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Abstract

The use of synthetic CT (sCT) in the radiotherapy workflow would reduce costs and scan time while removing the uncer-
tainties around working with both MR and CT modalities. The performance of deep learning (DL) solutions for sCT gen-
eration is steadily increasing, however most proposed methods were trained and validated on private datasets of a single
contrast from a single scanner. Such solutions might not perform equally well on other datasets, limiting their general
usability and therefore value. Additionally, functional evaluations of sCTs such as dosimetric comparisons with CT-
based dose calculations better show the impact of the methods, but the evaluations are more labor intensive than
pixel-wise metrics.
To improve the generalization of an sCT model, we propose to incorporate a pre-trained DL model to pre-process the
input MR images by generating artificial proton density, T1 and T 2 maps (i.e. contrast-independent quantitative maps),
which are then used for sCT generation. Using a dataset of only T2w MR images, the robustness towards input MR con-
trasts of this approach is compared to a model that was trained using the MR images directly. We evaluate the generated
sCTs using pixel-wise metrics and calculating mean radiological depths, as an approximation of the mean delivered dose.
On T2w images acquired with the same settings as the training dataset, there was no significant difference between the
performance of the models. However, when evaluated on T1w images, and a wide range of other contrasts and scanners
from both public and private datasets, our approach outperforms the baseline model.
Using a dataset of T2w MR images, our proposed model implements synthetic quantitative maps to generate sCT images,
improving the generalization towards other contrasts. Our code and trained models are publicly available.

Keywords: Synthetic CT generation; MRI contrast; Robust machine learning
1 Introduction

Radiotherapy treatment planning is commonly based on a
combination of MRI and CT data. The high soft tissue con-
trast of MRI makes it ideal for treatment volume delineation
while the electron density information from CT is used for
dose calculations for the volume. This pipeline requires
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two scans, with the two modalities registered before dose
planning to compensate for movement between the scans.

Machine learning has a great potential in medical imag-
ing, especially in radiotherapy [1], where the amount of
available data and need for tedious manual work is large.
Machine learning solutions for generating synthetic CT
(sCT) images from MRI have proven extremely successful,
tion Sciences, Umeå University, Umeå, Sweden.
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with several models being commercially and clinically
available [2]. The available machine learning models usually
focus on a specific anatomy and MR images with a specific
contrast [3]. The contrast settings of an MRI scan defines the
significance of the underlying tissues in the acquired signal,
therefore the image characteristics can vary widely between
settings. The bias of the models towards a specific MR con-
trast is generally not listed as a limitation, as this implication
is considered obvious.

For a spin-echo MRI sequence, a contrast is defined by
two settings, the echo (T E) and repetition times (T R). The
signal of a spin-echo sequence is based on three underlying
quantitative maps: proton density (PD), the T1- (T1) and T2-
relaxation times (T2) according to the signal equation,

s ¼ PD � 1� e�
TR
T1

� �
� e�TE

T2 : ð1Þ

Hence the MR signal is defined using the underlying
quantitative maps, which are by definition independent of
the imaging contrast.

Reported sCT generation models are most often evaluated
using pixel-wise metrics [3]. Although differences in dose
calculations would provide a more useful, practical perfor-
mance metric [4], they are performed less often as they
require dose calculations, tedious manual work, and dose
planning software.

In our presented work we investigated how augmented
information such as synthetic PD; T 1 and T2 maps can help
sCT generation, and how it affects generalization towards
other contrasts and scanners. We also build on previous
work by [5] and use radiological depths to evaluate the dose
calculation accuracy, by adding correction factors to the
radiological depth which allows for dose estimation. The
trained models and source code are made publicly
available2.

