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Abstract

This doctoral thesis provides a comprehensive numerical analysis and ex-
ploration of several stochastic partial di�erential equations (SPDEs). More
speci�cally, this thesis investigates time integrators for SPDEs with white
noise dispersion.

The thesis begins by examining the stochastic nonlinear Schrödinger
equation with white noise dispersion (SNLSE), see Paper 1. The inves-
tigation probes the performance of di�erent numerical integrators for this
equation, focusing on their convergences, L2-norm preservation, and compu-
tational e�ciency. Further, this thesis thoroughly investigates a conjecture
on the critical exponent of the SNLSE, related to a phenomenon known as
blowup, through numerical means.

The thesis then introduces and studies exponential integrators for the
stochastic Manakov equation (SME) by presenting two new time integrators
- the explicit and symmetric exponential integrators - and analyzing their
convergence properties, see Paper 2. Notably, this study highlights the �ex-
ibility and e�ciency of these integrators compared to traditional schemes.
The narrative then turns to the Lie�Trotter splitting integrator for the SME,
see Paper 3, comparing its performance to existing time integrators. Theoret-
ical proofs for convergence in various senses, alongside extensive numerical
experiments, shed light on the e�cacy of the proposed numerical scheme.
The thesis also deep dives into the critical exponents of the SME, proposing
a conjecture regarding blowup conditions for this SPDE.

Lastly, the focus shifts to the stochastic generalized Benjamin�Bona�
Mahony equation, see Paper 4. The study introduces and numerically as-
sesses four novel exponential integrators for this equation. A primary �nding
here is the superior performance of the symmetric exponential integrator.
This thesis also o�ers a succinct and novel method to depict the order of
convergence in probability.
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1
Introduction

The advancement of mathematical modeling stands as a crucial catalyst
for humanity's progress, enabling the description, comprehension, and uti-
lization of a wide range of phenomena. Population dynamics, investment
�nance, satellite orbital stability, and structural mechanics are examples of
the many domains that bene�t from mathematical modeling [60]. Recent
advancements in many �elds, including modeling weather, pollution, or tur-
bulence [53], have been signi�cantly enhanced by using stochastic partial dif-
ferential equations (SPDEs) and their numerical studies, bringing together
three distinct and essential areas of inquiry.

The �rst of these three areas is di�erential equations. Since the late
17th century, di�erential equations have been used to describe quantities in
terms of their rates of change [59]. This framework has continually generated
new research and applications, including springs, string vibrations, and even
the shape of suspended ropes. As the area matured, it naturally extended
into partial di�erential equations (PDEs) and stochastic (partial) di�erential
equations.

The second area of inquiry is stochastic analysis, which studies random
processes as they evolve. This approach has proven particularly e�ective
in addressing the challenges posed by �uctuations in observation, such as
oscillations, vibrations, environmental factors, or measurement errors. In
this thesis, we mainly consider white noise perturbation. It is a random
property intimately tied to the Brownian motion, an idea �rst introduced by
Louis Bachelier in the early 20th century and later utilized by Einstein [6].

The third area of inquiry, computational mathematics, is equally critical
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to the success of mathematical modeling of complex problems. Given the lack
of explicit exact solutions for many challenging equations, their numerical
approximations provided by computers have become essential in scienti�c
and engineering contexts [60, 64, 3, 67].

This thesis project is one of the steps contributing to these advancements.
We propose novel numerical approximation methods for three SPDEs, an-
alyze their e�ciencies through mathematical and numerical analysis, and
numerically illustrate their advantages.

1.1 Overview of the studied SPDEs

Here we brie�y introduce the reader to the stochastic models considered in
this thesis and one of their respective application areas. See Section 3 or 4
for closer details on these models. We especially recommend Sections 4.1,
4.2, 4.3, and 4.5 for physical derivations of the Schrödinger and Manakov
models mentioned below.

1.1.1 The stochastic Nonlinear Schrödinger equation with
white noise dispersion

A fundamental model in optics is the nonlinear Schrödinger equation (NLSE)
with a power nonlinearity [97, 1, 16]. This PDE follows from considering light
propagation in �ber optics, where one challenge is the chromatic dispersion
of optic signals. This dispersion makes it more di�cult to discern signals
when using high-bit-rate transmissions, especially over long distances. It is
vital to consider this dispersion to enable e�cient �ber optics, such as in the
Internet and other modern communication systems. Dispersion management
is a multi-pronged approach, ranging from signal repeating and interpreta-
tion methods (such as wavelength division multiplexing [73]) to material
engineering. The latter approach would optimally create a �ber with zero
dispersion, which is a practical impossibility [14]. Instead, one proposed so-
lution is to consider �bers with a small random dispersion that varies along
the �ber and has zero average [70, 14]. We consider a model like this, termed
the nonlinear Schrödinger equation with white noise dispersion (SNLSE) [70,
14, 29, 7, 22, 25].
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1.1.2 The stochastic Manakov equation

The chromatic dispersion considered in the NLSE is not the only dispersion
a�ecting light propagation. Another type of dispersion is polarization mode
dispersion (PMD). The PMD follows from birefringence in the optical �bers
that may vary due to (for example) core geometry, non-uniform anisotropy,
or mechanical distortions from point-like pressure or twisting [39]. It is
possible to model these restrictive factors as random in�uences leading to the
Manakov PMD equation (MPMDE) and its limiting equation, the stochastic
Manakov equation (SME); see [75, 15, 43] for details. The SME also serves
as a model for studying long-distance light propagation in random optical
�bers [68, 73].

1.1.3 The stochastic generalized Benjamin�Bona�Mahony
equation

Stepping away from optics, we now consider how to model a bore in water. A
bore is when the water has a steep front, meaning a sudden increase in water
depth. It can also be called a positive surge or (particularly in Britain) an
aegir, eagre, or eygre. Bores may form under several circumstances, taking
on several characteristics, and we focus on a phenomenon called undular
bores, also known as dispersed shock waves. Note that while undular bores
do not only occur in water [100], we list three examples using water here:
When an internal tide is propagating towards a shore, forming a hydraulic
jump (or shock) which in turn disperses into an undular bore [93, 55]; in the
aftermath of a tsunami, undular bores may form and in turn split up into
solitary waves [48, 66]; or simply in water channels a�ected by the tide or
gates opening and closing [81, 65].

One of the earlier works studying water wave propagation in rectangular
channels led to a popular model of undular bores, the Korteweg�de Vries
(KdV) equation [61]. However, the physical derivation generally requires
small wave numbers and amplitudes [8], which are notable drawbacks. These
issues led to the development of a substitute, the Benjamin�Bona�Mahony
(BBM) equation, also known as the regularized long wave (RLW) model [81,
8, 5]. Several sources have then generalized this model in di�erent ways. We
consider two dissipative terms often presented as paired quantities [94, 99,
102, 103, 50, 49, 54], a generalized nonlinearity, and white noise dispersion
[21, 35]. We call this the stochastic generalized Benjamin�Bona�Mahony
equation (SBBM).
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1.2 Families of numerical integrators for SPDEs

Most of the time-dependent SPDEs lack explicit, non-trivial, solutions. This
problem has led to many numerical methods for approximating solutions to
SPDEs. This thesis mainly considers three families of numerical methods
for the time-discretization of SPDE: Euler-type, exponential, and splitting
integrators. We refer the reader to Section 2.5 for more in-depth details.

Essential concepts to many physical problems are invariants [51], .i.e.,
properties that do not change over time. A natural question is whether pre-
serving some or all of these invariants for a numerical integrator is possible.
The di�culty of answering this question depends on the underlying problem
and the approach to constructing the numerical integrator.

Euler-type integrators are the most basic type of numerical integrators.
These are typically the �rst type of integrators a student encounters when
studying ordinary di�erential equations, as they are comparatively easy to
implement and analyze theoretically. This �rst venue into numerical analysis
may consist of obtaining the order of the numerical scheme or even deriv-
ing what conditions are necessary for the integrator to be stable. Even in
the SPDE case, though the Euler-type schemes are comparably basic, they
still have their uses. Such uses include but are not limited to, being the
foundation for more complicated numerical integrators designed for speci�c
purposes.

Exponential integrators use a representation of the solution to the SPDE
known as the mild solution. It allows the numerical analysis of the exponen-
tial integrators to bene�t from well-explored areas such as, e.g., semigroup
theory. Then, depending on the approximation of the mild solution, this
may result in preserving invariants or higher order of convergence.

Splitting integrators approach the numerical approximation by decom-
posing the original problem into more manageable sub-problems. It is im-
portant to note that these sub-problems are only considered over each small
interval as given by the time discretization. In the best cases, these sub-
problems could have explicit solutions. Splitting integrators could therefore
preserve invariants or have improved computational time.

