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Simple Summary: (Poly)phenols are bioactive compounds naturally present in plant-based foods,
but they have been suggested to increase the prostate cancer risk in retrospective case-control studies.
Therefore, our aim was to prospectively evaluate these associations, including clinically relevant
subtypes of prostate cancer. We investigated them using the European Prospective Investigation
into Cancer and Nutrition (EPIC) cohort, a large observational study including 131,425 adult men
from seven European countries. During 14 years of follow-up, a total of 6939 incident prostate cancer
cases were identified. Overall, no statistically significant associations were observed between the
baseline intake of any class and subclass of (poly)phenols and the risk of overall and any subtype of
prostate cancer. In conclusion, the consumption of (poly)phenols and (poly)phenol-rich foods does
not increase the risk of prostate cancer and can be included as part of a healthy diet.

Abstract: Existing epidemiological evidence regarding the potential role of (poly)phenol intake in
prostate cancer (PCa) risk is scarce and, in the case of flavonoids, it has been suggested that their
intake may increase PCa risk. We investigated the associations between the intake of the total and
individual classes and subclasses of (poly)phenols and the risk of PCa, including clinically relevant
subtypes. The European Prospective Investigation into Cancer and Nutrition (EPIC) cohort included
131,425 adult men from seven European countries. (Poly)phenol intake at baseline was assessed
by combining validated center/country-specific dietary questionnaires and the Phenol-Explorer
database. Multivariable-adjusted Cox proportional hazards models were used to estimate the hazard
ratios (HR) and 95% confidence intervals (CI). In total, 6939 incident PCa cases (including 3501 low-
grade and 710 high-grade, 2446 localized and 1268 advanced, and 914 fatal Pca cases) were identified
during a mean follow-up of 14 years. No associations were observed between the total intake of
(poly)phenols and the risk of PCa, either overall (HRlog2 = 0.99, 95% CI 0.94–1.04) or according to PCa
subtype. Null associations were also found between all classes (phenolic acids, flavonoids, lignans,
and stilbenes) and subclasses of (poly)phenol intake and the risk of PCa, overall and according to
PCa subtype. The results of the current large prospective cohort study do not support any association
between (poly)phenol intake and PCa incidence.

Keywords: polyphenols; diet; intake; prostate cancer; cohort; EPIC

1. Introduction

Prostate cancer (PCa) is the second most frequent cancer and the fifth leading cause
of cancer death in men worldwide, with over 1.4 million new cases and 375,000 deaths
in 2020 [1]. Age, a family history of PCa, race, adult height, and a few hereditary syn-
dromes are non-modifiable and well-established risk factors for PCa [2–5]. A number of
dietary factors have been investigated in relation to prostate cancer risk, including red and
processed meats, animal fat, dairy products, vegetables, fruits, tea, fish, and whole-grain
products; while there is some suggestive evidence that a high intake of dairy products
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may be associated with a higher risk, no dietary factors have been convincingly shown to
influence risk [2,5,6].

(Poly)phenols (synonym phenolic compounds) are a large family of bioactive com-
pounds widely distributed in plants and plant-based foods such as fruits, vegetables, tea,
coffee, wine, seeds, whole-grain cereals, and cocoa [7]. These compounds can be classified
into four classes, namely flavonoids, phenolic acids, lignans, and stilbenes, and be subdi-
vided in many sub-classes depending on the number of phenol units within their molecular
structure, substituent groups, and/or the linkage type between phenol units [8]. The intake
of (poly)phenols in European adults is largely heterogeneous, ranging from 584 mg/d in
Greek women to 1786 mg/d in Danish men [9].

Experimental studies with cell lines and animal models have shown that (poly)phenols
may act as chemopreventive agents in PCa due to their antioxidant and anti-inflammatory
effects, and to their ability to modulate androgen receptors or their transactivation of signalling
pathways, to induce cell cycle arrest and apoptosis, and to inhibit angiogenesis and metas-
tasis [10]. However, evidence from epidemiological studies is still limited and inconclusive.
For example, most published observational studies investigating the relationship between
(poly)phenol intake and PCa risk have used a case–control design and/or have only focused
on dietary flavonoids and lignans [11–14], leaving a longitudinal analysis of the relationship
between the intake of other (poly)phenol subclasses and subsequent PCa risk yet unexplored.
In addition, a recent meta-analysis estimated among cohort studies that the total dietary intake
of flavonoids is positively associated with an increased risk of PCa [15].

Our aim in the current study was to examine the associations between the intake of
total, classes, and subclasses of (poly)phenols and the risk of PCa overall, as well as the
main PCa clinical subtypes in a large European population.

2. Materials and Methods
2.1. Study Population

The European Prospective Investigation into Cancer and Nutrition cohort (EPIC) study
is an ongoing multicenter prospective cohort study aimed at evaluating the associations
between dietary, lifestyle and genetic factors and cancer risk. The study enrolled over
half a million subjects (including 153,457 men) from the general population between
1992 and 2000 at ages between 35 and 70 years. For the current analyses, we included
male participants from Denmark, Germany, Italy, Spain, Sweden, The Netherlands, and
the United Kingdom. Participants’ data from Greece were not available for the current
study. Participants were excluded if they had either a prevalent cancer other than non-
melanoma skin cancer at recruitment, had missing information on the date of diagnosis,
had incomplete follow-up data, had missing non-dietary or dietary information, or had
extreme energy intake and/or expenditure (i.e., participants in the higher and lower 1%
of the distribution for the ratio between energy intakes to estimated energy requirement).
After exclusions, a total of 131,425 men were included for analyses.