2 Materials and methods

We collected pelvic MRI scans from 375 patients with a
3T Signa PET/MR scanner (GE Healthcare, Chicago, Illi-
nois, United States) at the University Hospital of Umeå,
Sweden (ethical approval Dnr: 2019–02666) and corre-
sponding CT scans with a Philips Brilliance Big Bore (Phi-
lips Medical Systems, Cleveland, OH, USA). The CT
images were registered to the MRs using non-rigid registra-
tions to account for patient movement between the scans.
Registrations were performed in Hero Imaging3, which uses
the Elastix [6] software package for image registration,
based on the Insight Toolkit [7] code. The registrations
were performed with the default non-rigid registration
2 https://github.com/attilasimko/contrast-sct.
3 www.heroimaging.com.
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preset. For each scan, 131 axial slices of size 512� 512
were used. The T 2w images in the dataset use echo times
of approximately 90 ms and repetition times of around
14,000 ms. A mask was created for each patient using the
voxels from the CT image above the value of �200HU ,
and the largest connected component was extracted. This
ensures that only the patient was included in the mask. This
mask was then applied to both the CT and MR images, and
saved for later use during the evaluations. The MR images
were bias field corrected in Hero Imaging, using N4ITK
with a shrink factor of 4, and with a number of control points
that produced visually pleasing results. Afterwards, the MR
images were Z-normalized and the CT images were trimmed
similar to [4], between the values �1000 and 1000 HU, and
then scaled between �1 and 1. The patients were split ran-
domly between training (80%) and validation (10%), while
the remaining 10% were used for testing. For evaluations
we also used the publicly available Gold Atlas dataset [8]
covering 3 sites (3 different scanners) and two different
image contrasts (T1w and T2w).

Using the method proposed in [9] we deconstructed the
signal from each slice into synthetic PD; T 1, and T2 maps.
These synthetic quantitative maps (sQMs) were used as a
contrast-independent representation of the scanned anatomy.

For all experiments, the difference between the evaluated
methods was tested for significance using a Friedman test of
equivalence followed by a Nemenyi post hoc test.

2.1 Model architectures

Our model architecture was a SRResNet [10], 12 blocks
deep with 37.7 million trainable parameters. The architecture
included Dropout layers with a rate of 0:2, which can be used
to capture the uncertainty in themodel, known asMonte-Carlo
Dropout [11,12]. The SRResNet was selected due to its exten-
sive use and established good performance inmedical imaging
applications [13–16]. Two models were trained for sCT gen-
eration; the sCT images generated by our baseline model
trained on MR images directly are denoted sCTMR while the
sCT images generated by the model trained on the decom-
posed signal—on the sQMs—are denoted sCTsQM .

The sCTMR model has a single channel input, the MR
images, seen as “Baseline” in Fig. 1. Whereas for the
sCTsQM model, the MR slices were downsampled using
Lanczos interpolation to 256� 256 and then scaled between
0 and 1 as per the pre-processing requirements of the signal
decomposition model. The outputs of this model—the
sQMs—were then upsampled using the same interpolation
to 512� 512, where the previously saved patient
masks were applied on each map to set values outside of
ndent synthetic CT generation, Z Med Phys, https://doi.org/10.1016/j.zemedi.2023.07.001
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Figure 1. A summary of the two approaches for training an sCT generator model (in blue). The baseline approach (top) uses the input MR
to train the sCT model, whereas our proposed approach (bottom) uses a deep learning model proposed in [9] to first decompose the MR
image into PD; T1 and T2 maps, which are then used as input. For both approaches, the CT images are used as target data during training.
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the anatomy to zero, and then all three maps were individu-
ally Z-normalized. These three maps were then used as a 3
channel image input for the sCTsQM model for sCT genera-
tion, seen as our “Proposed approach” in Fig. 1.

The hyperparameters regarding model training were
tuned for both models using a range of values—the loss
function (including mean squared error, mean absolute error
and mean absolute percentage error), optimizer (including
Adam, Nadam and SGD) and the learning rate (including
0:05; 0:02; 0:01; 0:005, . . ., 0:00001)—to achieve the best
validation performance. A grid search approach was used
to evaluate all hyperparameter combinations. In both cases,
the best results were achieved using mean squared error,
and the Adam optimizer with a learning rate of 0:0001.

2.2 Evaluating MAE

The models were evaluated on the testing dataset by com-
paring the generated sCTs to their corresponding original
CTs using MAE. The errors were categorized using the
HU values of the original CT into errors coming from recon-
structing air (below �100 HU), soft tissue (between �100
HU and 100 HU) and bone (above 100 HU).

Afterwards, the models were evaluated on the publicly
available Gold Atlas dataset. As the training dataset is bias
field corrected, while the Gold Atlas dataset is not, we per-
form the evaluations on the original data, and also a bias
field corrected version, using N4ITK with 6 control points,
and a shrink factor of 2. The sCT generation model in
[17] was also evaluated on a subset of this dataset, without
using bias field correction, therefore their reported MAE
results can be compared to our methods.

