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A B S T R A C T   

A reader of mathematical text must often switch between reading mathematical symbols and 
reading words. In this study, five different categories of structural connections between symbols 
and language, which invite such switches, are presented in a framework. The framework was 
applied in a study of Swedish mathematics textbooks, where 180 randomly selected pages from 
different educational stages were analyzed. The results showed a significant change in commu-
nication patterns as students progress through school. From a predomination of connections 
based on proximity found in year two, there is a gradual change to a predomination of symbols 
interwoven in sentences in year eight. Furthermore, more qualitative investigations of the 
different connections complemented the quantification, both through further explanations of the 
quantitative results, and through more examples of differences in communication patterns. The 
implications for readers of mathematics texts are discussed.   

1. Introduction 

Part of mathematical competency is being able to read and make sense of mathematics texts. As students progress through school, 
they are expected to develop their mathematical reading skills, which can include the development of general reading skills as well as 
skills specific to the subject. These skills include the processing of different sign systems, or semiotic systems. For example, written 
words, as well as mathematical symbols and images, need to be decoded and interpreted by the students. They must know about the 
notation, organization, reading, and use of each of the sign systems, but they must also be capable of relating and combining content 
presented through different systems (O’Halloran, 2011). 

In printed mathematics texts, three main semiotic resources are utilized: written language, mathematical symbols, and mathe-
matical visuals (Avalos, Medina, & Secada, 2018; O’Halloran, 2011). The present study is focused on the connections between two of 
these three semiotic resources: symbols and language. More specifically, the study concerns the symbols used in arithmetic and 
algebra, and language in the form of written words, here denoted as natural language. 

The natural language, both spoken and written, has an apparent function when introducing and explaining mathematics, including 
the mathematical symbol system (Muzheve & Capraro, 2012; O’Halloran, 2015b). However, texts with a combination of mathematical 
symbols and natural language have been shown to cause some comprehension problems for readers. Previous research has suggested 
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explanations for such problems. For example, readers can have an excessive focus on symbols or there can be an increase in cognitive 
load caused by the switching between sign systems during reading (Dee-Lucas & Larkin, 1991; Österholm, 2006). More generally, 
previous studies have also found that when reading mathematical word problems, students use special strategies that are not always 
functional, such as placing too much emphasis on numbers and keywords and ignoring certain types of prior knowledge (e.g., Hegarty, 
Mayer, & Monk, 1995; Wyndhamn & Säljö, 1997). In all the abovementioned studies, one possibly important aspect seems to be 
overlooked: the structural organization of semiotic resources, and its relation to different types of difficulties. 

It seems reasonable that readers of mathematics texts will be affected both by structures that are important for multisemiotic texts 
in general and by structures more specifically found in mathematics texts. For example, layout will have a function in any text 
combining different semiotic resources, whether mathematics is presented or not. However, the mixture of mathematical symbols and 
words is a significant feature of mathematics texts and the skills required for reading of various arrangements of the two semiotic 
resources might differ from ordinary reading. 

One reason for a reader to switch between reading natural language and reading symbols is the structural text arrangement and its 
creation of connections between the two semiotic resources. Although such connections occur frequently in mathematics texts, there 
exists no mapping of different types of structural arrangements. It is also not clear to what extent schoolchildren of different ages 
encounter the same types of connections when reading texts in class. The type of connections could change between school years as a 
part of the progression of mathematical communication or remain constant while the mathematical content becomes more advanced. 

In the first part of this study, we describe the development of a framework of structural connections between mathematical symbols 
and natural language. The categories included in this framework are structures that invite (or force) a reader to switch between the 
reading of words and the reading of mathematical symbols. This new framework draws on Cohn’s classification of different structural 
relations between images and written natural language identified in comics (Cohn, 2013). Because Cohn’s classification emphasizes 
spatial relations and syntax, it is interesting to adapt it for the classification of relations between the semiotic resources found in 
mathematics texts. When combining different semiotic systems, spatial relations are part of how connections are communicated. 
Furthermore, both the written natural language and the mathematical symbol system are based on clear syntactical rules. This makes 
the approach suitable. 

In the second part of the study, using the framework, we analyze texts selected from textbooks from different school levels and 
quantify the occurrences of the connection categories. The third part of the study has an explorative approach. The connection cat-
egories are further characterized together with the surrounding text. An investigation of the relation between variations in text designs 
and the quantitative results shows the limitations of the framework and how it can be developed. 

If we know how mathematical symbols and natural language are structurally connected in mathematics texts from different school 
levels, it is possible to discuss whether there are other, more suitable, options that will enhance learning. If we know about the dif-
ferences in the communication patterns between the levels, we can adopt teaching to prepare students for the next level. 

2. Background 

The central theme of this background is mathematics texts and the reading of them, but some previous results from studies on 
nonmathematical multisemiotic texts are also included. In addition to presenting research on text and reading (Section 2.1) and the 
effects of different combinations of semiotic resources (Section 2.2), some of our theoretical concerns can be found at the end of this 
Section (2.3). 

2.1. Text and reading in the mathematics discipline 

According to modern views, learning a subject means learning to communicate ideas in a way that can be understood and accepted 
by experts in the field (Sfard, 2008). In agreement with these views, comprehension of mathematics texts becomes part of mathe-
matical knowledge. Considering reading as part of mathematics does not mean seeing all aspects of reading as part of mathematical 
proficiency. The concept of unnecessary reading demand concerns reading demands not connected to mathematics and includes, for 
example, uncommon nonmathematical words and some complex grammatic structures used in mathematics texts (Theens, 2019, p. 6; 
Österholm & Bergqvist, 2012). Such linguistic challenges are known (Abedi & Lord, 2001; Schleppegrell, 2007) and efforts are often 
made both to quantify them (Helwig, Rozek-Tedesco, Tindal, Heath, & Almond, 1999; Hewitt & Homan, 2003; Lamb, 2010) and to 
counteract them by different text adaptations, especially in contexts where the aim is to assess mathematical skills (Abedi & Lord, 
2001; Haag, Roppelt, & Heppt, 2015; Johnson & Monroe, 2004; Li & Suen, 2012). 

In addition to the more well-known linguistic demands, there are indications that second language readers could face problems 
when reading requires switching between different semiotic resources (Cascella, Giberti, & Viale, 2022). Although it might be possible 
to avoid such difficulties, for example, by changes in the structural arrangement of symbols and natural language, examples where 
such accommodations have been tested empirically are not easy to find. Studies concerning the reading and interpretation of different 
semiotic resources are more focused on which resources are present or absent and do not concern structural relationships (e.g., 
Dyrvold, 2016; Schleppegrell, 2007; Zahner, Milbourne, & Wynn, 2018). However, if different combinations of semiotic resources 
affect readers, the types of connections between them will probably also be of importance. 

Written mathematical communication commonly includes three main semiotic resources: natural language, mathematical symbols, 
and visuals (O’Halloran, 2015a). Typically, different semiotic resources are used for different purposes. Natural language gives the 
context. It is of central importance when introducing and explaining mathematics. The mathematical symbol system is a tool for 
solving mathematical problems, while mathematical visuals are often used to create a link between a description in natural language 
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and the symbols (O’Halloran, 2011). An image or visual has the potential to create an overview of the relations between the math-
ematical entities described by natural language (O’Halloran, 2011). By using different combinations of semiotic resources, the 
communication of mathematical ideas can be facilitated. 

The natural language used in mathematics has its own distinctive features. It can be referred to as a register appropriate for 
mathematical contexts (Schleppegrell, 2004, p. 18). The language is specific to the discipline, for example, in how it is used for the 
transformation of abstract ideas and processes into objects. Nevertheless, similar to other academic disciplines, such as history and 
science, mathematics has its own technical vocabulary and can display rather complex grammatical patterns (Abel & Exley, 2008; 
Fang, 2012; Fang, Schleppegrell, & Cox, 2006; Uccelli et al., 2015). For example, dense noun phrases can be used together with special 
grammatical constructions to communicate precise, technical meanings (Fang, 2012; Schleppegrell, 2007). 

