
Contents lists available at ScienceDirect

Neurobiology of Aging

journal homepage: www.elsevier.com/locate/neuaging.org

Characterising the covariance pattern between lifestyle factors and 
structural brain measures: a multivariable replication study of two 
independent ageing cohorts

Naiara Demnitz a,⁎, Oliver J. Hulme a,b,c, Hartwig R. Siebner a,d,e, Michael Kjaer f,g,  
Klaus P. Ebmeier h, Carl-Johan Boraxbekk a,d,e,f,i, Claire M. Gillan j,k

a Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital–Amager and 
Hvidovre, Hvidovre, Denmark 
b London Mathematical Laboratory, London, UK 
c Department of Psychology, University of Copenhagen, Copenhagen, Denmark 
d Department of Neurology, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark 
e Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark 
f Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark 
g Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark 
h Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK 
i Department of Radiation Sciences, Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden 
j School of Psychology, Trinity College Dublin, Dublin, Ireland 
k Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland 

a r t i c l e  i n f o

Article history: 
Received 9 February 2023 
Revised 12 July 2023 
Accepted 20 July 2023 
Available online 26 July 2023

Keywords:  
Old age 
White matter hyperintensities 
Modifiable lifestyle factors 
Magnetic resonance imaging (MRI)

a b s t r a c t

Modifiable lifestyle factors have been shown to promote healthy brain ageing. However, studies have ty-
pically focused on a single factor at a time. Given that lifestyle factors do not occur in isolation, multivariable 
analyses provide a more realistic model of the lifestyle-brain relationship. Here, canonical correlation 
analyses (CCA) examined the relationship between nine lifestyle factors and seven MRI-derived indices of 
brain structure. The resulting covariance pattern was further explored with Bayesian regressions. CCA 
analyses were first conducted on a Danish cohort of older adults (n = 251) and then replicated in a British 
cohort (n = 668). In both cohorts, the latent factors of lifestyle and brain structure were positively correlated 
(UK: r = .37, p < 0.001; Denmark: r = .27, p < 0.001). In the cross-validation study, the correlation between 
lifestyle-brain latent factors was r = .10, p = 0.008. However, the pattern of associations differed between 
datasets. These findings suggest that baseline characterisation and tailoring towards the study sample may 
be beneficial for achieving targeted lifestyle interventions.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The concept of dementia prevention by modifying lifestyle factors is 
inherently appealing. It promises to alter dementia risk in a way that 

pharmacological medicine has yet to achieve. It has been suggested 
that up to 40% of dementia cases could be prevented or delayed by 
attenuating risks such as low education, midlife hearing loss, obesity, 
hypertension, late-life depression, smoking, physical inactivity, dia-
betes, and social isolation (Livingston et al., 2020). Prevalence of de-
mentia is the most common outcome measure for studies investigating 
factors that decrease dementia risk, yet changes in brain structure can 
be observed years before dementia is diagnosed (Tondelli et al., 2012). 
Grey matter volume, white matter hyperintensities, and indices of 
white matter microstructure have been shown to vary with alcohol 
consumption (Topiwala et al., 2017), physical activity (Dunas et al., 
2021), late-life depression (Demnitz et al., 2020), level of education 
(Nyberg et al., 2021), smoking (Gray et al., 2020), and degree of social 
activity (Anaturk et al., 2018). These structural brain measures can be 
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repeatedly mapped with magnetic resonance imaging (MRI), and their 
dynamic change with age may provide a better reflection of the in-
terplay between decline in brain health and individual lifestyle. 

To date, most studies have focused on the relationship between a 
single individual risk factor and brain health. Given that risk factors do 
not occur in isolation, multivariable analyses, where several measures 
are considered simultaneously, may provide a more realistic model of 
the association of modifiable lifestyle factors on brain ageing. With this 
aim, composite scores of dementia risk have been developed wherein 
each risk factor is typically given a binary score (denoting the absence 
or presence of the risk factor) and then summed. In a meta-analysis of 
6 studies using composite risk factor scores, a dose-dependent re-
lationship between modifiable risk factors and dementia incidence was 
observed (Peters et al., 2019). In one such dementia risk score, the 
Lifestyle for Brain Health (LIBRA) index, a one-point increase has been 
related to a 19% higher risk of dementia (Schiepers et al., 2018), as well 
as larger white matter hyperintensity volumes (Heger et al., 2021). In 
the UK Biobank, a healthy lifestyle score (0–5) based on five modifiable 
factors was associated with total grey matter volume and smaller white 
matter hyperintensity volumes (Pan et al., 2023). Yet while composite 
scores may capture additive effects, they are blind to the clustering 
nature of risk factors (Peters et al., 2019) and often incorrectly assume 
that all factors contribute equally to the risk of dementia onset. Further, 
since risk factors naturally co-occur, potentially due to shared under-
lying mechanisms, composite scores may also be overestimating 
resulting risks. 