Ethical approval for the EPIC study was obtained from the ethical review board of the
International Agency for Research on Cancer (IARC) and the local ethics committees in the
participating countries. All participants gave written informed consent.

2.2. Follow-Up and Case Assessment

Primary incident PCa cancer cases were identified via record linkage with regional
cancer registries in most of the centers, except in Germany, where follow-up was based
on a combination of methods, including health insurance records, cancer and pathology
registries, and an active follow-up evaluation of the study participants and their next-of-kin.
The participants’ vital status was collected from regional or national mortality registries.
PCa was defined as code C61 in the 10th Revision of the International Classification of
Diseases (ICD10). Information on the grade (based on the Gleason grading system) and
stage of PCa (based on the Tumor-Node-Metastasis classification system [TNM]) was
collected from each center, when available. Grade was stratified as low-intermediate
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(Gleason score < 8, or grade coded as well, moderately, or poorly differentiated) or high
grade (Gleason score ≥ 8, or grade coded as undifferentiated). The localized stage included
those tumors confined within the prostate and with no metastasis at diagnosis (TNM staging
score ≤ T2 and N0/Nx, and M0; or stage coded in the recruitment center as localized).
Advanced cases included tumors that had spread beyond the prostate at diagnosis (T3-T4
and/or N1-N3 and/or M1, and/or stage coded at the recruitment center as metastatic).
Fatal cases were those who died of PCa during the follow-up.

2.3. Dietary Collection

Information on the habitual diet of participants over the previous 12 months before re-
cruitment was collected using validated country/center-specific dietary questionnaires [16].
Most centers utilized a self-administered food frequency questionnaire. In the remaining
centers (Ragusa center in Italy, and all centers in Spain), participants were interviewed
by trained staff members using a diet history questionnaire. In Malmö center (Sweden),
a combination of a semi-quantitative food frequency questionnaire and a 7-day record
was administered. The relative validity and reproducibility of these questionnaires was
previously evaluated for food groups (including polyphenol-rich foods), macro- and mi-
cronutrients, but not for (poly)phenols specifically [17]. Daily food intakes were calculated
in g/d. Alcohol (g/d), nutrients (g/d) and total energy (kcal/d) intakes were estimated
using the standardized EPIC Nutrient Database [18].

Dietary (poly)phenols intakes (mg/d) were estimated using the Phenol-Explorer
database [19], which contains content values for 502 polyphenols in 452 foods and bev-
erages [20], together with retention factors for cooked and processed foods [9,21]. In the
present study, the intakes of 483 individual (poly)phenols found in their natural form
(mainly glucosides and esters) were estimated. These (poly)phenols were grouped into five
major classes according to their chemical structure: flavonoids, phenolic acids, stilbenes,
lignans, and other (poly)phenols. The intake of total (poly)phenols was calculated as the
sum of all individual compounds.

2.4. Lifestyle Assessment

Information regarding participants’ lifestyle, such as smoking status, physical activity,
education, and socioeconomic characteristics was obtained using standardized lifestyle
questionnaires. Trained personnel from all centers took anthropometrics measurements,
except for the Oxford center (UK), where participants reported their own anthropometrics
measurements, and these were later validated [16,22].

2.5. Statistical Analysis

(Poly)phenol intake was analyzed as both a categorical and a continuous variable. For
categorical analysis, (poly)phenol intake was divided into quintiles, according to the intake
distribution among all participants. Tests for a linear trend were performed by assigning
the medians of each quintile as scores. For the continuous distribution, the (poly)phenol
intakes were log2-transformed to reduce the skewness of the original intake distributions.
Thus, a one-unit increase in the log2 scale corresponds to a doubling in the intake. Cox
proportional hazards models with age as the underlying time variable in all models were
used to examine the associations between total, classes, and subclasses of (poly)phenol
intakes and PCa risk. For each association, the hazard ratio (HR) and a 95% confidence
interval (CI) were calculated. Age at recruitment served as the entry time, while age at
diagnosis, death, or censoring date (whichever came first) served as the exit time. To
ensure proportional hazards, Schoenfeld residuals were used for all models, revealing
no evidence of the violation of the hypothesis. A total of three statistical models were
performed. Model 1 was stratified by center and age at baseline (<40, from 41 to 75 in
ranges of 5 years, and >75 years). Model 2 extended Model 1 by including variables such
as smoking status (never, former, smoker, and not specified), level of physical activity
(inactive, moderately inactive, moderately active, active, and not specified, according to
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the Cambridge index) [23], educational level (none, primary, technical or professional,
secondary, longer or university, and not specified), marital status (single, together, and not
specified), self-reported diabetes prevalence (yes, not, and not specified), alcohol intake
(0.0, >0–5.0, 5.0–14.9, 15.0–29.9, and >30.0 g/d), BMI (<22.5, 22.5–24.9, 25.0–29.9, and
>30.0 kg/m2) and total energy intake (kcal/d). Model 3 was further adjusted for intake of
total fiber (g/d) and vitamin C (g/d). All covariates included in the models were based on
a priori assumptions.