Much empirical research focuses on texts in English. To what extent communication patterns found in Swedish mathematics texts 
differ from those in English has not been thoroughly researched. What has been shown is that there are complex language patterns in 
Swedish texts used in secondary school mathematics (Österholm & Bergqvist, 2013). Furthermore, the level of complexity is similar to 
texts used in the subject of history, which is probably not very different from findings in English texts from different disciplines (Fang & 
Coatoam, 2013; Fang et al., 2006). 

The symbol system is the most salient semiotic resource found in mathematics. In this system, mathematical meaning is built into 
very condensed expressions based on generalized signs. The possibilities for creating and rearranging different symbolic expressions 
according to predefined rules facilitate logical reasoning and make it advantageous for problem solving (Pimm, 1987). The mathe-
matical symbol system has its own syntax, which is different from both written and spoken natural language syntax. 

The visual resource in mathematics includes different types of graphs, tables, and figures in two or three dimensions (for an 
overview, see Avalos et al., 2018). Although symbols and words are sometimes joined in a mathematical visual, visuals are considered 
a semiotic resource on their own (O’Halloran, 2015b). 

Although the multisemiotic nature of texts can facilitate the communication of mathematical ideas, the alternation between 
different semiotic resources has been shown to cause problems when reading (Cascella et al., 2022; Österholm, 2006). If we expect our 
students to read in the mathematics subject—and with increasing general reading skills, we do (e.g., Fang, 2012)—students should be 
given the possibility to learn how to read. Especially when teaching practices move away from traditional lectures to more 
student-active learning, explorations of mathematical concepts are often performed by the students, starting with the reading of texts 
(Butler, 2019). If teachers are aware of what text structures can cause problems, students’ reading can be scaffolded (e.g., Avalos et al., 
2018). In addition, if authors of teaching material are aware of different possibilities when organizing resources as well as when 
choosing what language, symbols, and visuals to include, the creation of unreasonable reading obstacles might be prevented. 

2.2. Effects of different combinations of semiotic resources 

Bringing attention to the combination of semiotic resources in task texts in mathematics, both Ott, Brünken, Vogel, and Malone 
(2018) and Malone, Altmeyer, Vogel, and Brünken (2020) investigate students’ performance depending on combinations of written 
natural language, mathematical symbols, and visuals. Ott et al. (2018) investigate tasks within the field of propositional logic while 
Malone et al. (2020) focus on equation tasks. The results from both studies show that texts including two semiotic resources could 
facilitate interpretation, even when not including any visual resources. That is, there could be benefits when combining symbols and 
words. 

In contrast to these results, the combination of natural language and mathematical symbols has also been shown to cause readers 
some comprehension problems. For example, Österholm (2006) compares readers’ understanding of two different mathematics texts 
and finds that a text containing mathematical symbols is read and understood in a different way than a text written in only natural 
language. Even though the texts deal with “the same” content, comprehension is worse for the text including mathematical symbols, 
where information has to be combined from two different semiotic resources. Similar results are found in a study by Dee-Lucas and 
Larkin (1991). In this study, the reading of scientific proofs, based on reasoning mainly phrased in natural language, is compared to the 
reading of their counterparts, where reasoning includes equations. The results show that natural language proofs are easier for students 
to comprehend. Both Dee-Lucas and Larkin, and Österholm, suggest that readers focus excessively on symbols and equations and 
ignore the natural language content. Only paying attention to part of the content reduces comprehension. Österholm (2006) also 
proposes that worse comprehension could be the result of an increase in cognitive load when the reader is forced to switch repeatedly 
between natural language and symbols. 

On the surface, the older studies by Österholm (2006) and Dee-Lucas and Larkin (1991), where texts including symbols are harder 
for students to interpret, seem to be contradicted by the more recent results of Ott et al. (2018) and Malone et al. (2020) where 
combinations of natural language and symbols are found to be beneficial. However, there are some important differences between the 
old and new studies. In the older studies, natural language and symbols are integrated. To make sense of these texts, readers need to 
combine the content presented in the two semiotic resources. In the more recent studies, there is redundancy, since the “same” content 
is presented in each of the semiotic resources. The different resources are also placed separately on the page or screen (Malone et al., 
2020; Ott et al., 2018). Thus, these studies point to a potential benefit of redundancy and separation between different semiotic 
resources. 

In mathematics, as well as in other subjects, reading comprehension is dependent on a combination of reader traits, text features, 
and the reading situation (Borasi & Siegel, 1990; Rosenblatt, 2018). Different combinations of natural language and mathematical 
symbols can be received in different ways depending on the reader’s prior experiences. For example, if a reader is new to a type of 
symbolic expression presented in a text it can be beneficial if the expression is complemented with the corresponding content in 
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language form (Leung, Low, & Sweller, 1997). In contrast, experienced readers can be hindered when extra work is required for 
processing redundant content (e.g., Chandler & Sweller, 1992; Kalyuga, 2007; Kalyuga, Chandler, & Sweller, 1998). 

Depending on students’ prior knowledge, different text designs might be optimal for learning. In this regard, the spatial organi-
zation of the text elements is not to be seen as an unimportant backdrop. Especially for students with low language skills, many of the 
more intricate semantic connections between semiotic resources might be uninterpretable, which will give the visual organization 
higher importance. Yet, in practice, all readers are to some extent affected by visual text organization. Regarding learning efficiency, 
spatial relations between semiotic resources have been shown to be important (Schroeder & Cenkci, 2018). For example, for written 
natural language and images, multimedia learning theory presents what is called the spatial contiguity effect (Moreno & Mayer, 1999). 
Repeatedly, studies have shown that students learn better from materials where natural language sections are placed near a corre-
sponding image, compared to materials where natural language and corresponding images are presented separately. Chandler and 
Sweller (1992) introduced the term split attention effect to explain how learning is impeded when texts include spatially separated 
resources. When students are forced to split their attention into different areas when linking pieces of content together, they become 
more occupied by searching and integration, leaving little capacity for the processes needed for sense-making. This impedes reading 
and learning. 

In mathematics education in general, there is agreement that presenting multiple mathematical representations (often based on 
different semiotic resources) in learning materials will enhance learning (e.g., Ainsworth, 2006; Malone et al., 2020). Nevertheless, 
representations must be chosen and combined to properly match the learning content, as well as students’ prior knowledge (Ains-
worth, 2006; Danielsson & Selander, 2021; Kalyuga et al., 1998; Korbach, Brünken, & Park, 2016; Mayer, 1997; Ryberg, 2018). When 
combining different semiotic resources, it could also be valuable to choose how these are connected to each other. Depending on 
students’ skills and text content, some choices might simplify reading and interpretation. 

However, there can be a limit to how much a mathematics text can be simplified. For example, Dyrvold (2020) shows that with 
more complex mathematics, more complex connection patterns follow. With more advanced and specialized subject content, several 
aspects of mathematics texts will grow in complexity (e.g., Fang, 2012; Fang & Pace, 2013). In line with this, there are arguments for 
explicit instruction and practice in reading in the mathematics subject (Butler, 2019; Fang, 2014; Fang & Pace, 2013; Shepherd, 
Selden, & Selden, 2012; Shepherd & Van De Sande, 2014; Wilkinson, 2018). How to navigate between semiotic resources might be part 
of such reading instructions. Still, prior to including such instructions, there is reason to investigate how connections between semiotic 
resources occur in texts used in school mathematics, and whether there are differences between school levels. 