As an alternative, the use of multivariate methods can identify 
distinct behavioural patterns in lifestyle factors that confer a greater 
risk to brain health. For instance, when considering self-reported 
health behaviours, one study identified that diet (low fruit and ve-
getable consumption) and low physical activity were the main 
contributors to a latent factor associated with poorer memory 
(Kesse-Guyot et al., 2014). Others have used a combination of latent 
class and regression analyses to identify distinct clusters of lifestyle 
factors (diet, exercise, socialisation, church attendance, alcohol 
consumption and smoking) associated with subsequent dementia 
onset (Norton et al., 2012). Similarly, Cox and colleagues estimated a 
latent construct of vascular risk factors (e.g., smoking, hypertension, 
diabetes, and body mass index (BMI)) found to be associated with 
global structural MRI measures (Cox et al., 2019). To develop inter-
ventions promoting healthy brain ageing, we must reach a better 
understanding of the clustering of risk factors in the years preceding 
dementia onset—a long preclinical period which can span more than 
2 decades (Josefsson et al., 2019). 

This study applies a multivariate approach to investigate the 
association between lifestyle factors with MRI-derived measures of 
brain structure. One of the greatest challenges for fitting such 
models is that large datasets are required. Fortunately, the last 
decade has seen tremendous growth in the scale, scope, and acces-
sibility of neuroimaging datasets in well-characterised cohorts. 
Using data from two such cohorts, this study aimed to (1) identify a 
covariance pattern between lifestyle factors associated with de-
mentia risk and MRI-derived measures of brain structure; and (2) 
distinguish which lifestyle factors account for the most variance in 
brain structure measures. Modifiable lifestyle factors were selected 
to best reflect the risk factors outlined in the Lancet report on de-
mentia prevention (Livingston et al., 2020). The indices of brain 
structure consisted of global MRI measures typically associated with 
age-related changes (global grey matter, white matter hyper-
intensities, cortical thickness, and global fractional anisotropy [FA] 
and mean diffusivity [MD]). In addition to the global measures, 
hippocampal volume was selected as a region of interest given its 
accelerated decline in ageing (Fjell et al., 2014). To test the individual 
covariation between lifestyle factors and MRI measures of brain 
structure, we identified modes of covariation using canonical 

correlation analysis (CCA). CCA is a multivariate method used to 
investigate relationships between 2 sets of variables (Zhuang et al., 
2020). Here, we applied CCA to identify a joint covariance pattern 
between lifestyle measures and indices of brain structure. Given 2 
vectors of random variables, lifestyle factors and MRI indices of brain 
structure in this case, CCAs find the linear combinations of these 2 
vectors which have maximum correlation with each other. To test 
the generalizability of our results, analyses were first conducted in a 
Danish cohort of older adults (n = 251) and then replicated in a 
cohort of British older adults (n = 668). 

2. Methods 

2.1. Study samples 

2.1.1. LISA study 
Participants in the Live active Successful Aging (LISA) study were 

community-dwelling older adults (ages 62–70 years). The LISA study 
is a randomised controlled trial of a 12-month supervised and 
monitored muscle strength training intervention (Eriksen et al., 
2016). Only baseline data were included in this analysis. Potential 
participants were excluded if they engaged in more than 1 hour per 
week of strenuous exercise, had a current diagnosis of severe med-
ical disease (e.g., active cancer), a musculoskeletal disease that could 
inhibit training, or used medication that could influence the effect of 
training (e.g., androgens). In the current analysis, we also excluded 
participants who reported a diagnosis of a neurological disorder 
(n = 30), had no T1-weighted MRI brain scan (n = 117), missing 
lifestyle or MR data (n = 42), or displayed significant artefacts on 
their MRI scan (n = 11). The LISA study was registered on 
ClinicalTrials.gov (NCT02123641) and complies with the declaration 
of Helsinki. Ethical approval was received from the Ethical Com-
mittees of the Capital Region of Denmark (No. H-3-2014-017) and 
the Danish Data Protection Agency. 

2.1.2. Whitehall II MRI sub-study 
The replication sample was drawn from the Whitehall II MRI sub- 

study, described in detail elsewhere (Filippini et al., 2014). Briefly, 
the Whitehall II study is a prospective cohort of British civil servants 
established in 1985 (Marmot and Brunner, 2005). In the MRI sub- 
study, 800 Whitehall participants were randomly selected to attend 
an additional assessment phase at the University of Oxford. Parti-
cipants were community dwelling-older adults (aged 60–85 years) 
with no history of neurological illness. In this analysis, participants 
were excluded if they presented significant abnormality or artefacts 
on structural MRI scans (n = 47) or had missing MRI or lifestyle 
measures (n = 85). The Whitehall II MRI sub-study has been regis-
tered on ClinicalTrials.gov (NCT03335696). Ethical approval for the 
Whitehall II study was obtained from the University College London 
Medical School Committee on the Ethics of Human Research. The 
Whitehall II Imaging sub-study received ethical approval from the 
Oxford Central University Research Ethics Committee, and informed 
written consent was obtained from all participants. 

2.2. Lifestyle measures 

For each cohort, a single outcome measure was selected to best 
reflect either each exposure construct of interest or each modifiable 
lifestyle factor suggested by Livingston and colleagues (2020) 
(Tables 1 and 2). A full overview of the measures collected in the 
LISA and Whitehall II studies is available in Eriksen et al. (2016) and  
Filippini et al. (2014), respectively. If an exposure was not measured 
in both cohorts (e.g., air pollution, traumatic brain injury, and 
hearing loss), they were not included in the present study. Since only 
6 participants reported having type 2 diabetes in the LISA study, this 
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measure was excluded from the analyses (see Appendix A for results 
in Whitehall only). 