Possible interactions between the intake of (poly)phenols (i.e., total, classes, subclasses
of (poly)phenols) and the following covariates were examined by including an interaction
term in the multi-adjusted models: age (<65 and >65 years), BMI (<25.0, 25–29.9 kg/m2, and
>30.0 kg/m2), and smoking status (never, former or current smokers, and not specified). A
likelihood ratio test was used in order to evaluate the significance of the interactions on a
multiplicative scale. To fully assess the risk of PCa, we defined separate models according
to clinically relevant subtypes: low- and high-grade, localized and advanced, and fatal PCa,
and evaluated the heterogeneity between them using the Wald test. Sensitivity analyses
were conducted, excluding 275 and 982 total PCa cases diagnosed during the first 2 and
5 years of follow-up, respectively. Statistical significance was attributed to results with
p-value < 0.05, and p-value < 0.002 after Bonferroni correction (i.e., <0.05/23, the number
of tests for the intakes of all (poly)phenol classes and subclasses) to account for multiple
comparisons. Statistical analyses were carried out using R (version 4.2.1) and RStudio
(version 2022.07.1) software.

3. Results

Overall, 6939 out of 131,425 men included in this study were diagnosed with a primary
malignant PCa during a mean (SD) of 14 (SD: 4.7) years of follow-up (Table 1). According to
the stage and grade of the disease, PCa cases were mostly localized
(n = 2446) and low-grade (n = 3501), representing 35.3% and 50.5% of the total num-
ber of PCa cases, respectively. A total of 914 PCa cases (13.2%) resulted in a fatal outcome.
The median (10th–90th percentiles) intake of total (poly)phenols among all participants was
1167 (625–1931) mg/d. The highest median intake of total (poly)phenols was observed in
Denmark (1593 mg/d) and the lowest in Spain (834 mg/d) (Table 1). Men in the highest
quintile of total (poly)phenol intake were older, more physically active, less likely to have
diabetes, but more likely to smoke and less likely to be married, had a lower BMI and had
a higher education level compared to those in the lowest quintile (Table 2). Furthermore,
men with higher total (poly)phenol intakes consumed more total energy, alcohol, fiber,
and vitamin C compared to those with lower intakes (Table 2). There was no difference
in the baseline characteristics between PCa cases with and without stage or grade data,
except that cases without grade or stage data were slightly older than those with these data
(Supplementary Table S1).

Table 1. Number of participants, prostate cancer cases and amount of (poly)phenol intake according
to EPIC countries.

Country n Overall
PCa

PCa Grade PCa Stage Fatal
PCa

Total (Poly)Phenol Intake (mg/d)
Median (P10–P90)Low-Grade High-Grade Localized Advanced

Sweden 22,306 1833 476 79 556 86 224 887 (536–1375)
Denmark 26,294 1885 652 240 540 550 312 1593 (965–2236)

The Netherlands 9627 215 189 17 32 74 22 1154 (719–1662)
Germany 21,178 833 687 68 533 186 45 1093 (652–1778)

United Kingdom 22,849 1028 636 183 258 206 217 1508 (917–2108)
Spain 15,139 666 527 77 434 74 61 834 (418–1482)
Italy 14,032 479 334 46 93 92 33 1008 (615–1517)
Total 131,425 6939 3501 710 2446 1268 914 1167 (625–1931)

Abbreviations: PCa, prostate cancer; P10, 10th percentile; P90, 90th percentile. Missing data for PCa grade = 2728
(39.3%); for PCa stage = 3225 (46.5%).
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Table 2. Baseline characteristics of participants according to quintiles of total (poly)phenol intake in
the EPIC cohort.

Baseline Characteristics
Quintiles of Total (Poly)phenol Intake

Total
Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5

N 26,285 26,285 26,285 26,285 26,285 131,425
Cut-off (poly)phenol intake (mg/d) <783 783–1040 1040–1310 1310–1662 >1662

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Age at recruitment (years) 51.4 (10.0) 51.2 (10.0) 51.6 (10.1) 52.9 (10.0) 53.8 (9.20) 52.2 (9.90)
Total energy intake (kcal) 2134 (603) 2318 (601) 2445 (633) 2512 (658) 2675 (681) 2417 (662)

Fiber intake (mg/d) 20.5 (7.31) 22.7 (7.40) 24.3 (7.71) 25.5 (8.20) 28.6 (9.40) 24.3 (8.50)
Vitamin C intake (mg/d) 97.9 (55.4) 108 (59.3) 115 (60.1) 120 (62.2) 128 (70.2) 114.3 (62.5)

Smoking status n (%) n (%) n (%) n (%) n (%) n (%)
Never 10,055 (38.3%) 9491 (36.1%) 8879 (33.8%) 8297 (31.6%) 7488 (28.5%) 44,210 (33.6%)

Former 8969 (34.1%) 9610 (36.6%) 9931 (37.8%) 10,017 (38.1%) 9753 (37.1%) 48,280 (36.7%)
Current 7019 (26.7%) 6970 (26.5%) 7229 (27.5%) 7644 (29.1%) 8690 (33.1%) 37,552 (28.6%)

