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Abstract 
Background.  Although recent sequencing studies have revealed that 10% of childhood gliomas are caused by rare 
germline mutations, the role of common variants is undetermined and no genome-wide significant risk loci for 
pediatric central nervous system tumors have been identified to date.
Methods.  Meta-analysis of 3 population-based genome-wide association studies comprising 4069 children with 
glioma and 8778 controls of multiple genetic ancestries. Replication was performed in a separate case–control 
cohort. Quantitative trait loci analyses and a transcriptome-wide association study were conducted to assess pos-
sible links with brain tissue expression across 18 628 genes.
Results.  Common variants in CDKN2B-AS1 at 9p21.3 were significantly associated with astrocytoma, the most 
common subtype of glioma in children (rs573687, P-value of 6.974e-10, OR 1.273, 95% CI 1.179–1.374). The associ-
ation was driven by low-grade astrocytoma (P-value of 3.815e-9) and exhibited unidirectional effects across all 6 
genetic ancestries. For glioma overall, the association approached genome-wide significance (rs3731239, P-value 
of 5.411e-8), while no significant association was observed for high-grade tumors. Predicted decreased brain tissue 
expression of CDKN2B was significantly associated with astrocytoma (P-value of 8.090e-8).
Conclusions.  In this population-based genome-wide association study meta-analysis, we identify and replicate 
9p21.3 (CDKN2B-AS1) as a risk locus for childhood astrocytoma, thereby establishing the first genome-wide signif-
icant evidence of common variant predisposition in pediatric neuro-oncology. We furthermore provide a functional 
basis for the association by showing a possible link to decreased brain tissue CDKN2B expression and substantiate 
that genetic susceptibility differs between low- and high-grade astrocytoma.

Key Points

- 9p21.3 identified as the first common risk locus in pediatric neuro-oncology by a genome-
wide association study.

- Risk variants were associated with reduced expression of the tumor suppressor gene 
CDKN2B.

- Genetic susceptibility differs between low- and high-grade astrocytoma in children.

Glioma is the most common type of central nervous system 
(CNS) tumor in children, with the subtype astrocytoma making 
up the vast majority (~80%).1 The last decade has brought major 

insights into glioma molecular biology. Still, our understanding 
of the etiology of childhood glioma is incomplete. Empirical ob-
servations indicate significant unexplained heritability,2 while 
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studies of non-genetic risk factors, other than iatrogenic ion-
izing radiation, have not identified underlying causes.3

We have previously shown that rare high-penetrance 
pathogenic germline variants in known cancer genes ex-
plain at least 10% of childhood glioma.4,5 Whether and 
to what degree childhood glioma risk may be influenced 
by common variants has been less extensively investi-
gated. Genome-wide association studies (GWASs) have 
uncovered several risk loci for adult glioma,6–18 which in 
combination explain ~30% of the proportion in incidence 
variance attributable to genetic factors.7,19 However, adult 
and childhood glioma differ markedly both in tumor mo-
lecular biology and clinical course. Therefore, direct trans-
ferability of adult findings may be questioned.

GWASs have led to deeper understanding of genetic risk 
across most common diseases where large cohorts are avail-
able.20 Due to the rarity of pediatric CNS tumors, GWASs 
in the field have generally been underpowered and no 
genome-wide significant risk associations have been identi-
fied. Potential approaches to overcome this challenge include 
international collaboration and meta-analyses of multiple 
cohorts. Here, we present our US-Scandinavian population-
based GWAS meta-analysis comprising 4069 children (<15 
years) with glioma and 8778 controls (Figure 1).

