INTRODUCTION

During the past decade, neonatal care has continuously improved, resulting in more and more immature babies born and surviving (Norman, Hallberg, et al., 2019). This development has led to an increased proportion of extremely preterm children with a high risk of severe retinopathy of prematurity (ROP) requiring treatment. Further, during the past decade, new modes of treatment have been introduced internationally, particularly intra-vitreal injections of anti-vascular growth factor (anti-VEGF) (Mintz-Hittner et al., 2011; Stahl et al., 2019).

There are few population-based studies, including information on screening and treatment for ROP and development over time. Based on a Swedish register for ROP...
(SWEDROP), we have previously reported on various aspects of infants treated for ROP for 5 years (2008–2012) (Holmstrom et al., 2016). That study revealed a significant variation in the number of treatments per doctor and a high frequency of re-treatments compared with other international studies. Recently, a high-re-treatment rate was also shown in extremely preterm Swedish babies (gestational age (GA)<24 weeks) and born between 2007 and 2018 (Lundgren et al., 2021). Further, that study found that treatment centers highly influenced the re-treatment rate.

The quality of treatment is crucial for the outcome, both anatomically and functionally, which was recently shown by Spandau et al. (2020) and by Norman, Hellstrom, et al. (2019), revealing deficiencies in screening, diagnosis and treatment in Swedish children visually impaired by severe ROP.

The present study analysed various treatment trends for ROP in Sweden over the past 14 years. It also aimed to investigate hospital treatment aspects, including treatment type and re-treatment rate. The overall goal of our study was to optimize the quality of treatment for ROP in the whole country.

2 | MATERIAL

This population study, based on SWEDROP, includes prematurely born children screened and treated for ROP in Sweden from 2008 to 2021. Initial national criteria for ROP screening during this period were infants born in Sweden with GA of less than 32 weeks. Criteria were modified twice to less than 31 weeks in 2012 and to less than 30 weeks in 2020 (Holmstrom et al., 2012, 2020). Furthermore, neonatologists are recommended to refer also severely diseased infants at risk of ROP and above this gestational age.

The coverage rate of the register was calculated by comparison with the Swedish neonatal quality register (SNQ). The mean coverage rate during the total study period was 97.9% (range 95.8%–100%), and after the first 2 years, the yearly coverage rate varied between 98% and 100%.

The international classification of ROP was used (Chiang et al., 2021; International Committee for the Classification of Retinopathy of Prematurity, 2005) and treatment criteria were based on the ETROP recommendations (Early Treatment For Retinopathy Of Prematurity Cooperative Group, 2003). Treatment was performed in seven university hospitals (A–G) in Sweden.

The following variables were extracted from the SWEDROP register:

- Gestational age (GA) (weeks), birth weight (BW) (g), sex, incidence of ROP, various characteristics of ROP, such as stage, zone, plus and Type of ROP, frequency, type and number of treatments, postnatal age (PNA), and postmenstrual age (PMA) at treatment.
- Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

This study was performed in accordance with the ethical standards of the institutional and/or national research committee and with the Helsinki declaration. The study was approved by the Regional Ethical Review Board in Uppsala (Dnr 2010-117) and the Swedish Ethics Review Board (Dnr 2021-0513).

2.1 | Statistical analyses

Data were primarily analysed using descriptive statistics, where numerical variables were presented as median and range and categorical variables as number and percent. Changes over the years were analysed using linear regression for numerical variables and chi-square test for trends in proportions for categorical variables. Comparison of re-treatment between laser and anti-VEGF was performed using T-test and Fisher exact test depending on data. Comparison between hospitals was performed using one-way ANOVA and Fisher exact test. To explore factors related to the risk of re-treatment, logistic regression models were used. In the first step, pre-defined variables were analysed univariably, followed by a multivariable analysis where factors with a p-value<0.05 were included. The Akaike Information Criteria (AIC) determined the optimal model using a stepwise approach. No multiplicity adjustment has been performed; thus, the p-values are all nominal. All the statistical analyses were performed in R version 4.2.2.