Not specified 242 (0.90%) 214 (0.80%) 246 (0.90%) 327 (1.20%) 354 (1.30%) 1383 (1.10%)
Physical activity level

Inactive 5254 (20.0%) 4733 (18.0%) 4348 (16.5%) 4509 (17.2%) 4231 (16.1%) 23,075 (17.6%)
Moderately inactive 8614 (32.8%) 8470 (32.2%) 8187 (31.1%) 7922 (30.1%) 7453 (28.4%) 40,646 (30.9%)
Moderately active 6571 (25.0%) 6475 (24.6%) 6384 (24.3%) 6054 (23.0%) 6195 (23.6%) 31,679 (24.1%)

Active 5488 (20.9%) 6041 (23.0%) 6551 (24.9%) 6984 (26.6%) 7888 (30.0%) 32,952 (25.1%)
Not specified 358 (1.4%) 566 (2.2%) 815 (3.1%) 816 (3.1%) 518 (2.0%) 3073 (2.3%)

Educational level
None 2048 (7.8%) 896 (3.4%) 638 (2.4%) 426 (1.6%) 257 (1.0%) 4265 (3.2%)

Primary 8987 (34.2%) 7910 (30.1%) 7067 (26.9%) 6794 (25.8%) 6942 (26.4%) 37,700 (28.7%)
Technical/Professional 5468 (20.8%) 6205 (23.6%) 6774 (25.8%) 7094 (27.0%) 7118 (27.1%) 32,659 (24.8%)

Secondary 3932 (15.0%) 4208 (16.0%) 3779 (14.4%) 3022 (11.5%) 2508 (9.5%) 17,449 (13.3%)
Longer (University) 5515 (21.0%) 6651 (25.3%) 7326 (27.9%) 7822 (29.8%) 8208 (31.2%) 35,522 (27.0%)

Not specified 335 (1.3%) 415 (1.6%) 701 (2.7%) 1127 (4.3%) 1252 (4.8%) 3830 (2.9%)
Marital status

Single 4171 (15.9%) 3922 (14.9%) 3758 (14.3%) 3224 (12.3%) 2574 (9.80%) 17,649 (13.4%)
Together 13,747 (52.3%) 16,051 (61.1%) 15,429 (58.7%) 13,887 (52.8%) 10,705 (40.7%) 69,819 (53.1%)

Not specified 8367 (31.8%) 6312 (24.0%) 7098 (27.0%) 9174 (34.9%) 13,006 (49.5%) 43,957 (33.4%)
Diabetes prevalence

No 24,325 (92.5%) 24,106 (91.7%) 23,175 (88.2%) 21,403 (81.4%) 20,760 (79.0%) 113,769
(86.6%)

Yes 1088 (4.1%) 898 (3.4%) 799 (3.0%) 777 (3.0%) 770 (2.9%) 4332 (3.3%)
Not specified 872 (3.3%) 1281 (4.9%) 2311 (8.8%) 4105 (15.6%) 4755 (18.1%) 13,324 (10.1%)

Alcohol intake (g/d)
0.0 2860 (10.9%) 1487 (5.7%) 1289 (4.9%) 1278 (4.9%) 1186 (4.5%) 8100 (6.2%)

>0.0–< 5.0 7763 (29.5%) 6487 (24.7%) 5244 (20.0%) 4828 (18.4%) 4536 (17.3%) 28,858 (22.0%)
5.0–14.9 6848 (26.1%) 7263 (27.6%) 6891 (26.2%) 6835 (26.0%) 7022 (26.7%) 34,859 (26.5%)

15.0–29.9 4658 (17.7%) 5713 (21.7%) 5927 (22.5%) 5528 (21.0%) 5330 (20.3%) 27,156 (20.7%)
≥30.0 4156 (15.8%) 5335 (20.3%) 6934 (26.4%) 7816 (29.7%) 8211 (31.2%) 32,452 (24.7%)

Body Mass Index (kg/m2)
<22.5 2941 (11.2%) 3134 (11.9%) 3244 (12.3%) 3292 (12.5%) 3400 (12.9%) 16,011 (12.2%)

≥22.5–24.9 5731 (21.8%) 6402 (24.4%) 6611 (25.2%) 6822 (26.0%) 7126 (27.1%) 32,692 (24.8%)
≥25.0–29.9 13,015 (49.5%) 12,849 (48.9%) 12,780 (48.6%) 12,613 (48.0%) 12,453 (47.4%) 63,710 (48.5%)

≥30.0 4598 (17.5%) 9536 (36.3%) 3650 (13.9%) 3558 (13.5%) 3306 (12.6%) 19,012 (14.4%)

No statistically significant association was observed between the intake of total
(poly)phenols and the overall risk of PCa, using either the comparison between extreme
quintiles (HRQ5vs.Q1 = 1.02; 95% CI 0.92–1.13; p-trend = 0.77) or the continuous distribution
(HRlog2 = 0.99; 95% CI 0.94–1.04) (Table 3). There was no evidence of significant hetero-
geneity in these associations according to PCa clinical subtype, except for small differences
between associations with localized and advanced PCa for the intake of flavones and
alkylphenols (Table 4). None of the classes and subclasses of (poly)phenols were associated
with the risk of either overall PCa (Table 3) or the PCa clinical subtype, or fatal PCa (Table 4).
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Table 3. Hazard ratios (CI 95%) for total prostate cancer cases, according to quintiles of the intake of total, classes, and subclasses of (poly)phenols in the EPIC cohort.

