that as much 
information is moved to the first couple of dimensions. It is, 
however, not clear what, exactly, constitutes information, 
and the quality of the reduction relies on using the right 
definition.

PCA (principal component analysis) is the historically 
most common DR algorithm (Pearson 1901) and it informed 
the development of all other DR methods. In PCA, the first 
dimensions of the latent space are called principal compo-
nents, and this name is also commonly used for other meth-
ods. However, PCA itself refers to the case when W is chosen 
such as to (1) maximize the variance of the data along the 
first dimensions, and (2) make the dimensions uncorrelated, 
by being orthogonal (Fig. 5b). Only the first dimensions are 
kept, as these are assumed to contain the largest variation 
and thus information. The choice of W is almost unique, and 
the computation of it is extremely fast, as it ends up being 
the eigenvectors of the covariance matrix. As eigenvalue 
problems are well studied, PCA is also rather intuitive com-
pared to all other DR algorithms. Together, this made PCA 
very popular, even today, despite that the resulting DR sel-
dom captures the relevant biology well. Ignoring the inter-
pretability, it can also be used as a first data reduction step 
before using more sophisticated nonlinear DR algorithms, 

Counti ∼ N[�i (X), �i (X)],with X ∼ SimpleSmallDistribution (...)

Y = WX, or yij =
∑

k
wikxkj

such as UMAP (described later). PCA can be unstable for 
noisy data, but improved variants exist (such as https:// 
github. com/ faceb ookar chive/ fbpca).

Independent component analysis (ICA) is similar to PCA, 
but W is picked based on other criteria (Alaa 2020). Sev-
eral possible criteria exist, but the intuition as to why PCA 
might not give the most informative latent space is shown 
in Fig. 5c. Instead of maximizing variance, ICA can aim to 
maximize the skew of the data. The issue with ICA over 
PCA is that the answer is less constrained (not unique), and 
the algorithm is considerably slower. ICA has been used for 
single-cell analysis in, for example, the Monocle2 package 
(Van den Berge et al. 2020). It stands as a good reminder that 
PCA is not the only option.

Non-negative matrix factorization (NMF) has also been 
used for single-cell analysis (DeBruine et al. 2021). Unlike 
PCA and ICA, the requested number of reduced dimensions 
(here called factors) is given up front (Fig. 5d). Several dif-
ferent numbers of dimensions are tested to find the optimal 
DR, but it can also be based on the expected meaning of 
the dimensions. Frameworks such as f-scLVM enable the 
analyst to also predefine some of the dimensions based on 
known genes (Buettner et al. 2017). This type of “bias” can 
help steer the model to increase interpretability. Linear mod-
els are straight-forward to extend to perform multiomics data 
integration (such as the MOFA package (Argelaguet et al. 
2018)).

Overall, linear DR models are much easier to interpret 
than nonlinear models, and can easily be solved for advanced 
statistical distributions (ZINB and beyond). It is thus 
unlikely that they ever will go completely out of fashion, 
and even if a nonlinear model is deployed, it is still good to 
have a linear model to benchmark against.

Correcting for batch effects

When single-cell libraries are generated, common varia-
tions may be introduced that affect all cells. The sources are 
not well understood but arise as the mixes of enzymes and 
buffers differ between runs. This effect (commonly known 
as batch effect) may cause cells to not be directly compara-
ble. Several dedicated algorithms exist to try and correct for 
this effect, for example, Harmony (Korsunsky et al. 2019), 
MNN (Haghverdi et al. 2018), and BBKNN (Polański et al. 
2020). Scanpy and Seurat have other algorithms included. 
The problem was studied already for bulk RNA-seq data, 
and some older algorithms can also be used (Risso et al. 
2014) given that they are fast enough for today’s huge single-
cell datasets. The performance of many algorithms has been 
benchmarked (Tran et al. 2020).

The earliest method for removing batch effects was regu-
lar PCA, where any differences in principal component 1 

https://github.com/facebookarchive/fbpca
https://github.com/facebookarchive/fbpca
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(PC1) frequently were due to batch differences. Thus, the 
differences could be handled by discarding the first com-
ponent. This highlights the link of batch effects to DR. The 
most conservative way of statistically handling them is to 
introduce a categorical latent variable that represents the 
batch. This also holds for nonlinear methods discussed 
later; for example, the neural network–based model SCVI 
(Gayoso et al. 2022) can take the batch ID as a covariate. 
The only caveat with this approach is that it may be too 

conservative for practical use. Modern batch correction 
algorithms can instead use anchor cells, which are cells 
deemed similar enough between datasets that they can be 
overlapped in the batch integration. Cosine distance has 
been suggested as a way of finding anchor cells (Haghverdi 
et al. 2018). The best way of handling batches has not yet 
been settled, but the idea that batch effects can correspond 
to a latent variable is crucial. If other experimental vari-
ables are known between single-cell datasets, it may be 

Fig. 5  From statistics to the underlying dimensions. a Linear trans-
formations are limited to combinations of translations, rotations and 
skews. b PCA finds a new coordinate system that maximizes variance 
along the first dimensions. c ICA separates two populations of cells 
along PC1, while PCA rather would put the component with highest 
variance as PC1 (here PC2). d NMF performs a linear decomposi-

tion, with the number of latent dimensions predefined. In advanced 
factor analysis models, the content of the dimensions can also be par-
tially specified. e Two equidistant points transformed exponentially. 
f TF-IDF transformation aims to normalize rows and columns of an 
ATAC-seq count matrix to give weight to more interesting features 
(enhancers)
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reasonable to expect them to appear as latent variables 
(implicitly or explicitly).

Common other transformations

Not all transformations are linear; more generally, counts 
can be modeled as

where T is a transformation over a normal distribution. It can 
be beneficial to undo the effect of this transformation as the 
untransformed variable then follow a simpler Normal distri-
bution. It also affects our view of distance between points. 
For example, consider the commonly used l2-distance, that 
is, d(x, y) = (x, y)2 . It is implicitly assumed that points of 
equal distance do not change distance if moved together in 
space; this assumption does however not hold after most 
transformations (Fig. 5e). The solution if T is an exponen-
tial transformation is simply to compute log(x). However, 
because log(0) =  − ∞, for RNA-seq count tables it is more 
common to compute log(x + 1), where 1 is a pseudocount. 
Several alternate transformations exist and have been com-
pared (Ahlmann-Eltze and Huber 2023).

