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Abstract

A variation of the Bourgeois-Pichat biometric analysis of infant mortality is suggested.
In the original model, cumulative mortality in the last eleven months of infancy is assumed
to follow a uniform distribution given a log-cube transformation of age. Instead, we assume
an exponential distribution. The difference is that while the denominator is constant in
the Bourgeois-Pichat model, equal to the number of births, in our model, the denominator
is the current population at risk. We argue that our assumption is more satisfactory from
a theoretical point of view, since it focus on the conditional probability of dying. Our
model gives different estimates of endogenous and exogenous mortality and, in addition,
the model fit is slightly better, especially in cases with higher levels of infant mortality.
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1 Introduction
[Figure 1 about here.]

Lois Bourgeois-Pichat saw the first year of life not only as the period when mortality is
highest, but also the period when improvements should be possible (Bourgeois-Pichat, 1951a,b;
Bourgeouis-Pichat, 1952). He argued that infant deaths should be divided into two categories,
endogenous and exogenous deaths. Endogenous deaths are, by definition, due to inherited
factors, or acquired during gestation or delivery. They typically occur at the initial period of life,
though sometimes much later and include congenital debility, prematurity, malformations, and
disease in early life. Exogenous infant mortality, which Bourgeois-Pichat regards as accidental,
are deaths for which the society must hold itself responsible and to reduce endogenous mortality,
medical intervention is essential (Bourgeouis-Pichat, 1952). Since it is, based on causes of
deaths, difficult to distinguish between endogenous and exogenous factors, either because they
are inaccurate or difficult to make due to the diseases themself, or the information do not
exist, Bourgeois-Pichat offered a solution to the problem.

Bourgeois-Pichat’s biometric model to differentiate between endogenous and exogenous mor-
tality is based on an idea of a universal law governing the distribution of deaths in the first
year of life (Bourgeouis-Pichat, 1952). He assumes that all deaths taking place in the last
eleven months of the first year are exogenous. He argues that, although there are also some
endogenous mortalities during this period, they do not affect the development of mortality
much. Supported by examples from mid-twentieth century Western and Southern Europe,
the US and Canada, New Zeeland, and other countries, Bourgeois-Pichat argued that the
cumulative infant deaths after the first month follows a linear development given a log-cube
transformation of age (Bourgeouis-Pichat, 1952). Mortality in the first month of life is then
divided into an endogenous and an exogenous assuming that the same linearity also exists in
this period. It leads to the conclusion that exogenous deaths in the first month of life represent
25 percent of the deaths from the second to twelfth months (Bourgeouis-Pichat, 1952).

Applying this method, Bourgeois-Pichat also finds deviations from the linear death pattern
after the first month. To take one example, the curve for Sardinia in 1948 bend strongly
upward after four months (Bourgeouis-Pichat, 1952, Figure 12). To take another example, in
the case of Quebec 1944–1947, the curve bends down quite strongly after the sixth month
(Bourgeouis-Pichat, 1952, Figure 8). A downward bend is also what has been found using
historical Swedish parish data (Bengtsson, 1999, Figure 6b; Bengtsson and Lundh, 1999,
Figures 6 and 7; Lynch et al., 1998, Figures 1 and 2; Sundin and Tedebrand, 1981, Figure 6d),
though less pronounced than in Quebec. Knodel and Kintner (1977) argues that breastfeeding
patterns have a strong impact on the linearity. The curve for Sweden 1910–1946 show, however,
no such downward bend (Bourgeois-Pichat, 1951b, Figure 9; Bourgeouis-Pichat, 1952).

Bourgeois-Pichat’s biometric method has also been used to identify problems with data
recording (Wrigley, 1977; Wrigley and Schofield, 1981). While a high level of endogenous
mortality cannot be used as a criterion for high data quality, the opposite holds true. A very
low level of endogenous mortality indeed indicates data problems, just like large deviations
from the normal sex ratio at birth do. These two criteria are, in fact, often used in historical
studies to evaluate data recording (see Bengtsson et al 2004). They become even more precise
if they are applied to different social strata, since under-recording of early deaths often have a
social gradient, possibly due to the costs involved in a burial (Bengtsson, 1999; Bengtsson and
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Lundh, 1999).