2.3. Theoretical concerns 

Before proceeding to the purpose and research questions, we explain how the concepts of natural language1 and mathematical 
symbols2 are used in our study. Here, natural language (NL) refers to all written words found in printed text. The words are assumed to 
be pronounceable by a person speaking the language on which the text is based, for example, English or Swedish. In this study, we do 
not distinguish between different types of words, such as more everyday words or mathematical words, but we focus on the distinction 
between natural language and mathematical symbols as different types of semiotic resources. 

The concept of mathematical symbols (MS) commonly includes all signs used when representing mathematical concepts, objects, 
relations, and operations. In the present study, we include only the symbols used in arithmetic and algebra but tolerate a wide range in 
the appearance of those symbols. For example, a carrot representing the unknown in an equation will be treated in the same way as the 
traditional x. (For more details about operationalizations of these concepts, see Section 5.2.). 

Our study focuses on connections between natural language and mathematical symbols. In research on nonmathematical texts from 
a variety of subjects, the word cohesion has been used to describe connections between semiotic resources, sometimes delimited to 
connections between images and written language (e.g., Acarturk, Taboada, & Habel, 2013; Hagan, 2007; Liu & O’Halloran, 2009). In 
this regard, Hagan (2007) distinguishes between cohesive ties and perceptual ties. Cohesive ties refer to meaning-relations between 
images and words, while perceptual ties are based on perceptual relations between natural language and image, for example, con-
cerning proximity. 

In the present study, connections between semiotic resources refer to structures that invite a reader to switch from reading one 
semiotic resource to reading the other. Perceptual ties are central to such connections. Yet, in some cases, our connections can include 
specific semantic constructions that re-direct the attention of the reader. However, in general, aspects of semantics, as addressed in 
research on cohesive ties, are given a peripheral role in our study, compared to, for example, spatial arrangements and visual cues. Our 
focus on structural connections is the reason for drawing on Cohn’s classification of different structural relations between images and 
written natural language, which were identified in comics (Cohn, 2013, further presented in Section 4.). 

Our study does not rely on any more overarching theory, since this might bring unnecessary restrictions to our investigation of 
structural connections, based on the following reasoning. Learning from printed text depends on reading. Independent of the theories 
applied, if they concern reading and learning, text comprehension, cognitive demands, or text design, a text must be processed by the 
visual system. In this process, text connections must be recognized. The types of connections between mathematical symbols and 
natural language, which are the focus of this study, can be found in every mathematical text where natural language and mathematical 
symbols are present together. Hence, the results of the study could have bearing on various issues addressed in different fields and with 

1 Non-standard abbreviation: NL – Natural Language  
2 Non-standard abbreviation: MS – Mathematical Symbols 
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arguments presented from different theoretical standpoints. In both the background and the discussion, different views on reading and 
learning have therefore been included because they relate to our study in different ways. 

3. Purpose and research questions 

The overall purpose of this study is to describe how connections between natural language and mathematical symbols occur in 
mathematics texts addressed to students at different school levels. 

For this purpose, we first developed a framework with an emphasis on different types of spatial relations between natural language 
and mathematical symbols. The idea was to focus on structural connections while leaving features concerning language use and text 
content less pronounced. In this process, we have focused on text patterns that invite, or force, a reader to switch between the two 
semiotic resources. We set out to describe broad categories that might later be differentiated into subcategories. The development of 
the framework and its categories are described in Section 4. 

Second, we applied the framework to generate a quantitative characterization of differences in the connection patterns in 

Table 1 
Connection category definitions and examples.  

Connection category Definition Examples Comments 

Interwoven-NL1 

A symbol, or symbolic expression, is part of a 
sentence. The language syntax is primary. 

Start with 5 apples, then subtract 2, we are left with 3 
apples. 

Numbers function as words in a sentence   

Solve the equation 2r2 = 10, correct to 2 decimal places. Symbolic expressions and numbers function as 
words in a sentence   

Interwoven-MS2 

A word, or a phrase, is part of a mathematical 
expression. The primary syntax is 
mathematical. 

5 cents + 5 cents = 10 cents Units (NL1) are included in a symbolic 
expression.   

Circumference
Diameter

= π Words function as symbols in a symbolic 
expression.   

Chunked 
A chunk of text primarily based on one syntax 
is connected by reading order to a chunk of text 
based on the other syntax. The switch of syntax 
occurs between two text lines in a running text. 

When we put 8 in place of x we get:8− 3 = 5which is 
true. So, x = 8 is a solution. 

The first line, dominated by NL-syntax, is 
connected to the second line, dominated by MS- 
syntax. The second line (MS2) is also connected 
to the third line, which is dominated by NL- 
syntax.   

Replace y in equation 2. 
3(8− 2x) + 2x = 4 

The in instruction in the first line (NL) is 
connected to the second line (MS).   

Marked 
A visible link connects natural language and 
mathematical symbols 

Speech balloons (NL) are connected via their 
tails to specific parts of the mathematical 
expression (MS).   

Color coding connects mathematical terms (NL) 
to specific parts of the expression (MS).   

Adjoined 
Mathematical symbols and natural language 
are connected by proximity only. 

An instruction (NL) connected to exercises 
(MS). The exercises are arranged in columns 
(not continuous lines).   

-2 + (− 3)= − 5 Both negative A comment (NL) connected by proximity to a 
mathematical expression.   

Referenced 
Natural language describes what symbols to 
find where. 

Choose two numbers from the red box to complete the 
multiplication sentence. 

Natural language describes where to find the 
numbers. 
(The numbers are not shown here.)   

The formula above represents the number of donuts 
that a bakery sold per day. 

Natural language describes where to find the 
formula. 
(The formula is not shown here.)  
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mathematics texts encountered by students at different school levels. Two specific questions were answered: 

1. What percentage of the mathematical symbols in mathematics textbooks are connected to natural language, and are there dif-
ferences between the school years?  

2. How are the connections between mathematical symbols and natural language distributed over different connection categories, 
and are there any differences between school years?  

Third, we explored the limits and possibilities of the framework. We added to the descriptions of the connections, and explained the 
results from questions 1 and 2 in more detail by answering a third question:  

3. In addition to the quantification obtained by the framework, what characteristics can be observed in a closer examination of the 
different connections? 

The characterization in question 3 concerned features of the instances from the textbooks that were placed in the different 
connection categories as well as the text surrounding these instances. The focus was on features that could potentially explain the 
quantitative differences between school levels (answers to RQ1 and RQ2) and on details of the most common categories (found in the 
answer to RQ2). For example, this exploration covered: differences in surrounding text structure, complexity of involved symbolic 
expressions, use of units, relations between unconnected symbols and visuals, etc. In addition, the qualitative results were sometimes 
complemented by additional quantifications. 

Qualitative differences found in RQ3 that could not be distinguished in the quantification in RQ1 and RQ2 can be seen as potential 
limitations of the framework. Therefore, the discussion at the end includes the possible use and development of the framework. 

4. The connection framework 

Our new framework draws on work by Cohn (2013), which includes a presentation of three broad categories of connections be-
tween images and natural language found in comics. In summary, natural language and image can be related through Inherent, 
Emergent, or Adjoined connections. These relationships range from instances where language is integrated into the fictive comics world 
(such as when a cartoon character wears a T-shirt with a slogan), to speech balloons where the language is very specifically connected 
to a speaker, to less specific proximity connections. 

In addition to these three categories, Cohn (2013) also presents the Independent category, where natural language and images are 
described as fully separated. It is a connection rarely seen in comics, with the typical example being “See Figure 1”, which is more 
commonly found in academic writing. 

Below, we explain how the framework was developed and how Cohn’s original categories are related to the categories of the new 
framework (see Section 4.1). Distinct characteristics of each category of the new framework are described and compared to features of 
the other categories in Section 4.2. For short definitions of the framework categories, together with examples, see Table 1. (More 
details about the operationalization can be found in Section 5.2.) 