2.3. MRI acquisition and pre-processing 

In the LISA study, MRI scans were acquired at the Danish Research 
Centre for Magnetic Resonance in Hvidovre, Denmark, using a 3T TX 
Philips Achieva MRI Scanner (Best, the Netherlands) with a 32-channel 

head coil. T1-weighted images were acquired over 244 slices with iso-
tropic voxels of 0.85 mm3 (TR = 9.3 ms, TE = 2.7 ms, 288 × 288 matrix, 
and flip angle = 8°). Diffusion weighted images (DWI) were acquired over 
66 slices, with 2 mm3 isotropic voxels (echo-planar imaging with sen-
sitivity encoding factor 2, repetition time (TR) = 9265 ms, echo time 
(TE) = 85 ms, 112 × 112 matrix, 62 uniformly distributed directions at 
b = 1000 s/mm2 and 1 at b = 0 s/mm2). Two additional volumes were 
collected at b = 0 with reverse phase-encoding directions used to correct 

Table 1 
Overview of the lifestyle measures selected for analyses in each cohort     

Construct of interest Selected variable 

LISA study Whitehall II MRI  

Sleep quality “How often is your sleep poor or restless?”a Score on the Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989) 
Physical activity Physical Activity Scale for the Elderly (PASE) (Washburn 

et al., 1993) 
Community Healthy Activities Model Program for Seniors (CHAMPS) Questionnaire 

(Stewart et al., 2001) 
Alcohol consumption Units per week Units per week 
Loneliness “Are there times when you are alone, when you would 

rather be together with others?”b 
“Please tell me how often you have felt this way during the past week: I felt 

lonely.”c 

Obesity BMI BMI 
Blood pressure Systolic blood pressure Systolic blood pressure 
Diabetes (type 2) Yes/no Yes/no 
Smoking Years of smoking Current smoking status (yes/no) 
Depressive symptoms Depressive subscore of the Symptom Checklist (SCL-90) 

(Derogatis et al., 1973) 
Center for Epidemiological Studies Depression Score (CES-D), recalculated to exclude 

the item on loneliness (Item 14) (Radloff, 1991) 
Education Years of education Years of education 

Key: LISA, live active successful aging; MRI, magnetic resonance imaging.  
a Translation from: “Hvor tit sover du dårligt og uroligt?” Answers are on a Likert scale (1 = Every night or almost every night; 2 = Several times per week; 3 = Several times per 

month; 4 = Several times per year; 5 = Never).  
b Translation from: “Sker det nogensinde, at du er alene, selvom du egentlig havde mest lyst til at være sammen med andre?”. Answers are on a Likert scale (1 = Yes, often; 

2 = Yes, sometimes; 3 = Only rarely; 4 = No) and were multiplied by −1 so that increasing scores indicated more frequent feelings of loneliness.  
c Item 14 from the CES-D (Radloff, 1991). (Rarely or none of the time (less than 1 day); Some or a little of the time (1–2 days); Occasionally or a moderate amount of time 

(3–4 days); Most or all of the time (5–7 days).  

Table 2 
Sample characteristics for the test (LISA) and replication (Whitehall II) cohorts     

Sample characteristics  
(Mean  ±  SD) 

Cohort 

LISA study (n = 251) Whitehall II (n = 668)  

Data collection period 2014–2017 2012–2016 
Age (years) 66.5  ±  2.4 69.7  ±  5.1 
Females (n, %) 148, 59% 129, 19% 
Lifestyle variables   
Education (years) 14.44  ±  2.07 14.76  ±  3.32 
BMI 25.71  ±  3.73 26.07  ±  4.16 
Feelings of loneliness Yes, often = 6, 2.4% Yes, sometimes = 39, 15.5% Only rarely = 99,  

39.4% No = 107, 42.6% 
Most or all of the time = 7, 1% Occasionally or a moderate amount of 

the time = 25, 3.7% Some or a little of the time = 69, 10.3% Rarely or 
none of the time = 567, 84.9% 

Physical activity 134.45  ±  55.76 total score on PASE 2752  ±  1808.51 total score on CHAMPS 
Systolic BP (mm/Hg) 143.45  ±  17.35 141  ±  17.54 
Smoking 16.85  ±  16.87 years 20, 3% smokers 
Alcohol consumption 

(units/wk) 
10.69  ±  8.35 15.12  ±  14.74 

Depressive symptoms 
(score) 

0.36  ±  0.42 5.03  ±  5.93 

Sleep quality Every night/almost every night = 16, 6.3% Several times per  
week = 31, 12.4% Several times per month = 58, 23.1% Several 
times per year = 99, 39.4% Never = 47, 18.7% 

4.84  ±  2.98 total score on PSQI 

Brain outcomes   
Global MD 0.00074  ±  0.00002 0.00068  ±  0.00003 
Global FA 0.49  ±  0.018 0.48  ±  0.018 
Total GM volume (cm3) All: 590.13  ±  47.41 F: 570.58  ±  41.52 M: 618.22  ±  40.89 All: 622.49  ±  50.24 F: 573.21  ±  41.02 M: 634.28  ±  44.80 
Right hippocampal 

volume (cm3) 
All: 3.77  ±  0.38 F: 3.69  ±  0.37 M: 3.88  ±  0.37 All: 3.94  ±  0.44 F: 3.77  ±  0.36 M: 3.99  ±  0.44 