Intake (mg/d)
Median (P10–P90)

Quintile 1
HR (95% CI)

Quintile 2
HR (95% CI)

Quintile 3
HR (95% CI)

Quintile 4
HR (95% CI)

Quintile 5
HR (95% CI)

P-
Trend

Continuous (log2)
HR (95% CI)

Total (poly)phenols 1167 (625–1931) 1.00 (ref) 1.10 (1.02–1.19) 1.02 (0.93–1.11) 1.02 (0.93–1.12) 1.02 (0.92–1.13) 0.77 0.99 (0.94–1.04)
Flavonoids 437 (159–1063) 1.00 (ref) 0.99 (0.92–1.07) 1.01 (0.94–1.10) 1.03 (0.94–1.12) 0.97 (0.88–1.07) 0.63 1.20 (0.98–1.04)
Flavanols 302 (96.1–853) 1.00 (ref) 0.99 (0.92–1.07) 1.00 (0.92–1.08) 1.03 (0.95–1.12) 0.94 (0.85–1.03) 0.23 1.01 (0.99–1.04)
Flavan-3-ol monomers 48.5 (11.6–430) 1.00 (ref) 1.01 (0.94–1.09) 1.02 (0.94–1.11) 1.03 (0.94–1.12) 1.02 (0.93–1.11) 0.89 1.01 (0.99–1.02)
Proanthocyanidins 211 (74.3–468) 1.00 (ref) 1.03 (0.96–1.11) 1.04 (0.96–1.13) 1.02 (0.94–1.12) 1.03 (0.94–1.14) 0.66 1.01 (1.00–1.02)
Theaflavins 2.05 (0.00–99.6) 1.00 (ref) 1.08 (0.96–1.22) 1.08 (0.98–1.18) 1.09 (1.00–1.20) 1.03 (0.94–1.14) 0.57 1.00 (1.00–1.01)
Flavonols 29.0 (10.2–93.8) 1.00 (ref) 0.94 (0.87–1.02) 1.05 (0.97–1.14) 1.01 (0.92–1.11) 1.01 (0.92–1.12) 0.62 1.01 (0.98–1.03)
Flavanones 22.5 (3.98–86.1) 1.00 (ref) 0.95 (0.88–1.02) 0.97 (0.90–1.05) 0.98 (0.90–1.06) 0.97 (0.88–1.07) 0.81 0.99 (0.98–1.01)
Anthocyanins 22.1 (4.87–90.1) 1.00 (ref) 1.03 (0.96–1.12) 1.05 (0.97–1.14) 1.09 (1.00–1.18) 1.02 (0.93–1.12) 0.87 1.01 (1.00–1.03)
Flavones 9.00 (3.15–23.1) 1.00 (ref) 1.02 (0.95–1.10) 1.03 (0.95–1.11) 1.10 (1.01–1.20) 1.04 (0.93–1.16) 0.37 1.02 (0.99–1.05)
Dihydrochalcones 1.67 (0.22–5.66) 1.00 (ref) 1.06 (0.98–1.15) 1.10 (1.02–1.20) 1.08 (1.00–1.18) 1.05 (0.97–1.15) 0.60 1.00 (0.99–1.01)
Dihydroflavonols 0.99 (0.00–12.8) 1.00 (ref) 1.07 (0.98–1.18) 1.07 (0.97–1.17) 1.06 (0.96–1.18) 1.08 (0.96–1.22) 0.57 1.00 (1.00–1.01)
Isoflavones 0.03 (0.01–0.78) 1.00 (ref) 1.03 (0.96–1.10) 1.01 (0.94–1.09) 0.99 (0.90–1.07) 0.95 (0.85–1.07) 0.27 1.00 (0.99–1.01)
Phenolic acids 564 (225–1152) 1.00 (ref) 0.98 (0.90–1.06) 1.02 (0.94–1.11) 0.98 (0.90–1.07) 0.97 (0.88–1.06) 0.48 0.98 (0.95–1.02)
Hydroxycinnamic acids 513 (167–1099) 1.00 (ref) 0.93 (0.86–1.01) 0.98 (0.90–1.06) 0.96 (0.88–1.05) 0.96 (0.88–1.06) 0.78 0.99 (0.96–1.02)
Hydroxybenzoics acids 24.1 (4.74–141) 1.00 (ref) 0.95 (0.87–1.02) 0.98 (0.89–1.08) 0.98 (0.89–1.08) 0.96 (0.87–1.06) 0.69 0.99 (0.97–1.01)
Hydroxyphenylacetic acids 0.20 (0.01–0.92) 1.00 (ref) 0.90 (0.83–0.98) 0.98 (0.89–1.08) 0.93 (0.83–1.04) 0.86 (0.76–0.99) 0.07 0.99 (0.98–1.01)
Stilbenes 0.84 (0.04–8.42) 1.00 (ref) 1.02 (0.93–1.11) 1.06 (0.97–1.16) 1.06 (0.96–1.17) 1.07 (0.95–1.20) 0.48 1.01 (1.00–1.02)
Lignans 1.51 (0.90–3.14) 1.00 (ref) 1.10 (1.02–1.19) 1.06 (0.98–1.16) 1.09 (0.98–1.20) 1.02 (0.90–1.15) 0.54 1.00 (0.95–1.05)
Other (poly)phenols 59.0 (23.7–115)
Alkylphenols 41.2 (4.01–99.0) 1.00 (ref) 0.98 (0.88–1.08) 0.99 (0.89–1.09) 1.01 (0.90–1.12) 1.01 (0.89–1.15) 0.59 1.02 (1.00–1.05)
Tyrosols 3.97 (0.77–24.5) 1.00 (ref) 0.97 (0.89–1.05) 1.04 (0.95–1.13) 1.02 (0.92–1.13) 0.99 (0.86–1.14) 0.75 1.00 (0.99–1.02)
Alkylmethoxyphenols 2.79 (0.64–6.17) 1.00 (ref) 0.96 (0.88–1.05) 1.00 (0.92–1.09) 0.96 (0.88–1.06) 0.93 (0.84–1.03) 0.13 0.99 (0.98–1.01)