4.1. Method of development 

The three structural connections found in the comics world together with the Independent connection (Cohn, 2013) were used as a 
starting point for the development of the new framework. In the initial stage, we searched for structures in the interface between 
written natural language and mathematical symbols showing resemblance to Cohn’s image-language connections. For this purpose, a 
number of different Swedish mathematics textbooks for school years 1–12, from different publishers and textbook series, were selected 
by convenience and skimmed through by the first author, who also collected examples to be discussed by all authors. Based on the 
analogy between comics and mathematics texts, the first descriptions of four categories of connections between mathematical symbols 
and natural language were formulated: Interwoven, Adjoined, Marked, and Referenced. However, during the first test analyses it was 
found that connections based on reading order, where successive lines based on different sign systems are perceived as connected, were 
only partially covered by these four connection categories. To fully cover this type of connection, a new category was invented: 
Chunked. After the addition, several rounds of text analysis and discussions among the authors followed. The final definitions of 
categories were decided upon during the initial work with the dataset of 180 textbook pages in the second part of the study (see 5.1). 

4.2. Connection categories 

Our analyses originated in descriptions of relations between written language and images (Cohn, 2013). While transforming and 
adapting the descriptions of categories for our purposes, we found it reasonable to change some of the category names. The changes 
were made to emphasize the core features of each category, when focusing on connections between natural language and mathe-
matical symbols. 

The categories we named Interwoven and Adjoined are analogous to Cohn’s Inherent and Adjoined. Interwoven describes the type of 
connection when something from one sign system is placed “inside” a piece of text that is based primarily on another sign system and 
its syntax. This basically means that the text piece is either a sentence (Interwoven-NL) or a symbolic expression (Interwoven-MS) 
where signs from the other system have been integrated; that is, the different sign systems are interwoven. (See examples in Table 1.). 
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In Interwoven, the two semiotic systems are entangled, both spatially and concerning syntax. This highly contrasts with Adjoined, 
which includes proximity connections between text pieces, where one piece is ruled by language syntax, and the other by mathematical 
syntax. The connection is formed by proximity between the two text pieces and a relative distance to other parts of the text. No visual 
links in the form of arrows or color coding are involved in Adjoined, and the connected text pieces are not part of a uniform running 
text arranged in lines. Furthermore, there are no restrictions regarding the positions of the connected text pieces, as long as they are 
perceived as adjoined. This category includes a variety of examples: labels connected to symbols, instructions connected to arithmetic 
exercises, comments to worked examples, etc. Adjoined connections can also be formed between text pieces that are not on the same 
text level, such as a headline connected to a formula. 

Although the adjoined category is not the only one including spatial proximity, it lacks the distinct connecting features defining 
other categories. For example, connections of the Marked category will, to some extent, be based on proximity. However, as the name 
Marked indicates, the most distinctive feature of the category is the visible link marking the connection between the two semiotic 
resources. The links (arrows, brackets, color coding, etc.) add specificity to the connection. The Marked category shares important 
features with Cohńs Emergent connections, in which a specific part of the image is connected to some specific written language, often 
presented in a speech balloon. 

Fig. 1. Method overview. The quantitative results from research questions 1 and 2 decide the focus for the explorative part of the study. The third 
research question is: “In addition to the quantification obtained by the framework, what striking characteristics can be observed in a closer ex-
amination of the different connections?”. When these qualitative results explain some of the quantitative results (RQ1 and RQ2), they are reported in 
parallel (in 6.2 and 6.3). The more detailed descriptions of the most common connection categories are reported separately (in 6.4). 
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The Referenced category of the new framework was inspired by Cohn’s original definition of the Independent connection. After an 
adaptation to our purposes, the new name arose naturally since the final definition of the category required natural language to 
describe what to look for and where, a reference. The connection is used for bridging spatial distances by referring to symbols not 
adjacent to the referencing language. This means that the language description is supposed to direct the readers’ attention to symbols 
in another part of the text. (See examples in Table 1.). 

During the development of the framework, we found an organization of semiotic resources in mathematics texts that did not have 
any obvious analog in comics. In mathematics texts, it is common to use separate lines for text primarily based on natural language 
syntax and text based on the syntax of the symbol system. Although ruled by different syntaxes, the lines are perceived as connected, 
not only based on proximity but also because of the reading order and the uniformity of the text. Because this type of organization is 
hardly present in comics, we invented the Chunked category to describe the type of connections occurring between lines based on 
different syntaxes. In Table 1, the first Chunked example shows a symbolic expression that is part of a sentence. However, for the 
Chunked connection there are no requirements on the use of punctuation. The connections can just as well occur between a full 
sentence and a mathematical expression, as shown in the second Chunked example in Table 1. The most characteristic feature of the 
category is the syntax switch between two successive lines of a running text. 

5. Methods for textbook analysis 

The connection framework outlined in Section 4 was developed to describe what connections between natural language (NL) and 
mathematical symbols (MS) could be found in mathematics texts. The framework was utilized in a quantification of changes over 
school years concerning the use of the different connections. Randomly selected pages from Swedish textbooks aimed at students about 
eight, eleven, and fourteen years old (school years 2, 5, and 8) were analyzed. 

In the first part of the analysis, for each symbol structure (see Section 5.2 for a description), we determined whether it had a 
connection to NL or not. If a connection was found, it was classified according to the definitions in the Connection Framework. 
Thereafter, connections and connection categories were counted separately for texts from different school years, and ratios were 
calculated. The significance of differences in ratios between the school years was statistically tested (see Section 5.4). 

For a further characterization of the connections and to explain the results from the quantitative analysis (answers to RQ1 and 
RQ2), we also explored the data in a more qualitative fashion. In this analysis, we focused on different text aspects, such as text type, 
text organization, task design, the use of units in combination with MS, the involvement of MS in different visuals, and other features 
that caught the eye. Follow-up quantifications were sometimes added, in which case they were primarily focused on the most common 
of the connection categories (see Fig. 1). 

5.1. Data selection 

180 pages from mathematics textbooks for school years 2, 5, and 8 were selected at random. The books were published by three 
large publishers of mathematics textbooks in Sweden: Sanoma (Bergwik & Falck, 2019a, 2019b, 2019c, 2020a, 2020b, 2020c; Carlsson 
& Hake, 2017; Falck & Picetti, 2012, 2013), Natur & Kultur (Domert, Jakobsson, Madej, & Öberg, 2014; Forsbäck & Olsson, 2012a, 
2012b; Olsson & Forsbäck, 2016a, 2016b), and Studentlitteratur (Asikainen, Nyrhinen, Rokka, Vehmas, & Heinonen, 2018; Asikainen 
et al., 2018; Heinonen et al., 2018; Ristola, Tapaninaho, Vaaraniemi, Rajamäki, & Heinonen, 2018a; Ristola, Tapaninaho, Vaaraniemi, 
Rajamäki, & Heinonen, 2018b). We selected the book (or books) from one set of teaching material from each publisher, and each of the 
school years 2, 5, and 8. If possible, we followed one book series through all of the school years. 20 textbook pages were selected from 
each publisher and school year. For a page to be included, it had to contain texts directed at students in their daily work with 
mathematics: explanatory text, task text, diagnosis test, notes on the history of mathematics, etc. In practice, this hardly excluded 
anything except tables of contents and indexes. In addition, pages totally covered by images without any symbols or words were 
excluded. 

5.2. NL, symbol structures, and other text elements 

In the analysis, different elements of text were classified either as natural language (NL), which equated to written words and units; 
symbol structures, in the present study limited to arithmetic and algebraic symbols and groups of arithmetic and algebraic symbols 
(symbolic expressions); or other structures, which included everything but NL and symbol structures (mostly images of various sorts). 