Material and Methods

US Cases and Controls

Californian glioma cases and controls (ncases = 3150, ncontrols 
= 3154) were selected from the California Childhood Cancer 
Record Linkage Project, a matched case–control study pre-
viously described in detail.21 In short, cases were born in 
California between 1982 and 2009, with a primary glioma di-
agnosis made before the age of 15 years registered from 1988 
to 2011. California-born cancer-free controls were matched to 
cases based on date of birth, sex, and self-reported maternal 
race and/or ethnicity via the California Vital Statistics re-
cords. A total of 3150 cases and 3154 controls were included; 
European-Americans (ncases = 1583, ncontrols = 1592), African-
Americans (ncases = 215, ncontrols = 217,), Latino-Americans 
(ncases = 1208, ncontrols = 1222), and Asian-Americans (ncases 
= 238, ncontrols = 245). Archived neonatal dried blood spot 

samples for cases and controls were provided by the 
California Biobank Program (CBP SIS#311). DNA extraction 
and processing were performed on the Affymetrix Axiom 
Precision Medicine Diversity Array. Affymetrix Powertools 
were used to make genotype calls as previously described.22 
This study was approved by the State of California Committee 
for the Protection of Human Subjects, the University of 
Southern California, and University of California, Berkeley re-
view board (CPHS IRB Project number 15-05-2005).

Swedish Cases and Controls

The Swedish cohort was taken from our previous GWAS 
of glioma in children, adolescents, and young adults,23 re-
stricted to cases ≤15 years (ncases = 352). In brief, children 
diagnosed with glioma from 1976 to 2004 were identified 
through the Swedish Cancer Registry and archived neonatal 
dried blood spot samples were collected from the Swedish 
Phenylketonuria Screening Registry. Histopathological 
diagnoses were available from the Swedish Pediatric Brain 
Tumor Quality Registry. For controls, we included Swedish 
population-based control subjects from a previous GWAS of 
adult glioma (the Glioma International Case–Control Study, 
ncontrols = 874).7 Procedures for DNA extraction, whole-
genome amplification and genotyping using the Illumina 
BeadChips (Illumina, San Diego, CA, USA) have previously 
been described in detail.7,23,24 HumanOmni2.5Exome and 
Infinium OncoArray-500K were used for genotyping of cases 
and controls, respectively. This study was approved by the 
Regional Ethical Review Board in Umea (06-025M, 06-124M) 
and the Swedish Ethical Review Authority (2019-06408).

Danish Cases and Controls

Archived neonatal dried blood spot samples were retrieved 
for all children born in Denmark registered with glioma be-
fore the age of 15 years in the Danish Childhood Cancer 
Registry25 from 1985 to 2017 (ncases=567). Registry diag-
nosis data were cross-validated using the Danish National 
Pathology Registry. Controls (ncontrols=4750) were selected 
at random from an existing Danish population-based case-
cohort sample (iPSYCH2015, n = 18  518) representative 
of the entire Danish population born in the same period, 

Importance of the Study

Several germline sequencing studies support that a 
substantial fraction of children with glioma harbor rare 
pathogenic variants. The role of common risk vari-
ants, however, remains undetermined and no genome-
wide significant risk loci for pediatric central nervous 
system tumors have been reported. We performed a 
genome-wide association study (GWAS) meta-analysis 
of 3 case–control studies comprising 4069 children with 
glioma and 8778 controls of different genetic ancestries. 
Here, we show that common variants in CDKN2B-AS1 
are associated with the most frequent type of childhood 

glioma, namely astrocytoma. The association was rep-
licated in a separate case–control dataset. Based on a 
transcriptome-wide association study and quantitative 
trait loci analyses, we present a functional basis for the 
reported association by decreased brain tissue expres-
sion of the neighboring CDKN2B tumor suppressor 
gene. Through broad international collaboration, this 
population-based GWAS provides the first genome-
wide significant evidence of common variant predispo-
sition in pediatric neuro-oncology.
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previously described in detail.26 The case–control cohort, 
procedures for DNA extraction, whole-genome amplifica-
tion and genotyping using the Infinium Global Screening 
Array-24 v2.0 (Illumina, San Diego, CA, USA) have previ-
ously been described.27–29 This Danish study was reported 
to the Danish Data Protection Agency and approved by the 
Regional Health Research Ethics Committee (H-17002304)

The different cohort contributions are illustrated in 
Figure 1.

Diagnostic Selection Criteria

Glioma was defined according to the International 
Classification of Childhood Cancer (ICCC-3) category III 
“CNS and miscellaneous intracranial and intraspinal 
neoplasms” groups “b) astrocytoma,” “d) other glioma,” 
and “e.4) neuronal and mixed neuronal-glial tumors” 
and corresponding SNOMED/ICD-O-3 codes (detailed in 
Supplementary Methods). If SNOMED/ICD-O codes were 
not available, cases were included when the registered 
histopathology diagnosis directly corresponded with 
the diagnostic entities listed above. Glioma subtype and 
WHO grade distribution are detailed in Supplementary 
Table 1.