3 | RESULTS

During the study period from 1 January 2008 to 31 December 2021, 10 959 infants (45.8% girls) were fully screened for ROP and registered in SWEDROP. Median GA was 28.9 weeks (range 21.9–40.4) and median BW was 1150 g (range 307–3540).

Parallel to changed screening guidelines from GA less than 32 weeks to less than 31 weeks in 2012 and to less than 30 weeks in 2020, the number of screened infants per year was reduced (p<0.001); see Table 1, and GA and BW declined over time (p<0.001). Further, the incidence of ROP (total 29.2%, 3197/10959 infants) increased over the years (p<0.001), as did the frequency of treatment (5.5%, 600/10959 infants) (p<0.000), Table 1.

For comparison over time, a separate cohort of 7618 infants born with GA less than 30 weeks, i.e. the criteria for screening since January 2020, was created, Table 1. In this cohort, linear regression analyses revealed that the yearly number of infants screened for ROP remained similar over time (range 486–597), as did GA (median 27.7 weeks, range 21.9–29.9 weeks) and BW (median 994 g, range 307–2913 g). The proportion of girls (43.6%) and boys (56.5%) was also constant. Furthermore, in this group of infants, ROP developed in 39.8% (range 34.4–44.7% over the years), and treatment was performed in 7.9% (range 5.6–10.1%). Both incidence of ROP and frequency of treatment remained similar over the years. The relation to GA (weeks) at birth is illustrated in Figure 1.

Altogether, 600 infants were treated for ROP during the study period. The proportion of girls (43.6%) and boys (56.5%) remained similar over time. Their GA (weeks) and BW (g) were reduced over the years (p<0.001; p<0.001), Table 1. The median GA was 24.4 weeks (range 21.9–31.4) and the median BW was 640 g (range 340–1700).
Table 1