Transformations can possibly more intuitively be seen as 
means to put suitable weights on different features before 
other analyses such as PCA are performed. For ATAC-seq, 
the most common weighting approach is TF-IDF (term fre-
quency–inverse document frequency) (Cusanovich et al. 
2018). This method, borrowed from linguistic analysis, 
does two things in this context: (1) It normalizes counts 

Counti ∼ T[N[�i (X), �i (X)]]

across one cell, as a more efficient tagmentation can lead 
to all of the chromatin appearing more accessible; this is 
equivalent to size factor normalization as done for RNA-
seq. (2) Regions that are accessible in all cells do not help 
distinguish different types of cells, and are thus given lower 
weight (Fig. 5f).

The importance of the transformations described here is 
easily overlooked due to their speed and simplicity; how-
ever, they are crucial steps. Importantly, these models have 
no free parameters, and their choice can be motivated by 
an understanding of the underlying biology and chemistry. 
They should thus be considered before using more advanced 
models, with neural networks being the extreme opposite 
(described later).

Cell states and latent space topology

Nonlinear models were developed because many processes 
(including many in biology) simply are not linear. Unfor-
tunately, many nonlinear models fit to the same data, and 
they are hard to interpret (Fig. 6a). Before using a nonlin-
ear model, it is thus important to have an idea of how one 
wants the model to behave, and how it might behave. This 
requires a fair bit of abstract mathematical thinking that will 
be presented here.

Topology is a subdiscipline of mathematics that is focused 
on the properties of spaces and surfaces (Armstrong 1983). It 
tries to make concepts concrete, such as path-connectedness. 
For example, one might ask the question, “is there a way to 
connect a point A to a point B?” If point A is taken to be 

Fig. 6  Cell states and latent 
space topology. a A linear 
model (red) has a single solu-
tion and easy interpretation 
while nonlinear models (blue, 
green) fit the data better but are 
hard to interpret. b Whether a 
cell type can differentiate into 
another cell type can be seen 
as a topological problem of 
connectedness; this particular 
topology has the shape of a tree. 
c Spaces or topologies can be 
approximated arbitrarily well by 
triangles, or simplexes in higher 
dimensions. d The 5 nearest 
neighbors can make up a local 
graph or local simplex. e UMAP 
and t-SNE reduces the number 
of dimensions while trying to 
retain distances, effectively 
retaining topology as well as 
possible. The optimal solution 
is, however, not unique
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among pluripotent cells, and B is taken to another cell type, 
this type of connectedness is equivalent to the biological 
question “can type A cells differentiate into type B cells?” 
(Fig. 6b). While this question is fairly easy to answer by a 
human if the cells are reduced to a 2D plane, it is not obvi-
ous in the higher dimensional (20,000 for all genes) space. 
Luckily, the field of topology is set up to handle any number 
of dimensions. Anyone analyzing higher dimensional data 
should thus be interested in topology.

Discrete topologies and basic nonlinear dimensional 
reduction

One problem with topology is that mathematicians usually 
have well-defined spaces (based on an equation). Single-cell 
biologists, on the other hand, just have a finite set of noisy 
observations. A link is achieved by approximating topolo-
gies from the data points using k-simplexes—a multidimen-
sional equivalent to a triangle (Fig. 6c). These simplexes 
can be built by letting each corner be a single-cell observa-
tion. The edges remain lines, and the lines can be picked by 
distance. How they should be picked is an open problem, 
but typically cells are connected to the k nearest other cells, 
also known as the nearest neighbors (the result is called a 
kNN graph, Fig. 6d). If an Euclidean space is assumed, i.e., 
the Euclidean distance is used, then the kNN graph can be 
computed quickly also for large numbers of cells.

The kNN graph is the input to the most commonly used 
nonlinear DR tools for single-cell data: t-distributed sto-
chastic neighbor embedding (t-SNE) and uniform manifold 
approximation and projection (UMAP) (McInnes et al. 2018). 
While the algorithms can work with the full set of cell–cell 
distances, the closest neighbors are the most relevant, and 
focusing on these speeds up the computation tremendously. 
The output of each of these algorithms are 2D coordinates (or 
user choice of dimensions, with 3D frequently being useful), 
where the distance of the points reflects their distance in the 
higher dimensional space (Fig. 6e).

The greatest issue with t-SNE and UMAP is that interpreta-
tion is difficult (discussed further in the later section on cell 
types). While these methods are good to give an unbiased 
overview of the data, the latent space axes have no meaning, 
and the distance might not reflect the most interesting biology. 
Thus, other nonlinear models that help capture the biology of 
interest are recommended after initial data investigation.

Cell state space dynamics and trajectory inference

While t-SNE and UMAP aim to simplify the data in terms of 
mapping them directly to a lower dimensional space, another 
approach is to find a simplified topology. These topologies 
can, but need not, lend themselves to easy presentation. 

While nonlinear factor analysis can handle topologies 
such as lines and planes, it cannot handle tree topologies 
(Fig. 6b), as relevant for cell fate decisions during, for exam-
ple, differentiation. Because of the historically close link to 
differentiation over time, the use of algorithms to analyze 
line or tree topologies is called pseudotime analysis, or tra-
jectory inference. Several pseudotime algorithms have been 
proposed and compared (Saelens et al. 2019).