1.3 The objectives and main results of the thesis

In this section we list the main objectives of this thesis, how they were
achieved, and in what paper they have been achieved.
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aq Perform a comprehensive numerical analysis of the SNLSE. This was
done in Paper 1 by

a1q comparing several already existing numerical schemes,

a2q studying variable stepsize strategies,

a3q extensively investigating the blowup phenomena of solutions to
the SNLSE. For more details on a conjecture regarding blowup as
posed in [7], see Section 3.2.3.

bq Develop and analyze novel numerical methods for an e�cient numerical
integration of the SME. This was done in Paper 2 and 3 by

b1q developing and implementing exponential schemes (the explicit
exponential integrator and symmetric exponential integrator, ab-
breviated EE and SE, respectively) for the SME, (Paper 2 and
3)

b2q developing and implementing splitting schemes for the SME, (Pa-
per 2 and 3)

b3q proving the rates of convergence in the mean�square, probability,
and almost surely sense of the EE for the SME, (Paper 2)

b4q proving the rates of convergence in the mean�square, probability,
and almost surely sense of the Lie�Trotter splitting integrator,
abbreviated LT, for the SME, (Paper 3)

b5q comparing the performance of several already existing numerical
schemes. (Paper 2 and 3)

cq Study e�cient numerical discretization of the SBBM. This was done
in Paper 4 by

c1q developing, implementing, and numerically investigating the prop-
erties and convergences of exponential schemes,

c2q comparing the performance of several already existing numerical
schemes.

dq Develop novel approach to numerically illustrate convergence in prob-
ability. See Section 2.7 for more details. (Paper 1, 3, and 4)
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2
Tools and Techniques for Modeling and

Simulating SPDEs

Several tools and techniques are needed to model, study, and simulate SPDEs.
These include, but are not limited to, stochastic, functional, semigroup,
PDE, numerical, and physical modeling theories. The theory behind SPDEs
is too complicated to cover in the introduction of a thesis. Therefore we will
only touch on some of the concepts necessary to understand the articles in
this thesis.

While there exist approaches such as the Martingale (or Martingale mea-
sure) approach [101] and the variational (or Malliavin) calculus approach
[86, 90], this thesis focuses on the semigroup (or mild solution) approach to
SPDEs [27, 26, 62].

For the reader who desires more depth, we give here a few references
related to a selection of the relevant areas: See [88, 96, 17, 77] for PDEs, [80,
52, 33] for semigroups, [60, 3] for SDEs, and [101, 19, 86, 27, 91] for SPDEs.

2.1 Introduction to PDE

The main reference of this section is [17]. Let us �rst de�ne appropriate
PDE spaces. A measure space is de�ned as the triple pψ,M, µq, where ψ is
a set, M is a σ-algebra in ψ, and µ : M Ñ r0,8s is a measure. For the
purpose of this section, we restrict ourselves to ψ � Rn, n P N.

De�nition 2.1.1 (Lp-space). The space of all µ-integrable functions from
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ψ to C is de�ned as L1pψq. For p P p1,8q

Lppψq �  
f : ψ Ñ C; f measurable ; |f |p P L1pψq( .

For p � 8

L8pψq � tf : ψ Ñ C; f measurable ;

f bounded µ-almost everywhere (a.e.) on ψu.

The corresponding seminorms are de�ned as

∥f∥Lppψq �
�»

ψ
|fpxq|p dµpxq

�1{p
for p P r1,8q and

∥f∥L8pψq � inftC; |fpxq| ¤ C µ-a.e. on ψu.

for p � 8.
These seminorms cannot distinguish functions that are equal µ-almost

everywhere, and therefore we de�ne, for some p P r0,8s,

N � tf P Lppψq : ∥f∥Lppψq � 0u.

We then consider the coset of f P Lppψq,

f �N :� tf � g : g P N u.

This gives us the quotient vector space induced by the above seminorms.

De�nition 2.1.2 (Lp-space). For p P r0,8s, the quotient space Lppψq{N is
de�ned as the set of cosets

Lppψq � tf �N : f P Lppψqu.

It is clear that, for f P Lppψq, p P r0,8s, the set!
∥f � g∥Lppψq : g P N

)
contains only one element, and we denote this element as ∥f∥Lppψq. The
induced norm can then be written as

∥f �N∥Lppψq :� ∥f∥Lppψq � ∥f∥Lppψq .

7



In fact, see the Riesz�Fischer Theorem [17, page 93], for p P r1,8s we
have that Lp is a complete vector space, also known as a Banach space. For
the special case of p � 2 we also �nd that L2 is a Hilbert space, with the
inner product

xf, gyL2pψq �
»
ψ
fpxq�gpxqdµpxq.

To simplify the notation, we write mixed partial derivatives in dimension
n � dimpψq. Then, for α P Nn and |α| � α1 � α2 � . . . αn, we introduce the
multi-index notation

Dα � B|α|
Bα1
x1 Bα2

x2 . . . Bαn
xn
.

This allows us to concisely give the following de�nition.

De�nition 2.1.3 (Sobolev space). Let p P r0,8s and m P N. The Sobolev
space Wm,ppψq is de�ned as

Wm,ppψq � tf P Lppψq;Dαf P Lppψq @|α| ¤ mu ,

where the derivatives are interpreted in the weak sense.

The corresponding Sobolev norm is then

∥f∥Wm,ppψq �
$&
%
�°

|α|¤m ∥Dαf∥pLppψq

	1{p
, p P r1,8q

max|α|¤m ∥Dαf∥L8pψq , p � 8.

As with L2 we have the special case for p � 2, with the notation Hmpψq :�
Wm,2pψq. It has the corresponding inner product

xf, gyHmpψq �
m̧

α�0

¸
|β|�α

»
ψ
pDβfq�pDβgqdµ,

where the sum over β is the sum over all multi-indexes such that |β| �
β1 � β2 � . . .� βn � α.

2.1.1 Semigroup theory & types of solutions

In general, a semigroup is a set with a binary operation de�ned on it, such
that the binary operation is associative. If we then consider a semigroup
of operators on a Hilbert space H, tSptq : H Ñ H; t ¥ 0u, we call it a
C0-semigroup on H if

8



1. Sp0q � I and Spt� hq � SptqSphq for all t, h ¥ 0,

2. limhÑ0� SphqX � X for all X P H.

This semigroup can then be linearized to give the in�nitesmal generator of
the semigroup, which is the linear operator L de�ned according to

LX :� lim
hÑ0�

SphqX �X

h

for all X P H where the above limit exists.
Let us inspect a model problem#

X 1ptq � LXptq � fptq
Xp0q � X0

(2.1)

where t P r0, T s, X0 P H, f P L1pr0, T sq, and L is the in�nitesimal generator
for some analytic C0-semigroup tSptq : H Ñ H; t ¥ 0u. For closer details
on what it means for a semigroup to be analytic, see for instance [33]. With
this, we have two types of solutions.

De�nition 2.1.4 (Strong solution). A function X : r0, T s Ñ H which

� is di�erentiable almost everywhere on r0, T s,

� has X 1 P L1pr0, T s �Hq,

� has Xp0q � X0, and

� X 1ptq � LXptq � fptq almost everywhere on t P r0, T s

is called the strong solution to Equation (2.1).

De�nition 2.1.5 (Mild solution). A function X : r0, T s Ñ H de�ned ac-
cording to

Xptq :� SptqX0 �
» t
0
Spt� sqfpsqds,

ful�lling
sup
tPr0,T s

∥Xptq∥2H   8,

is called the mild solution to Equation (2.1).
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2.2 Brief overview of stochastic analysis

We stress again that for additional depth or details, we refer to, e.g., [86].
Let pΩ,A,Pq denote a probability space. We equip it with a �ltration F �
tFt, t P Tu for some index set T. This �ltration satis�es, as is usual, the
following conditions

1. F0 contains all P-null sets of A.

2. F is right-continuous. That is,

Ft �
£
s¡t

Fs

for all t, s P T.

This allows us to de�ne the core concept of SPDEs.

De�nition 2.2.1 (Random variable in Hilbert space). Let H be a Hilbert
space, and let BpHq be the Borel σ-algebra on H. Then a measurable func-
tion X : pΩ,Aq Ñ pH,BpHqq is a H-valued random variable.

The de�nition of stochastic processes naturally follows.

De�nition 2.2.2 (Stochastic process). A set of random variables R �
tXptqutPT, for some index set T, is a stochastic process. If, for all t P T,
Xptq are H-valued random variables we say that R is a H-valued stochas-

tic process.

Commonly T is the set of non-negative real numbers, an interval of the
form ra, bs, or non-negative integers. In this thesis, we consider T � r0, T s
for some T ¡ 0, or T � R�.

One of the stochastic processes considered in the articles in this thesis is
the well-known Wiener process.

De�nition 2.2.3 (Wiener process). A stochastic process W : Ω� R� Ñ R
is called a standard Wiener process if

1. W p0q � 0 almost surely.

2. The sample paths of W are continuous over R� almost surely.

3. W has independent increments. I.e. for all ps1, t1q, ps2, t2q � R�,
W pt1q�W ps1q is independent ofW pt2q�W ps2q if ps1, t1qXps2, t2q � H.
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4. W ptq �W psq � Np0, t � sq @t ¥ s. I.e. the increments are normally
distributed with mean 0 and variance equal to the increment interval
length.

One of the properties of the Wiener process is that, while it is almost
surely continuous over R�, it is also almost surely non-di�erentiable over
R�.

Much like the stochastic integrals for SDEs, the formal path to con-
structing stochastic integrals for SPDEs begins by constructing H-valued
elementary processes. To simplify the notation, we �rst de�ne the following.