Gestational age (weeks), birth weight (g), incidence of ROP and frequency of treatment in the total group of infants screened for ROP (n = 10,959 infants) and in infants with a gestational age of <30 weeks (n = 7,618 infants), as well as gestational age and birth weight in infants treated for ROP during the study period 2008–2021.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>906</td>
<td>941</td>
<td>874</td>
<td>948</td>
<td>840</td>
<td>754</td>
<td>802</td>
<td>805</td>
<td>825</td>
<td>767</td>
<td>695</td>
<td>711</td>
<td>551</td>
<td>540</td>
<td>10,959</td>
</tr>
<tr>
<td>GA (weeks), median</td>
<td>29.4</td>
<td>29.4</td>
<td>29.3</td>
<td>29.4</td>
<td>29.1</td>
<td>28.4</td>
<td>28.6</td>
<td>28.6</td>
<td>28.6</td>
<td>28.9</td>
<td>28.9</td>
<td>28.7</td>
<td>28.4</td>
<td>27.7</td>
<td>28.0</td>
</tr>
<tr>
<td>Range</td>
<td>22.4–36.1</td>
<td>22.6–35.1</td>
<td>22.7–38.0</td>
<td>22.3–35.9</td>
<td>22.1–35.7</td>
<td>22.6–35.0</td>
<td>21.9–40.4</td>
<td>21.9–34.6</td>
<td>22.4–35.1</td>
<td>22.1–35.4</td>
<td>22.6–34.9</td>
<td>22.1–35.9</td>
<td>22.0–35.4</td>
<td>21.9–40.4</td>
<td></td>
</tr>
<tr>
<td>BW (g), median</td>
<td>1250</td>
<td>1260</td>
<td>1224</td>
<td>1228</td>
<td>1189</td>
<td>1094</td>
<td>1100</td>
<td>1100</td>
<td>1130</td>
<td>1152</td>
<td>1114</td>
<td>1115</td>
<td>993</td>
<td>1020</td>
<td>1150</td>
</tr>
<tr>
<td>ROP, yes</td>
<td>194 (21.4%)</td>
<td>247 (26.2%)</td>
<td>215 (24.6%)</td>
<td>213 (22.5%)</td>
<td>224 (26.7%)</td>
<td>236 (31.3%)</td>
<td>255 (31.8%)</td>
<td>286 (31.8%)</td>
<td>272 (33.0%)</td>
<td>211 (27.5%)</td>
<td>221 (31.8%)</td>
<td>229 (32.2%)</td>
<td>199 (36.1%)</td>
<td>195 (36.1%)</td>
<td>3197 (29.2%)</td>
</tr>
<tr>
<td>ROP, treated</td>
<td>36 (4.0%)</td>
<td>43 (4.6%)</td>
<td>47 (5.4%)</td>
<td>31 (3.3%)</td>
<td>41 (5.4%)</td>
<td>45 (5.6%)</td>
<td>60 (7.5%)</td>
<td>60 (7.3%)</td>
<td>50 (6.5%)</td>
<td>40 (5.8%)</td>
<td>43 (6.0%)</td>
<td>44 (8.0%)</td>
<td>30 (5.6%)</td>
<td>600 (5.5%)</td>
<td></td>
</tr>
<tr>
<td>GA <30</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>521</td>
<td>532</td>
<td>517</td>
<td>545</td>
<td>531</td>
<td>572</td>
<td>589</td>
<td>597</td>
<td>593</td>
<td>563</td>
<td>486</td>
<td>545</td>
<td>522</td>
<td>505</td>
<td>7618</td>
</tr>
<tr>
<td>GA (weeks), median</td>
<td>27.7</td>
<td>27.6</td>
<td>27.6</td>
<td>27.9</td>
<td>27.6</td>
<td>27.6</td>
<td>27.6</td>
<td>27.4</td>
<td>27.4</td>
<td>27.9</td>
<td>27.6</td>
<td>27.6</td>
<td>27.6</td>
<td>27.6</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>22.4–29.9</td>
<td>22.6–29.9</td>
<td>22.7–29.9</td>
<td>22.3–29.9</td>
<td>22.1–29.9</td>
<td>22.6–29.9</td>
<td>21.9–29.9</td>
<td>21.9–29.9</td>
<td>22.4–29.9</td>
<td>22.1–29.9</td>
<td>22.6–29.9</td>
<td>22.1–29.9</td>
<td>22.0–29.9</td>
<td>21.9–29.9</td>
<td></td>
</tr>
<tr>
<td>BW (g), median</td>
<td>1014</td>
<td>982</td>
<td>1004</td>
<td>1026</td>
<td>990</td>
<td>980</td>
<td>982</td>
<td>977</td>
<td>961</td>
<td>1000</td>
<td>988</td>
<td>1012</td>
<td>976</td>
<td>1008</td>
<td>994</td>
</tr>
<tr>
<td>ROP, yes</td>
<td>179 (34.4%)</td>
<td>229 (43.0%)</td>
<td>201 (38.9%)</td>
<td>201 (38.9%)</td>
<td>207 (39.5%)</td>
<td>243 (41.3%)</td>
<td>267 (44.7%)</td>
<td>262 (44.2%)</td>
<td>201 (35.7%)</td>
<td>209 (43.0%)</td>
<td>219 (40.2%)</td>
<td>198 (37.9%)</td>
<td>192 (38.0%)</td>
<td>3034 (39.8%)</td>
<td></td>
</tr>
<tr>
<td>ROP, treated</td>
<td>36 (6.9%)</td>
<td>43 (8.1%)</td>
<td>47 (9.1%)</td>
<td>31 (5.7%)</td>
<td>30 (5.6%)</td>
<td>41 (7.2%)</td>
<td>45 (7.6%)</td>
<td>59 (9.9%)</td>
<td>60 (10.1%)</td>
<td>50 (8.5%)</td>
<td>40 (8.2%)</td>
<td>43 (7.9%)</td>
<td>44 (8.4%)</td>
<td>30 (5.9%)</td>
<td>599 (7.9%)</td>
</tr>
<tr>
<td>Treated group</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>36</td>
<td>43</td>
<td>47</td>
<td>47</td>
<td>31</td>
<td>50</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>44</td>
<td>44</td>
<td>30</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>GA (weeks), median</td>
<td>24.5</td>
<td>24.7</td>
<td>24.9</td>
<td>24.6</td>
<td>24.5</td>
<td>24.4</td>
<td>24.6</td>
<td>24.3</td>
<td>24.1</td>
<td>24.2</td>
<td>24.6</td>
<td>23.9</td>
<td>24.6</td>
<td>24.4</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>22.6–28.9</td>
<td>22.6–28.6</td>
<td>22.7–29.7</td>
<td>22.9–28.9</td>
<td>22.0–29.6</td>
<td>22.1–27.4</td>
<td>22.7–27.9</td>
<td>21.9–31.4</td>
<td>21.9–28.6</td>
<td>22.4–29.1</td>
<td>22.6–27.9</td>
<td>22.6–28.3</td>
<td>22.1–27.7</td>
<td>22.0–28.9</td>
<td></td>
</tr>
<tr>
<td>BW (g), median</td>
<td>689</td>
<td>614</td>
<td>722</td>
<td>685</td>
<td>633</td>
<td>597</td>
<td>650</td>
<td>658</td>
<td>630</td>
<td>620</td>
<td>632</td>
<td>610</td>
<td>578</td>
<td>650</td>
<td>640</td>
</tr>
</tbody>
</table>