Glioma Grading and Assignment of Low- and 
High-Grade Status

World Health Organization (WHO) grades were retrieved 
from the respective disease registers, and for Danish cases 

also through the Danish National Pathology Registry. 
Low- and high-grade glioma status were assigned to tu-
mors with reported WHO grade I–II and III–IV, respectively. 
For cases without registered WHO grade, grading was as-
signed if the tumor entity in question corresponded to a 
specific WHO grade, or to grade intervals I–II or III–IV, as 
per the WHO Classification of CNS tumors summarized by 
Louis et al.30,31

Subject and Variant Filtering, Imputation, and 
Phasing

Quality control was performed using PLINK1.932 and a cus-
tomized common pipeline for all three cohorts and is de-
tailed in Supplementary Methods and Figure 1. The term 
genetic ancestry refers to each of the 6 included population 
groups (ie, Swedes, Danes, European-, African-, Asian-, 
and Latino-Americans) after the exclusion of genetic out-
liers identified by principal component (PC) analysis. When 
combined, European Americans, Swedes, and Danes are 
referred to as individuals of European descent. Protocols 
for imputation and phasing are described in detail in 
Supplementary Methods.

Statistics

Regression analyses were performed using PLINK2,33 and 
were done separately for the Danish cohort, the Swedish 
cohort, and the US subcohorts including European-, 
Latino-, Asian- and African-American, respectively. Sex and 

Population-based genome-wide association study meta-analysis of children <15 years with glioma

California childhood cancer record
linkage project: glioma cohort

total sample size: 4 069 cases and 8 778 controls

DNA genotyping arrays used:
Californian cohort: Thermofisher Affymetrix Axiom Precision Medicine Diversity Array
Swedish cohort: Illumina HumanOmni2.5Exome (cases) & HumanOmniExpress (controls)
Danish cohort: Illumina Infinium Global Screening Array-24 v2.0

Diagnosed 1982–2012
Cases n = 3150

European-American:

Swedish childhood glioma
cohort
Diagnosed 1976–2004

Controls n = 874
Cases n = 352

Danish childhood CNS
tumor cohort: glioma
Diagnosed 1985–2017

Controls n = 4750
Cases n = 567

n = 1554
n = 1176
n = 226
n = 194

n = 1559
n = 1177
n = 222
n = 196

Latino-American:
Asian-American:
African-American:

Controls n = 3154

Figure 1. Overview of the included cohorts, genetic ancestries, and genotyping arrays used.
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significant PCs were included as covariates. PCs were cal-
culated separately for each independently analyzed tumor 
subtype. The meta-analysis was performed both by random-
effect modeling using metafor34 and with a fixed-effect model 
using METAL.35 We performed 2 separate meta-analyses; one 
limited to cohorts of European descent (Swedish and Danish 
samples together with European–Americans from the US 
cohort, ncases= 2473 and ncontrols = 7183) and one for all 4069 
cases and 8778 controls of all genetic ancestries combined. 
In the following, results from the fixed-effect model are pre-
sented, while random-effect model results are available in 
Supplementary Figures 2B–T and Tables 11–12. Conditional 
analysis was performed by including the genotype of lead 
variant in the regression model. Results from each cohort 
were then meta-analyzed. Genome-wide significant associ-
ations were defined by P-values of <5e-8.

Replication

Replication was performed in a separate germline genetic 
dataset (ncases = 270; 210 low-grade and 54 high-grade 
gliomas, ncontrols = 2080) including cases from the Children’s 
Brain Tumor Network study, the Gabriella Miller Kids First 
study (BASIC3), the Pacific Pediatric Neuro-Oncology 
Consortium36 and controls from the Glioma International 
Case–Control Study.24 A formal replication P-value of .05 
was used for the single detected genome-wide signifi-
cant locus. As an exploratory investigation, variants with 
P-values of <1e-5 in the meta-analysis also underwent 
targeted lookup in the replication cohort. Replication was 
restricted to findings from the meta-analysis of cases and 
controls of European descent, as the replication cohort 
consisted of European individuals. Additional details are 
provided in Supplementary Methods.