De�nition 2.2.4 (Indicator function). For some set A, the function

IAptq �
#
1, t P A,
0, elsewhere.

is called the indicator function.

We can now split up our index set and de�ne the following elementary
processes accordingly.

De�nition 2.2.5 (H-valued elementary process). Take the index set T and
some �nite partition trti, ti�1quNi�1 � tTiuNi�1, with tN�1 � 8 if T � R�.
We say that an H-valued stochastic process X is an H-valued elementary

process if

Xptq �
Ņ

i�0

XiITiptq,

for some set of H-valued random variables tXiuNi�0. We use H to denote the
set of H-valued elementary processes.

The stochastic integrals with respect to these elementary processes are
de�ned as follows.

De�nition 2.2.6 (Stochastic integrals of H-valued elementary process).
Take the Wiener process W , and an H-valued elementary process X with
the partition of the interval ra, bq according to trti, ti�1quNi�0. Then the Itô
stochastic integral of X over ra, bs is de�ned as» b

a
XptqdW �

N�1̧

i�0

XipW pti�1q �W ptiqq.
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The Stratonovich stochastic integral of X over ra, bs is de�ned as» b
a
Xptq � dW �

N�1̧

i�0

�
Xi �Xi�1

2



pW pti�1q �W ptiqq.

The symbol � is known as the Stratonovich product.

By constructing a sequence of processes in H, tXiu8i�1 that converges
towards some H-valued stochastic process X in the completion of H, denotedsH, we get the following de�nition.
De�nition 2.2.7 (Stochastic integral of H-valued stochastic processes).
Take a sequence tXiu8i�1, Xi P H @i ¥ 1 such that X � limiÑ8Xi P sH.
Then the Itô stochastic integral of X over ra, bs is de�ned as» b

a
XptqdW � lim

iÑ8

» b
a
XiptqdW

and the Stratonovich stochastic integral of X over ra, bs is de�ned as» b
a
Xptq � dW � lim

iÑ8

» b
a
Xiptq � dW.

Remark 2.2.8. Observe that the values of the Itô and Stratonovich integrals
are not dependent of the choice of sequences tXiu8i�1.

Remark 2.2.9. The limits of these integrals are interpreted in the mean�
square sense,

lim
iÑ8

Xi � X ô lim
iÑ8

E
�
∥Xi �X∥2H

�
� 0.

2.3 The Monte Carlo method

The Monte Carlo method is a powerful statistical technique that leverages
random sampling to estimate various underlying properties or a random
variable, e.g. ∥Xptq∥L2 , including the mean, probability of events, and vari-
ance [89]. Take a set of independent and identically distributed real-valued
random variables tXnuNn�1 for a given N � 2, 3, . . .. With this set of ran-
dom variables, we can calculate the sample mean X̄ and sample standard
deviation spXq using the formulas:

X̄ � 1

N

Ņ

n�1

Xn, spXq �
gffe 1

N � 1

Ņ

n�1

pXn � X̄q2.

12



When using the Monte Carlo method, choosing an appropriate sample size
that balances the accuracy of the estimates and the computational resources
required is crucial. This balance becomes especially important when compar-
ing two sample means, such as when estimating weak errors. The di�erence
between the estimates would have to be greater than the Monte Carlo error,
which is de�ned as the standard deviation of the sample mean,

b
V
�
X̄
� �

gffeV

�
1

N

Ņ

n�1

Xn

�
� 1?

N

a
V rX1s.

Remark 2.3.1. Observe that the sample mean, X̄, and sample standard
deviation, spXq, are both random variables.

2.4 Spatial discretization of PDEs

Here we give a brief rundown of the two methods of spatial discretization
used in the articles included in this thesis: The �nite di�erence method [77]
and the pseudospectral method [46]. Naturally, there are a number of other
methods to discretize (S)PDEs in space, such as the �nite element method
[63] (usually denoted FEM) or the �nite volume method [31] (usually denoted
FVM).

In order to keep the explanations of the spatial discretization methods
brief, we limit ourselves to the function X : R� � ra, bs Ñ R obeying the
PDE

B
BtX � B

BxX � B2
Bx2X � fpXq � 0, (2.2)

where f : RÑ R is some nonlinear function. We use Dirischlet homogeneous
boundary conditions for the �nite di�erence method, Xpaq � Xpbq � 0, and
periodic boundary conditions for the pseudo-spectral method, Xpaq � Xpbq.

2.4.1 The �nite di�erence method (FD)

We will assume homogeneous Dirichlet boundary conditions. Take an integer
M ¥ 1 and de�ne the mesh of the �nite di�erence discretization by ∆x �
pb � aq{M . Furthermore, we denote a discrete grid by xm � a �m∆x, for
m � 0, 1, . . . ,M . A centered �nite di�erence approximation of Equation
(2.2) then results in the following system

B
BtX

m � Xm�1 �Xm�1

2∆x
� Xm�1 � 2Xm �Xm�1

p∆xq2 � fpXmq � 0, (2.3)

13



where Xm : R� Ñ R, X0 � XM � 0, and m � 0, 1, . . . ,M . One then gets
the numerical approximation Xm � Xp�, xmq.

2.4.2 The pseudospectral method (PS)

We will assume periodic boundary conditions. The pseudospectral method
represents the solution as a sum of Fourier modes, computing the spatial
derivatives using the Fourier transform. This method may be more time-
e�cient than the FD method, particularly when considering smooth func-
tions and e�cient use of the fast Fourier transform. Using the M Fourier
modes of X, one obtains the semi-discrete problem

B
BtX

m � im�Xm � pm�q2Xm � fpXqm � 0, (2.4)

where Xm : R� Ñ R is the m'th Fourier mode of X, m� � 2π
b�am, fpXqm is

the m'th Fourier mode of fpXq, and m � 1, 2, . . . ,M .

2.5 Commonly used time integrators

As with the spatial discretization, there are several approaches to discretiz-
ing (S)PDEs in time. To describe the main ideas behind the Euler-type,
exponential, and splitting integrators, take a H-valued stochastic process X
which obeys the SPDE

dXptq � pAXptq � F pXptqqqdt�BXptq � dW ptq (2.5)

� pLptqXptq � F pXptqqqdt (2.6)

Xp0q � X0

where X0 P H, W is the Wiener process, A,B are linear operators, F :
H Ñ H is a nonlinear function, and Lptq is the generator of a stochastic
�ow Spt, sq : H Ñ H, for s   t. This SPDE has the corresponding (for more
formal details, we refer the reader to e.g. [20, 62, 70, 22, 12]) mild solution

Xptq � Spt, 0qX0 �
» t
0
Spt, sqF pXpsqqds. (2.7)

Going forward, we consider a time step size h ¡ 0 and the resulting uniform
partition IN � ttnu8n�0 � thnu8n�0 of T � R�. We also use half-steps,
which we denote as tn�1{2 � tn � h{2, and partition the Wiener process W
accordingly, denoting the increments as ∆Wn �W ptn�1q �W ptnq.

Accompanying each de�nition, we also introduce their corresponding no-
tation used throughout this thesis.

14



2.5.1 Euler-type integrators

The formulation of Equation (2.5) is the starting point to derive the Euler-
type integrators.

De�nition 2.5.1 (Midpoint integrator). For an initial value X0 P H, the
midpoint integrator, denoted MP, is de�ned as

Xn�1 � Xn � hA

�
Xn �Xn�1

2



� hF

�
Xn �Xn�1

2



�∆WnB

�
Xn �Xn�1

2



.

Resembling the midpoint integrator, the following integrator is very pop-
ular.

De�nition 2.5.2 (Crank�Nicolson integrator). For an initial value X0 P H
the Crank�Nicolson integrator, denoted CN, is de�ned as

Xn�1 � Xn � hA

�
Xn �Xn�1

2



� h

F pXnq � F pXn�1q
2

�∆WnB

�
Xn �Xn�1

2



.

Remark 2.5.3. Observe that it is common to approximate F in the CN,
leading to many variations, see e.g. [7].

2.5.2 Exponential integrators

The mild solution, Equation (2.7), is the starting point to derive the expo-
nential integrators. We begin by approximating the integral using an Euler
approximation.

De�nition 2.5.4 (θ-exponential integrator). For an initial value X0 P H
and θ P r0, 1s, we have that the θ-exponential integrator is de�ned as

Xn�1 � Sptn�1, tnq pXn � hF pθXn � p1� θqXn�1qq .

For θ � 1, 0.5, 0 one obtains the explicit, midpoint, and backward ex-

ponential integrators respectively. They are, in order, denoted EE, ME,
and BE.
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This approach can be re�ned further by introducing a symplectic, or
symmetric, variant [20].

De�nition 2.5.5 (Symmetric exponential integrator). For an initial value
X0 P H the symmetric exponential integrator, denoted SE, is de�ned
as

X� � F

�
S
�
tn�1{2, tn

�
Xn � h

2
X�



Xn�1 � Sptn�1, tnqXn � hS

�
tn�1, tn�1{2

�
X�.

In the articles considered in this thesis, the symmetric exponential inte-
grator displays several advantageous qualities, including preserving quadratic
invariants or even displaying a higher order of convergence (depending on
the model, see [10]).