Trajectory inference rests on several assumptions. First, 
if the trajectory inference is for a time-based process, then 
the data must contain cells representing all the time points. 
Since cells commonly do not respond at the same rate, this 
is frequently the case, but cells from several time points 
may need to be mixed. Most crucially, no algorithm can 
prove that a pseudotime trajectory exists—it is an assump-
tion (RNA velocity (La Manno et al. 2018; Bergen et al. 
2021), and RNA metabolic labeling (Qiu et al. 2022), which 
measures the vector field, tries to overcome this limitation). 
Some algorithms try to find the type of trajectories, while 
others simply accept user input. Thus, the latent space can 
be shaped by prior knowledge, or it can be unbiased.

Several algorithms are based on algorithms that find the 
Minimum Spanning Trees (MST), i.e., the smallest subset of 
edges in a graph, given weights (distances), that still connect 
all the vertices (Fig. 7a). For single-cell data, the kNN graph 
is the input to the MST algorithm. However, due to noise, the 
MST graph can become rather complicated. To avoid overfit-
ting, several methods are thus used to simplify the graph. Sling-
shot (Street et al. 2018) and Monocle (Trapnell et al. 2014) are 
examples of MST-based algorithms. MST has the advantage 
(and disadvantage) of not enforcing the number of end-points 
per se. Other approaches exist that simplify the graph, not nec-
essarily to a tree, such as PAGA (Wolf et al. 2019).

Knowledge can be extracted from the graph representa-
tions in several ways. For simple graphs, such as trees, a 
subset of cells can be ordered from the tip of one branch to 
another. Another approach is to study the dynamics of cells, 
assuming they transition semi-randomly over the neighbor 
graph. The simplest suitable statistical models are memory-
less processes. These also correspond to a Newtonian model 
of the evolution of the cell state X at time t, which is assumed 
to contain all information needed to predict the future:

Memory-less processes of this kind are also called 
Markov chains, and can be described by graphs hav-
ing transition probabilities on each edge (Norris 1997) 
(Fig. 7b). Thus, the single-cell neighbor graph with suit-
able probabilities assigned can be treated with powerful 
Markov chain theory. The jumping probabilities can be 
uniform, or informed by other data such as RNA velocity 
(Lange et al. 2022). If some vertices in the graph only 

dX∕dt = f (x) + noise ⟺ p(Xt+1|Xt) = f (Xt)



Biophysical Reviews 

1 3

have incoming edges, then these are denoted as absorb-
ing states—a random walk will at some point get stuck in 
any of these (Fig. 7c). If there are multiple such absorbing 
states, then it is easy to compute which end state is the 
most likely, and what is the average number of random 
jumps until it happens (corresponding to total time). This 
can be used to estimate the likelihood of a type differ-
entiation. If no absorbing states exist, then it is possible 
to calculate the stationary distribution—how likely it is 
for a cell to be in a given state, independent of where the 
cell starts (assuming a property called ergodicity, usually 
fulfilled for single-cell data). These are just the simplest 
Markov chain concepts, and the chain can be designed to 
model and answer various biological questions.

One caveat with current pseudotime methods is that they 
provide no information about why any branching occurs. 
An analogy is with a previous study of speciation of ours 
(Henriksson et al. 2010): to learn why speciation occurs, 
the concept of speciation had to be removed from the model. 
Similarly, it may be speculated, cell fate decision-making 
cannot be understood using algorithms that enforce a sim-
plified model of a branching event. In particular, the local 
topology at the branch is not understood at all. Unbiased 
Markov chain–based modeling is likely a good bet for any-
one trying to further understand cell fates.

Donuts and the cell cycle

Topology offers tools to reason about the shape of the latent 
space. One of the most famous results from topology is that a 
coffee cup is equivalent to a donut (Fig. 8a). This result more 

specifically tells us about a certain type of connectedness: can 
one line from A to B be deformed in a continuous manner 
such as to overlap another line from A to B? It turns out that 
there are lines on the donut which do not have this property 
(Fig. 8b), because the hole in the middle restricts the deforma-
tions. The same property holds for a coffee cup. In topology, 
the coffee cup is equivalent to the donut in the sense of having 
similar behavior line-deformation-connectedness properties.

The concept of topological equivalence is important to us 
because we can reason about simpler spaces instead of the 
high-dimensional raw data. The cell cycle can be thought of 
as a circle (which indeed is the way it is commonly drawn, 
Fig. 8c). The cell cycle state can be identified from RNA-
seq data using common workflows (part of both Seurat and 
SCANPY), and cells can be annotated as being in either G1, 
S, or G2M phase. However, the standard workflow does not 
order the cells within these phases, limiting the resolution 
at which cell cycle–linked events can be studied. In limited 
cases, it might be possible to use a pseudotime algorithm, 
but because linear pseudotime has the implicit assumption 
of a start and an end, linear pseudotime is topologically 
incompatible with the cell cycle (Fig. 8c).

There are several attempts at ordering the cells accord-
ing to the cell cycle. The common RNA-seq analysis 
method for categorizing cell cycle state is based on a list 
of marker genes, and a PCA is used to reduce the number 
of dimensions to 2. It is likely not a coincidence that the 
smallest number of dimensions in which a circle (or cycle) 
can be represented is also 2. In principle, the angle in this 
reduced space can be used to order the cells, although we 
have never seen this performed.

Fig. 7  Cell state space dynamics and trajectory inference. a The Min-
imal Spanning Tree (MST) of a graph can be used as a simplifica-
tion step. b Cells can be thought to move randomly over the graph, 
representing progress (differentiation, activation) in cell state space. c 
If there are only incoming edges to a node, from no outgoing edges, 

then the node is called an absorbing state. Given a start position, 
the probability of ending up in either A or B can be calculated. In 
this example, the probability of absorption in A is higher than in B, 
assuming equal jumping probabilities
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One caveat with topological reasoning is that we only 
have a finite number of samples, and thus only approxi-
mate knowledge of the space. Can cells ever reside in holes 
of the topology? If points or the kNN graph is assumed to 
have volume, then this question can be addressed by test-
ing different volumes. This has been applied to single-cell 
data (Rizvi et al. 2017) and the concept enables a range of 
analyses, such as how “small” or isolated a gene regulatory 
program is (Fig. 8d).