A secondary comparative analysis of genome-wide sig-
nificant findings in children of European descent with 
astrocytoma was performed in nonoverlapping cases from 
a separate population-based Danish germline WGS cohort 
of children diagnosed with astrocytoma years 2016–2021 (n = 
54) previously described in detail5 Population-based controls 
from the Danish GWAS cohort (n = 4750) were used for this 
analysis due to the lack of a suitable separate control-cohort.

Transcriptome-Wide Association Study

As the effects of individual single nucleotide 
polymorphisms (SNPs) can be low and hard to detect, a 
gene-based transcriptome-wide association study was 
performed using pre-calculated expression models from 
The Genotype-Tissue Expression V8 project37 (further de-
tailed in Supplementary Methods). Any gene exhibiting ex-
pression associated with the phenotype with a Bonferroni 
adjusted P-value, accounting for all 18 628 tested genes, 
below .05 was considered significant.

GWAS-quantitative Trait Loci Colocalization 
Analyses

Colocalization analyses were performed to investigate 
correlations between genome-wide association signals 

at 9p21.3 and brain tissue expression of nearby genes 
(CDKN2B and CDKN2A) and splice QTLs (sQTL) respon-
sible for alternative mRNA splicing events of nearby genes. 
Colocalization of the results from the current study with 
that of adult glioma for the CDKN2B-AS1 locus was also 
investigated. Full details are provided in Supplementary 
Methods.

Gene Set Enrichment Analysis

Functional interaction, gene set (GSEA) and gene ontology 
(GO) enrichment analyses were performed for genes with 
variants with P-values of <1e-5 using the String Database 
(String-dB v.11),38 the GO knowledgebase39 and the 
Molecular Signature Database (MSigDB).40 The reported 
P-values were corrected for multiple comparisons using 
the Benjamini-Hochberg procedure by the respective anal-
ysis tools.

Ethics

This study was approved by the relevant data protection 
and research ethics committee systems of the respective 
involved academic institutions (detailed for each cohort 
above).

Data Availability

Summary statistics of this study may be made available at 
reasonable request from the corresponding authors. The 
raw genotype data are not publicly available due to data 
privacy legislation applicable in the 3 participating study 
locations (the US [California], Sweden & Denmark).

Results

A total of 11 212 017 variants were analyzed across 3998 
children with glioma and 8233 controls passing quality 
control.

CDKN2B-AS1 Association

Meta-analysis of the 3 independent cohorts revealed 36 
variants, all mapping to CDKN2B-AS1 at 9p21.3, to be sig-
nificantly associated with childhood astrocytoma (P-values 
of <5e-8) (Figures 2 and 3 and Supplementary Table 2). The 
association signal was led by rs573687 (P-value of 6.974e-
10, OR 1.273, 95% CI 1.179–1.374) and was tailed by the 2 
known adult glioma risk variants, rs634537 (P-value of 
5.349e-9) and rs2157719 (P-value 5.809e-9). Conditional 
analysis did not support multiple independent associations 
within the locus (Supplementary Figure 3). With few excep-
tions, genome-wide significant variants mapping to 9p21.3 
exhibited unidirectional effects for astrocytoma across all 
genetic ancestries (Supplementary Table 2).

Further stratification by WHO grade and tumor type re-
vealed that the observed CDKN2B-AS1 signal was signif-
icant also for low-grade glioma (P-value of 2.087e-8, OR 
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1.254, 95% CI 1.158–1.357, Supplementary Figure 2 E and 
Table 9 E) and driven by low-grade astrocytoma (P-value 
of 3.815e-9, OR 1.294, 95% CI 1.187–1.409, Figure 2). Near 
genome-wide significant association was also seen for 
pilocytic and optic pathway glioma (P-value of 5.036e-
8, OR 1.298, 1.182–1.426, Supplementary Figure 2Q and 
Supplementary Table 9I). The same direction and mag-
nitude were apparent for glioma overall (lead variant: 

rs3731239, P-value of 5.411e-8, OR 1.197, 95% CI 1.122–1.277, 
Figure 2 and Supplementary Table 9A).