2.5.3 Splitting integrators

The formulation of Equation (2.6) is the starting point to derive the splitting
integrators. See, e.g., [51] for splitting integrators applied to SDEs. For
two �nite partitions of the step rtn, tn�1s, one for the linear and one for the
nonlinear part, respectively, splitting integrators alternates between the �ows
of these parts, respecting said partitions. In practice, the implementation of
these steps may overlap with the �ow as found in the mild solution or even
use explicit solutions. Therefore we will use the notation S for the linear
�ow. Correspondingly, we use Z to denote the nonlinear �ow. That is, for
the �ow of the nonlinear part

X 1ptq � F pXptqq,

over the time increment rtn, tn�1s, with initial valueXn, we write Zptn, hqXn.
We can now de�ne two of the more famous splitting integrators.

De�nition 2.5.6 (Lie�Trotter splitting integrator). For an initial valueX0 P
H the Lie�Trotter splitting integrator, denoted LT, is de�ned as

Xn�1{2 � Sptn, hqXn

Xn�1 � Zptn, hqXn�1{2.
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De�nition 2.5.7 (Strang splitting integrator). For an initial value X0 P H
the Strang splitting integrator, denoted ST, is de�ned as

Xn�1{2 � Sptn, h{2qXn

X� � Zptn, hqXn�1{2

Xn�1 � Sptn�1{2, h{2qX�.

2.6 Some types of stochastic convergences

Naturally, given a numerical approximation of a solution to some SPDE,
we are interested in three things: Whether the numerical approximation
converges toward the exact solution; for what norm it converges; and with
what order (speed). With the introduction of stochasticity to PDEs we need
to adapt the types of convergence. We introduce a selection of them here,
and refer the curious reader to e.g. [60, 3] for more details.

In order to simplify the notation slightly, we will consider samples ω P Ω,
time t P T � r0, T s, and spatial coordinates x P R. Then for some SPDE
with solution X we discretize in time using the uniform partition IN pT q �
ttnuNn�0 � thnuNn�0 of T for some N P Z� and time step size h � T {N . The
numerical approximation of X at tn is denoted by Xnpx, ωq � Xptn, x, ωq,
n � 0, 1, . . . , N and we denote the error for a given norm N with

epT,N,N , ωq � max
tnPIN pT q

∥Xnp�, ωq �Xptn, �, ωq∥N .

We say that a numerical scheme converges (with order δ ¡ 0 and with
respect to the norm N )

� In mean�square (or strongly) if there exists a constant C, not de-
pendent on N , such that for all N big enough,a

E repT,N,N , �q2s ¤ Chδ. (2.8)

� In probability if for all h ¤ 1

lim
CÑ8

P
�
epT,N,N , �q ¥ Chδ

	
� 0, (2.9)

or, equivalently, if for any ε P p0, 1s there exists a Cpεq P R s.t. for any
h ¤ 1

P
�
epT,N,N , �q ¥ Cpεqhδ

	
  ε. (2.10)
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� Almost surely if for all δ̂ P p0, δq, there exists a random variable
Kδ̂pT, ωq such that

epT,N,N , ωq ¤ Kδ̂pT, ωqhδ̂ P� a.s.,

for N su�ciently large.

� Weakly if for any functional ϕ (of a nice enough class of functionals),
there exists a constant Cpϕq such that, for N big enough,

max
tnPIN pT q

|E rϕpXnqs � E rϕpXptn, ωqqs | ¤ Cpϕqhδ.

We want to stress that the weak convergence does not use the norm N .
Further, since the weak errors compare two means, it is important to ensure
that the Monte Carlo error does not overshadow their di�erences and that
special considerations are taken.

2.7 Methods for illustrating convergences numeri-
cally

A numerical investigation into how a numerical integrator converges will be
limited, given that a computer has a �nite time to perform its calculations.
This limitation primarily displays itself in a �nite selection of time step sizes
h chosen to illustrate the convergence of interest. A reference solution often
replaces the exact solution X due to a lack of explicit solutions, and it uses a
time step size smaller than the selected h considered. Aside from the choice
of time step sizes, it is also important to remember that the estimations
of the means and probabilities are heavily dependent on the sample sizes.
As an example of how the distribution of the errors looks in the standard
and logarithmic perspectives, we present Figure 2.1. To be clear: We also
illustrate some numerical cumulative distribution functions (CDFs) in the
logarithmic perspective, e.g., Figure 2.3.

Any illustration in this section will display actual data simulated for the
SBBM, with a total of 600 samples. We introduce the notation across the
following subsections: The sample size is denoted B ¡ 0, and the individual
samples will be denoted ωi P Ω, i � 1, 2, . . . , B.
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Figure 2.1: Smoothed distributions of H1-norm errors of the SE for the
SBBM, at given time step sizes h, with the means of the errors marked using
blue circles. Semi-log plot to the left, log-log plot to the right.

2.7.1 Mean�square and weak convergence

When it comes to illustrating the accuracy of a numerical scheme, the most
common method is to numerically illustrate the strong or weak orders of con-
vergence. The method of illustrating the order of mean�square convergence
is as follows. De�ning

errpT {Nq � errphq � E repT,N,N , ωqs
and taking the logarithm of Equation (2.8) yields

log errphq ¤ logpCq � δ logphq.
We recognize the right-hand side as the equation of a line with intercept
logpCq and slope δ. We compare log errphq to this line. We can therefore
display the mean�square order of convergence for a number of numerical
schemes simultaneously and compactly, as seen in Figure 2.2 which contains
the corresponding Monte Carlo estimates of errphq.

Illustrating the order of weak convergence is visually identical, with the
only caveat that the sample sizes often have to be much larger due to the
Monte Carlo error, see Section 2.3.
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Figure 2.2: An illustration of the strong, or mean�square, convergence rates.
Evaluation of the linear SBBM using three di�erent norms, L2-norm left, H1-
norm middle, L8-norm right.

2.7.2 Convergence in probability

As seen in the de�nition of convergence in probability, we have two per-
spectives we can approach from. In the following illustrations we will make
use of data obtained from numerical experiments simulating the SBBM, as
performed in [10].

Starting with Equation (2.9) we can approximate the probability P with
the proportion of samples ful�lling the same criteria. For some C ¡ 0, let

ApCq � ApT,N,N , Cq �
!
ω P Ω : epT,N,N , ωq ¥ Chδ

)
.

Then

P ph,N , C, δ, Bq :�
°B
i�1 IApCqpωiq

B
� P

�
epT,N,N , ωq ¥ Chδ

	
for some large sample size B and h � T {N . We observe how this fraction
behaves as hÑ 0 and C Ñ 8. We want to capture the behavior of P for a
range of C using the chosen h given a hypothesized order of convergence δ.
This method is denoted as the P -estimation method.
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Figure 2.3: Smoothed distributions of H1-norm errors of the SE for the
SBBM, at given time step sizes h, with the median marked using green
circles. Distribution plot to the left, CDF plot to the right. The three
dashed lines are Cδhδ, δ � 0.9, 1, 1.1.

A �rst attempt to visualize the P -estimation method can be seen in [4,
p. IV:19] and an improvement was then made in [11]. As an aide of under-
standing the behavior of P , we use Figure 2.3. We use three lines Cδhδ for
δ � 0.9, 1, 1.1 and have chosen Cδ such that the lines intersect at the median
of the errors for the greatest step-size. We see how P ph,H1, Cδ, δ, 600q, as a
function of N � T {h, decreases for δ � 0.9, stays approximately the same
for δ � 1, and increases for δ � 1.1 as h Ñ 0. This is illustrative of the
behavior for the order of convergence in probability, which in this case is
δ � 1. To ensure consistency, this behavior of P can then be observed over
a larger set of values for C and h � T {N , as seen in Figure 2.4.

The second perspective of illustrating convergence in probability, Equa-
tion (2.10), relies on estimating the translation coe�cient Cpεq for ε P
t1{B, 2{B, . . . , B{Bu. This method is denoted as the C-estimation method.
A �rst attempt at illustrating the rate of convergence in probability using
the C-estimation method can be seen in [11]. De�ne

Cph,N , ε, δ, Bq � inf
 
C P R� : P ph,N , C, δ, Bq ¥ ε

(
.

Taking �xed B, N , and set of time step sizes h, then for each δ we get a
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Figure 2.4: Using the P -estimation method, an illustration of the conver-
gence in probability of 8 numerical schemes for the SBBM equation, in the
L2-norm.

range of Cph,N , ε, δ, Bq spanning our set of h. For the sake of visualization,
these C estimations are then normalized via

C̃pδ, h, ε,N , Bq � Cph,N , ε, δ, Bq
supĥCpĥ,N , 1{B, δ,Bq

forcing C̃ for the lowest percentile to be 1, i.e. suph C̃pδ, h, 1{B,N , Bq � 1.
As an illustration, we have estimated Cph,H1, 0.5, δ, 600q for δ P t0.9, 1, 1.1u
and a selection of a few time step sizes in Figure 2.5. We observe how the
span of the translation coe�cient is the smallest for δ � 1. This means
that for a nice enough choice of set of time step sizes we expect that the
range of C̃ is minimized for the correct order of convergence δ. We can see
C̃pδ, h, ε,H1, 600q ranges obtained by the SE for the SBBM in Figure 2.6.