Housekeeping genes, group theory, and product 
spaces

Group theory is a topic of abstract algebra and describes the 
mathematical structures (groups) generated by binary opera-
tors, such as addition or multiplication. A formal definition 

is beyond this review, but the main use is in analyzing sym-
metries. It has had success in X-ray crystallography, where it 
can be used to prove the number of possible crystal structure 
symmetries. While addition is a function over the space of 
numbers, it can also be used to organize, e.g., how many 
turns plasmid dsDNA is wounded. The state can be repre-
sented by the winding number (Fig. 8e). The operator of 
interest is in this case “PositiveWinding,” though an inverse 
“NegativeWinding” can be derived. This winding operator 
operates on circular dsDNA as objects, adding the turns of 
one plasmid to another. Because winding behaves exactly 
as integers over addition, an isomorphism can be defined 
over classes of topologies to numbers (thus, one can speak 
of winding numbers, instead of complex geometric objects). 
The main point of group theory is that various symmetries 
can be argued based on the properties of the operator, and 

Fig. 8  Topological reasoning. a A coffee cup and a donut are topo-
logically equivalent based on their connectedness properties, and can 
further be continuously deformed into each other. b Lines on a donut 
cannot always be continuously deformed into each other because 
of the hole in the middle. But if the hole is removed, the topology 
becomes path-connected. Thus, a circle and open plane are not top-
ologically equivalent. c The cell cycle has the topology of a circle, 
which is different from a line. d If the graph is given thickness, then 

the existence of topological holes depends on the thickness. e The 
winding number can be used to describe how twisted plasmid dsDNA 
is, and organizes different conformations into equivalence groups. 
It is generated from up- and down-winding operators. f The product 
space generated from combining the cell cycle (circular) and differ-
entiation level (from low to high, linear) is a cylinder. In reality, this 
cylinder latent space might however not fit the data
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the operator can operate over topologies. Conversely, sym-
metry usually implies some type of group, e.g., a rotated 
circle is still a circle (making the rotation operator an iden-
tity operator in this case). The breaking of symmetries has 
also been studied in relation to groups in embryogenesis 
(Kumar and Bentley 2003). Past positive examples make use 
of group theory tempting also in a single-cell latent space 
setting.

Groups are related to product spaces. We can imagine a 
representation of the cell state to be a position in “the space 
of cell cycle,” and simultaneously a position in “the space 
of cell differentiation.” The set of all possible two positions 
together (cell cycle, differentiation) then makes up a higher 
dimensional “product space” (Fig. 8f). Such a latent space 
can naturally be expected to capture more of the biology 
than just each of them alone.

Unfortunately, there are few pure “operators” in biol-
ogy that operate on only one space, and thus the product 
space analogy breaks down. Even processes considered to 
be “housekeeping” are intertwined with other processes. 
Several examples can be given for the cell cycle: activation 
of naive T cells is essentially a synchronized entry into the 
cell cycle; and cells in the skin preferentially divide during 
the night (Beri and Milgraum 2016), linking it with circa-
dian rhythm. T cell migration in and out of lymph nodes is 
also linked with the circadian rhythm (Druzd et al. 2017). 
These are just some examples of how seemingly housekeep-
ing processes are linked to more specialized processes, and 
how there are no truly independent spaces. This is the most 
important take home message—biology does not conform 
well to idealized representations such as independent spaces. 
Nevertheless, in limited cases, it can be a good approxima-
tion, and fitting data to idealized models is a natural part of 
hypothesis testing.

Nonlinear models and neural networks

Graph-based reasoning allows one to compare cells in a topo-
logically relevant manner, but it does not provide an explicit 
function to and from the latent space to the data space the 
way PCA, NMF, or other methods do. Having an explicit 
function is a requirement for using most statistical tools. 
Unfortunately, it is normally difficult to motivate the choice 
of a nonlinear function for higher dimensional data. One way 
out is to allow a large range of differently shaped functions; 
this can be done by using neural networks (NNs). These are 
inspired by neurons, built up by many small simple units that 
together can produce complex behavior. The smallest modern 
“neuron” typically looks like this (Fig. 9a and b):

Y = ReLU[
∑

i
wiXi + b]

where the nonlinear function ReLU is defined as follows:

Several layers of neurons make up a neural network 
(Fig. 9c). The optimal input weights wi and b are computed 
using optimization, e.g., by minimizing the difference of the 
neural network output vs the given data (also known as the 
reconstruction error):

There is little special with this mathematical construc-
tion, except that it has a “well-behaved” differential, which 
helps optimization over many layers of neurons (avoiding 
what is called the “vanishing gradient” problem, which 
occurs when lower-layer connection weights in a deep NN 
become static, hindering or halting further training of the 
NN). Secondly, it is in fact just many multiplications and 
additions organized in a coherent way, and computing it fits 
well with how graphics processing units (GPUs, graphics 
cards) are designed. GPUs enable an order of magnitude 
faster solving of NNs. Since NNs are nowadays easy to 
use and fast to compute, many methods are based on them. 
Note, however, that linear functions are a special case of 
neural networks, and everything here could be designed for 
these as well.

A final important note is that the NN reconstruction does 
not rely on using the Euclidean distance between data points. 
The reconstruction error model can easily be modified to 
better incorporate statistical properties. Because the Euclid-
ean distance enforces a certain type of topology, and thus 
latent space structure, the use of NNs can thus open the door 
to biologically more relevant latent spaces.