Left hippocampal 
volume (cm3) 

All: 3.66  ±  0.39 F: 3.57  ±  0.36 M: 3.79  ±  0.40 All: 3.79  ±  0.43 F: 3.58  ±  0.38 M: 3.84  ±  0.42 

WMH volume (cm3) All: 4.46  ±  5.43 F: 4.39  ±  4.94 M: 4.55  ±  5.76 All: 6.52  ±  3.86 F: 6.52  ±  4.94 M: 6.51  ±  6.51 
Mean cortical 

thickness (mm) 
All: 2.34  ±  0.075 F: 2.35  ±  0.073 M: 2.33  ±  0.075 All: 2.32  ±  0.074 F: 2.32  ±  0.069 M: 2.32  ±  0.075 

Key: F, female; FA, fractional anisotropy; LISA, live active successful aging; M, male; MD, mean diffusivity; PASE, physical activity scale for the elderly; WMH, white matter 
hyperintensity.  
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for susceptibility artefacts. 3D fluid-attenuated inversion recovery 
(FLAIR) images were acquired over 202 slices with 1 mm3 isotropic 
voxels (TR = 4800 ms, TE = 328 ms, 256 × 256 matrix). 

In the Whitehall study, MRI scans were acquired at the Wellcome 
Centre for Integrative Neuroimaging (Centre for Functional Magnetic 
Resonance Imaging of the Brain, FMRIB) in Oxford, United Kingdom. 
Two 3T MRI scanners were used: Siemens Magnetom Verio with a 
32-channel head coil and a Siemens Magnetom Prisma with a 64- 
channel head-neck coil (Erlangen, Germany). For acquisition details, 
please see de Lange et al. (2020). 

For both cohorts, tools from the FMRIB Software Library (Smith 
et al., 2004) were applied to extract global FA and MD values from 
the diffusion weighted images. The diffusion tensor imaging (DTI) 
processing pipelines for LISA and Whitehall are detailed elsewhere 
(Demnitz et al., 2021; Zsoldos et al., 2018). Total gray matter (GM) 
volume, right and left hippocampal volume (Hipp), cortical thickness 
and estimated Total Intracranial Volume (eTIV) were obtained from 
the T1 images using FreeSurfer v6.0 (Fischl et al., 2002). In LISA, 
white matter hyperintensity (WMH) volume was derived from 
masks manually drawn on the FLAIR image by a team of radio-
graphers at Danish Research Centre for Magnetic Resonance. In 
Whitehall, global WMHs were obtained from FLAIR images using the 
Brain Intensity AbNormality Classification Algorithm tool, an auto-
matic segmentation algorithm (Griffanti et al., 2016). 

2.3.1. Covariates 
Prior to statistical analysis, all variables were residualized with 

respect to age and sex using linear models (e.g., BMI ∼ age + sex). 
Volumetric brain measures (WMH, GM, Hipp) were also residualized 
with respect to eTIV. In the Whitehall study, a further covariate of no 
interest was included for the identity of the MR scanner (Verio or 
Prisma). To illustrate the influence of age and sex on individual brain 
outcomes, additional models including these variables are presented 
in Appendix B. 

2.4. Statistical analyses 

Statistical analyses were carried out in RStudio version 1.3.1056 
(RStudio Team, 2020), running on R version 4.0.2 (R Core Team, 
2020), with the CCA (Gonzalez & Dejean, 2021), candisc (Friendly & 
Fox, 2021), BayesFactor (Morey & Rouder, 2018) and ggplot2 
(Wickham, 2016) packages. 

2.4.1. Pre-registration 
The hypotheses, methods, and analysis plan for this study were 

registered in a public repository (https://osf.io/pfq4j). Registration 
occurred after obtaining the results from the first cohort (LISA), but 
prior to the cross-study validation and replication analyses on the 
second cohort (Whitehall). 

2.4.2. Canonical correlation analyses (CCA) 
CCA was applied to derive a linear combination of latent con-

structs (or canonical variates) of lifestyle and brain structure mea-
sures. The obtained linear combination between canonical variates 
generates a canonical correlation coefficient, which is a Pearson’s r 
statistic (Sherry & Henson, 2005). This method has previously been 
used in cognitive neuroscience to identify multivariate patterns 
between behaviour and neuroimaging datasets (for review, see  
Zhuang et al. [2020]). One of the challenges of CCA is overfitting, 
leading to overestimated correlations between the canonical vari-
ates. To overcome this, we tested the validity of the CCA model in a 
second independent dataset. 