The mathematical symbols (MS) include a range of different types of symbols: numerals, alphabetical symbols (both Latin and 
Greek letters), relations and operations, but also other symbols that in some way represent quantities (e.g., %). In the end, it was not the 
symbol per se that was important, but what it represented. Alphabetical symbols were only included when they represented quantities, 
for example, unknowns, variables, indices, or constants. The same principle was applied to all kinds of notations, including images. 
When used as place holders or substitutes for mathematical symbols (qualifying as mathematical symbols by the definition above), 
they were considered mathematical symbols. 

The symbol structure is a construction facilitating counting, for the purpose of quantitative analyses. A symbol structure can be a 
single symbol, a symbolic expression, or any type of group of mathematical symbols. It can be described as a piece of text, primarily 
based on the syntax of the mathematical symbol system and sometimes also including single words or short phrases written in NL. For 
example, “P (rolling 1 or 6) = 2

6 =
1
3 ” and “1, 2, 3, 4, and 5” are considered to be symbol structures. In this study, pieces of text with 
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features in between NL and symbol structure, such as “42 km”, were seen as symbol structures. 

5.3. Coding and counting 

For each symbol structure, all MS-NL-connections, as described by the framework, were coded and counted. First, it was decided 
whether the symbol structure was unconnected or connected to NL1. Second, the connections were classified into categories based on 
the connection framework (see Section 4.2):  

• Symbol structures that included words were classified as Interwoven-MS.  
• Symbol structures included in a sentence/phrase (in the same way as normal words) had a connection to this sentence/phrase that 

was classified as Interwoven-NL. However, if a sentence started with one primary syntax (based on NL or MS) and, after a line break, 
continued with text based on the other syntax, the connection between the two parts of the sentence was classified as Chunked.  

• In texts including a syntax switch between text lines, where the text chunk before the switch was based on NL syntax and the text 
chunk after the switch was based on mathematical syntax (or vice versa), the connection between the NL and MS chunks was 
classified as Chunked. For a Chunked connection, the syntax switch had to occur between successive lines in the same section of a 
running text. Symbolic expressions organized in columns were not considered part of a running text.  

• If a visible link, such as an arrow, marked the connection between MS and NL, the connection was classified as Marked.  
• Connections based on proximity, without the presence of any visible links, were classified as Adjoined connections. The definition 

allowed for the connected text pieces to be on different text levels and have different fonts, sizes, and colors. All kinds of spatial 
arrangements were included. Connections meeting the criteria of a Chunked connection were not included.  

• When written language was used to direct attention to a symbol structure by describing what to find in which location or direction, 
the connection was classified as Referenced. 

Symbol structures could have several MS-NL-connections and the connections could be of the same or different categories (see  
Fig. 2 for an example). 

All coding was carried out using ATLAS.ti 9 Windows (Version 9.1.7.0), a software used for qualitative analysis. Two coders 
categorized the symbol structures according to the framework descriptions of different connections. To save time, one coder first 
prepared the dataset by quoting all symbol structures together with connected NL. In the categorization, quotes could be added or 
changed by both coders. With the coding process including this corrective step, and due to some limitations of the software, a Cohens 
kappa could not be easily calculated. Instead, an overall intercoder agreement of 90 % was calculated using the Holsti index (Holsti, 
1969). (Agreement by chance is not considered.) Normally, an agreement over 90 % is considered high. Furthermore, the quotes added 
in the correction step of the coding process were, in general, clearly overlooked in the preparation step. There were no disagreements 
about their inclusion and rarely about their classification. All quotes where coders first disagreed were discussed by the two coders 
until consensus was reached. 

For consistent coding and counting, many decisions had to be made. Some of them considered the use of other semiotic resources in 
the interface between NL and MS. For example, in tables, a symbol structure in one cell can be seen as connected to NL present in 
another. Such connections were not included in the analysis. Other decisions considered special text arrangements found in task texts. 
For example, subtasks often consist of a main text followed by various numbers of subtasks. Commonly, the sentence at the end of the 
main text is not finished but is provided with a different ending for each subtask (see Fig. 6C for an example). Each subtask is then 
usually marked by a number or letter. Although the sentence is interrupted by line breaks and marks, it can be seen as a sentence. 
Consequently, symbol structures interwoven in such sentences were counted as Interwoven-NL. In addition, any symbol structures 
included in the first part of the sentence were counted once for each subtask. 

Another common type of task design is to give an instruction in NL followed by several exercises. When the exercises were in the 
form of symbol structures, the differences in distance between the instruction and the different symbol structures were not seen as 
important, and they were all classified equally (see Fig. 6A for an example). 

5.4. Statistical analysis 

For statistical analysis in SPSS, spread sheet files were exported from ATLAS.ti 9 and modified. For analysis of differences between 

Fig. 2. MS-NL connections counting example. Example with a question followed by two different symbol structures (blue dotted boxes), where each 
is a task to be solved. In the analysis, the two different symbol structures are focused on one at a time. Both symbol structures are involved in 
connections to the words inside the symbol structure as well as to the question; therefore, both are counted as connected. Because both symbol 
structures have connections to NL words inside the structure (yellow dashed boxes), each of them is counted as Interwoven-MS (2 in total). At the 
same time, both symbol structures are connected by proximity to the question, written in NL. The connections between the symbol structures and 
the question are counted as Adjoined (2 in total). 
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proportions of different codes, chi-squared statistics were calculated. For post-hoc pairwise comparisons, we used the z test for two 
independent proportions. Due to multiple testing, the original p values (0.05) were adjusted by Bonferroni correction. For the esti-
mation of effect sizes for significant differences, Cohen’s h was calculated. 

5.5. Exploration 

By coding and grouping different documents in ATLAS.ti 9, its analysis tools could be used to present descriptive data. By sorting 
coded quotations by school year and comparing them qualitatively, representative examples were extracted. In an exploration of each 
connection category, the surrounding structures (text type, text organization, task design, different visuals, etc.) of examples in the 
textbooks were noted. The connected/unconnected categories were explored in a similar way. 

The ATLAS.ti 9 and spread sheet programs were used to aid counting (e.g., numbers of symbol structures involved in exercises). 
ATLAS.ti 9 was used for the labeling of different features. Codes were in these cases very distinct, and without overlap. Counts of 
different labels were then exported for further processing into more comprehensive forms (tables). For distinct differences, proportions 
were sometimes calculated to give ideas about magnitudes (e.g., the proportion of unconnected symbol structures found in images and 
tables). 

Furthermore, the complexity of symbol structures, the use of units in symbol structures, and the number of symbol structures 
inserted in sentences/phrases were investigated for different school years. The complexity was only investigated qualitatively, while 
the use of units, and the number of inserted symbol structures per sentence/phrase, were also investigated by follow-up 
quantifications. 

6. Results 

To answer how and to what extent natural language and mathematical symbols are connected in mathematics texts, textbooks from 
different stages in the Swedish compulsory school were analyzed. When the qualitative results have the potential to clarify what the 
quantifications reflect, the qualitative and quantitative results are presented in parallel. Before the presentation of the results, a 
description of our data sources, the textbooks, can be found (see Section 6.1). 

6.1. General description of textbooks for different school years 

Depending on which age group of students is supposed to work with the textbooks, we noted some differences in design. The year 2 
books, for students about eight years old, could all be likened to collections of tasks and exercises. In those books, the most common 
way to give instructions about what to do with a new set of exercises is to begin with a worked example. The example is then followed 
by several similar exercises for the student to work with. Between the exercises, games and quests of different types occur more or less 
regularly. Explanatory texts, if present, are short, normally a sentence or two in a box or in a speech balloon. For this age group, images 
are abundant and often carry mathematical ideas that students are supposed to transform into arithmetic. The books selected for the 
study were perceived as similar to other year 2 books commonly used in Swedish schools. 