Generative processes

Methods such as PCA, ICA, NMF, and UMAP were primar-
ily developed to map points from data to latent space. An 
alternative approach is to develop algorithms that map from 
latent space to data. However, since the latent space has a 
smaller dimension, it cannot easily cover all of the larger 
space (Fig. 9d; filling the data space is possible with space-
filling curves (Armstrong), but they are only of theoretical 
interest). A solution to this is to consider multi-valued func-
tions; that is, f (x) can return more than one value. In the case 
of generative processes (GPs), the returned values follow 
a probability distribution. A basic generative process from 
latent space X to data space Y can look as follows (Fig. 9e):

ReLU (x) = {0 if x < 0; x if X ≥ 0}

Minargw

∑
i
||Yi − NNw(Xi)

||
2

x ∼ Uniform[0, 20]

y1 ∼ Poisson[� = x]
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Fig. 9  Generative processes and neural networks. a The ReLU func-
tion is a simple nonlinear function that forms the bases of modern 
neural networks. b One neural network layer, showing how weights 
are applied to each input value, and a sum and ReLU element turn 
all inputs into a single output value. c Several neural network lay-
ers are stacked to increase nonlinearity. d A mapping from a lower 
dimensional space cannot cover a higher dimensional space unless it 
is extremely contorted (space-filling Peano curve on the right, source: 
wikipedia). Such mappings struggle to retain the natural underlying 
topology. e Example of the generating process: y1 ~ Poisson [ λ = x], 
y2 ~ Normal [ μ = 0 if x < 10, otherwise 5; σ = 1], x ~ Uniform [0,20]. 
f The basic AE encoder and decoder paradigm to reconstruct data 

from a lower dimensional space. g Two latent space encodings (left 
and right) of a higher dimensional space (middle). The solution is not 
unique but the left encoding captures the topological structure bet-
ter. h The VAE architecture map data points to probability distribu-
tions in latent space Z. Here the distribution is Normal (μ,σ) with the 
parameters encoded by a NN (left). Random samples from this dis-
tribution are then drawn for reconstruction by another NN (right). i 
Graph convolutional networks (GCNs) perform repeated application 
of a function over local nodes of a graph, aggregating and propagat-
ing local information. Here the information gathered for two applica-
tions of the NN are shown (once in blue, twice in red)
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This generative process was constructed manually and 
illustrates the concept. It shows the enormous freedom in the 
choice of latent space and GP. However, for most applica-
tions, an algorithm is used to fit a suitable GP to the data. 
Because these algorithms have little a priori knowledge of 
the data, highly flexible NN nonlinear functions are com-
monly used in combination with simple statistical distribu-
tions. A hypothetical example could be:

Quasi-linear versions have also been tested on single-cell 
data, with the aim of providing explainable mappings (Sven-
sson et al. 2020). To find the best NN, this has to be recast as 
an optimization problem. Two examples of networks/algo-
rithms that realize this in practice are variational autoencod-
ers (VAEs) and Generative Adversarial Networks (GANs).

Autoencoders (AEs) and variational autoencoders

Autoencoders (AEs) were first developed independent of 
GPs, but were later fused with the concept, resulting in vari-
ational autoencoders (VAEs) (Kingma and Welling 2013). 
In addition to the function from latent space to data (in this 
context, the GP is called the decoder), a function is also 
sought from data to the latent space (called the encoder). 
These are considered meaningful, if given a data point, it can 
be encoded, and then decoded, the data point approximately 
reconstructed (Fig. 9f). The solution to the reconstruction 
problem is typically not unique, giving rise to many pos-
sible latent spaces. Furthermore, it might not from a human 
standpoint have sufficient structure (Fig. 9g).

To increase the latent space structure, one commonly 
aims to organize it such that samples close in the latent space 
should correspond to similar output data. Thus, the latent 
space is smoothened, avoiding the scenario in Fig. 9g. For 
single-cell data, this has been achieved by rather trying to fit 
the underlying distribution than directly trying to reconstruct 
the data (Eraslan et al. 2019), a trick still in use (Gayoso 
et al. 2022). However, a more common solution to smoothen 
the latent space is to replace plain AEs with VAEs. For 
VAEs, unlike AEs, the latent space is a probability distri-
bution (Fig. 9h). This distribution is commonly called the 
variational distribution, Q (z|x). The latent variables, z, are 
sampled from this distribution, and the random sampling is 
what ensures that similar latent space points result in similar 
data points. Figure 9f shows the basic structure of a VAE, 
where the NN parameters � and � are found by minimizing 
the following loss function over all data points xi:

y2 ∼ Normal[𝜇 = 0 if x < 10, otherwise 5;𝜎 = 1]

yi,j ∼ Poisson[� = NNj(xi,1...xi,m)], i over all cells and j over all genes

li (�,�) = Ez∼q� (z|xi)[log p�(xi|z)] − KL(q� (z|xi)||p (z))

The first part of the function is the reconstruction loss, 
going from latent space z to data space x. In other words, it 
is a measurement for how similar the reconstructed data is to 
the original input. The second half of the loss function meas-
ures the KL divergence (a measure of difference between 
two distributions) between the variational distribution and 
p (z) . The distribution of p (z) greatly determines the final 
latent space structure but is almost always set to be a Normal 
distribution, a rather unbiased choice.

The minimization of the loss function could be done with 
any nonlinear optimizer, but because the random samples 
of the latent variables z from the variational distribution 
q� (z|xi) has high variance (Kingma and Welling 2013), 
convergence would be poor. The solution to this problem 
is known as the reparameterization trick. Unfortunately, 
this trick limits which variational distributions can be used 
for the latent space, as the distribution must have certain 
symmetries. The Gaussian distribution, which is commonly 
used, is sufficient for most cases; however, other distribu-
tions have been tested (Ding and Regev 2021).

VAEs for single‑cell analysis

The link between VAEs and the known single-cell statistics 
is through the GP p� (xi|z) . In other words, given a latent 
space point, what is the statistical distribution of the data? 
The toolkit SCVI (Gayoso et al. 2022) proposes the follow-
ing GP for RNA-seq (Lopez et al. 2018) (simplified to show 
key concepts). The latent space has been split into z and L, 
and below is thus actually p� (xi|z, L):

This real-life example shows how different types of data 
distributions can be modeled on top of a latent space. The 
latent space has been split such that z represents cell type, 
and L the sequencing depth (size factor). The log normal dis-
tribution of L ensures that the size factor is always positive 
and close to the fitted value. However, the model also works 
well if L is just replaced with the fitted size factor for the par-
ticular cell. Next, the variable � is found using a NN, which 
optionally can use information about, e.g., which batch the 
cell comes from (for batch correction). The variable � can 
be thought of as to represent the RNA levels of an ideal cell, 
without zero inflation, or differences in sequencing depth. 
To account for sequencing depth, it is later simply rescaled 

z ∼ Normal[� = 0, � = 1]

L ∼ LogNormal[�, �] with � estimated from data

� ∼ NN (z, covariates)

X ∼ ZINB (� = �L, dispersion = NN (z))
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as �*L. Finally, the data X follows a ZINB distribution with 
� *L as the idealized average cell. However, NB or Poisson 
can equally well be used instead.