First, the full CCA model canonical model was evaluated using 
Wilk’s λ, which are calculated from the eigenvalues and converted to F 
statistics using Rao’s approximation (Friendly & Fox, 2021). The 

squared canonical correlations (R2
c), analogous to the R2 in regressions, 

are reported to represent the proportion of variance shared by the 
pair of canonical variates. If a canonical correlation was significant 
(p-value ≤ 0.05), the following statistics were examined to interpret 
the contribution of each variable: (1) structure coefficients (rs), which 
are comparable to bivariate correlations between the measured and 
canonical variates, and (2) squared structure coefficients (rs

2), which 
represent the amount of variance the observed variables shares with 
its respective variate (Sherry & Henson, 2005). Squared structure 
coefficients can be interpreted as loadings, and rs ≥ 0.3 were inter-
preted as substantive loadings (Dardas & Ahmad, 2014). The validity 
of the canonical correlation analysis was tested by (1) performing a 5- 
fold cross-validation (with 1000 iterations) to estimate how much the 
correlation is expected to drop when tested on new data and then (2) 
bringing forward the coefficients from our main CCA for validation in 
a second independent dataset. Since canonical correlations tend to be 
overestimated, we expected that the canonical correlation observed in 
the replication set would resemble the average correlation from the 5- 
fold cross-validation (and reported in this article’s pre-registration). 
Finally, in a complementary analysis, a separate CCA was conducted in 
the second dataset to examine whether similar covariance patterns 
emerged in the 2 datasets in a data-driven approach. 

2.4.3. Bayesian regressions 
A Bayesian framework was applied to test the strength of the 

evidence in favour of including each lifestyle factor in models of 
individual brain outcomes. Using default priors (Jeffrey-Zelner-Siow, 
r scale = 0.354), 8 multiple Bayesian regressions were conducted. 
Each model had the brain measure as a dependent variable and all 
lifestyle measures as independent variables (e.g., globalFA ∼ de-
pressive symptoms + sleep quality + physical activity + alcohol 
consumption + smoking years + education years + BMI + 
loneliness + systolic blood pressure). The inclusion Bayes factor 
(BFinc) for each lifestyle measure was then used to depict their in-
dividual contributions in a heatmap. The BFinc indicates the relative 
performance for models that include that particular factor, com-
pared to all models that do not. In line with evidence categories 
proposed by Wetzels and colleagues (2011), BFinc above 1, 3, or 10 
were interpreted as anecdotal, moderate, or strong evidence in fa-
vour of the inclusion of the variable in explaining the data, respec-
tively. Symmetrically, BFinc values below 0.1 (1/10), 0.3 (⅓), or 1 (1/1) 
were interpreted as strong, moderate, or anecdotal evidence in fa-
vour of the exclusion of the variable in explaining the data, respec-
tively. 

In addition, univariate Bayesian regressions were conducted for 
each lifestyle factor and brain outcome pair (e.g., globalFA ∼ de-
pressive symptoms). Results from the univariate regressions are 
reported in the Supplementary Information (Appendix C). 

3. Results 

3.1. Canonical correlation analysis 

Using CCA, we tested the lifestyle-brain relationship in two 
cohorts of older adults (Table 2). In the LISA cohort, the re-
lationship between the 9 lifestyle variables and 7 age-related 
measures of brain structure was significant (Wilk’s 
λ = 0.68, F[63, 1329.6] = 1.5, p = 0.008). While the full model 
explained ∼38.5% of the variance shared between the lifestyle 
and brain datasets (Appendix D.1), only the first canonical pair 
explained a significant amount of shared variance between the 2 
datasets (R2

c = 0.136; Appendix D.2). Therefore, only the first 
lifestyle-brain covariate pair was unpacked further. 

A canonical correlation of 0.37 (p  <  0.001) was observed between 
the lifestyle and brain variates in the first dimension (Fig. 1C). The 
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canonical loadings between each measured variable and their cor-
responding canonical variates are illustrated in Fig. 1. Feelings of 
loneliness, BMI, depressive symptoms, and years of smoking were 
the primary contributors to the lifestyle variate (rs ≥ 0.3). Better 
sleep quality and increased BMI were positively associated with the 
brain variate, which was indicative of increased brain health. Length 
of smoking history, more frequent feelings of loneliness and in-
creased depressive symptoms were negatively associated with the 
brain variate (i.e., poorer brain health). Canonical loadings for the 
brain variate followed the expected direction, with negative con-
tributions from white matter hyperintensity volume and mean 
global MD and positive contributions from volumetric measures of 
total grey matter, hippocampus and mean global FA. Mean cortical 
thickness had a negligible contribution to the brain variate, meaning 
that the bivariate correlation between cortical thickness and the 
brain latent was close to 0 (rs = −0.034). Cross-loadings, also reported 
in Table 3, indicate the bivariate correlations between a particular 
measure and the opposing variate. 

Bayesian multiple regressions were conducted to complement our 
interpretation of CCA results (Fig. 1D). Across all models of brain 
measures, only depressive symptoms, education, smoking, and 

loneliness had inclusion Bayes factors greater than 3, suggesting at 
least moderate evidence for their inclusion into the respective models 
(Appendix E). There was strong and moderate evidence in favour of 
smoking being included in models of global FA (BFinc = 11.8) and global 
MD (BFinc = 3.24), respectively. Similarly, there was moderate and 
strong evidence in favour of depressive symptoms contributing to 
models with global DTI indices as outcomes (global FA: BFinc = 10.08; 
global MD: BFinc = 3.17). Loneliness showed moderate evidence for 
being included in a model with global MD as the outcome (BFinc = 3.72). 
Further, the inclusion Bayes Factor indicated moderate evidence in fa-
vour of including education in models of total GM volume (BFinc = 4.86) 
and right hippocampal volume (BFinc = 3.64). 