Abbreviations: BW, birth weight; GA, gestational age; N, number; ROP, retinopathy of prematurity.
Of the 600 infants treated for ROP, 560 infants had a GA of less than 27 weeks and 595 infants had a GA of less than 29 weeks. One treated infant born in 2015 had been referred for screening despite a GA of 31+4 weeks because of extreme sickness (Holmstrom et al., 2020). Four infants with a GA of 29 weeks were treated during the study period, but none with a GA of 30 weeks.

Of the 600 infants, treatment had been performed in both eyes in 586 infants, while seven infants were treated in the right eye only and seven in the left eye only. Altogether, treatment had been undertaken in 593 right and 593 left eyes.

The stage of ROP, zone of ROP, plus disease, and Type of ROP among the treated eyes are presented in Table 2. Type 1 ROP had developed in at least one eye in 529 (88.2%) infants (502 right, 500 left eyes). Aggressive ROP (A-ROP) had developed in at least one eye of 54 (9.0%) infants (54 right, 54 left eyes).

Regarding type of primary treatment, laser only was given to 85.8% (509 eyes) of the right eyes and 84.7% (502 eyes) of the left eyes, while anti-VEGF injections only were given to 13.7% (81 eyes; 5 Bevacizumab, 72 Ranibizumab, 1 Aflibercept) of the right eyes and 13.5% (80 eyes; 5 Bevacizumab, 74 Ranibizumab, 1 Aflibercept) of the left eyes. Seven eyes (two right, five left) had a combination of laser and anti-VEGF; three left eyes had cryo-treatment and one left eye had laser and cryo-treatment, one right eye had vitrectomy, anti-VEGF and lensectomy and one left eye had vitrectomy, laser and lensectomy, and one left eye had an encircling band. The initial eye examination as well as the screening intervals, had been strongly delayed in the infant with the vitrectomies (both eyes) and the infant with encircling band (one eye).

Over the years, the frequency of primary laser treatment was reduced ($p<0.001$) and the frequency of primary anti-VEGF injections was increased ($p<0.001$), Figure 2.

During the total study period, 136 (22.7%) of the infants had any anti-VEGF injection (126 right eyes, 118 left eyes). The number of infants treated with anti-VEGF at any time increased over the study period ($p<0.001$).
Further, eight right eyes and eight left eyes had been treated with encircling band, five right and eight left eyes had vitrectomy and one right eye had been eviscerated. No surgery with encircling band had been performed since 2017, and only one vitrectomy had been performed since 2016.

Number of treatments per eye varied between 1 and 5. Retreatment was performed in 32.7% (194/593) of the right eyes and in 32.2% (191/593) left eyes. Altogether 197 infants (32.8%) were retreated in one of their eyes.

The frequency of re-treatment remained similar over the years.

Furthermore, retreatment was more common in eyes primarily treated with anti-VEGF injections (67.9%, 55/81 right eyes, 67.5%, 54/80 left eyes) than in eyes primarily treated with laser (27.7%, 141/509 of the right eyes, 26.7%, 134/502 of the left eyes) ($p < 0.001$).