Notably, no genome-wide significant variants mapping 
to the 9p21.3 (CDKN2A/B/B-AS1) locus were observed 
for high-grade glioma in general, nor for high-grade 
astrocytoma or glioblastoma when analyzed separately 
(Supplementary Figure 2I–M and Table 9C—F–G). The 
detected CDKN2B-AS1 variants exhibited significant 

Manhattan and quantile-quantile plots for glioma and astrocytoma
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Figure 2. Association plots for glioma, astrocytoma, and low-grade astrocytoma. Manhattan and quantile–quantile plots–plots for children with 
glioma (A–D), astrocytoma (B–E), and low-grade astrocytoma (C–F).
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colocalization with previously reported adult glioma risk 
SNPs within the same locus (Supplementary Figure 6). No 
findings were made in any of the other 26 risk loci estab-
lished for adult glioma7(Supplementary Table 13), not even 
when applying a more liberal P-value cutoff of <1e-5.

Stratification by Genetic Ancestry, Age, Sex, and 
Tumor Location

Assuming that European–Americans and Scandinavians 
(Swedes and Danes) represented a group with relatively 
more genetic homogeneity, we restricted analyses to indi-
viduals of these populations (ncases = 2473, ncontrols = 7183 
combined)—in the following referred to as of European 
descent. The CDKN2B-AS1 association signal was also 
found significant for astrocytoma cases of European de-
scent alone (rs2811713, P-value of 3.356e-9, OR 1.299, 
95% CI 1.191–1.416). The mean Δminor allele frequency between 

cases and controls for the associated CDKN2B-AS1 vari-
ants (P-values of < 5e-8) was significantly higher for indi-
viduals of European compared to those of non-European 
descent (African-, Latino-, and Asian–American, ncases = 
1596, ncontrols = 1595 combined) (mean Δminor allele frequency 
0.041 vs. 0.029, P-value of <.001, Mann–Whitney U test, 
Supplementary Tables 3 and 4), although all 6 groups 
exhibited unidirectional association effects. Bonferroni-
corrected pairwise comparison of children of European 
descent with Latino- and Asian–Americans also showed 
significant differences (P-values of <.001), but not for 
African–Americans (P-value = .392). The CDKN2B-AS1 
association was furthermore significant for children 
of European descent with low-grade astrocytoma, for 
whom 2 ABCD3 variants also exhibited P-values of <5e-8 
(Supplementary Table 10D).

No other genome-significant associations with unidirec-
tional effects were observed for the subset of European 
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Figure 3. Detailed locus plot for the 9p21.3 astrocytoma association. (A) Locus plot detailing the 9p21.3 region with detected variants colored by 
degree of linkage disequilibrium with the lead single nucleotide polymorphism rs573687. (B) Tentative biological mechanism behind the observed 
genotype–phenotype association.
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descent alone (Supplementary Table 10A). Restricting 
the meta-analysis to cases of non-European descent did 
not result in any significant associations (Supplementary 
Figure 2U).

Higher age at diagnosis was observed for females ho-
mozygous for the lead rs573687 variant (G/G) but only 
in 1 out of the 3 cohorts. No other differences were seen 
when stratifying genotype by age of onset, sex, or tumor 
location (Supplementary Figures 4–5). Performing the 
meta-analysis based on fixed- and mixed-effect models 
returned highly comparable results (Supplementary 
Figures 2A–U).

Replication

Variants from the discovery cohort with P-values of 
<1e-5 were evaluated for consistency of association 
in an independent case–control cohort including 270 
European children with glioma and 2080 controls. 
Eight out of 139 variants with P-values of <1e-5 iden-
tified for children of European descent with glioma in 
the meta-analysis were associated with glioma risk 
in the replication cohort. Of these, all but one were 
located in CDKN2B-AS1, making this the only confi-
dently replicated association. The CDKN2B-AS1 associ-
ation was also significantly replicated when restricting 
the replication to children with low-grade glioma 
(Supplementary Tables 5A–C). Further subtype stratifi-
cation of the primary replication cohort was not pos-
sible due to the level of diagnostic data.