3.2. Cross-validation and replication 

In the 5-fold cross-validation analysis, the average canonical 
correlation was reduced from 0.37 to 0.14  ±  0.09 SD. Since canonical 
correlations tend to be overestimated, we expected that the cano-
nical correlation from this 5-fold cross-validation would be in-
dicative of the canonical correlation observed in the cross-study 
validation. In the cross-study validation, the standardised canonical 
coefficients from the CCA model in the LISA study were taken across 
to a second independent sample of older adults, the Whitehall study. 
The resulting lifestyle-brain correlation in this cross-study validation 
was r = 0.102 (p = 0.008), resembling the average correlation from the 
5-fold cross-validation (Appendix F). 

3.3. Independent sample replication 

A second CCA was conducted in the Whitehall study, to examine 
whether similar covariance patterns emerged in the two datasets in 
a data-driven approach. In the Whitehall study (n = 668), the re-
lationship between the 9 lifestyle variables and seven measures of 
brain structure was significant (Wilk’s λ = 0.86, F[63, 3678] = 1.63, 
p = 0.001; Appendix G.1). Since only the first canonical pair explained 
a significant amount of shared variance between lifestyle and brain 
measures (R2

c = 0.072; Appendix G.2), only the first lifestyle-brain 
covariate pair was further examined. 

A canonical correlation of 0.27 (p  <  0.001) was observed between 
lifestyle and brain variates in the first dimension. In the lifestyle 
variate, physical activity, alcohol consumption, education, systolic 
blood pressure, and BMI were the primary contributors (rs ≥ 0.3). Of 
these variables, BMI and blood pressure were negatively associated 
with the brain health variate. In contrast, increased education, 
physical activity and alcohol consumption were associated with 
better brain health, as indexed by the brain variate. The main 

Fig. 1. Canonical loadings indicate the correlation between each (A) lifestyle or (B) brain measure and their respective canonical variates. The canonical correlation between 
the brain and lifestyle variates (rs = 0.37) is shown in (C). Abbreviations: CCA, canonical correlation analysis; FA, fractional anisotropy; MD, mean diffusivity; WMH, white matter 
hyperintensity. 

Table 3 
Canonical solution for the lifestyle and brain variates in the first domain for the LISA 
cohort        

Coef rs rs
2 (%) Cross-loadings (rs)  

Lifestyle variate     
Depressive symptoms  −0.392  −0.522  27.245  −0.192 
Sleep quality  −0.077  0.246  6.041  0.090 
Physical activity  0.189  0.207  4.303  0.076 
Alcohol consumption  −0.139  −0.179  3.200  −0.066 
Smoking (years)  −0.307  −0.373  13.920  −0.137 
Education (years)  −0.176  −0.123  1.501  −0.045 
BMI  0.536  0.458  20.963  0.169 
Loneliness  −0.488  −0.662  43.814  −0.244 
Systolic blood pressure  −0.281  −0.162  2.611  −0.059 
Brain variate     
Global FA  −0.222  0.731  53.441  0.269 
Global MD  −1.146  −0.916  83.968  −0.337 
Right Hippocampal 

volume  
−0.341  0.102  1.046  0.038 

Left Hippocampal volume  0.519  0.274  7.501  0.101 
WMH (volume)  0.073  −0.139  1.937  −0.051 
Cortical thickness  −0.218  −0.034  0.114  −0.012 
Total GM (volume)  0.087  0.086  0.743  0.032 

Cross-loadings (rs) represent a bivariate correlation between the measured variable 
and the opposite variate (e.g., physical activity-brain variate). rs ≥ 0.3 are highlighted 
in bold. 
Key: Coef, standardised canonical coefficients; FA, fractional anisotropy; GM, gray 
matter; LISA, live active successful aging; MD, mean diffusivity; rs, structure coeffi-
cient; rs

2, squared structure coefficient; WMH, white matter hyperintensity.  
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contributors to the brain variate were WMH and global FA (rs ≥ 0.3), 
with negative and positive canonical loadings, respectively (Table 4). 

In the Bayesian multiple regressions, only systolic blood pressure, 
physical activity and BMI revealed moderate or strong evidence in 
favour of being substantive contributors to a model of WMH (Fig. 2;  
Appendix H). The evidence was of moderate strength for physical 
activity (BFinc = 9.52) and BMI (BFinc = 3.46), and strong for the in-
clusion of systolic blood pressure (BFinc = 40.26). 

3.4. Sensitivity analyses 

Compared to Whitehall, participants in the LISA study were 
younger and more likely to be female. To explore the role of age and 
sex differences on the replicability of our findings, sensitivity ana-
lyses were conducted in sub-samples of the Whitehall cohort se-
lected to match the age and sex distribution of the LISA study, 
respectively (Appendices I and J). In both cases, there was still no 
overlap between results regarding lifestyle factors with moderate or 
higher evidence strength in favour of being included in a model. Of 
note, these analyses were post-hoc and not planned for in the 
study’s pre-registration. 