Compared to the year 2 books, textbooks for school year 5, when students are about 11 years old, include longer explanatory texts, 
typically up to half a page. The task sections are dominated by word problems, almost independent of the mathematical topic, but 
repetitive exercises still exist. For this age group, the books require students to write and do calculations on separate paper. The same 
applies to year 8 books. For year 8, when students are about fourteen years old, textbooks commonly follow a pattern with introductory 
text, worked examples, and tasks for the student to work with. The proportion of introductory text and worked examples differed 
somewhat between textbook series. Compared to year 5 textbooks, explanatory texts are substantially longer in textbooks for year 8. 

Overall, the amount of written natural language in textbooks increases as students progress through school, as does the number of 
symbol structures. Our data showed that the number of symbol structures increases from approximately 15 per page in year 2, to 
approximately 27 per page in year 8. The numbers agree with the general impression of textbook content becoming increasingly 
densely packed. 

6.2. Proportions of symbols connected to natural language 

To determine to what extent mathematical symbols are connected to natural language, we coded 4242 symbol structures con-
cerning their connection status: connected to natural language or not connected to natural language. We also investigated the sur-
roundings of unconnected symbol structures and found some differences between the school years. 

Table 2 
Connected symbol structures depending on school year.  

School year 2 5 8 total 

Symbol structures connected 870 1028 1590 3488 
Symbol structures unconnected 155 201 398 754 
Proportion connected 85 % 84 % 80 %* 82 %  

* Significant difference to year 2 and year 5. 
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The results showed that 82 % of all symbol structures were connected to natural language (see Table 2). This means that a vast 
majority of symbols found in the textbooks were connected to written natural language by at least one of the categories of connections 
described in the framework. Furthermore, a significantly higher proportion of unconnected symbols was found in year 8 books than in 
books from year 2 and year 5. Nevertheless, the magnitudes were similar: 20 % compared to 15–16 %. Chi-square testing indicated an 
association between the proportion of connected symbol structures and the school year from which data were collected, X2 (2, 
N = 4242) = 13.5, p < .000. Post hoc z tests revealed no significant differences in the proportion of connected symbol structures when 
comparing school years 2 and 5, while comparison of year 8 proportions to year 5 and year 2 proportions showed significant 
differences. 

Exploring the surroundings of unconnected symbol structures and categorizing them according to their relation to mathematical 
visuals and images revealed some noticeable distinctions between textbooks for different school years. Most of the symbol structures in 
year 2 and year 5 books, that were not connected to NL, were in some way included in different images (70 % in year 2 % and 44 % in 
year 5). In year 8, unconnected symbol structures were more often found in tables, 37 %, compared to 21 % found in images. 

In years 2 and 5, the typical symbol structure that was not connected either to NL or to tables or images, and not directly connected 
to other symbol structures, consisted of arithmetic exercises without any instruction connected to them – at least not on the randomly 
selected page. That was very different from what was found in the year 8 data, where 99 % of these types of symbol structures were 
answers to exercises. 

6.3. Proportions and features of different connection categories 

In our data, all connection categories were present in all school years. However, the proportions were not the same for all years (see  
Fig. 3 and Table 3). 

Chi-square testing indicated that differences in the number of connections found in each connection category (Adjoined, Chunked, 
Interwoven-MS, Interwoven-NL, Marked and Referenced) were associated with school year, X2 (10, N = 3623) = 785, p < .000 Pairwise 
z-testing showed significant differences between the distribution of connections for the Adjoined, Interwoven-NL, Marked, and 
Referenced categories. Only the Interwoven-MS category did not show any significant difference in proportion between school years. 

The two most commonly occurring connection categories in the textbooks, Interwoven-NL and Adjoined, showed a distinct pattern 
in their change of proportions through the school years. The Adjoined category, where symbols and natural language are connected by 
spatial proximity, was the most common in year 2 books. Successively, the proportion of Adjoined decreased from 63 % in year 2–33 % 
in year 5, and then further to 16 % in year 8 books (see Table 3). The opposite pattern was observed for the Interwoven-NL. In year 2, 
approximately 17 % of the connections belonged to the Interwoven-NL category. That is, 17 % of the symbol structures were inserted as 
words in sentences or phrases. In year 5 books, almost half of the connections were in this category, while in year 8 books, even 
more—65 % of all the connections—originated from symbols interwoven in sentences or phrases. The decrease in Adjoined con-
nections, and the increase in Interwoven-NL connections, were statistically significant with large effect sizes when comparing years 2 
and 8. 

The Chunked, Marked, and Referenced connection categories only made up a small proportion of the total number of connections 
found in the data set: Chunked approximately 2 %, Marked 1 %, and Referenced less than 3 %. Referenced was used significantly less in 

Fig. 3. Distribution of MS-NL-connections for different categories.  
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year 8 books than in year 5 and 2 books, while the use of Chunked increased somewhat over the years. However, the effect sizes were 
small. The proportion of Marked showed neither a gradual increase nor a decrease. 

Regarding proportions of Chunked connections, the increase seemed to be gradual, from 0.8 % in year 2, to 1.5 % in year 5, and to 
2.9 % in year 8. Even so, only the year 8 and year 2 proportions were significantly different from each other (see Table 3). 

6.4. Salient features of the Chunked, Marked and Referenced categories 

In the qualitative exploration, it was noted how Chunked examples in years 5 and 8 were often part of a text covering several lines 
to half a page or a full page, while the examples from year 2 were never found in longer texts. Instead, the succeeding lines with the MS- 
NL-connection always comprised the whole “section”. This contrasts with texts from years 5 and 8, where several Chunked connections 
could sometimes be found in the same text section. The sentences involved in the connections also became more complex in later 
school years (for examples, see Fig. 4.). 

The qualitative investigation of the different surroundings of connections of the Referenced category showed how they were often 
part of a special task structure. The tasks all included an instruction to search for symbols elsewhere in the text: numbers in a box, 
answers at the bottom of the page, etc. Only one single example of a natural language text, explaining mathematics and using a 
Referenced connection back to a symbol structure located elsewhere in the text, could be found. This was in data collected from year 8. 

Marked was the rarest of the connection categories. The proportion of connections including a visible link was found to be 
significantly larger in year 2 than in year 5. There were many examples where the links connected natural language to specific parts of 

Table 3. 
Distribution of MS-NL-connections over different categories.  

Connection category  School Year Total Significant difference* Effect size** Cohen’s h  

2 5 8 

Interwoven-MS Count 126 126 243 495   
% within school year 13.6 % 12.0 % 14.8 % 13.7 % - - 

Interwoven-NL Count 155 497 1070 1722   
% within school year 16.7 % a 47.4 % b 65.0 % c 47.5 % a<b 0.68 (medium) 

b<c 0.36 (small) 
a<c 1.03 (large) 

Chunked Count 7 16 47 70    
% within school year 0.8 % a 1.5 % 2.9 % c 1.9 % a<c 0.16 (< 0.2) 

Marked Count 16 5 16 37    
% within school year 1.7 % a 0.5 % b 1.0 % 1.0 % a>b 0.12 (< 0.2) 

Adjoined Count 587 346 264 1197    
% within school year 63.3 % a 33.0 % b 16.0 % c 33.0 % a>b 0.62 (medium)       

b>c 0.40 (medium)       
a>c 1.02 (large) 

Referenced Count 36 59 7 102    
% within school year 3.9 % a 5.6 % b 0.4 % c 2.8 % a>c 0.27 (small) 

b>c 0.35 (small)  
Total Count 927 1049 1647 3623        

100 %   

Proportions with subscripts a, b, and c are compared for each row. 
*p < 0.05/6 = 0.0083 (Bonferroni-correlated p-value) 
** All non-significant cases: p < 0.2 

Fig. 4. Progression of the Chunked category . A. Example from year 2 textbook (Bergwik & Falck, 2019b, p. 13). The symbol structure comprising 
L2 (line 2) is connected by a Chunked connection to the NL comprising L1. A text including a Chunked connection in year 2 typically comprises no 
more than two lines. B. Example from a year 8 book (Domert et al., 2014, p. 199). The symbol structure in L3 is connected both to the NL-chunk 
above and below. The symbol structure in L7 is also connected to the NL-chunks just above and just below. (L4-L5 and L8 also include 
Interwoven-NL connections.) In year 8 books, several examples with successive Chunked connections in the same text section were found. 
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a symbolic expression (see Fig. 5B and C) but also some examples where the link was used to connect a comment to a whole expression. 
Although Marked connections could have been mediated by many different types of visual links, our data only included arrows, 

images, and color coding. Images used as visual links were all a person, or other creature, obviously directing the attention to symbols 
at the same time as “speaking” about them through a speech balloon (see Fig. 5A for an example). 