Abbreviations: CI, confidence interval; HR, hazard ratio; P10, 10th percentile; P90, 90th percentile. Cox model (model 3) was stratified according to age (5 y) and center, and adjusted for
smoking status, physical activity, educational level, marital status, and diabetes prevalence, and alcohol, BMI, total energy, fiber, and vitamin C intakes.
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Table 4. Hazard Ratios (CI 95%) for prostate cancer death, grade, and stage of total, classes and subclasses of (poly)phenol intakes in the EPIC cohort.

PCa Grade PCa Stage

P-Heterogeneity 2

Fatal PCa

Low High
P-Heterogeneity 1

Localized Advanced
Continuous (log2)

HR (95% CI)
Continuous (log2)

HR (95% CI)
Continuous (log2)

HR (95% CI)
Continuous (log2)

HR (95% CI)
Continuous (log2)

HR (95% CI)

Total (poly)phenols 1.01 (0.94–1.08) 1.05 (0.89–1.24) 0.47 0.98 (0.90–1.07) 1.03 (0.91–1.17) 0.56 0.98 (0.90–1.06)
Flavonoids 1.01 (0.97–1.05) 1.02 (0.93–1.12) 0.74 1.01 (0.96–1.06) 1.02 (0.95–1.09) 0.05 0.98 (0.91–1.05)
Total Flavanols 1.01 (0.98–1.05) 1.01 (0.93–1.09) 0.89 1.01 (0.97–1.05) 1.01 (0.95–1.07) 0.06 0.99 (0.95–1.04)
Flavan-3-ol monomers 1.00 (0.98–1.02) 1.00 (0.96–1.05) 0.70 1.00 (0.98–1.03) 0.99 (0.96–1.02) 0.29 1.00 (0.97–1.03)
Proanthocyanidins 1.02 (1.00–1.04) 0.98 (0.94–1.02) 0.12 1.00 (0.99–1.02) 1.02 (0.98–1.07) 0.24 1.00 (0.99–1.02)
Theaflavins 1.01 (1.00–1.01) 1.00 (0.99–1.01) 0.49 1.00 (1.00–1.01) 1.00 (0.99–1.01) 0.45 0.99 (0.92–1.07)
Flavonols 1.00 (0.96–1.04) 1.02 (0.94–1.11) 0.61 1.02 (0.97–1.06) 1.00 (0.94–1.06) 0.25 0.98 (0.93–1.02)
Flavanones 0.99 (0.97–1.01) 0.99 (0.94–1.04) 0.72 0.98 (0.95–1.00) 1.00 (0.96–1.05) 0.72 1.01 (0.97–1.06)
Anthocyanins 1.01 (0.99–1.04) 0.99 (0.94–1.04) 0.34 1.02 (0.99–1.04) 1.03 (0.99–1.08) 0.08 1.02 (0.93–1.11)
Flavones 1.02 (0.98–1.07) 0.99 (0.90–1.09) 0.61 1.02 (0.97–1.07) 1.02 (0.94–1.10) 0.01 0.99 (0.96–1.01)
Dihydrochalcones 1.00 (0.99–1.02) 0.99 (0.96–1.02) 0.31 1.00 (0.98–1.01) 1.02 (0.99–1.04) 0.44 0.99 (0.97–1.01)
Dihydroflavonols 1.01 (1.00–1.02) 0.99 (0.96–1.01) 0.06 1.00 (0.99–1.02) 0.99 (0.98–1.01) 0.34 1.00 (0.97–1.04)
Isoflavones 0.99 (0.98–1.00) 0.96 (0.96–1.02) 0.20 0.99 (0.97–1.01) 1.01 (0.99–1.04) 0.77 0.97 (0.88–1.07)
Phenolic acids 1.00 (0.95–1.05) 1.01 (0.91–1.13) 0.23 0.98 (0.93–1.04) 1.00 (0.92–1.08) 0.23 0.97 (0.90–1.06)
Hydroxycinnamic acids 1.00 (0.96–1.04) 1.00 (0.92–1.11) 0.49 0.99 (0.94–1.04) 0.99 (0.93–1.06) 0.40 0.98 (0.93–1.03)
Hydroxybenzoics acids 0.99 (0.96–1.01) 1.00 (0.95–1.06) 0.74 0.99 (0.96–1.02) 0.98 (0.94–1.03) 0.51 0.99 (0.95–1.03)
Hydroxyphenylacetic
acids 1.00 (0.98–1.02) 0.98 (0.94–1.04) 0.44 1.00 (0.98–1.03) 0.99 (0.95–1.04) 0.57 0.98 (0.95–1.02)