4. Discussion 

In this study, the relationship between latent lifestyle factors and 
MRI-derived metrics of brain structure from one cohort was validated 
on a second independent sample of older adults. In both cohorts, we 
found that latent lifestyle factors were positively associated with a 
latent measure of brain structure. This is in line with a body of lit-
erature indicating that modifiable lifestyle factors are associated with 
indices of preserved brain structure in old age (Bittner et al., 2021; 
Wassenaar et al., 2019). Although the lifestyle-brain relationship 
could be validated across studies, it was consistently weak (r ≈ 0.1), 
corresponding to an explained variance of 1%. This means that if we 
knew all the latent lifestyle factors outlined in our analysis, it would 
explain only 1% of the variance in brain structure measured by MRI. 
However, this assumes that the covariance pattern between lifestyle 
and brain outcomes for the different cohorts is common across co-
horts. Our study shows that the pattern of associations between 
lifestyle and brain outcomes differed substantively between the 2 

cohorts – suggesting that the similar canonical correlation did not 
reflect shared mechanisms across cohorts. 

Findings from observational studies of modifiable risk factors 
serve to inform interventions aimed at promoting healthy brain 
ageing (Ngandu et al., 2015; Yaffe & Hoang, 2013). Considering our 
analyses, we add a word of caution to this pipeline: future lifestyle 
interventions should be tailored to suit their target populations. If 
the lifestyle factors most associated with brain health can vary from 
sample to sample, then this should also be expected for intervention 
targets. For example, it could be argued that while the Danish 
sample might benefit from a smoking cessation programme, a 
physical activity intervention with particular attention to blood 
pressure management might be more suitable for the British sample. 
Others have further illustrated this with evidence that the estimated 
potential of dementia prevention through modifiable factors varies 

Fig. 2. Heatmap of the BFinc obtained from multiple Bayesian regression analyses in the LISA (A) and Whitehall (B) studies, wherein each column represents a separate 
regression model. In the models where lifestyle factors showed at least moderate evidence (Inclusion BF  >  3) in favour of being included, the direction of the relationship is 
indicated by blue or pink (negative or positive, respectively). BFinc above 3 or 10 were interpreted as moderate or strong evidence, respectively, in favour of the inclusion of that 
variable in explaining the data. Abbreviations: BFinc, inclusion Bayes factor; FA, fractional anisotropy; LISA, live active successful aging; MD, mean diffusivity; WMH, white matter 
hyperintensity. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 4 
Canonical solution for the lifestyle and brain variates in the first domain for the 
Whitehall II MRI cohort        

Coef rs rs
2 (%) Cross-loadings (rs)  

Lifestyle variate     
Depressive symptoms  −0.165  0.002  0  0.001 
Sleep quality  −0.127  0.012  0.015  0.003 
Physical activity  0.326  0.428  18.307  0.115 
Alcohol consumption  0.307  0.336  11.303  0.090 
Smoking  0.086  0.100  1.001  0.027 
Education (years)  0.392  0.438  19.208  0.117 
BMI  −0.615  −0.704  49.532  −0.188 
Loneliness  0.267  0.204  4.142  0.054 
Systolic blood pressure  −0.274  −0.334  11.221  −0.090 
Brain variate     
Global FA  1.248  0.367  13.449  0.098 
Global MD  1.293  −0.103  1.055  −0.027 
Right Hippocampal 

volume  
0.132  −0.134  1.791  −0.036 

Left Hippocampal volume  −0.360  −0.202  4.086  −0.054 
WMH (volume)  −0.787  −0.754  56.914  −0.202 
Cortical thickness  0.162  −0.182  3.297  0.049 
Total GM (volume)  −0.138  0.024  0.059  0.007 

Cross-loadings (rs) represent a bivariate correlation between the measured variable 
and the opposite variate (e.g. physical activity-brain variate). rs ≥ 0.3 are highlighted 
in bold. 
Key: Coef, standardised canonical coefficients; FA, fractional anisotropy; GM, gray 
matter; MD, mean diffusivity; MRI, magnetic resonance imaging; rs, structure coef-
ficient; rs

2, squared structure coefficient; WMH, white matter hyperintensity.  
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across geographical regions. Compared to Europe and the US, there 
was a greater dementia prevention potential, as calculated by po-
pulation attributable fractions, in Latin America, India, and China 
(Mukadam et al., 2019). Both studies included in our analyses 
stemmed from high-income countries and samples in northern 
Europe. This is in keeping with a geographical limitation of the field: 
almost 80% of studies on modifiable lifestyle factors and cognitive 
decline have emerged from the US or Europe (Beydoun et al., 2014). 
Differences in covariance patterns may, therefore, be even more 
marked in other geographical regions. 

There is also pronounced individual variability in the benefits of 
lifestyle factors on the ageing brain within cohorts. This has been well 
documented in physical activity interventions, leading to the re-
commendation that thorough baseline characterisation may benefit 
the predictive power of physical activity interventions (von 
Cederwald et al., 2023). For example, baseline levels of white matter 
lesion load can limit the potential for brain plasticity following ex-
ercise (von Cederwald et al., 2023). A participant’s sex, baseline 
physical activity levels and genotype (e.g., Apolipoprotein E4) are 
other potential moderators of the effect of physical activity on the 
ageing brain (Barha et al., 2021; Demnitz et al., 2023). These sources 
of individual variability may contribute to the weak signal of the 
observed lifestyle-brain associations, and further stress why char-
acterising your sample is so important to make recommendations. 
Accordingly, baseline characterisation of participants in interventions 
is advisable for designing tailored interventions to promote healthy 
brain ageing. 