We suggest a variation of the Bourgeois-Pichat biometric analysis of infant mortality. Instead of
assuming that the cumulative mortality in the last eleven months of infancy follows a uniform
distribution, given a log-cube transformation of age, we assume an exponential distribution.
The difference is that while the denominator is constant in the Bourgeois-Pichat model, equal
to the number of births, in our model, the denominator is the current population at risk. This
assumption is more satisfactory from a theoretical point of view, since it models the conditional
probability of dying. The growth in birth weight also follows this distribution (Bourgeois-
Pichat, 1951a,b). In addition, the model fit is slightly better for our model, especially in cases
with high level of infant mortality, common in pre-modern societies. The advantage is that
not only is our assumption more attractive from a theoretical point of view, and therefore
easier to interpret, but also that it is makes it easier to estimate exogenous and endogenous
infant mortality with standard survival analysis programs.1 In addition, we give examples
from eighteenth Sweden, where the curve do not follow the uniform distribution during the
last eleven month of infancy, despite high levels of mortality in the first month of life.

2 The Bourgeois-Pichat procedure
Central in the procedure suggested by Bourgeois-Pichat (1951a) is the log-cube transform, see
Equation (1).

g(t) = C log3(t + 1), 0 ≤ t ≤ 365, (1)

where t is age measured in days and C is a normalizing constant,

C = 365
log3(366)

.

The constant C is chosen so that g(365) = 365, see Figure 1. Note that C is not part of
the original definition of the log-cube transform, but provided here only to make graphical
comparisons easier to interpret. It makes no difference otherwise.

Assume that a cohort of infants is followed over time from birth to age one. There are no
drop-outs (no right censoring except at age 365 days). The exact age in days at each observed
death is noted and transformed by g, and due to imperfect time measuring there may be tied
death ages. As an illustrative example, we use a data set from northern Sweden, covering the
years 1861–1950.

For the first and last 30 years in this data set, we have the results shown in Figure 2.

[Figure 2 about here.]

The cumulative numbers of death are plotted against the corresponding death ages on the g
time scale, and as is seen, the fit to linearity after 28 days (68 on the g scale) is excellent for
both time periods.
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Table 1: Life table, 1861-1890.

Day g(Day) Population Deaths
0.25 0.0 50034 564
1.00 0.6 49470 138
2.00 2.4 49332 81
3.00 4.7 49251 83
4.00 7.4 49168 64
5.00 10.2 49102 73
6.00 13.1 49028 57

3 The hazard-based procedure
Instead of using the total number of births throughout in the denominator as in the Bourgeois-
Pichat procedure, we suggest using the present risk-set size, that is, the the total number of
infants still alive immediately prior to the death age under investigation. Given proper data,
it is easily achieved. For instance,by the use of the function risksets in the R package eha
we can get Table 1.

It starts with 50034 live births, of which 564 dies on the day of birth, on average at the age of
six hours (a quarter of a day), and so on.

The plot corresponding to Figure 2 is shown in Figure 3.

[Figure 3 about here.]

Both methods show an excellent fit to linearity for this data set.

4 Theoretical considerations
We note that the Bourgeois-Pichat method requires that no right censorings (infants lost to
follow-up before one year of age) are present, and no left truncations (infants under observation
only from an age later than birth). The hazards approach, on the other hand, allows left
truncation and right censoring as long as they are non-informative in the usual sense. Often,
though, this not very important, since new-born babies tend to be geographically stationary
for their first year of life.

Throughout the rest of the paper, everything happens on the g time scale.

4.1 Post-neonatal mortality

We concentrate on the postneonatal period, since that is the period where Bourgeois-Pichat
claims that the cumulative distribution function (CDF) is Uniform, and we suggest that the
CDF is exponential, that is, the cumulative hazard function is “uniform” (linear).

In order to see this, the data set from above is left truncated at age 28 days (at 68 on the “g”
scale), that is, we are considering the conditional survival distribution, given survival to age
28.
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Table 2: Distribution over age periods of exogenous mortality (per 1000).

Neonatal Total Fraction
0.930 5 18.60
1.864 10 18.64
9.478 50 18.96

19.371 100 19.37
40.581 200 20.29

[Figure 4 about here.]

The Exponential fit is excellent, with a slight edge for the early period data, where post-neonatal
mortality is high.

The fit of the Uniform distribution is already shown in Figure 2. Also a very good fits in the
post-neonatal period.

4.2 Exogeneous mortality

We now consider the whole infant age span (on the g scale), and compare the uniform and
exponential densities, especially of interest is the fraction of deaths that occur in the neonatal
phase. Manfredini (2004) argues that a less satisfactory property of the B-P model is that
this fraction is constant, 18.56 percent, independent of the overall level of infant mortality p.
This is not the case for the hazards model, see Table 2.

4.3 Endogeneous mortality

In order to calculate the endogeneous infant mortality, a simple two-step procedure leads to
the goal.