We acquired scans using nine other contrasts, to further
evaluate the robustness towards the input MR contrast. This
in–house pelvic dataset used scans from 6 patients captured
Please cite this article as: A. Simkó, M. Bylund, G. Jönsson et al., Towards MR contrast indep
with a 3T Signa PET/MR scanner (GE Healthcare, Chicago,
Illinois, United States) at the University Hospital of Umeå,
Sweden (ethical approval nr. 2019-02666) and correspond-
ing CT scans with a Philips Brilliance Big Bore (Philips
Medical Systems, Cleveland, OH, USA). The dataset con-
tains registered MR images from nine contrasts using a com-
bination of T E values from [8; 75; 120] ms, and T R values
from [400; 750; 4500] ms and a corresponding CT image.
The MAE of the sCTs generated from the different contrasts
were plotted against T E and T R to visualize the robustness of
the models against the settings.

Apart from the nine evaluation points using the acquired
dataset, we created synthetic contrasts of further T E and T R

combinations, by the contrast transfer method proposed in
[9]. This yields an artificial, but more varied set of MR
images to evaluate sCT generation on. In this case, when
evaluating sCTsQM , the contrast transfer model is applied
twice, once when transferring a signal of a specific contrast,
and then for decomposing the synthetic contrast to use as
an input for sCT generation. The evaluation points of the orig-
inal contrasts are visualized with white squares in Fig. 2,
surrounded by the evaluation points of the synthetic contrasts.

2.3 Approximation of dose calculation accuracy

In the pelvic area where there are few large areas with
markedly different tissue densities, the deposited dose to a
point p within the patient can be reasonably accurately mod-
eled using first order corrections, i.e. correcting for the atten-
uation of the primary beam. This is usually done by
calculating the effective pathlength (radiological depth) to
the point p through the patient anatomy and using that depth
to calculate the attenuation, used for similar evaluations in
[5]. The radiological depth z0 is calculated as function of
the geometrical depth z as
endent synthetic CT generation, Z Med Phys, https://doi.org/10.1016/j.zemedi.2023.07.001
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Figure 2. Evaluating the performance of sCT generation for a wide range of MR contrasts using real (in white squares) and synthetic
contrasts. The plot shows the MAE results for sCTMR (left) and sCTsQM (right) for the individual contrasts. The values are plotted against T E

and T R to show how the contrast settings influence the performance of the two models. A logarithmic axes was used for both T E and T R

following their effect on the MR signal as seen in Eq. 1.
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z0 ¼ 1
qw

Z z

0
qðz00Þdz00; ð2Þ

where qw is the electron density of water and qðz00Þ is the
local electron density estimated from the CT image via a
look up table [18].

For small differences in effective pathlength, i.e. below
10 mm, the attenuation scales approximately linearly to the
difference in radiological depth. However, the total dose dif-
ference at the point p will also depend on the amount of radi-
ation that is delivered in each ray line. To take different
beam weights into account, we extracted the cumulative
beam weights and control point beam angles from 200 pros-
tate VMAT arcs from the clinical quality archive of our
radiotherapy department, and created a standard prostate
VMAT arc. Other factors that influence the dose error is
the field size and energy. To account for these, we calculated
the dose deviations for differences in radiological depths for
several field sizes and energies in a water phantom using the
dosimetric QA software EqualDose [19], that were used as
scaling factors for the dose differences.

The radiological depths were calculated from the original
CTs of the testing dataset and the generated sCTs for the
center of each slice for every fifth slice for the angles of a
4-field conventional method, and for 36 gantry angles of a
full VMAT arc. The mean radiological depths were also cal-
culated for all Gold Atlas patients for the center of mass of
each slice for every fifth slice for the VMAT arcs, and trans-
lated to an approximate mean difference in dose.

3 Results and discussion

The results for evaluating the MAE on the testing dataset
are collected in Table 1, while evaluations on the Gold Atlas
dataset are reported in Table 2.
Please cite this article as: A. Simkó, M. Bylund, G. Jönsson et al., Towards MR contrast indepe
The results for evaluating on a wide range of contrasts are
visualized in Fig. 2. Comparison using the T 2w images from
the testing dataset in Table 1 shows that while the sCTMR

achieves a lower MAE for soft tissue, the performance of
the two models are not significantly different according to
the Nemenyi post hoc test. For an in-depth analysis of the
robustness, on all three sites of the Gold Atlas dataset, the dif-
ference in performance between using T2w and T1w images
is larger for sCTMR than for sCTsQM . Introducing N4ITK bias
field correction on the MR images improved their perceptual
quality, however this did not translate to significantly better
sCT results. As bias field correction introduced no significant
improvement to our approach, all later experiments were
done on the original Gold Atlas scans. As shown in Table 2,
the robust model performs better on T2w images as well on
images from all sites, possibly because of the difference in
the T E and T R values used, compared to the training dataset,
despite all three being T2w. The uncertainty of sCTMR on the
T1w images is not only signaled by the higher MAE but also
by the higher standard deviations. Both models significantly
outperform the model proposed in [17] as seen in Table 2,
which was evaluated on the T2w images from Site 3 of the
Gold Atlas dataset, and resulted in a MAE of 40:4� 4:7.
Their model was trained on a much smaller dataset, and also
resampled the images to 256� 256, which both affect the
MAE results, making their model less relevant for further
comparison. Examples of generated images for both
approaches are visualized in Fig. 4.

