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Abstract

We introduce an interpretable stochastic integrated machine learning based multiscale approach
for the prediction of the macroscopic thermal conductivity in Polymeric graphene-enhanced composites
(PGECs). This method encompasses the propagation of uncertain input parameters from the meso to
macro scale, implemented through a foundational bottom-up multi-scale framework. In this context,
Representative Volume Elements in Finite Element Modeling (RVE-FEM) are employed to derive the
homogenized thermal conductivity. Besides, we employ two sets of techniques: Regression-tree-based
methods (Random Forest and Gradient Boosting Machine) and Neural networks-based approaches
(Artificial Neural Networks and Deep Neural Networks). To ascertain the relative influence of factors
on output estimations, the SHapley Additive exPlanations (SHAP) algorithm is integrated. This inter-
pretable machine learning methodology demonstrates strong alignment with published experimental
data. It holds promise as an efficient and versatile tool for designing new composite materials tailored
to applications involving thermal management.

Keywords: Polymeric graphene-enhanced composites (PGECs), Interpretable Integrated Learning,
Stochastic multi-scale modeling, Thermal properties, Data-driven technique

1. Introduction

Polymeric graphene-enhanced composites (PGECs) are a class of advanced materials that have at-
tracted significant attention in recent years due to their outstanding and designed materials properties,
particularly in thermal conductivity since graphene embedded. Graphene, a two-dimensional material
composed of carbon atoms arranged in a honeycomb lattice, is an excellent heat conductor due to its
high intrinsic thermal conductivity [1]. Polymeric materials, on the other hand, have relatively low
thermal conductivity. However, by incorporating graphene into polymers, the resulting PGECs can
exhibit significantly enhanced thermal properties [2].

Thermal conductivity is the measure of how well a material conducts heat and is a critical prop-
erty for many industrial applications, including electronic packaging, thermal management, Aerospace
engineering, Automotive, and energy storage [3]. For example, some of the potential applications of
PGECs can be used as thermal management materials in electronic devices to dissipate heat gener-
ated by the components [4]. This can improve the reliability and lifespan of electronic devices. Or it
can be used as energy storage components in battery electrodes or supercapacitors to improve heat
dissipation, which can enhance the overall energy storage capacity and lifespan of these devices [5].

The enhancement in thermal conductivity of PGECs is due to the excellent thermal conductivity
of graphene, which can efficiently transfer heat throughout the material. Additionally, the high surface
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area and flexibility of graphene enable efficient heat transfer between the polymer matrix and graphene
fillers. The thermal conductivity of PGECs can be further improved by controlling the size, shape,
and concentration of graphene fillers [6]. Moreover, the choice of polymer matrix can also impact the
thermal conductivity of PGECs. For example, polyethylene-based PGECs have shown high thermal
conductivity due to their low thermal resistance at the interface between the graphene fillers and
polymer matrix.

In order to figure out the inter mechanism, we need to apply a computational approach named
multi-scale modeling that combines multiple length scales to study material behavior and properties.
Multi-scale analysis can bridge the gap between the different length scales in materials, from fine scale
to the coarse scale [7]. It allows for the investigation of phenomena that occur at different scales,
such as the influence of atomic arrangements on the mechanical properties of materials, the effect of
microstructure on material behavior, or the impact of macroscopic loading on the microstructure. In
addition, uncertainties should also be considered in reality due to variations in material properties,
manufacturing processes, and environmental conditions. These uncertainties can lead to variations in
the behavior and performance of materials, which can impact the reliability and safety of engineering
structures. Therefore, stochastic multiscale modeling is applied in this study. It involves incorporating
the inherent uncertainties that exist at various length scales in materials and predicting their effects on
material properties and behavior. The goal of this approach is to provide a more accurate and reliable
prediction of material performance under various conditions by taking into account the uncertainties
in the material properties and the interaction between different scales.

Many studies have been conducted experimentally. Joanna Wilk et al. study the thermal prop-
erties of graphene oxide/rubber composites experimentally, with varying weight concentrations of
graphene oxide as a filler [8]. C. Selvam et al. investigate the thermal conductivity of ethylene glycol
and water with graphene nanoplatelets using sodium deoxycholate as a surfactant [9]. Na Song et al.
present a novel approach for fabricating highly thermally conductive polypropylene/graphene compos-
ites with a three-dimensional graphene framework, achieved through a matrix functionalization method
[10]. However, due to the limitations of pure experimental methods, which can be time-consuming and
cannot fully capture complex interface behavior, computational approaches have been increasingly uti-
lized to investigate polymeric graphene-enhanced composites at different length scales [11]. Van-Thien
Tran et al. propose a BCMO-ANN algorithm for vibration and buckling optimization of functionally
graded porous (FGP) microplates [12]. Bao-Loi Dang et al. propose a systematic and time-efficient
approach with data-driven techniques in combination with numerical and experimental data to cal-
ibrate 2D VARANS-VOF models for simulation of wave interaction with porous plate in numerical
wave tank [13]. Shengchun Wang et al. introduce a deep learning-based algorithm for recognizing
rail profiles and employ a template-matching driven tracking algorithm to rapidly track railhead laser
stripes, resolving profile measurement for passing trains at crossings and achieving precise positioning
and swift tracking of diverse laser stripes [14].