The downside of the C-estimation method, as seen in Figure 2.6, is the
lack of density: with one numerical scheme occupying an entire �gure. A
natural next step, as considered in [10], would be to consider the integral of
the ranges obtained by the C-estimation method.

By imposing a few harsh assumptions on the distribution of the errors
we get the beginnings of the Ipδq-estimation method.
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Figure 2.5: Smoothed distributions of H1-norm errors of the SE for the
SBBM, at given time step sizes h, with the median marked using green
circles. Each CDF is plotted with three lines Chhδ, (δ � 0.9, 1, 1.1 in the
left, middle, and right plots respectively), where Ch is chosen such that the
line intersects the median of the errors for time step size h.
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Figure 2.6: Using the C-estimation method, an illustration of the conver-
gence in probability of SE for the SBBM equation, in the H1-norm.
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Proposition 2.7.1. Consider a numerical scheme with numerical errors
epT,N,N , �q for a norm N . If there exists some upper limit ĥ ¡ 0 such that
@h � T {N   ĥ there exists a strictly monotonic continuous CDF Fh : R� Ñ
r0, 1s for the numerical errors epT,N,N , �q, and

Ipδq :�
» 1

0
sup
hPp0,ĥs

F�1
h pεq
hδ

� inf
hPp0,ĥs

F�1
h pεq
hδ

dε � 0,

then this numerical scheme converges in probability with order δ with respect
to N .

Proof. Since Fh, for any given h P p0, ĥs, is strictly monotonic and contin-
uous, we have that the corresponding quantile function F�1

h is continuous.
This means that Ipδq is an integral of a continuous non-negative function.
Combined with Ipδq � 0 we can therefore conclude that, for all ε P p0, 1q,

sup
hPp0,ĥs

F�1
h pεq
hδ

� inf
hPp0,ĥs

F�1
h pεq
hδ

.

This means that

F�1
h1
pεq

hδ1
� F�1

h2
pεq

hδ2
, @h1, h2 P p0, ĥs,

or, equivalently, that

F�1
h pεq � F�1pεqhδ, @h P p0, ĥs

for some CDF F . We can rewrite this according to

ε � FhpF�1pεqhδq.
If we then choose Cpεq � F�1p1� ε{2q for any given ε ¡ 0, we have that

P pepT,N,N , �q ¥ Cpεqhδq � 1� FhpCpεqhδq
� 1� FhpF�1p1� ε{2qhδq � ε{2   ε,

and we therefore have convergence in probability with order δ.

Using the experimental data, we have estimated Ipδq in Figure 2.7. The
shape of the curves is due to the factor

|hδ̂�δmax � hδ̂�δmin| � |h�amax � h�amin|,
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Figure 2.7: Using the Ipδq-estimation method, an illustration of the conver-
gence in probability of 8 numerical schemes for the SBBM equation, in the
L2-, H1, and L8-norm (left, middle, and right, respectively).

where δ is the true rate of convergence in probability, and hmax, hmin are
the greatest and smallest time step sizes considered in the experiment. This
factor appears in the converse of Proposition 2.7.1, illustrated in the left
image of Figure 2.8. The similarity in shape indicates that the assumptions
for Proposition 2.7.1, while harsh, are partially motivated.

To lessen the harsh assumption made in Proposition 2.7.1, one can in-
stead observe a similar integral. For some interval S � p0, ĥs, de�ne

CpS, ε, δq � inf
!
C P R� : @h P S P

�
epT,N,N , ωq ¥ Cpεqhδ

	
  ε

)
.

Then de�ne the integral

kpS, δ, pq �
» 1

0

∥∥∥logpCpS, ε, δqhδq � logpF�1
h pεqq

∥∥∥
LppŜq

dε

where h P Ŝ � tlogpsqusPS .
Take some initial h̃   ĥ and de�ne the sequence#

Sn � Sn�1 Y ph̃{2n, h̃{2n�1s
S0 � ph̃{2, h̃s .
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Figure 2.8: Left image: |h�amax�h�amin| for a � δ̂�δ with δ � 1. Right image:
Using the k-estimation method, estimating kpS, δ, pq for p � 1, 2, 4,8, using
the SE for the SBBM.

Then we conjecture that for all p ¥ 1,

lim
nÑ8

kpSn, δ, pq
kpSn, δ̂, pq

� 0

for δ̂ � δ if and only if the numerical scheme converges with order δ. We
call this method of numerically demonstrating the order of convergence in
probability the k-estimation method. As an example, in the right image of
Figure 2.8, we can see kpS, δ, pq estimated for p � 1, 2, 4,8 using the SE for
the SBBM and H1-norm.

2.7.3 Almost sure convergence

As with the numerical illustration of the order of convergence in probability,
few attempt to numerically illustrate the almost sure order of convergence
in the literature. Some attempts to inspect the convergence rate of single
samples exist, e.g., [23], while a multi-sample approach is rarer [11].

To estimate the rate of almost sure convergence, we again estimate the
translation coe�cient. Only this time, we take a �xed sample ω, yielding

KδpT,N , ωq � arg inf
h

tC P R� : Chδ ¥ epT,N,N , ωqu,
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Figure 2.9: Using the eδpωq-estimation method, an illustration of the almost
sure convergence rate of the SE for the SBBM equation, in the H1-norm.

for all considered time-step sizes h. For a su�ciently large span of h, we
would then expect that the distance

eδpωq � eδpω, T,N q � sup
h
|KδpT,N , ωqhδ � epT,N,N , ωq|

would be minimized for the correct order of convergence δ. A number of
histograms of eδpω, 1,H1q � e1pω, 1,H1q for SE for the SBBM can be seen
in Figure 2.9. We can observe that with the exception of a few samples,
eδpω, 1,H1q is minimized for δ � 1 and that the rate of convergence is close
to δ � 1 for the rest. These results indicate that the SE converges almost
surely with an order close to 1 with respect to the H1-norm.

This method of illustrating the almost surely convergence rate is sensi-
tive to the range of h considered, given that each sample may �uctuate in
precision wildly. A greater span of h will ensure that the distributions of
errors, as seen in Figure 2.1, overlap less, leading to better estimations of
eδpωq.
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3
The Stochastic Models Studied in the Thesis

3.1 Common notation

Let pΩ,F ,Pq be a probability space. On this probability space, de�ne a real-
valued standard Brownian motion W : R� Ñ R. We endow the probability
space with the complete �ltration tFtut¥0 generated by W . The SPDEs are
interpreted in the Stratonovich sense, see Section 2 for the de�nition of the
Stratonovich product, and the initial value is denoted X0.

We use I to denote the identity operator. For X : r0, T s � R Ñ C we
denote the �rst and second order spatial derivatives along the second variable
x as

Xx � BxX � BX
Bx ,

Xxx � B2xX � B2X
Bx2 .

Similarly, for X : r0, T s � Rn Ñ C we denote the Laplacian as

∆X �
ņ

j�1

B2xjX.

Lastly, each equation below contains power law nonlinearities of the form
|X|σX for some σ ¡ 0. In the case whereX maps onto C2, |X|2 is interpreted
as the coupling |X|2 � |X1|2 � |X2|2.
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3.2 The Stochastic Nonlinear Schrödinger Equation
with White Noise Dispersion

3.2.1 Area of application

As described in the introduction, the nonlinear Schrödinger equation (NLSE)
can be applied to optical signals [97]. More generally, it is suitable to describe
wave propagation in nonlinear media [97], including surface waves on deep
water [78], or even Bose�Einstein condensates [97, 38] (the NLSE is then
known as the Gross�Pitaevskii equation).

From the perspective of light propagation, the stochastic nonlinear Schrö-
dinger equation with white noise dispersion (SNLSE) models the dispersion
of the optical signal as it travels through the �ber [70, 14, 29]. See Section
4.3 for more details on the derivation of the NLSE and the SNLSE.

3.2.2 The de�nition and an evolution illustration

In paper [13], we perform a numerical study of the stochastic nonlinear

Schrödinger equation with white noise dispersion (SNLSE)

idX � α∆X � dW � β|X|2σX dt � 0

where i is the imaginary unit, X : R� � Rn � Ω Ñ C is unknown, α, β P R
are known, and σ P R� is the nonlinearity parameter.

An illustration of how the time evolution of a numerical realization to
the SNLSE is presented in Figure 3.1. The evolution starts with a Gaussian
initial value, X0pxq � expp�3x2q, and it is clearly visible how the intensity
disperses and contracts over time.

3.2.3 Conjecture on the critical exponent

The deterministic NLSE

idX � α∆X dt� β|X|2σX dt � 0

is globally well posed in L2pRnq [29, 45, 57, 98] for σ   2{n. The quantity
σ � 2{n is referred to as the critical exponent. The question of existence
and well-posedness of the SNLSE is not straightforward. Existence of local
solutions for the SNLSE has been shown in [14] for the values

2

n
¤ σ   2

n� 2
.
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Figure 3.1: Using a Gaussian initial value, Xp0q � expp�3x2q, the evolution
of the intensity, |X|2, of an SNLSE sample over t P r0, 1{4s (left) and the
�nal outcome at t � 1{4 (right).