The robustness of sCTsQM is further underlined by the
evaluations on the wide range of interpolated synthetic con-
trasts. The training dataset contains images of T E ¼ 90 ms
and T R ¼ 14; 000 ms and both models perform similarly
in that range of echo and repetition times. The visualization
of the results in Fig. 2 shows that the performance of the
baseline model decreases when either T E or T R is decreased
ndent synthetic CT generation, Z Med Phys, https://doi.org/10.1016/j.zemedi.2023.07.001
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Table 1
Results of MAE and their standard errors for evaluating the sCTs generated by both models on the testing dataset. The results in bold
indicate the best performance across rows without significant differences between them following a Nemenyi post hoc test.

Air MAE [HU] Soft Tissue MAE [HU] Bone MAE [HU]

sCTMR 1:357� 0:048 20:093� 0:182 102:789� 1:262
sCTsQM 1:312� 0:049 21:342� 0:189 103:392� 1:082

Table 2
Results of MAE and their standard errors for evaluating the sCTs generated by both models on all the Gold Atlas patients from all three
sites and both contrasts. sCTs were generated from both the original (top two rows), and the bias field corrected images (bottom two rows,
denoted ”+N4ITK”). The results in bold indicate the best performance across rows without significant differences between them following
a Nemenyi post hoc test.

Site 1 Site 2 Site 3

T2w T1w T2w T1w T2w T1w
sCTMR 32:01� 0:27 33:81� 0:39 39:82� 0:24 48:80� 0:53 36:75� 0:42 38:47� 0:42
sCTsQM 31:00� 0:23 31:27� 0:24 33:89� 0:25 39:14� 0:22 34:41� 0:34 35:27� 0:35

T2w + N4ITK T1w + N4ITK T2w + N4ITK T1w + N4ITK T2w + N4ITK T1w + N4ITK
sCTMR 31:87� 0:27 33:83� 0:38 39:46� 0:25 51:55� 0:53 36:74� 0:42 36:13� 0:42
sCTsQM 30:91� 0:23 31:04� 0:24 33:81� 0:24 39:05� 0:21 34:40� 0:34 34:99� 0:34
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compared to the T2w settings of the training data (for both
real and synthetic contrasts), while the robust model shows
no change in performance for the explored range of contrast
settings.

The calculated radiological depths from the testing data-
set are collected in Table 3.

The mean beam weights from the 200 clinical beams and
the radiological depth results for the Gold Atlas dataset are
visualized in Fig. 3 and their averages are collected in
Table 4.

Evaluations on the testing T 2w dataset collected in
Table 3 show that both sCT models are worse for recon-
structing the radiological depths from angles 90� and 270�

which correspond to the sides of the patients, where the
depths are expected to be the largest. However, the other
angles and the average results for both the 4-field conven-
tional calculations and VMAT show no statistical differ-
Table 3
Radiological depths and their standard errors calculated on the testing
VMAT methods. The results highlighted in bold were not deemed sign
following a Nemenyi post hoc test.

4-field c

0� 90� [mm] 180�

CT 96:8� 0:67 179:85� 0:64 122:15
sCTMR 96:09� 0:65 178:57� 0:61 121:80
sCTsQM 95:86� 0:64 178:02� 0:61 121:49

Please cite this article as: A. Simkó, M. Bylund, G. Jönsson et al., Towards MR contrast indep
ences between using the original CTs or either generated
sCTs.