All genome-wide significant variants in children 
of European descent with astrocytoma mapping to 
CDKN2B-AS1 were furthermore compared and success-
fully replicated in a separate Danish astrocytoma cohort 
(Supplementary Tables 6A–B). The only other genome-
wide significant findings in the latter group, 2 ABCD3 vari-
ants with meta-analysis P-values of <5e-8 for low-grade 
astrocytoma, were not found to be significantly associ-
ated in the second comparative analysis.

Transcriptome-Wide Association Study

A transcriptome-wide association (TWAS) study was 
performed for glioma and glioma subtypes using gene 
expression models from 13 types of brain tissue and 
summary statistics from the cross-ancestry fixed-effect 
meta-analysis. Single tissue TWASs were then integrated 
into one on account of similarities of gene expression 
between the tissues. Of the 18  628 genes tested, only 
CDKN2B exhibited significant association between case 
status and predicted brain tissue expression. Similar to 
the CDKN2B-AS1 GWAS finding, the decreased CDKN2B 
expression in brain tissue identified by our TWAS was as-
sociated with astrocytoma in childhood (P-value 8.09e-8, 
mean z-score −5.37). Several other genes (NUTM2D for 
all glioma, UBN2 for glioblastoma, MEIOC for low-grade 
gliomas) also had Bonferroni-corrected P-values of <.05, 
however, exhibited nonuniform effect directionality 
across the tested individual tissues (Supplementary Table 
7). CDKN2B-AS1 was not included in the pre-calculated 

expression models and its expression was therefore not 
available for testing in the TWAS.

Quantitative Trait Loci Colocalization Analyses

To further investigate potential correlation between the 
genome-wide significant CDKN2B-AS1 variants and 
brain tissue expression quantitative trait loci (eQTLs) 
within the CDKN2B–CDKN2A tumor suppressor gene 
cluster, a colocalization analysis was performed 
(Supplementary Figures 7–20). High probability of a 
shared functional SNP was seen with CDKN2B eQTLs 
in cerebral cortex (0.94, Figure 4 and Supplementary 
Figure 7), while significant colocalization was also 
evident in the dorsolateral prefrontal cortex (0.86, 
Supplementary Figure 11). The most significant GWAS 
association signals for astrocytoma thus coincide with 
eQTLs for CDKN2B, indicating an association between 
decreased cerebral CDKN2B mRNA levels and childhood 
astrocytoma. Of note, no colocalization was seen when 
comparing GWAS variants with CDKN2B eQTLs for 
blood (0.00, Supplementary Figure 9) and no significant 
colocalization was seen for CDKN2A (Supplementary 
Figures 21–34).

When investigating potential links between 
CDKN2B-AS1 variants from our GWAS and SNPs known 
to significantly affect alternative mRNA splicing in brain 
tissue (sQTLs), the only tissue having significant sQTLs 
for CDKN2B-AS1 was the pituitary (Figure 5A). Here, the 
sQTL for the 21995161–22046751 (GRCh38) exon–exon 
junction in CDKN2B-AS1 was shown to colocalize with 
genome-wide significant variants with a probability of 
77%. The top 5 GWAS variants all reside within this ge-
nomic region. Comparing the effects from the GWAS 
variants with P-values of <1e-5 with the sQTL in pituitary 
tissue, the variants uniformly coincide with either a posi-
tive or negative effect on the intron excision ratio for this 
exon–exon junction (Figure 5B).

Gene Enrichment Analyses

To identify biological pathways underlying glioma 
risk caused by common germline variants, we per-
formed a gene enrichment analysis for genes with vari-
ants with P-values of <1e-5 using String-dB. For glioma 
overall, enrichment of genes binding to nuclear factor-κB 
(P-valueBenjamini-Hochberg-adjusted (adj) of .0085) and to the p53 
family of proteins (P-valueadj of .0417) was observed, while 
the WNT signaling pathway was enriched for low-grade 
astrocytoma (P-valueadj of .0202)—all of which were cor-
roborated by subsequent GO and gene set enrichment 
analyses.