The median PNA at the first treatment of any of the eyes in the 600 infants was 12.6 weeks (range 6.3–29.3 weeks) and the median PMA at the first treatment was 37.0 weeks (range 32.1–52.9 weeks). The age (PNA/PMA) at the first treatment remained similar over the years.

The median PNA at the second treatment of any of the eyes (194 right/191 left eyes) was 15.9 weeks (range 9.4–30.4 weeks; PMA median 39.9 weeks, range 34.6–109.7 weeks) than in eyes primarily treated with laser (27.7%, 141/509 of the right eyes, 26.7%, 134/502 of the left eyes) ($p < 0.001$).

The overall frequency of retreatment varied between 26.7%, 134/502 of the right eyes, 67.9% in eyes primarily treated with anti-VEGF injections (67.9%, 55/81 right eyes, 67.5%, 54/80 left eyes) than in eyes primarily treated with laser (27.7%, 141/509 of the right eyes, 26.7%, 134/502 of the left eyes) ($p < 0.001$). The time between the first and second treatments was longer in the infants treated primarily with anti-VEGF ($p < 0.001$), Figure 3.

3.1 | Treatment hospitals (A–G)

Primary treatment was performed in seven university hospitals (range 21–186 infants), Table 3. The median GA of the treated infants differed between 23.6 and 25.4 weeks and the median BW differed between 581 and 690 g in the various hospitals ($p < 0.001$; $p = 0.003$).

Primary treatment with laser was the major type of treatment in all hospitals, but the frequency differed between the hospitals ($p < 0.001$). Primary treatment with anti-VEGF was significantly more used in two of the hospitals ($p < 0.001$). Vitrectomies (4 right eyes/7 left eyes) had been performed in three of the hospitals, while encircling bands had been performed in mainly one hospital (15 eyes in one hospital and one eye in another hospital).

The overall frequency of retreatment varied between the seven hospitals (11.3%–58.0%, $p < 0.001$). The frequency of retreatment after primary laser also varied between hospitals ($p < 0.001$), while there was no significant difference regarding re-treatment after primary anti-VEGF treatment in the different hospitals.

In univariate regression analyses of risk factors for retreatment after primary laser, including GA, BW, sex, zone, A-ROP, and treating hospital, only Zone of ROP ($p = 0.001$), A-ROP ($p = 0.0312$) and treating hospital ($p < 0.001$) were significant risk factors.
In a multiple regression analysis (right and left eyes had similar values), only Zone of ROP (Right eyes: OR 4.53, 95% confidence interval 2.03–10.13, \(p < 0.001 \)) and hospital (Right eyes: Hospital B vs. Hospital A: OR 0.26, 95% confidence interval 0.11–0.60, \(p = 0.002 \), and Hospital E vs. Hospital A: OR 3.64, 95% confidence interval 1.76–7.52, \(p < 0.001 \)) remained significant risk factors for retreatment of both eyes after primary laser treatment.

DISCUSSION

This Swedish population study, based on the SWEDROP register, reported details on 600 infants treated for ROP during a 14-year period. The type of treatment changed over time, while the number of retreatments remained similar but high. There were obvious differences between the seven hospitals, both regarding type of treatment and frequency of retreatment.
The number of yearly screened infants was reduced over the years parallel to changing screening guidelines (Holmstrom et al., 2012, 2020), while the number of treated infants remained similar. Among infants born before GA < 30 weeks, the yearly number of screened infants remained similar, as well as their GA, BW, incidence of ROP and frequency of treatment. Regarding the 600 infants treated for ROP, however, GA and BW were reduced, probably reflecting improved neonatal care over the years. Furthermore, all the infants treated for ROP had a GA at birth below the actual screening guidelines, except one infant, previously described, with a GA of 31 weeks, born in 2015 and referred because of high risk for ROP because of severe illness (Holmstrom et al., 2020).