The radiological depth evaluations on the Gold Atlas
from Table 4 show that while sCTMR performs worse for
both contrasts than sCTsQM , the average absolute d values
are always below 1 mm, even when evaluating on T1w
images. The same holds for the weighted ds as well. Evalu-
ating for the individual angles on Fig. 3 shows that the
weighted d values are always below 1 mm for sCTsQM . For
sCTMR the weighted d values are above 1 mm for several
angles between 90� and 270� for T2w and around 90� and
270� for T1w. Approximating the dose differences from
radiological depth values is described in Appendix A. Our
results align well with other evaluated models collected in
[20] showing that most models trained on prostate datasets
achieve a dose difference <1%. Similarly for MAE, the
standard deviation of the results increase when evaluated
dataset from different angles according to 4-field conventional and
ificantly different from the depths calculated from the original CTs,

onventional VMAT

[mm] 270� [mm] Mean [mm] Mean [mm]
� 0:58 182:06� 0:64 145:23� 1:80 144:03� 1:66
� 0:52 180:68� 0:64 144:29� 1:77 143:04� 1:63
� 0:50 180:10� 0:64 143:87� 1:77 142:56� 1:63

endent synthetic CT generation, Z Med Phys, https://doi.org/10.1016/j.zemedi.2023.07.001
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Figure 3. Results of the radiological depth calculations on Gold Atlas dataset for each VMAT arc: On the left the average beam weights are
plotted, the plot in the middle shows the difference between the radiological depths for both models generated from T2w images, while on
the right, the same results are plotted generated from corresponding T1w MR images.

Table 4
Results of the radiological depth d calculations and their standard errors, the weighted d calculations, and the patient-wise mean d in dose
evaluated on the Gold Atlas dataset. The results highlighted in bold were not deemed significantly different from the depths calculated from
the original CTs, following a Nemenyi post hoc test.

Mean d [mm] Mean weighted d [mm] Mean dose d [%]

T2w T1w T2w T1w T2w T1w
sCTMR 0:804� 0:078 �0:679� 0:127 0:759� 0:079 �0:888� 0:138 0:234� 0:050 �0:567� 0:349
sCTsQM 0:019� 0:076 �0:059� 0:099 0:035� 0:075 �0:035� 0:103 0:020� 0:041 0:015� 0:058

Figure 4. Results for an example patient. From left to right: MR image, the registered CT image, sCTMR, sCTsQM . The top row shows all
slices for a patient from the coronal plane, the middle row shows the MAE between the real and synthetic CTs, and the bottom row shows
the axial slices that the models operate on.
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Figure A.5. The calculated scaling factors for the different field
sizes and energies to translate the differences in calculated dose.
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on T 1w for sCTMR, while for sCTsQM the increase is less
prominent.

4 Conclusions

We improve the robustness of deep learning-based sCT
generation with regards to the input MR image contrast by
introducing a pre-processing step of synthetically decon-
structing the MR signal into proton density, T1, and T2
maps—contrast-independent quantitative maps. The perfor-
mance of such a model remains robust towards a wide range
of evaluated contrasts, even across different scanners, when
compared to a model trained on the same T2w MR images
directly. Although all training data was bias field corrected
using N4ITK, both approaches also performed well on
biased data. Hence, the evaluations show that bias field cor-
rection is not a required pre-processing step of the proposed
methods. We further show that the differences in radiologi-
cal depths and approximate dose calculation accuracy are
minimal, providing an easy to automate alternative for dosi-
metric evaluations.

An sCT generation method that works well across differ-
ent scanners and scanner settings holds great potential for
widespread application, removing the need for site-specific
model retraining. To ensure that the model works well in
new scenarios, the radiological depth calculations provide
an easy to automate validation metric, closely connected to
practical dosimetric results. Additionally, the available
source code and model weights ensure reproducibility and
the easy application of our method.

A possible continuation of the project could be to evalu-
ate the method for other anatomies, to investigate if similar
robustness could be achieved there. Additionally, an uncer-
tainty metric could be added to provide an estimated reliabil-
ity of the voxel value assignments. This could help highlight
parts of the image that are hard for the sCT generation to
handle, such as inputs that for some reason are dissimilar
from regularly encountered images. Such a metric could be
part of an automated QA process to help identify potential
cases where the quality of the sCT generation is uncertain,
and additional investigation might be necessary before using
the images in the treatment of patients.

Data Availability Statement

The code used to extract the data is distributed by the
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available on request due to privacy/ethical restrictions.
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Appendix A Connecting the radiological depths
to dose calculations

The calculated scaling factors are shown in Fig. A.5. For
the 200 beams that the weights were extracted from, 198
beams were 10 MV. The mean field size was 74� 76
mm. By interpolating, the relative dose d found in Table 4
could be calculated.
endent synthetic CT generation, Z Med Phys, https://doi.org/10.1016/j.zemedi.2023.07.001
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The scaling factors offer a direct way to connect the dif-
ferences in radiological depths to dose differences. They can
also be used to translate the difference in radiological depths
to other field sizes and energies.
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