1. Estimate the post-neonatal mortality following the exponential route. It reduces to a
simple occurrence/exposure calculation: The total number of post-neonatal deaths D is
divided by the total postneonatal exposure E on the g scale. So

λ̂ = D

E

is the estimated hazard function (constant), and the cumulative hazard function is

Ĥ(t) = λ̂t, t > 0

2. On the full infant interval, estimate the total cumulative hazard rate A(t) with the usual
Nelson-Aalen estimator Â(t) (Nelson, 1972; Aalen, 1978). Then, subtract H(t) from
Â(t) to get Ê(t).

Ê(t) = Â(t) − λ̂t, 0 < t ≤ g(28). (2)

Note that subtraction and addition of competing risks are okay on the hazards scale, but
not with probabilities, which is yet another argument in favor of the hazards approach.

Let us do it with the given data, and the first period 1861–1890.
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Table 3: First five rows of data frame.

birthdate sex enter exit event period
1861-01-01 girl 0 163 1 1861-1890
1861-01-01 boy 0 365 0 1861-1890
1861-01-01 boy 0 365 0 1861-1890
1861-01-01 boy 0 365 0 1861-1890
1861-01-01 boy 0 57 1 1861-1890

4.3.1 Step 1: Estimate post-neonatal (exogenous) mortality

Post-neonatal mortality is the same as exogenous mortality in the sense that the hazard
functions are the same on the post-neonatal age interval. So the first step involves data left
truncated at age 28 days. The maximum-likelihood estimator of the rate in the exponential
distribution is simply the number of observed post-neonatal deaths 10136, divided by the total
post-neonatal exposure time 61492634 (still on the g scale), giving a rate of 1.6483275 × 10−4.

The rate is a very small number as a consequence of the very small time unit (implying large
total exposure time), originally day.

So we are done with the simple post-neonatal period.

4.3.2 Step 2: Estimate total and endogenous mortality

The estimation of the cumulative hazard function for the total neonatal mortality is standard.

Next, take the difference between “Total” and “Exogenous”, as in Equation (2) to get
“Endogenous”, the result is shown in Figure 5.

[Figure 5 about here.]

5 Biometric analysis in practice
The original procedure of Bourgeos-Pichat is compared to the hazard based procedure for
some typical cases from the real world.

5.1 Västerbotten

Thee data set from Västerbotten 1861–1950, kept by CEDAR, Umeå University (Demographic
Data Base, 2022), shows almost perfect fits to both the hazards model and the original
biometric model (Bourgeois-Pichat, 1951a,b) in all the three subperiods, see the results in the
following three subsections.

5.1.1 The period 1921–1950

The crude IMR in Västerbotten 1921–1950 was around 56 per thousand, a rather low figure in
context. Let us perform the biometric analysis with these data, see Figure 6.

[Figure 6 about here.]
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There is a good hazards model fit, and we see that the endogenous mortality clearly dominates
the early days of neonatal mortality, and almost vanishes towards the start of the post-neonatal
period.

The B-P model fit is slightly worse, but not much to bother about.

5.1.2 The period 1890–1920

The crude IMR in Umeå 1891–1920 was around 95 per thousand, clearly higher than the later
time period. Let us perform the biometric analysis with these data, see Figure 7.

[Figure 7 about here.]

The dominance of endogenous mortality in early life is still clear. The hazards fit is still
slightly better.

5.1.3 The period 1861–1890

The crude IMR in Västerbotten 1861–1890 was around 105 per thousand, highest of the three
time periods. The biometric analysis is shown in Figure 8.

[Figure 8 about here.]

The conclusion here is almost the same as for the later time periods, good model fit and
endogenous dominance in the very early days of life. However, the B-P method seems to have
a slight upper hand regarding model fit.

5.2 Scania 1710–1800.

This is an interesting case because it appears as if the data quality is low since the linearity
during the post-neonatal period is gone. Rather, there is a “hockey-stick” pattern, also seen
in other old data sets. See Figure 9.

However, this data set is known to be of very high quality (?), so we are inclined to think
that the biometric model as it is described here simply is inappropriate during the eighteenth
century.

[Figure 9 about here.]

5.3 Skellefteå 1820–1835

An example of severe under-registration during the neonatal period, see Figure 10. There is
no room for endogenous deaths at all, but otherwise a reasonably good fit with both methods.

[Figure 10 about here.]

6 Conclusion
If anything, the hazards method never performs worse than the B-P method. But the real
strength of the hazards method is that it fits naturally into general modern survival analysis
with censored and truncated data, and also proportional hazards models with covariates.
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Figure 2: The periods 1861–1890 and 1921–1950 in Västerbotten, Bourgeois-Pichat method.
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Figure 3: The periods 1861–1890 and 1921–1950 in Västerbotten, hazards method.
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Figure 6: Västerbotten 1921–1950.
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Figure 7: Västerbotten 1891–1920.
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Figure 8: Västerbotten 1861–1890.
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