There are few national population-based studies on treatment for ROP. Apart from this study, Adams et al. (2017) have reported on treatment for ROP in Great Britain and Trzcionkowski et al. in the Netherlands (Trzcionkowski et al., 2021). In the present study, 88.2% of the treated infants fulfilled the ETROP criteria for treatment (Early Treatment For Retinopathy Of Prematurity Cooperative Group, 2003) with Type 1 ROP in at least one of their eyes. This was a higher frequency than in the studies from Great Britain (62% of right eyes) and the Netherlands (76.5%). Altogether, 6.6% of the treated infants in our study progressed to stages 4 and 5 in at least one of the eyes. Despite the lower criteria for screening in Sweden with lower GA and BW, the frequency of late stages of ROP was lower than in the study from the Netherlands (10.3%), while our frequency of A-ROP (9%) was similar to the British study (8.3% in right eyes) (Adams et al., 2017; Trzcionkowski et al., 2021). Reassuringly, no infant progressed to stage 5 during the past 4 years, possibly mirroring a more accurate diagnosis and treatment due to increased use of wide-angle photography in screening and treatment for ROP in Sweden.

During the 14-year study period, the type of treatment changed. The frequency of primary laser treatment declined, while there was an increasing use of anti-VEGF injections as first treatment. This is in line with national reports from Britain (Adams et al., 2017), the United States and Germany (Dammann et al., 2023; Khan et al., 2022). Reassuringly, infants who had been primarily treated with anti-VEGF were more immature and had more severe ROP, i.e., higher frequencies of Zone 1 and A-ROP, than infants primarily treated with laser. Within our country, however, there were obvious differences between hospitals regarding use of anti-VEGF. Finally, during the 14-year study period, 16 of the 1186 treated eyes had been treated with encircling band and 13 with vitrectomy.

The frequency of retreatment remained high during the study period. Comparison with other studies is difficult since the frequency of Type 1 ROP may differ and not all studies include early retreatment of skip lesions as a retreatment (Adams et al., 2017; Stahl et al., 2019; Trzcionkowski et al., 2021). Like other studies (Adams et al., 2018; Chang et al., 2022; Mintz-Hittner et al., 2016), however, we found a higher recurrence rate and a higher age (PNA and PMA) at retreatment after primary anti-VEGF treatment than after primarily laser treatment, underlining the importance of long-term follow-up after anti-VEGF injections. In accordance with a previous Swedish study of infants born before GA of 24 weeks (Lundgren et al., 2021), our study reveals significant differences in retreatment frequency in the seven treating hospitals, also after adjusting for other risk factors.

Visual and ophthalmological deficiencies are well-known sequels of severe and treated ROP (Hellgren et al., 2016; Holmstrom & Larsson, 2008; Larsson et al., 2023). Furthermore, in a study of 6.5-year-old children, we recently showed that retreatment is a significant risk factor for visual dysfunction (Larsson et al., 2023). Despite national screening and treatment guidelines, there are still inequities in ROP treatment in our country, as shown in the present study reporting differences between hospitals. The cause of the variations in retreatment rate between the different hospitals is not fully known, but may be explained by inadequate laser treatment, as previously pointed out by Norman, Hellstrom, et al. (2019) and Spandau et al. (2020).

4.1 | Strengths and limitations

The present study is based on prospectively collected and registered data in the Swedish registry for ROP, SWEDROP. The register has a high coverage rate of around 98% of all prematurely born infants in Sweden, fulfilling the criteria for ROP screening. Furthermore, the register also includes data on infants with higher gestational ages and who have been referred for ROP screening. A limitation of our study might be the use of register data only, thus, not including data acquired from medical records.

4.2 | Conclusion

This Swedish population-based 14-year study showed more immature infants treated for ROP over time, a similar frequency of treatment, a persistent high frequency of retreatment, and an increasing use of anti-VEGF injections over the years, although in the minority. Furthermore, there were differences in treatment choice and rate of retreatments between hospitals. A recently started centralization of treatment of severe cases of ROP to three university hospitals and of cases needing vitrectomies to only one of these, will hopefully improve the quality of treatment and lead to more equal care in the country.

ACKNOWLEDGEMENTS

We thank statistician Marcus Thuresson, Ph.D., for valuable help with the statistics.

FUNDING INFORMATION

The study was funded by Stiftelsen Kronprinsessan Margaretas Arbetsnämnd för synskadade. The funder had not been involved in the study design; in the collection, analysis, and interpretation of the data; in the writing of the report; and in the decision to submit the paper for publication.
REFERENCES