This example shows the enormous flexibility of the VAE 
framework. Given a latent space, which can be given any 
number of dimensions and shape, a neural network can 
transform it into the parameters of any choice of probability 
distribution. Other GPs represent CITE-seq (Gayoso et al. 
2021) and ATAC-seq (Xiong et al. 2019; Ashuach et al. 
2022), and can easily share the latent space z for multiom-
ics integration.

Several open problems remain for VAEs. In SCVI, a plain 
neural network is used to encode data into z, without any 
use of known single-cell statistics, which might limit the 
reconstruction. Also, several users have reported VAEs to be 
“brittle,” giving rather different solutions for small changes 
in the input, or changes in the NN structure. If the data is 
limited then, as for most NN-based algorithms, VAEs strug-
gle to fit a good model. This requires tuning of the NN archi-
tecture, in terms of number of layers and neurons in each 
layer. An ideal model of data should not rely on technical 
parameters, and in this regard, VAEs have a long road left 
ahead. Nevertheless, their flexibility in statistical formula-
tion suggests that the trip is worth the effort. At the current 
forefront are different ways of structuring the latent space 
such that the coordinates have meanings, such as by linking 
them to genes linked to the same biological process (Lotfol-
lahi et al. 2023). This can also be done to shape the neural 
networks and reduce the number of parameters (Elmarakeby 
et al. 2021). By limiting the number of parameters, less data 
is needed and the brittleness can be overcome.

Graph neural networks

A class of neural network–based algorithms operate on data 
organized in graphs: graph convolutional networks (GCNs). 
They have for example been used to predict properties of 
molecules, where the atoms and their connectivities make 
up a graph (Reiser et al. 2022). The famous AlphaFold algo-
rithm for predicting protein structures is also a GCN (Jumper 
et al. 2021). For single-cell data, the graph is commonly, but 
not necessarily, the kNN graph. While GCNs thus rely on the 
latent space induced by the Euclidean distance metric, they 
permit entirely different problem formulations.

For GCNs, the question is: can knowledge be gathered 
at a local point of the graph, NN  (Glocal), and can it be suf-
ficiently propagated by repeated application of NN layers, 
 NN1  (NN2  (Glocal)) (Fig. 9i)? This approach can be motivated 
by a field of mathematics, fixed point theory (Debnath and 
Mikusinski 2005), studying functions and points  xfix such 
that f(xfix) =  xfix. This is related to the repeated application 
of functions, and convergence to these fixed points: f (f (f 
(…f (x)))) →  xfix. Such a fixed point is thought to represent 

the fully extracted knowledge of the graph. In practice 
however, too many iterated function applications results in 
“oversmoothing” (Cai and Wang 2020), a state in which the 
discriminatory power actually decreases. Thus in reality, it 
may not be a good idea to attempt to run as many iterations 
as possible.

Because GCNs are such a broad topic, and further can 
be combined with VAEs (Wang et  al. 2021), this sec-
tion primarily lists some useful single-cell applications. 
Here ~ should be read as some sort of VAE formulation, and 
the annotation is primarily for illustration:

• GeneExpression = F (G). In this case, the aim is to com-
pute the expression levels of this cell by comparing it to 
the neighboring cells (Gu et al. 2022). This can be used 
to calculate the expression of an “idealized cell,” without 
the technical or biological noise—also called denoising. 
Some downstream algorithms prefer smoothened data, 
and it can also be used to aid visualization.

• CellType = F (G). Instead of relying on clustering, and 
annotating cell types from the average gene expression 
levels of that cluster, it can be done directly by investigat-
ing each cell and the neighboring cell. Since clustering 
requires manually providing settings about the resolu-
tion (or expected cluster size), the GCN approach is less 
arbitrary.

• Fprotein (G) ~ FATAC  (G) ~ FRNA (G). Different data modal-
ities can be compared (or “integrated”) using some vari-
ant of graph neural networks. Again, this avoids the need 
for clustering, but it further has the advantage that the 
graphs need not be the same. For example, the graphs 
based on ATAC-seq need not correspond to those for 
RNA-seq.

• FRNA (GRNA) ~ Fgene_homology (Ggenes). There are cases 
when two orthogonal graphs are being estimated. One 
such case is the comparison of cells between species (Liu 
et al. 2023); the traditional Euclidean distance between 
cells is problematic because it is not clear which genes in 
species A should be compared to which genes in species 
B. However, assuming that the cells are lined up cor-
rectly, and with some knowledge of homology (based on 
gene sequences), it is possible to find which genes cor-
relate and thus correspond. This is a circular dependency: 
The cell–cell correspondences depend on the gene–gene 
correspondence which depends on the cell–cell corre-
spondences. Circular problems of this type beg for an 
iterative algorithm that solves both problems at the same 
time. GCN fitting is iterative and naturally matches the 
structure of the problem.

It is still early days for the use of graph NNs for single-
cell analysis. Likely any single-cell problem can be formu-
lated within this framework, and the combination with VAEs 
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also enables them to capture an interpretable latent space. 
GCNs are thus a prime area for novel research.

Clustering, language, and cell types

The most primitive latent space representation is that of cat-
egories of cells. Formally:

The representation has the advantage that it is easy to 
perform pairwise comparisons of clusters, and the categories 
can be given memorable names. Batches and different treat-
ments of cells usually map to categories, but categories are 
primarily discussed in the context of cell types.