The SPDE has global solutions for

σ   2

n
,

see [14, Theorem 2.1], and for n � 1, σ � 2 [29, Theorem 2.1]. It is then
conjectured in [7] that the critical exponent in the SNLSE is twice that of
the NLSE, meaning σ � 4{n instead of σ � 2{n.

This conjecture has been extensively tested numerically throughout the
literature and this thesis.

3.3 The Stochastic Manakov Equation

3.3.1 Area of application

While the NLSE appears in a number of applications, the MPMDE (see
Section 1.1.2) is more speci�c, focusing mainly on light propagation though
optical �bers. To be speci�c, the MPMDE and SME decompose the light
wave into two modes of polarization and consider how these polarizations
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a�ect each other. See Section 4.2 for more details. It is recommended to ap-
proach simulating light propagation using di�erent models depending on the
scale [73]. The MPMDE is recommended at the longest scale, corresponding
to tens to thousands of kilometers.

3.3.2 The de�nition and an evolution illustration

We consider the stochastic (nonlinear) Manakov system (SME) [43]

idX � B2xX dt� |X|2σX dt� i
?
γ

3̧

k�1

σkBxX � dWk � 0, (3.1)

where W1,W2,W3 are independent standard Brownian motions, W is the
three-dimensional standard Brownian motion

W ptq :� pW1ptq,W2ptq,W3ptqq,
X : R� � R � Ω Ñ C2 is unknown with the components X � pX1, X2q,
γ ¥ 0 measures the intensity of the noise, the nonlinear coupling is denoted
by |X|2 � |X1|2 � |X2|2, σ P R� is the nonlinearity parameter and σ1, σ2
and σ3 are the classical Pauli matrices (see Section 4.4) de�ned by

σ1 �
�
0 1
1 0



, σ2 �

�
0 �i
i 0



, and σ3 �

�
1 0
0 �1



.

An illustration of how the time evolution of the numerical realization
to the SME is presented in Figure 3.2. The evolution starts with a Gaus-
sian initial value for each component, with maximum height 1 and di�erent
translations. It is clear that the dispersion is not as straightforward as for
the SNLSE.

3.4 The Stochastic Generalized Benjamin�Bona�
Mahony Equation

3.4.1 Area of application

The KdV and BBM equations have a lot of common applications, which is
natural given that BBM was proposed as an alternative to the KdV equation.
These models describe long-wave propagation in nonlinear media, allowing
many physical interpretations. Some examples are waves in water [61, 40,
81, 8], crystals [44], or plasma [40, 104, 18].
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Figure 3.2: Using a Gaussian initial value, X1p0q � X2p0q � expp�3x2q{?2,
the evolution of the intensity, |Xi|2, i � 1, 2, of the components of the SME
(�rst component top, second component bottom) over t P r0, 1{4s (left) and
the �nal outcome at t � 1{4 (right).
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Figure 3.3: Using a Gaussian initial value, Xp0q � expp�3x2q, the evolution
of the SBBM over t P r0, 10s (left) and the �nal outcome at t � 10 (right).

From the perspective of water wave propagation, it becomes clear that
stochasticity is present. Examples include the water surface interacting with
the air through wind or the water interacting with uneven bottom geography
[21].

3.4.2 The de�nition and an evolution illustration

The stochastic generalized Benjamin�Bona�Mahony equation with

white noise dispersion (SBBM) [21]:

�
I � B2x

�
dX � �

αB2x � βI
�
Xdt� Bx

σ � 1
Xσ�1dt� BxX � dW � 0, (3.2)

where X : R� � R� ΩÑ R is unknown, and α, β P R, σ P R� are known.
An illustration of how the time evolution of a numerical realization to

the SBBM (observe: not the intensity, as with the SNLSE and the SME) is
presented in Figure 3.3. The evolution starts with a Gaussian initial value,
with maximum height 1. Although the in�uence of the white noise on the
wavefront is not very noticeable at the scale of the experiment, an e�ect can
be observed in the spreading and retracting of the wavefront.
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4
The Derivations of the Light-Propagation Models

In this section we present and derive the Nonlinear Schrödinger Equation
(NLSE, see e. g. [36, 16]), the Manakov Equation (MPMDE, see e. g. [68]),
and to a lesser extent the Stochastic Non-Linear Schrödinger Equation with
white noise dispersion (SNLSE, see e. g. [7]), and the Stochastic Manakov
Equation (SME, see e. g. [43]). More references can be seen in each of the
following subsections.

These (stochastic) partial di�erential equations can be derived using the
�elds

E⃗, H⃗, D⃗, B⃗ : R� � R3 Ñ C3,

which are called the electric, magnetic, electric induction (or displacement),
and magnetic induction �elds, respectively. These �elds are related through
the Maxwell�Faraday equation (MF), the Maxwell�Ampère equation (MA),
Gauss's law (G), and Gauss's law for magnetism (GL):

(MF) ∇� E⃗ � �BB⃗Bt , (MA) ∇� H⃗ � J⃗ � BD⃗
Bt ,

(G) ∇ � D⃗ � ρ, (GL) ∇ � B⃗ � 0,

where J⃗ � J⃗px, y, z, tq is the conductivity �eld of the material, ρ � ρpx, y, z, tq
is the (constant) free charge density, ∇� is the curl, and ∇� is the divergence.
Collectively, these equations are referred to as Maxwell's equations [2]. Aside
from the above system of equations, we need to introduce the electric polar-
ization �eld P⃗ � P⃗

�
E⃗
	
and two constitutive relations:

B⃗ � µ0H⃗ D⃗ � ε0E⃗ � P⃗ , (4.1)
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Figure 4.1: Fiber cross section.

where µ0 and ε0 are the magnetic permeability and vacuum permitivity,
respectively. These constants are related by ε0µ0 � c�2, where c is the
speed of light in a vacuum.

The derivations of the NSLE, SNLSE, MPMDE, and SME, below, are
based on the perspective of light propagating through a cylindrical optical
�ber, see Figure 4.1, made of an isotropic medium such as glass. In each
subsection, we will go more into depth about the assumptions made, as well
as their interpretations and implications.

The NLSE, and similar equations, can be derived through modeling other
phenomena as well. We will not concern ourselves with those more than
necessary, but some examples include water waves over deep water [82, 56],
gravity waves [37], or Bose�Einstein condensates [32, 28]. Research around
Bose�Einstein condensates is a very active area at the moment, and the
NLSE appears in the shape of the Gross�Pitaevskii equation, derived inde-
pendently by Eugene P. Gross and Lev Petrovich Pitaevskii as far back as
1961 [47, 83].

4.1 The deterministic nonlinear Schrödinger equa-
tion

For more on the NLSE , e. g. the properties, or further details on the deriva-
tion, we refer the reader to e. g. [2, 16, 36, 97, 105].

To simplify our derivation, we begin by introducing the following assump-
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tions regarding the medium which the light propagates through:

Assumption 1: The medium is a cylindrical optical �ber, see Figure 4.1.

Assumption 2-4: The material of the �ber has the following properties:

� It is isotropic and homogeneous. This means that the material
has identical properties independently of direction (isotropic) and
position (homogeneous).

� It has zero free charge density, ρ � 0, as seen in Equation (G).
This would otherwise in�uence the displacement D⃗ and magnetic
H⃗ �elds, through Equation (4.1).

� It has zero conductivity, J⃗ � 0. This prevents the electric �eld
from inducing an electric current through the material, via Equa-
tion (MA).

If we were to have a cylindrical �ber of pure silica, i. e. Silicon Dioxide
or SiO2, with no charge, we would ful�ll these requirements since silica has
a near-zero conductivity coe�cient between 10�23 to 10�27 (which is con-
sidered to be lossless in practice). Further assumptions are made along the
derivation of the NLSE below. We also want to stress that there is a valid
criticism to be made, in terms of realistic assumptions, as mentioned in [73].

Disregarding this criticism, we deduce from Maxwell's equations and the
�rst constitutive relation in (4.1) that

∇� p∇� E⃗q � ∇�
�
�BB⃗Bt

�
� � B

Bt
�
∇� µ0H⃗

	
� �µ0 BBt

B
BtD⃗,

which is equivalent to

∇� p∇� E⃗q � 1

c2ε0

B2
Bt2 D⃗ � 0.

Applying the vector identity

∇� p∇� E⃗q � �∆E⃗ �∇p∇ � E⃗q
yields

∇p∇ � E⃗q �∆E⃗ � 1

c2ε0

B2
Bt2 D⃗ � 0.

By using that the divergence of P⃗ is usually negligibly small, we can simplify
the equation above. If we combine Gauss's law (G), the second constitutive
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relation in (4.1), and the assumption that the free charge density ρ is 0, we
have

0 � ρ � ∇ � D⃗ � ∇ � pε0E⃗ � P⃗ q � ε0∇ � E⃗,
which gives us

∆E⃗ � 1

c2ε0

B2
Bt2 D⃗ � 0. (4.2)

The above equation is known as Maxwell's wave equation [2].
To further simplify the derivation, we assume that the electrical �eld is

of the form

E⃗px, y, z, tq � e�iω0tE⃗px, y, zq � eiω0tE⃗px, y, zq, (4.3)

where ω0 is the frequency of the electrical �eld oscillations. We also assume
that E⃗ is linearly polarized. Linear polarization gives that the �elds D⃗, E⃗,
and P⃗ are of the form D⃗ � pD, 0, 0q, E⃗ � pE, 0, 0q, and P⃗ � pP, 0, 0q.