6.5. Features and surroundings of the most common categories 

The most common of the MS-NL connections, when including all data from all school years, was the Interwoven category (over 60 
%, see Table 3). In addition, Adjoined was common and comprised one third of the connections. The Chunked, Marked, and Referenced 
connections were found to be used more rarely—together they constituted less than 6 % of the total—and therefore were not the focus 
of our more detailed investigations. 

6.5.1. Interwoven connections 
The interwoven-MS type category constituted 12–15 % of the total number of MS–NL connections, and the proportion did not 

change significantly over the school years. Further investigation revealed that the majority of the interwoven-MS type connections 
could be found between symbols and units, but there were also some examples involving mathematical terms as well as words 
originating from presentations of real-life contexts (for examples, see Table 4). 

For connections of the interwoven-NL type, which significantly increased in proportion over the school years, we also found other 
changes. Naturally, sentences and phrases included more complex symbol structures in the year 8 data compared to data from younger 
years. The qualitative exploration also indicated some differences between school years regarding the number of MS-insertions per 
sentence or phrase and what type of symbols were involved. Follow-up counting confirmed this picture. There were no examples in 
year 2 textbooks where the number of inserted symbol structures was more than two in one sentence, while examples of up to 6–7 
insertions were found in the texts from years 5 and 8. In year 5, numbers in sentences were the most common contribution to the 
interwoven-NL type; over 60 % of the sentences or phrases with interwoven symbols included only numbers and no other mathe-
matical symbols. These sentences often originated from word problems, which were abundant in textbooks for this age group. In year 
8, approximately half of the sentences with insertions included symbols of a type other than numbers, presumably a reflection of the 
increasing use of algebraic expressions in general. Sentences in task texts were no exception (see Table 4 for examples). 

6.5.2. The Adjoined category in task text 
The Adjoined category of connections was found in many different situations: when naming symbols, in explanations of symbolic 

expressions, in comments on worked examples, and in task texts. The exploration of connections in the Adjoined category revealed 
some striking differences between school years. 

Typically, year 2 textbooks used Adjoined connections in task texts with a short instruction followed by several similar exercises 
(see example in Fig. 6A). In our data, approximately 78 % of Adjoined MS-NL connections in year 2 were part of an exercise. The same 
type of construction was still quite common in year 5 (60 %) and year 8 (38 %). Furthermore, in data from year 2 books, a higher 
number of symbol structures seemed to be addressed by each task instruction, when compared to data collected from year 5 and year 8 
books (see Table 5). 

6.5.3. Adjoined: differences in alignment 
The definition of the Adjoined category does not specify anything about the spatial relation between natural language and symbols 

other than their proximity in relation to other text elements. In reality, we tend to see aligned text elements as closer, or more con-
nected, compared to elements that are not ordered along the same line (Wong, 2010). In our data, the Adjoined category included 
worked examples with adjoined comments that could be either completely aligned in a table-like structure or presented in a somewhat 

Fig. 5. Examples of the Marked category. A. Example from year 2. A Marked connection of “image type” where the child in the image clearly points 
at the numbers while speaking. The picture of the pointing child, together with the speech balloon, constitutes the link of a Marked connection 
between the NL in the speech balloon and the numbers (MS) on the ground. B. Example from year 5. An arrow constitutes the link between the NL- 
comment and the equal sign. C. Example from year 8. Three NL-comments are linked by arrows to different parts of the symbolic expression. All 
examples were collected from textbooks. A: Olsson and Forsbäck (2016a, p. 96) B: Forsbäck and Olsson (2012a, p. 19); C: Carlsson and Hake (2017, 
p. 198). 
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less structured fashion (see Fig. 7). The degree of alignment can be important for clarity. For example, when a longer calculation is 
commented on, a lack of alignment could confuse readers. It can be hard to interpret which line of a calculation is explained. 

7. Discussion 

In the present study, we developed a framework describing categories of structural connections between mathematical symbols and 
natural language. The framework was used for the analysis of textbooks from school years 2, 5, and 8. The results show that 82 % of all 
symbol structures found in the textbooks are connected to natural language through at least one of the described connection categories. 
Two categories predominated: Adjoined, which is the category based on proximity (33 %), and Interwoven-NL, which is the category 
with natural language and symbols interwoven in sentences (48 %). There was also a distinct pattern of change over the years. In year 
2, the Adjoined category (63 %) was predominant, while at higher levels, the Interwoven-NL connections were the most common 

Table 4 
Examples of the Interwoven category from different school years.  

Type Year Examplea Comment 

MS  2 5 · 2 kr = 10 kr Unit (kr) in symbolic expression     

5 The area of a triangle =
base • height

2 
A definite article and mathematical terms in a formula for area calculation.     

8 82 % of 3500 kr = 0.82 • 3500 kr = 2870 kr Preposition and units (kr) in a symbolic expression      

8 Kajsa’s apple
Stina’s apple

=
245

245 • 1.26
=

1
1.26

≈ 0.79 Answer to exercise. Symbolic expression including words originating from real-life 
context (Kajsa’s apple, Stina’s apple).     

NL  2 Divide in 4 equal parts Number in a sentence.     

5 3 times 2 equals 6. Several numbers in a sentence.     

8 The formula for calculating the volume of a right circular 

cone is V =
πr2h

3
. 

More complex formula for volume calculation included in a sentence.     

8 Call the number of tricycles x and the number of bicycles 
(19 - x). 

Algebraic symbol and expression included in a sentence.  

a Examples have been translated from Swedish. 

Fig. 6. Common task structures. Although a mix of various tasks is present in all textbooks, there are some task structures that are very typical for 
different stages. A. Year 2 (Bergwik & Falck, 2019b, p. 13): Task including an instruction (NL) followed by several exercises of the same type 
(symbol structures). MS and NL are Adjoined. B. Year 5 (Forsbäck & Olsson, 2012a, p. 150): Word problem with several insertions of numbers (MS) 
and units for volume, in a sentence. MS and NL are connected by Interwoven-NL. C. Year 8 (Domert et al., 2014, p. 74): A main text with an un-
finished sentence that is completed differently in the two sub tasks. The sentences include insertions of algebraic symbols and expressions. MS and 
NL are connected by Interwoven-NL. 

Table 5 
Number of exercises with the same adjoined instruction.  

No of symbol structures addressed by the instruction No of exercises 

Year 2 Year 5 Year 8 

1–3  8  21  11 
4–6  16  16  8 
7–9  19  3  4 
≥10  13  3  0  
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(47–65 %). Symbol structures that were not connected to natural language were mostly found in mathematical visuals, such as tables, 
and images. Below, we discuss the empirical results and the framework. 