Furthermore, GO analysis revealed distal axonal cel-
lular component enrichment for high-grade astrocytoma 
genes (P-valueadj of .021), while pilocytic astrocytoma, 
oligodendroglioma, and glioblastoma genes showed 
increased brain tissue expression (P-valueadj of .0148, 
.0028, and .0375, respectively) in String-dB. Overview of 
tested genes and full GSEA and GO results are available 
in Supplementary Tables 8A–C.
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Discussion

In this population-based GWAS, meta-analysis we associ-
ated common variants in CDKN2B-AS1 at 9p21.3 with de-
velopment of astrocytoma in children and replicated this 
finding in two separate case–control cohorts. Finally, we 
provide a potential functional basis for the association by 
showing a possible link to decreased brain tissue CDKN2B 
expression.

CDKN2B-AS1, also known as ANRIL, is a long non-
coding RNA located within the CDKN2B–CDKN2A tumor 
suppressor gene cluster. Its functional RNA molecule 
promotes epigenetic silencing of CDKN2B and CDKN2A 
through interactions with polycomb repressive complexes 
1 and 2. Rare germline 9p21.3 structural deletions, span-
ning the entire CDKN2B-AS1 gene, have been reported 
to cause melanoma-astrocytoma syndrome in children.41 
Also, common variants in the same locus are well known 
to be associated with glioma risk in adults.42 Candidate 
gene studies have reported association between genetic 
variants in 9p21.3 and risk of childhood brain tumors, in-
cluding glioma.23,43 However, previous studies in children 
and young adults have not been powered for genome-
wide significant discoveries.

It is well established that gliomas in children differ 
somatically fundamentally from their adult counter-
parts.44 Still, our findings indicate both similarities and 
discrepancies between common variant associated 
risk of glioma in children and adults. On one side, the 
CDKN2B-AS1 variants detected in our study exhibited 
significant colocalization with adult glioma risk variants 
within the same locus. On the contrary, there is a relative 
overabundance with 27 different risk loci established 
for adults.7 The latter may result from higher detection 
power due to larger sample sizes. However, most risk 
variants associated with adult glioma were primarily 
found in case–control cohorts no larger in size than the 
meta-analysis presented here. Several possible explan-
ations for the higher number of risk loci for adult glioma 
exist. The larger molecular heterogeneity of adult glioma 
may reflect a more diverse etiology, at least when com-
pared to low-grade astrocytoma in children. Differences 
in heritability patterns, with a larger role for low-effect 
size common variants and rare high-penetrance herita-
bility in adult glioma and childhood glioma, respectively, 
could also be a contributing factor. While only a few 
percent of adult gliomas are believed to be caused by 
rare germline variants,45 we have recently reported such 
findings in at least 10% of children with glioma.4,5 Also, 
segregation studies have previously found polygenic 
models to best account for the incidence pattern of adult 
glioma,46 an observation which may further be corrob-
orated by the adult glioma GWAS findings as recently 
reviewed by Ostrom et al.47

Childhood gliomas differ markedly in molecular biology 
from their adult counterparts. Still, in studies of adult 
glioma, common 9p21.3 risk variants have been found to 
be specific for tumors without IDHI mutations48,49 and inde-
pendent of somatic homozygous loss of the 9p21.3 locus,50 
2 somatic aberrations which are extremely rare in child-
hood glioma.44,51

Recently, Ali et al.52 used an in vitro model of adult glioma 
to show a proposed link between common genetic variants 
in the CDKN2B-AS1 risk locus and increased expression of 
CDKN2B-AS1. Our investigations of CDKN2B-AS1 levels in 
brain tissue are limited by the low expression of this gene, 
but indicated a possible relation between glioma risk vari-
ants and levels of different CDKN2B-AS1 splicing variants. 
We also found an association between glioma risk vari-
ants and a decreased expression of the tumor suppressor 
CDKN2B, which is in line with another recent study that 
identified CDKN2B as a likely target gene for many of the 
glioma risk variants in this locus.53 Based on the above ob-
servations, we speculate that the increased risk of glioma 
in carriers of CDKN2B-AS1 risk variants is caused by the 
lower level of tumor suppressor CDKN2B (Figure 3B), ei-
ther mediated by a direct effect on CDKN2B expression or 
indirectly by effects on CDKN2B-AS1 expression and/or 
splicing.