Stilbenes 1.01 (1.00–1.03) 0.97 (0.94–1.01) 0.06 1.02 (0.99–1.04) 0.99 (0.96–1.02) 0.16 1.03 (0.87–1.21)
Lignans 0.99 (0.92–1.06) 0.94 (0.79–1.12) 0.53 1.02 (0.94–1.12) 1.02 (0.90–1.15) 0.91 1.04 (0.93–1.15)
Other (poly)phenol
classes
Alkylphenols 1.01 (0.98–1.04) 1.02 (0.95–1.08) 0.54 1.02 (0.98–1.06) 1.04 (0.98–1.10) 0.01 0.98 (0.94–1.02)
Tyrosols 1.03 (0.99–1.06) 0.97 (0.91–1.04) 0.08 1.05 (1.01–1.09) 0.98 (0.93–1.04) 0.69 0.99 (0.95–1.04)
Alkylmethoxyphenols 1.00 (0.98–1.02) 0.99 (0.95–1.04) 0.78 1.00 (0.98–1.02) 0.97 (0.93–1.01) 0.78 0.99 (0.95–1.04)

Abbreviations: CI, confidence interval; HR, hazard ratio; P10, 10th percentile; P90, 90th percentile. Cox model (model 3) was stratified according to age (5 y) and center, and adjusted for
smoking status, physical activity, educational level, marital status, and diabetes prevalence, and alcohol, BMI, total energy, fiber, and vitamin C intakes. 1 p-value for heterogeneity for
high- versus low-grade prostate cancer. 2 p-value for heterogeneity for advanced versus localized prostate cancer.
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There were no statistically significant interactions between total (poly)phenol intake
and overall PCa risk in the multivariable model according to either age at recruitment
(p for interaction = 0.37) or smoking status (p for interaction = 0.74). A borderline interaction
between the BMI categories and the total (poly)phenols (p for interaction = 0.05) in relation
to the overall PCa risk was found. After dividing the results according to the BMI categories,
no associations were observed between the intake of the main classes of (poly)phenols and
PCa risk (Supplementary Table S2). Similarly, null results were observed after the exclusion
of 275 or 982 PCa cases diagnosed in the first 2 and 5 years of follow-up, respectively.

4. Discussion

In this large prospective European study including more than 130,000 men and almost
7000 incident PCa cases, we found that the pre-diagnostic intake of total, classes, and sub-
classes of (poly)phenols was not associated with PCa risk, including with tumor subtypes,
and PCa mortality.

To the best of our knowledge, this is the first study evaluating the prospective as-
sociations between the intake of total (poly)phenols, phenolic acids, stilbenes and other
minor subclasses of (poly)phenols such as tyrosols, alkylphenols, and alkylmethoxyphe-
nols, and PCa risk. So far, the only previous epidemiological evidence on the intake of
total (poly)phenols, phenolic acids, and stilbenes and PCa risk comes from two case-control
studies [24,25]. The study performed by Ghanavati et al., which included 97 PCa cases and
205 hospital-based controls, showed a significant inverse relationship between the high
intake of total (poly)phenols, phenolic acids, and stilbenes, and the risk of PCa [24]. The
study performed by Russo et al. (118 PCa cases and 222 controls) showed that although the
intake of total phenolic acids was not associated with PCa risk, the intakes of caffeic acid
and ferulic acid were inversely associated with overall PCa risk, and the higher intakes of
hydroxybenzoic and caffeic acids were associated with a lower risk of advanced PCa [25].

For flavonoids, in contrast to our null findings, the results from a recent meta-analysis
of three prospective cohort studies showed an increased risk of PCa according to higher
intakes of total flavonoids (OR = 1.11; 95% CI 1.01–1.22) [15]. Notably, this association was
shown to be consistent even after pooling the results with data from three case-control
studies. In addition, in the same meta-analysis, a subgroup analysis stratified according to
flavonoids subclasses showed that higher intakes of anthocyanidins and flavan-3-ols were
significantly associated with increased PCa risk in two prospective studies [15]. Differences
in the size and characteristics of participants, as well as methodological aspects related
to both the collection and estimation of dietary intake, may explain the differences in the
associations found in our study and those reported in the meta-analysis of Liu et al. For
example, the size of our population was not only larger in its total number of participants,
but also in its number of PCa cases. Furthermore, we included participants from seven
European countries, while the cohorts analyzed by Liu et al. were only from Finland [26,27]
and the USA [28]. Finally, while we used the Phenol-Explorer database to make flavonoids
intake estimations, the cohort studies included in the meta-analysis of Liu et al. used a
Finnish [26] and the USDA [27,28] databases for the flavonoid content of selected foods.
A few differences for some flavonoid subclasses were observed in a study comparing the
degree of reliability among flavonoid intakes estimated using Phenol-Explorer and the
USDA databases [29]; therefore, caution is recommended when comparing the results using
both databases.