To identify which lifestyle factors accounted for the most var-
iance in brain structure measures, we complemented our analyses 
with Bayesian regressions. Across cohorts, there was no overlap in 
lifestyle factors with moderate-or-higher levels of evidence in favour 
of being associated with a particular brain outcome. One explanation 
is that the effect size of individual associations was simply too weak 
to generalise from one cohort to another. In LISA, there was mod-
erate or strong evidence for loneliness, depressive symptoms, edu-
cation and smoking to be included as independent variables in 
Bayesian regressions of individual brain outcomes. The direction of 
the relationships was in accordance with previously reported uni-
variate brain-lifestyle relationships. In the Bayesian regression from 
the Whitehall study, the cardiovascular risk factors (blood pressure, 
physical activity, and BMI) prevailed. In line with the vascular ae-
tiology of WMHs (Moroni et al., 2018), these lifestyle measures 
contributed to explaining the association with WMH volume, but no 
other brain outcome. Given that WMH volume was markedly higher 
in the British cohort (t[349.23] = 5.51, p  <  0.001), it is plausible that 
cross-study differences in white matter lesion load contributed to 
the lack of generalisability in covariance patterns between the two 
studies. Nonetheless, the difference in WMH volume difference was 
no longer significant when adjusting for age, sex and estimated in-
tracranial volume (t[330.16]  <  0.001, p = 1). In the Whitehall study, 
contrary to expectations and previous findings (Topiwala et al., 
2017), alcohol consumption loaded positively on the lifestyle factor 
in the CCA – suggesting that a higher consumption was associated 
with better brain health. However, it is important to stress that there 
was no evidence in favour of an association between alcohol and any 
brain outcome in the Bayesian regressions. It is likely, therefore, that 
the positive loading in the CCA is reflective of the collinearity be-
tween alcohol consumption and education or socio-economic status. 

4.1. Methodological considerations 

Strengths of our study included its multivariable nature, spanning 
most of the lifestyle measures focused on in the ageing literature, and 
the analysis of two large MRI cohorts from different countries. Lifestyle 
risk scores often apply cut-offs for recommended health behaviours, in 

this way binarizing variables into ‘‘beneficial’’ or ‘‘harmful’’. Here, 
whenever possible, we opted to use the continuous forms of the life-
style variables, as this may be more sensitive to detect lifestyle-brain 
relationships (Anaturk et al., 2021). To generalise across samples, the 
most comparable items were selected from each study. Even so, there 
were differences in the acquisition and processing of both lifestyle and 
brain measures. For example, the WMH volumes in the LISA study 
were obtained from manual tracing by radiographers, while the same 
outcome stemmed from an automatic segmentation tool in the 
Whitehall study. Further, while sleep quality consisted of a single item 
measure in LISA, the total score from a standardised questionnaire was 
used in Whitehall. In one cohort, the use of “years of smoking” arguably 
reflected a more cumulative lifelong health behaviour than the binary 
measure (smoking vs not smoking) used in the other cohort. Accord-
ingly, there are systematic differences between studies which may be 
overestimating their differences. 

One difference between the 2 cohorts was the sex proportion. 
While the LISA sample was 59% female, this proportion was only 19% 
in the participants sampled from the Whitehall study. The male 
over-representation observed in the Whitehall study reflects the sex 
distribution of the British civil-service workforce in the 1980s, from 
which that cohort was recruited. Sex has been shown to moderate 
various lifestyle-brain relationships, such as the link between phy-
sical activity and parahippocampal volume (Casaletto et al., 2020). 
Although all measures included in our analyses were adjusted for 
sex, other non-linear or moderating effects may be unaccounted for. 
In a sensitivity analysis, we repeated our analyses on a sub-sample of 
the Whitehall study with 59% female participants to test whether 
this resulted in a covariance pattern more similar to the one in LISA 
(Appendix I). This was not found to be the case: matching the 
samples in terms of proportion of female participants did not pro-
duce more comparable findings between the two datasets. Similarly, 
restricting the Whitehall sample to match the slightly younger age 
range of the LISA study did not result in a more similar pattern of 
results between the two datasets (Appendix J). 

Beyond the lifestyle factors included here, air pollution, hearing 
impairment and traumatic brain injury have also been shown to 
modify risk of reduced brain health (Livingston et al., 2020). Un-
fortunately, these variables were not available in the included da-
tasets. Epidemiological studies have also examined the benefits of 
specific nutrients, whole diets, and individual foods (e.g., folate in-
take, Mediterranean diet, fruit and vegetable consumption) on brain 
health (for review, see Jensen et al. [2021]). It would be of interest to 
replicate our analyses with these additional modifiable lifestyle 
factors. Finally, given our focus on modifiable lifestyle factors, the 
current study does not account for the (undeniably important) role 
of non-modifiable factors such as genetics on brain structure 
(Satizabal et al., 2019), lifestyle factors (Topiwala et al., 2022) or their 
interactions (Barha et al., 2021). 

4.2. Conclusion 

Our CCA approach enabled us to identify a significant, albeit 
weak, correlation between latent lifestyle and brain factors that 
could be validated across studies of older adults. However, in mul-
tiple regressions, the pattern of observed associations between 
lifestyle and brain measures differed between samples. Baseline 
characterisation of participants in interventions may therefore be 
advisable for designing tailored and effective interventions to pro-
mote healthy brain ageing. 
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