There are many ways of classifying cells as different 
types, including tools that compare the gene expression 
to databases of profiles (Abdelaal et al. 2019). However, 
the most common methods split the kNN graph in such a 
way that the sum (“cost”) of the cut edges is minimized 
(Fig. 10a). The family of spectral graph cutting methods has 
not gained much traction, but has been used (Schwartz et al. 
2020). The by far most common methods are now Louvain 
(Blondel et al. 2008) and Leiden (Traag et al. 2019), avail-
able through packages like Scanpy and Seurat. The use of 
graph cutting clustering algorithms thus makes the matter of 
cell type categorization a topological one, where the algo-
rithm objective function need not correspond to what the 
user wanted (Fig. 10b). The number of clusters also has to 
be specified by the user and there is seldom an objectively 
“correct” number of clusters. This brings this review to the 
longest standing open question in the single-cell community.

What is a cell type?

Cell types were originally identified by their morphology 
as this property was first available. The function of the 
cells also entered the definitions. Neurons and muscle 
cells are very distinct. This is a type of natural history, 
where cells were simply grouped together (like all bio-
logical samples) to create a sense of order. Overall, cell 
type definitions have largely followed what industry and 
technology have had to offer (such as microscopes), the 
intertwining called technoscience (Pickstone 2001). As 
new measurement tools became available, such as Fluo-
rescence-activated Cell Sorting (FACS) machines to sort 
by surface marker proteins, definitions have increasingly 
moved to be based on the cellular content. FACS has 
played a major role in immunology, where a huge num-
ber of cells have been defined by an increasing list of 
proteins. The most common way to qualitatively annotate 
cell types in single-cell data is to use these lists of cell 

Yi ∼ SomeDistribution (f (ci)) for some category of cell ci.

type–specific “marker genes,” after clustering by, e.g., 
Leiden. Sequencing and proteomics have however chal-
lenged old surface marker–based definitions. One issue is 
that some marker proteins have only low levels of corre-
sponding mRNA, and thus are not suitable for single-cell 
RNA-seq cell annotation. Another even bigger issue is 
that the mRNA need not be present in every cell, despite 
the protein being there. A debate has raged whether this is 
for technical or biological reasons, but consensus moves 
toward the idea that mRNA is produced in bursts (Golding 
et al. 2005; Raj et al. 2006; Larsson et al. 2019). Because 
the protein carries the actual function, the mRNA need 
not be present at all times, thus pointing toward inherent 
biological reasons. The solution in the single-cell world 
has been to rely on unsupervised clustering and using the 
average profile for annotation. When clusters are distinct, 
this is usually beyond doubt. However, for some cells, 
with subtypes of neurons, T cells, and monocytes as nota-
ble examples, the boundaries between classically defined 
subtypes are not clear (Fig. 10c).

A way around the unclear boundaries is to refer to the cell 
differentiation history, classically called the “lineage tree.” 
Thus, a cell type is not just a separate category, but somehow 
linked to other categories with shorter or longer distance. 
For comparison with other types of cells, it primarily makes 
sense to compare with other cell types in the same lineage 
(Fig. 10d). This is already implicitly performed by analysts 
by setting the clustering resolution appropriately, but the line-
age relationship could in principle be stored in the annotation 
as well. Concepts from comparison of genes across species, 
such as in-paralogs (Sonnhammer and Östlund 2015), could 
be borrowed to make the correct comparisons more formal.

However, in many single-cell datasets, a cluster exists 
based on the cell cycle alone. Are dividing cells their own 
cell type? Many would argue against it and would rather 
call it a cell state, thus questioning the ability of current 
clustering methods to define cell types. The solution calls 
for clustering algorithms that either interpret the latent space 
topology differently, or topologies that fit better with our 
notion of cell types. Alternatively, the nomenclature needs 
updating. The Human Cell Atlas is, for example, trying to 
update the cell type definitions (Osumi-Sutherland et al. 
2021). But sometimes it is not even clear what should be 
annotated (Fig. 10e); muscle cells are nucleated, suggest-
ing that the outer cell membrane is the object of interest. 
However, epithelial cells are stuck together and share space 
through gap junctions, suggesting that epithelia is just one 
single large cell. This motivates a higher level view on the 
cell type problem.

Sociologists provide several external views. One view 
emphasizes rather the power relationships (Foucault 1995), 
such as reviewers for grant agencies and journals upholding 
the use of certain terminology (the poststructuralist view). 
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Different review boards may also be interested in differ-
ent genes based on technologies, e.g., for T helper type 2 
cells, a genomics panel would be concerned with GATA3 

expression using sequencing, while an immunologist panel 
would look at IL4 secretion using flow cytometry (the his-
torical materialism/Marxist view). The constructivist view 

Fig. 10  Clustering, language, and cell types. a Clustering can be per-
formed by computing the best place to cut a graph. b Two ways of 
clustering cells in a topology; it is not clear which way is correct. c 
A typical clustering, with some clusters having distinct boundaries, 
some without. d Cell types can be viewed over a lineage tree, based 
on their differentiation path from progenitors. Comparisons are then 
mostly relevant over cell types within the same lineage. e Does a cell 

type refer to the nucleus, or what is inside the cell membrane? Our 
language is not always used consistently but it is still productive. f 
Natural language can hypothetically be used as a latent space, but to 
what extent? An NLP-based latent space need not form a tree of cell 
types. g Hypothetical NN architecture that can take a sequence of 
words, map it to a distribution in latent space, which in turn can be 
decoded as possible gene expression patterns
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looks at this simply as new concepts being developed in the 
light of old concepts, and that as we specialize and socially 
compartmentalize, we develop different new concepts that 
need not agree. The logician Wittgenstein argues, using his 
language game model (Wittgenstein 1998), that language 
need not be “logically correct”—just serving a function 
within a certain context. Interestingly, the ML community 
is just about to bring back many of these abstract and ques-
tioned concepts, but in a new quantifiable shape.