In the present study, we did not observe any significant association between the
total dietary intakes of isoflavones and lignans, and the total and clinical subtypes of
PCa risk. Regarding isoflavones, our results are in accordance with those reported in the
meta-analyses of Liu et al. [15], who in a pooled analysis of three prospective cohort studies,
showed that the intake of total isoflavones was not associated with the risk of PCa. This
result was similar when data from five case-control were added to the analysis in the
same meta-analysis. To the best of our knowledge, there are no previous cohort studies
investigating the relationship between the intake of lignans and PCa risk. Instead, evidence
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is limited to case-control studies, and the results from a meta-analysis by He et al. of three
case-control studies suggested that the intake of total lignans was not associated with the
PCa risk [30].

The mainly null associations between (poly)phenol intake and PCa reported in previous
prospective studies are similar to those found for its main dietary sources: coffee, tea, fruits,
and vegetables. In the EPIC study, Sen et al. found no evidence of an association between
coffee or tea consumption and the risk of total and clinical subtypes of PCa [31]. The results
related to coffee were similar to those later reported in other large-scale cohorts [32–34], but
opposite to those estimated in a recent meta-analysis of 16 prospective cohort studies showing
that a higher coffee consumption is significantly associated with a lower risk of PCa [35]. It
should be noted, however, that the latter cohort studies [32–34] confirming the results of
Sen et al. in 2019 were not included in this meta-analysis because they were published after
the research period. Regarding tea, the findings reported by Sen et al. in the EPIC study
were consistent with the pooled analysis of nine (i.e., eight prospective and one retrospec-
tive) and five (prospective) cohort studies in two meta-analyses, respectively [36,37]. Both
meta-analyses (which included also eighteen and eight case-control studies, respectively)
showed that among the cohort studies, there was a null association between the intakes
of total, black or green tea and PCa risk. In a previous EPIC sub-study, Perez-Cornago
found that a higher consumption of total fruits, but not total vegetables, was associated
with a reduction in PCa risk [38]. However, this result was not supported by a recent meta-
analysis that, by pooling data from 17 prospective cohort studies, reported an insignificant
relationship between the intake of total fruits and vegetables and the risk of PCa [39].

The differences between the prospective epidemiological evidence and the find-
ings from some experimental studies, which have suggested that the intake of certain
(poly)phenols reduces the risk and progression of PCa [10,40], may be due to differences
in several aspects, including exposure and outcome assessments, the doses or concentra-
tions administered/consumed, and the duration of the study [39]. In addition, native
(poly)phenols are used in cell culture studies, while (poly)phenols probably act via their
metabolites rather than via the parent compounds in the human body [10]. In recent years,
it has been suggested that in observational studies, the direct measurement of (poly)phenols
and their metabolites via biomarkers in biological samples such as blood may not only
improve the estimation of (poly)phenols exposure, but also the assessment of their possible
protective effects on cancer development [41–44]. To date, however, studies using such ap-
proach to assess the prospective association between the biomarkers of (poly)phenols and
PCa risk have mostly been either of a relatively small size, focused on selected (poly)phenols
(i.e., isoflavones and lignans), or have led to inconclusive results [44–49].

Our study has several strengths and limitations. Its strengths include it being a
prospective design, having a large sample size, a long follow-up, and the coverage of
several European countries with large dietary heterogeneity. The limitations of these
analyses include potential errors in dietary intake assessments that could lead to the
attenuation of any true association between the intake of (poly)phenols and PCa risk.
Specifically, self-reported dietary questionnaires may introduce bias into the (poly)phenol
intake assessment as a result of random and systematic measurement errors, although
the questionnaires were validated in each center/country. Regarding Phenol-Explorer,
although it is the most comprehensive food composition database on (poly)phenols to date,
it has limitations in covering all foods and the variability of PP content in foods, which
could contribute to an underestimation of (poly)phenols intake. Furthermore, data on diet
and lifestyle were only evaluated at baseline, thus potential changes in these variables
during the follow-up were not accounted for in the models. In this sense, some individuals
may have modified their diet during the early pre-diagnostic period of PCa; however,
sensitivity analyses excluding incident PCa cases diagnosed in either the first 2 or 5 years
of follow-up did not significantly alter the risk estimates. Finally, although we controlled
for a wide range of established PCa risk factors, the possibility of residual confounding
cannot be ruled out.
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5. Conclusions

In conclusion, no associations were observed between the intake of the total, classes,
and subclasses of (poly)phenols and the risk of PCa and its main clinically relevant subtypes
in this large multi-center European cohort. Of note, our results do not support a previous
meta-analysis showing that, among cohort studies, the total intake of flavonoids is related
to a higher PCa risk [15].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15164067/s1. Supplementary Table S1: Baseline char-
acteristics of participants according to quintiles of total (poly)phenol intake in the EPIC cohort.
Supplementary Table S2: Hazard ratios (CI 95%) for total prostate cancer, according to quartile of
intake of total polyphenols, flavonoids, phenolic acids, stilbenes, lignans, and other (poly)phenol
classes by body mass index categories in the EPIC study.
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