The CDKN2B-AS1 association was significant for 
children with astrocytoma, but did not reach genome-wide 
significance for glioma overall. As glioma constituted a 
larger combined sample size, this observation most likely 
reflects increased diagnostic heterogeneity. The complete 
absence of 9p21.3 variants, even when employing a more 
liberal P-value cutoff of <1e-5 among children with high-
grade glioma is also worth noting. This supports the notion 
that low- and high-grade glioma in children are distinct 
diagnostic entities with differences also in molecular eti-
ology. A similar pattern of differences in genetic predis-
position between high- and low-grade glioma in children 
has also been reported for germline risk attributable to rare 
highly penetrant pathogenic variants.54 The lack of risk loci 
at CDKN2B-AS1 in high-grade pediatric glioma also high-
lights the difference between high-grade glioma in children 
and adults, as CDKN2B-AS1 risk variants have been shown 
to mediate larger effect sizes for glioblastoma than lower-
grade gliomas in adults.7

Although CDKN2B-AS1 variants associated with 
astrocytoma exhibited unilateral effects across all 6 ge-
netic ancestries, the mean difference in case–control allele 
frequencies was significantly higher among children of 
European descent. Moreover, the CDKN2B-AS1 association 
signal was genome-wide significant for all genetic ances-
tries combined and for children of European descent alone, 
but not when limited to those of non-European descent. 
The minor allele frequency reported by gnomAD for our 
lead variant (rs573687) is also notably higher for European 
populations (39%) compared to Asians–, Latinos–, and 
African–Americans (<20%).55 These observations may con-
tribute to the excess incidence of glioma in children of 
European genetic ancestry.56

A key strength of this multinational study is its 
population-based design, which minimizes the risk of se-
lection bias. The meta-analysis of three separate cohorts 
including 6 different genetic ancestries furthermore adds 
to its robustness and the validity of our findings. The fact 
that ~40% of the overall case sample was composed of 
individuals of non-European descent increases the gen-
eralizability of our results. Our results are further strength-
ened by their detection across several different genotyping 
platforms and more importantly by their subsequent rep-
lication in a separate case–control cohort. Moreover, our 
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TWAS and QTL analysis findings provide a tentative ex-
planatory biological mechanism.

Our finding of a risk locus at 9p21.3 that is largely driven 
by low-grade astrocytoma highlights that future studies in 
this field should benefit from more detailed tumor diag-
nostics, which unfortunately, were not available in this 
study as its 30-year inclusion was based on historical dis-
ease registries. In particular, replication of our findings 
across recently defined childhood glioma molecular sub-
types is recommended to investigate whether CDKN2B-
AS1-related risk is shared or specific to certain sub-entities. 
Glioma, even when limited to astrocytoma, comprises 
several molecular subtypes which might have negatively 
affected the homogeneity of the case sample. Conversely, 
the majority of low-grade gliomas, which represent the 
largest tumor subtype category, are somatically character-
ized by upregulation of the same RAS/MAP kinase pathway 
even when histopathologically distinct.51 Although sev-
eral updates to the classification of CNS tumors have been 
made over the last 3 decades, we do not expect this to have 
had a major impact on our overall results as most of the 
adjustments pertain to subtype specifications (eg, H3K27M 
status), and not alterations in-between major tumor type 
categories. On the other hand, availability of such modern 
tumor classification data would have made stratification 
based on more homogenous molecular subtypes possible.

In summary, this cross-ancestry population-based 
GWAS meta-analysis of 4069 children with glioma and 8778 
controls identifies and replicates 9p21.3 (CDKN2B-AS1) 
as a risk locus for childhood astrocytoma. This is the first 
genome-wide significant association of common variants 
with pediatric CNS tumor risk. We also suggest a functional 
basis for the reported association through decreased brain 
tissue CDKN2B expression. Our findings substantiate that 
genetic susceptibility differs between low- and high-grade 
astrocytoma.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology (http://neuro-oncology.oxfordjournals.org/).
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