Semantics and language models

The use of language models deserves extra attention in the 
context of latent representations. What is knowledge and 
what is meaning? This philosophical problem has a long 
history, and with the advent of logic, it has been argued that 
“meaning” is what someone tries to convey in a sentence 
(or utterance). Sentences can then be described in a type of 
logic (T-theories in the Davidsonian tradition of philoso-
phy (Glüer 2011)). This idea has caught on in the study of 
causality. Classical statistics does not handle causality, only 
correlation; it has been speculated that the reason causality 
has been mathematically largely undeveloped until recently, 
is because language is such a great causal inference sys-
tem (Pearl and Mackenzie 2018). Causality is, however, no 
simple matter, and already Aristotele tried to understand it 
in more detail (Haig 2020). If we think of understanding 
biology, in terms of causality (“calcium is released because 
X bound to Y”), then this can be understood in terms of 
language, but we still do not understand language itself well. 
However, computers are good at modeling language (natural 
language processing, NLP); does this mean that comput-
ers can understand biology? And how well can language be 
a suitable latent representation for the data we see, that is 
(Fig. 10f):

The NLP field is these days centered around transformers 
(Vaswani et al. 2017), a type of NN over strings of data that 
excels at keeping references to earlier parts of the data string 
(Fig. 10g). If the data string is a set of characters or words, 
then it maps directly to language processing. But transform-
ers can also process sound, and more recently it has even 
generated realistic images from textual descriptions (Ramesh 
et al. 2021). One type of transformer, BERT (Bidirectional 
Encoder Representations from Transformers) (Devlin et al. 
2018), has already been applied to single-cell RNA-seq data 
(Yang et al. 2022). Similarly, ATAC-seq (Bravo González-
Blas et al. 2019) and multiomic data have also been modeled 
(Cui et al. 2023).

From the discussion of clusters, and how these do not 
always map well to classical cell types, one point about lan-
guage should already be clear: if our language is imprecise, 

Yi ∼ SomeDistribution (f (ui)) for some verbal description ui about cell i.

then so is our ability to model and understand. If the vocabu-
lary is poor, then this limits any statistical model on top. 
However, this field has a future in that at some point, our 
models must map to human understanding, which arguably 
is based on the brain’s language center. It must also con-
nect to previous research, written up as language in articles 
and largely inaccessible to anything but NLP. This is thus a 
topic that should be followed by great interest and especially 
taught in any biology class on the theory of science.

Data that still begs for representations

This limited review covers the most common single-cell 
concepts and how these can be mapped to latent representa-
tions. However, how to best represent newer types of read-
outs are open problems.

RNA-seq also captures genomic sequence information, 
for example, SNPs. This can be used to separate cells into 
donors (for humans, not inbred mice), for example, by Vireo 
(Huang et al. 2019). This is a simple categorical representa-
tion. Several studies, however, attempt to trace cell lineages 
(“lineaging”) from accumulated mutations. The underlying 
representation is then a (lineage) tree. This representation is 
invalid for cells that have fused, e.g., myocytes, and rather 
begs for a direct acyclic graph. Because of lack of data, such 
representations have not yet been developed to the authors’ 
knowledge.

Spatial transcriptomics will bring the next level of chal-
lenges to the single-cell world. Frameworks such as STEL-
LAR (Brbić et al. 2022) and SPICEMIX (Chidester et al. 
2023) attempt to model spatial transcriptomics data given 
cells position in tissue. Further combination of spatial and 
single-cell data enables other types of statistics (Sven-
sson et al. 2018; Liu et al. 2021; Kleshchevnikov et al. 
2022). Some spatial methods measure the 3D location of 
individual RNA molecules, which can be more informa-
tive than just having the counts for each cell. The location 
is an important part of the regulation; cells may contain 
stress granules, which may soak up proteins and RNA to 
temporarily disable them. RNA may also be kept disabled 
for rapid activation. The size of neurons also makes the 
location of RNA important. Representations of data for 
these scenarios remain underdeveloped or non-existent; a 
challenge is to find suitable informative simplifications. 
Because 10x Genomics only recently announced a com-
mercial technology for single-RNA molecule spatial reso-
lution, we can expect an explosion of data analysis methods 
in this field.

Finally, genetic perturbations cause cells to shift within 
the latent spaces, or move outside what the latent space can 
describe if it is just based on unperturbed cells. The single-
cell field is slowly moving toward being able to perturb large 
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numbers of genes (even genome-wide) (Replogle et al. 2020, 
2022; Peidli et al. 2022). How should the latent space be set 
up to cope with such a large amount of information? Of related 
interest is the prediction of the effects of perturbations (Qiu 
et al. 2022). If the vector field of cells in the cell state space 
can be measured, for example, by RNA velocity (Bergen et al. 
2021), or measured by metabolic labeling (Qiu et al. 2022), 
then this can also inform about the ideal latent space structure.

Concluding remarks

This review has hopefully managed to portray that the matter of 
latent spaces, or representations, is at the heart of understanding 
biology at the single-cell level. Luckily, easy-to-use frameworks 
have been developed, which at least are good enough for test-
ing new representations (turning it into a new analysis package 
further requires software engineering skills). Complex hierar-
chical Bayesian models (Gelman and Hill 2006) can be directly 
formulated using, for example, STAN (Carpenter et al. 2017). 
While solving them is slow in STAN, the flexibility makes up 
for it. Another option for solving Bayesian equations, approxi-
mately but fast, is the use of Variational Inference, which goes 
beyond the VAE example in this review. Bayesian equations 
have recently gained much traction, especially in conjunc-
tion with the use of GPUs. PyTorch (https:// pytor ch. org/) and 
Tensorflow (https:// www. tenso rflow. org/) are two frameworks 
in which it is fairly straight-forward to formulate variational 
inference problems. Interested readers should investigate SCVI 
(Gayoso et al. 2022) and scArches (Lotfollahi et al. 2022), 
which uses this for solving VAEs; and Cell2location (Klesh-
chevnikov et al. 2022) which uses this to link single-cell data 
to spatial transcriptomics data. Large number of free lectures 
on ML methods are now also available on common streaming 
platforms, with further examples on Github.
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