7.1. Progression of textual communication over the school years 

The empirical results show a progression of textual communication over the school years in several ways. The most obvious change 
is that while most connections in school year 2 are Adjoined, most connections in school years 5 and 8 are Interwoven-NL. The symbols 
in interwoven connections also changed from predominantly involving numbers in years 2 and 5 to including algebraic symbols and 
more complex arithmetic expressions in year 8. Some other changes that come with increasing school years are less evident but still 
visible in the data. One is that text sections with Chunked connections expand from a few two-line messages in year 2 textbooks to 
longer text sections with alternating chunks of natural language and symbols in years 5 and 8 (see Fig. 4.) There is also a change to 
denser texts in general, with a higher number of symbol structures per page and more symbol structures inserted per sentence in the 
Interwoven-NL category. 

One reason for the change from Adjoined to Interwoven-NL connections could be that the introductory and explanatory texts grow 
in length and number and that there are an increasing number of full sentences that can include symbols functioning as words. In 
school year 2, there are also many tasks that include repetitions of arithmetic exercises where many Adjoined connections are present. 
In the higher school years, it is much more common to have word problems with Interwoven-NL connections (see Fig. 6 for examples). 
Since students’ mathematics and general reading abilities increase over the years, teachers and textbooks in years 5 and 8 can include 
longer and more complex sentences explaining and describing more complicated mathematics. 

Nevertheless, the ability to read general texts does not ensure that students are able to handle the intricate mix of words and 
symbols that is so commonly found in mathematics textbooks after the first years of schooling. Österholm (2006) showed that when 
older students read texts with interwoven mathematical symbols, their reading comprehension was worse than when they read the 
corresponding text without symbols. This indicates that interweaving symbols in sentences has consequences for how a text is, or 
should be, read. Researchers have persistently recommended specific instruction and training of reading skills in academic subjects, 
not least in mathematics (Shepherd et al., 2012; Shepherd & Van De Sande, 2014; Wilkinson, 2018). The increase in Interwoven-NL 
connections between years 2 and 5, and the interweaving of more complex mathematical expressions found in year 8, can be used as an 
argument supporting the idea that reading mathematics deviates from reading normal prose and that reading mathematics should be 
taught specifically in the mathematics subject. 

7.2. Possible consequences of the use of Interwoven-NL connections and others 

It is not clear what consequences the use of the two most common connection categories, Adjoined and Interwoven-NL, has on 
students’ reading and learning. These two categories have both similarities and differences. In both categories, natural language and 
mathematical symbols are closely placed in the text. Previous research shows that it is beneficial for students’ learning when written 
natural language is placed adjacent to corresponding image parts (Chandler & Sweller, 1992; Mayer, 2002). We have not found any 
similar studies regarding natural language and mathematical symbols specifically, but proximity is most likely beneficial in mathe-
matics as well. 

Fig. 7. Examples of Adjoined connections with differences in alignment. Different comments, instructions, and labels (NL) connected to symbols. A. 
Horizontal alignment of symbol structures (in the middle column) and NL (columns to the right and to the left). Symbol structures in the middle 
have Adjoined connections both to the instruction to the left and the explanation to the right. B. The text elements are not completely aligned. The 
lines of the calculated example, to the left, are symbol structures connected by Adjoined connections to the comments in the boxes (NL), to the right. 
C. Vertical alignment of symbols and labels (NL). Each symbol structure is connected to the label just below it. Examples were collected from 
textbooks. A: Carlsson and Hake (2017, p. 109) B: Domert et al., (2014, p. 162); C: Falck and Picetti (2013, p. 57). 
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Regarding differences between the two categories, the Adjoined category generally separates more clearly between the natural 
language and the mathematical symbols both syntactically and spatially, while Interwoven-NL integrates the symbol structures into 
the language syntax. Knowing that mathematics texts often include grammatically complex natural language and technical vocabulary 
(Schleppegrell, 2007), it is not surprising if symbolic expressions, when used as words in sentences, further complicate the reading 
situation. 

Although the interweaving of symbols in sentences is not by default more troublesome than the use of other categories of con-
nections, teachers should be aware of the change in textual communication between educational stages and that the change might not 
be trivial to all students. In the study by Österholm (2006), symbols in sentences were shown to cause comprehension problems in a 
situation where new mathematics was introduced. Our results show that between year 5 and year 8, the number of Interwoven 
connections did not just increase; the symbols involved also changed. In year 8, more than half of the symbol structures involved in 
sentences were algebraic and arithmetic expressions, not only numbers. That type of text appears to require more than ordinary 
reading (Österholm, 2006). For students to develop accurate reading skills, they will need practice. However, to successfully guide 
students in their reading of mathematics texts, we need to expand the knowledge of the techniques of proficient readers. We also need 
to learn more about the stages of reading development in mathematics. 

In addition to instruction on reading for all mathematics students, there are possibilities for teachers to facilitate learning for certain 
groups of students by making text adaptions. For example, Avalos et al. (2018) suggest that teaching mathematics to English-learning 
students should build on their current language resources together with other means of communication. Regarding connections be-
tween symbols and natural language, we suggest that learning could be scaffolded by ‘translating’ difficult interwoven connections 
into alternatives that involve less complex language syntax. For example, connections mediated by visual links (Marked) or proximity 
(Adjoined) could be appropriate. From classroom experiences, we know that, at times, the ‘translating approach’ is already used by 
teachers. However, if it can be chosen with care and insight, considering different alternatives when ‘translating’, students might 
benefit more from the approach. 

It is only possible for us to speculate about how connections between symbols and natural language can be chosen depending on 
students’ levels of mathematical knowledge and language skills. Notwithstanding, previous research has shown that, at different levels 
of expertise, there are also differences in what text designs are most efficient for learning (Chandler & Sweller, 1992; Kalyuga, 2007; 
Kalyuga et al., 1998). More research is needed to answer questions about what sort of text is most suitable for whom and in what 
situations. 

7.3. The connection framework and future research 

As the empirical results show, the connection framework is a useful analytical tool for identifying changes in connection patterns 
over school years. It can be used for the analysis of different text types: explanatory texts, tasks, worked examples, etc. 

The framework was developed to be flexible and therefore has broad categories that can be divided into subcategories. Depending 
on the purpose of a study, appropriate subcategories can be created to answer more fine-grained research questions within different 
areas. During the qualitative exploration, we found variations in our data concerning features of the connection categories that were 
not reflected in the quantitative results. Some of these variations, such as the degree of alignment in Adjoined connections or the type 
of visible links included in Marked, are examples of what can be quantified if categories are divided into subcategories. 

In mathematics, and particularly in mathematics assessments, the aim is often to reduce unnecessary reading demands in task texts. 
This is to not disproportionately disadvantage nonnative speakers and students with low reading skills (e.g., Abedi & Lord, 2001). In 
this regard, it might also be reasonable to avoid unnecessarily difficult connections between written natural language and mathe-
matical symbols. The connection framework presents possible alternatives, but at this point we have not examined the consequences of 
different options on student testing, reading, and learning. Such research could both complement research on text difficulty (Hewitt & 
Homan, 2003; Lamb, 2010) and research on reading comprehension in relation to various combinations of semiotic resources 
(Dee-Lucas & Larkin, 1991; Malone et al., 2020; Ott et al., 2018; Österholm, 2006). 

The new framework can be a useful tool for continued research but can also help teachers and textbook authors make more 
informed choices. The integration of mathematical symbols and natural language in texts is an inherent and important part of 
mathematical communication and is something that students should be given the opportunity to learn. The connection framework can 
raise awareness of different design options and give educators the possibility to explore them and their different benefits. Thereby, less 
efficient design strategies based only on tradition or habit can hopefully be counteracted. 

Note 

All examples from textbooks are included with permission from the publishers. Grayscale images were, in some cases, originally 
printed in color. Irregular cutouts have been filled out into regular shapes. The translation from Swedish to English slightly alters the 
original text structure, but efforts have been made to make the textbook examples as true to the originals as possible. 
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