When an electric �eld E⃗ is applied to a material, the refraction index,
see de�nition further down, changes in response. For silica, despite being
negligible in short distances, this e�ect becomes relevant when we cover long
distances seen in e. g. transcontinental �ber optics. We, therefore, expand
P in a Taylor series, soon approximating its nonlinear in�uence:

P pEq � ε0

8̧

k�0

χpkqpω0qEk.

Due to a phenomenon known as �inversion symmetry� [2], which holds for
isotropic materials, the even-order terms in the above sum are zero,

χp2jq � 0, j � 0, 1, . . . .

When we truncate the above sum by the leading nonlinear term we hence
get

P pEq � ε0

�
χp1qpω0qE � χp3qpω0qE3

	
. (4.4)

By only considering the frequency ω0 and inserting Equation (4.3) into Equa-
tion (4.4), we get the approximation

P pEq � ε0

�
χp1qpω0qE � χp3qpω0qE3

	
� ε0

�
χp1qpω0qE � χp3qpω0q

�
3̧

k�0

�
3

k



e�ip3�2kqω0tE3�kĒk

��

� ε0E
�
χp1qpω0q � 3χp3qpω0q|E |2

	
.
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Inserting the above into the second constituent relation in (4.1) yields us
that

D � ε0E
�
1� χp1qpω0q � 3χp3qpω0q|E |2

	
�: ε0E n2pω0, |E |2q, (4.5)

where n2 is known as the refraction index of the material. This dependence
on |E |2 is known as the Kerr, or the quadratic electro-optic, e�ect. Insert-
ing Equation (4.5) into Equation (4.2) yields two conjugate equations, that
reduce to

∆Epx, y, zq � n2ω2
0

c2
Epx, y, zq � 0, (4.6)

which we know as the scalar nonlinear Helmholtz equation [2]. De�ning

k20 �
ω2
0p1� χp1qpω0qq

c2
, (4.7)

substituting
Epx, y, zq � eik0zψpx, y, zq

in Equation (4.6), and applying the paraxial approximation ψzz ! k0ψz
yields

∆E � n2ω2
0

c2
E � eik0z

�
�k20ψ � 2ik0ψz � ψzz � ψxx � ψyy � n2ω2

0

c2
ψ



� eik0z

�
2ik0ψz �∆Kψ � 3χp3qpω0qω2

0

c2
|ψ|2ψ

�
� 0,

where ∆K � B2

Bx2
� B2

By2
. This gives us the NLSE

2ik0ψz �∆Kψ � 3χp3qpω0qω2
0

c2
|ψ|2ψ � 0, (4.8)

where ψ : R3 Ñ C and z acts as the time (also known as the retarded time).

4.2 The deterministic Manakov equation

Continuing with the interpretation of light propagating through a �ber, we
now note that light waves can be expressed in terms of polarized components,
see Figure 4.2, and we, therefore, can build the MPMDE by coupling two
NLSEs. For the more dedicated reader, we refer to, e.g., [2, Ch. 6] or
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the articles by Menyuk et al. [71, 72, 74, 75, 73]. One of the shortest
routes to arrive at the MPMDE would be to follow [68]. Note that this
derivation relies on ψ having a slightly di�erent domain than in the previous,
ψ : R��R3 Ñ C. We start by recalling that the factor |ψ|2 in (4.8) represents
the total intensity of the light. With this we represent the electric �eld by
two orthogonal polarizations: ψ � E1v⃗1�E2v⃗2, where v⃗1, v⃗2 : R��R3 Ñ C.
If we slightly rewrite the NLSE, representing the electrical �eld as it traverses
the length of the �ber to

iψz �∆Kψ � |ψ|2ψ � 0,

we immediately get the coupled equations:

iE1
z �∆KE

1 � p|E1|2 � |E2|2qE1 � 0

iE2
z �∆KE

2 � p|E1|2 � |E2|2qE2 � 0.

By de�ning X � pX1, X2q � pE1, E2q, rede�ning t � z, we get the MPMDE:

iXt �∆KX � |X|2X � 0, (4.9)

where X � Xpt, x, yq � pX1, X2q is the unknown vector-valued function with
values in C2, and |X|2 � |X1|2 � |X2|2 is the nonlinear coupling.

4.3 The stochastic nonlinear Schrödinger equation

For additional articles on the SNLSE, we refer the reader to [70, 14, 29, 7,
22, 25, 95]. We follow the derivation presented in [70, 14]. Starting with the
equation

idv � εmptq∆vdt� ε2|v|2σvdt � 0

vp0q � v0,

where m is a stationary stochastic process with mean zero, ε ¡ 0, v0 is the
initial value, and σ ¡ 0. We motivate why the above equation is possible by
imagining that we construct an optical �ber by appending lengths of �bers to
each other, with coe�cients χp1q and χp3q, see Equations (4.7) and (4.8), such
that the desired outcome is achieved. Rescaling the time variable according
to

upt, xq � v

�
t

ε
, x
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Figure 4.2: Two orthogonal light waves travelling along the x-axis, courtesy
of [76].

yields the equation

idu� 1

ε
m

�
1

ε2



∆udt� |u|2σudt � 0

up0q � u0.

Letting εÑ 0, see [14, 70, 79], classical ergodic assumptions yield the SNLSE

idu� σ0∆u � dβ � |u|2σudt � 0

up0q � u0, (4.10)

where β is a standard Brownian motion with variance σ20 calculated using
the covariance function of m, rm, via

σ20 � 2

» 8

0
E rmp0qmptqs dt � 2

» 8

0
rmptq dt.

We want to stress that Equation (4.10) is understood in the Stratonovich
sense, using the � symbol for the Stratonovich product.
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4.4 Polarized light and the Poincaré sphere

Polarization is a fundamental characteristic of light and for more materials
on the following topics the reader is referred to e.g. [24, 2, 39]. This section
will only brie�y present some concepts related to polarization, namely: The
Poincaré sphere, the Stokes parameters (or Stokes vector), birefringence, and
polarization-mode dispersion.

The Poincaré sphere, see Figure 4.3, originates as far back as 1892 [85, 84,
87], and can be used to uniquely represent the polarization states. Any point
on the Poincaré sphere can be expressed as P � pS1, S2, S3q, where Si, i �
1, 2, 3, are the Cartesian coordinates, also known as the Stokes parameters.
If we complete the classical Pauli matrices σi, i � 1, 2, 3, with the identity
matrix to complete the basis for the real vector space of 2 � 2 Hermitian
matrices, we get

I � σ0 �
�
1 0
0 1



, σ1 �

�
0 1
1 0



,

σ2 �
�
0 �i
i 0



, and σ3 �

�
1 0
0 �1



,

and we can express the Stokes vector of a polarization state X � pu, vq.
Following the notation of [34], we get

S �

����
S0
S1
S2
S3

����

����
X:σ0X
X:σ1X
X:σ2X
X:σ3X

����

����
|u|2 � |v|2
|u|2 � |v|2
ūv � v̄u

�ipūv � v̄uq

���P R� � R3,

where X: is the complex conjugate transpose of X, and S0 is the radius of
the sphere, ful�lling S2

0 � S2
1 � S2

2 � S2
3 .

In Section 4.1 we stressed that the assumptions made for the derivation
of the NLSE may not be realistic. For example, they can be violated by
introducing stress, twisting, turning, or simply misshaped cores. This af-
fects the refractive index, leading to the two orthogonal polarizations, as
introduced in Section 4.2, behaving di�erently. This phenomenon is known
as birefringence, see e.g. [2]. For light propagation over long distances, the
phenomenon known as polarization-mode dispersion (or PMD) becomes very
important, as it causes di�erent delays to di�erent polarizations. This has
been widely studied, see e.g. the references in [39] for a number of articles
on the subject.
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Figure 4.3: The Poincaré sphere, courtesy of [9].

4.5 The stochastic Manakov equation

The SME that we consider is known as the Manakov PMD equation. The
original equation was introduced in [75] which, due to the di�erent scales
present in the modelling, contained a parameter ε. The limit equation, when
εÑ 0, was investigated for the linear case in [69, 41], and the nonlinear case
in [15, 42]

We stress that the exact derivation of the nonlinear SME is lengthy and
di�cult. For the interested reader we refer to [15] and limit the following
text to only contain some of the key points to the derivation. We denote
the group velocity dispersion parameter and birefringence strength with d0
and b respectively. Moreover, νεptq � νpt{ε2q is a stochastic process almost
surely on the unit sphere, and

σpuptqq �
�|u1ptq|2 � |u2ptq|2 2ū1ū2

2u1u2 |u2ptq|2 � |u1ptq|2
�

�
�

m3 m1 � im2

m1 � im2 �m3

�
� σ1m1ptq � σ2m2ptq � σ3m3ptq,

where mi, i � 1, 2, 3, are some real-valued processes. Finally, Fνεptq is a
nonlinearity with a coupling similar to the coupling in the MPMDE, but
a�ected by νε (and in extension by the processes mi, i � 1, 2, 3). With all
these components we consider Equation (1.11) in [15]

i
BXεptq
Bt � d0

2

B2Xεptq
Bx2 � ib1

ε
σpνεptqqBXεptq

Bx � FνεptqpXεptqq � 0,
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and let εÑ 0. We then get, [15, Theorem 1.3], the SME

idX � d0
2
B2xX dt� i

?
γ

3̧

k�1

σkBxX � dWk � 8

9
|X|2X dt � 0, (4.11)

where W � pW1,W2,W3q is a 3d Brownian motion, γ ¥ 0 measures the
intensity of the noise, and |X|2 � |X1|2�|X2|2 is the nonlinear coupling. As
a consequence of the Brownian motion, the polarization state of the solution
to the SME will change randomly over time, maintaining the Stokes vector
on the Poincaré sphere.

43



5
Future Work

As can be seen, the exponential and splitting integrators have emerged as
promising approaches. However, within the context of this thesis, several
questions remain unanswered. In the following list, when we refer to con-
vergence rates we speci�cally refer to strong, in probability, and almost sure
convergence rates for appropriate norms. The potential avenues for future
research include, but are not limited to, the following.

Regarding the exponential and splitting integrators for the stochastic
Benjamin�Bona�Mahony equation (3.2), there are a number of potential
questions. The following points are indicated by numerical experiments in
[10]. It would be interesting to:

� Prove that the convergence rates of the explicit exponential integrator
has order 1.

� Prove that the convergence rates of the symmetric exponential, Lie�
Trotter splitting, and Strang splitting integrators have order 1 in the
nonlinear case (σ ¡ 0) of the stochastic Benjamin�Bona�Mahony equa-
tion.

� Prove that the convergence rates of the symmetric exponential integra-
tor has order 2 for the (deterministic) Benjamin�Bona�Mahony equa-
tion.

� Prove that the convergence rates of the symmetric exponential, Lie�
Trotter splitting, and Strang splitting integrators have order 2 for the
linear case (σ � 0) of the stochastic Benjamin�Bona�Mahony equation.
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� Prove that the symmetric exponential integrator for the stochastic
Benjamin�Bona�Mahony equation preserves the H1-norm when α �
β � 0.

Similarly, it would be interesting to prove the convergence rates for the sym-
metric exponential integrator for the stochastic Manakov equation (3.1), see
[11, 12] for numerical experiments.

A lot of work has gone into exploring the critical exponents, see Section
3.2.3 and [13] for Equation (3.1) and [11] for Equation (3.1). This work can
be expanded upon, both theoretically and numerically. Especially interesting
would be working towards observing Equation (3.1) de�ned on the real line,
since some work has been observed for Equation (3.1) de�ned on the torus
[95]. Naturally, in the case of a numerical investigation, it would be wise to
use as many time-saving methods as is feasible, see [13] for a few.

There's still work to be done improving upon the illustration methods
for the convergence in probability, see Section 2.7.2. This can either be done
by investigating the Ipδq-estimation method, e.g. by improving Proposition
2.7.1 or by observing its converse. It would also be interesting to formalize
and prove the conjecture regarding the k-estimation method, which states:
For all p ¥ 1

lim
nÑ8

kpSn, δ, pq
kpSn, δ̂, pq

� 0

for δ̂ � δ if and only if the numerical scheme converges with order δ.
Similarly, work can be done on the numerical illustration method of the

almost sure convergence rate. See Section 2.7.3. Given that the eδpωq-
estimation method, shown in Figure 2.9, is a �rst attempt, it can likely be
improved both in presentation and in approach.

Lastly, splitting and exponential integrators can (naturally) be adapted
to more SPDEs than considered within this thesis. This can be done in a
number of ways, but three stand out. The �rst would be to introducing
these integrators to an SPDE where they have not yet been implemented.
The second way would be to introduce noise to a PDE currently lacking the
corresponding SPDE, and then introducing these integrators. This could
potentially draw from already existing implementations and theory, see e.g.
the quasilinear Maxwell's equations [30] or the nonlinear Helmholtz equa-
tion [92]. The third way would be to consider di�erent types of stochastic
processes, such as Poisson [60], Lévy [58], or Q-Wiener processes [27].
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6
Summaries and Contributions of the Articles

As a convention: Whenever convergences are mentioned in this section, we
are talking about convergences in time, as mentioned in Section 2.6.

For code related to these articles, see https://bitbucket.org/Berg

Code/spde_simulation/src/master/. The repository includes several
numerical experiments for each SPDE model, implemented in Matlab.

6.1 Numerical study of nonlinear Schrödinger equa-
tions with white noise dispersion [13]

We perform a numerical analysis of the stochastic nonlinear Schrödinger
equation with white noise dispersion (SNLSE). By carrying out a number of
numerical experiments we illustrate quantitative and qualitative behaviors of
solutions to this SPDE. In particular, we perform a large number of numerical
experiments, in 1 and 2 dimensions, investigating the conjecture posed in [14,
7]. Furthermore, we collect a number of numerical integrators and thoroughly
compare their performance. For instance, these experiments illustrate the
types of convergence mentioned in Section 2.6, the preservation of the L2-
norm, and the computational time of the integrators.

Contributions: I designed and executed most of the numerical experi-
ments. Based on a �rst draft, I wrote a large part of the manuscript.
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6.2 Approximated exponential integrators for the
stochastic Manakov equation [12]

We present and study two exponential integrators for the stochastic Manakov
equation (SME): the explicit exponential integrator (EE) and the symmetric
exponential integrator (SE). We prove that the EE converges in the mean�
square sense with order 1{2 in the case of a globally Lipschitz-continuous
nonlinearity. Furthermore, we prove that the EE converges in probability
with order 1{2 and almost surely with order 1{2� in the case of a cubic
nonlinearity. We also present a nonhomogeneous version of the SME to
illustrate the �exibility of the EE compared to the splitting schemes.

We present several numerical experiments comparing these novel expo-
nential integrators to already existing numerical integrators. Numerically,
we illustrate the order of convergence in the mean�square sense of the EE
and SE integrators. Further, we illustrate the evolution of the solutions to
the SME and a number of properties of the EE and SE. This includes how
the SE preserves the L2-norm, the advantage in computational time of EE
and SE, the strong order of convergence of EE in the inhomogeneous case,
and the weak order of convergence of EE and SE.

Contributions: I reviewed and complemented a �rst draft of the work.
I performed several numerical experiments, for instance the ones related to
the Monte Carlo error estimates.

6.3 Lie�Trotter splitting for the nonlinear stochas-
tic Manakov system [11]

We present and analyze the Lie�Trotter splitting integrator (LT) for the
stochastic Manakov equation (SME). We prove that the LT converges in
the mean�square sense with order 1{2 in the case of a globally Lipschitz-
continuous nonlinearity. We also prove that the LT converges in probability
with order 1{2 and almost surely with order 1{2� in the case of a cubic
nonlinearity.

We perform several numerical experiments comparing the LT integrator
to already existing numerical integrators. These numerical experiments in-
clude the orders of convergence in the mean�square, probability, and almost
surely sense. We illustrate the evolution of solutions to the SME and their
H1-norms. We also illustrate the Hamiltonian, mass center, and the pulse
width of solitons. We also numerically illustrate the preservation property of
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the LT and its advantage in computational time. Lastly, we generalize the
SME nonlinearity and consider the critical exponents as with the SNLSE.
We numerically investigate the critical exponent and conjecture that (in di-
mension 1) blowup occurs for σ ¥ 2 in the deterministic case and for σ ¡ 2
in the stochastic case.

Contributions: Together with my co-authors, I adapted the theoretical
framework of [12] to prove convergence of the LT integrator. I wrote an
extensive �rst draft. Furthermore, I designed, implemented and performed
most of the numerical experiments.

6.4 Stochastic Generalized Benjamin�Bona�
Mahony equations [10]

We apply the concept of exponential integrators to the stochastic generalized
Benjamin�Bona�Mahony (SBBM) equation, introducing four exponential in-
tegrators in total: the explicit exponential integrator (EE), backward expo-
nential integrator (BE), midpoint exponential integrator (ME), and sym-
metric exponential integrator (SE). We numerically compare these new in-
tegrators to several numerical schemes already introduced for the SBBM
and BBM equations and investigate their properties. These numerical ex-
periments consider both the BBM and SBBM, using a number of di�erent
coe�cients. From the deterministic BBM equation to the stochastic SBBM
equation, we illustrate the numerical schemes' respective convergence rates
(in the deterministic, stochastic mean�square, probability, and almost surely
senses) and preservation properties. Notable observations include that the
SE and the Strang splitting integrator (ST) converge with order 2 in the
deterministic and the linear stochastic case.

We also develop a method to numerically illustrate the order of conver-
gence in probability in a concise manner.

Contributions: Aside from an initial selection of topics, and construc-
tive criticism and critical eyes of my supervisors (main and co-), I have
performed most work by myself.
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