Numerous studies have indicated that the macroscopic thermal conductivity of composites is
significantly influenced by those various factors. Mahmood M. Shokrieh et al. developed a stochastic
multiscale model to analyze the mechanical properties of carbon nanotube (CNT) composites [15].
The model takes into account several uncertain input parameters, such as the length, orientation,
agglomeration, curvature, and dispersion of the CNTs. Similar contributions have also been made by
Vu-Bac et al. [16]. In our previous work, we propose an uncertainty analysis method for stochastic
modeling of polymeric nanocomposites (PNCs) [17] [18] [19] [20].

Due to the high computational cost of stochastic multiscale models, surrogate approaches have
been developed to propagate uncertain parameters across scales [21] [22]. Machine learning has become
a popular tool for this purpose, with the emergence of high-performance computing and artificial
intelligence [23]. It provides a powerful set of tools for analyzing and modeling such complex systems.
By using statistical and computational techniques, machine learning algorithms can automatically
identify patterns in the data and make predictions about future outcomes[24]. Machine learning has
been used in materials design and multiscale analysis, For example Hongwei Guo et al. propose a
stochastic deep collocation method (DCM) based on neural architecture search (NAS) and transfer
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learning for heterogeneous porous media [25]. Other examples include the combined technique of long
short-term memory and hidden Markov models to predict crack patterns presented by Nguyen-Le et
al. [26], an effective method for crack identification suggested by S.Khatir et al. [27], and a new
modified damage indicator using transmissibility techniques combined with ANN to improve Local
Frequency Response Ratio (LFCR) proposed by Roumaissa Zenzen et al. [28]. Huang et al. adopt a
machine learning approach to predict the mechanical properties of carbon nanotube (CNT)-reinforced
cementitious composites [29]. Tran-Ngoc et al. put forward a novel machine-learning approach that
uses global search techniques and vectorized data for damage detection in structures [30]. However,
these works focus more on the performance of algorithms and models, and do not discuss in-depth the
internal mechanism and interpretability of the models. One of the criticisms of machine learning (ML)
methods in materials design is that they are often considered black-box models that lack transparency
and do not provide insights into the underlying physical mechanisms governing the problem at hand.

To address this issue, researchers have been working on developing more transparent ML models
that can provide insights into the input-output relationships and sensitivities of the model. One
approach to achieving this is through the use of explainable AI (XAI) techniques, which aim to make
the decision-making process of ML models more interpretable and transparent [31]. For a better
interpretation of ML models, a unified approach, SHAP (SHapley Additive exPlanations) is recently
developed and commonly used [32]. It provides a local explanation for a particular prediction by
assigning each feature a value that indicates its contribution to the prediction relative to the average
prediction across the entire dataset. These contributions are then used to generate a summary plot
that ranks the features by their importance and shows how they contribute to the prediction for a
given instance [33].

The objective of this study is to develop a stochastic integrated machine learning (ML) model that
can accurately predict the thermal conductivity of Polymeric graphene-enhanced composites (PGECs).
Additionally, the study aims to establish an interpretable quantitative relationship between the model
predictions and input variables using the SHAP (Shapley Additive Explanations) method. This article
is structured as follows. Section 2 presents the general methodology, followed by an introduction of the
materials in Section 3. Machine learning (ML) models and interpretability are discussed in Section 4,
and the numerical results are presented in Section 5. Finally, the manuscript concludes with Section
6, which outlines the conclusions.

2. Methodology of research

We propose a machine learning-based multi-scale stochastic model, which comprises two main
components: stochastic multi-scale modeling and machine learning methods. Our modeling strategy
employs a hierarchical approach, bridging two different length scales from the meso to macro scales,
as illustrated in Fig. 1. Our approach begins with a bottom-up approach that transfers information
through the length scales while accounting for uncertainties. In this hierarchical framework, the output
of the finer scale serves as the input for the next coarser scale. Finally, we employ machine learning to
analyze the output from the stochastic multi-scale model. The entire approach involves three steps:

1) Bottom-up modeling;
2) Stochastic modeling;
3) Data-driven methods.

3. Stochastic multi-scale modeling

3.1. Multi-scale modeling

We employ a bottom-up approach, i.e. a hierarchical multiscale method where information is
transferred only from the fine scale to the next coarser scale. Fig 2 shows the associated flowchart.
The models at different length scales will be described subsequently.
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Figure 1: Multi-scale modeling scheme
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Figure 2: Multi-scale modeling scheme
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3.1.1. Meso-scale modeling

Our multi-scale modeling approach involves the use of continuum models at the meso-scale, with
Representative Volume Elements (RVEs) consisting of a limited number of inclusions that can ac-
curately represent the material properties. The cubic RVE, shown in Fig 3, is used as a common
assumption, and the graphene fillers within the RVE are simplified as disks. We use the commercial
package Abaqus with a user-designed Python script, which automatically generates the RVE structures
based on a 3D non-collision algorithm written in C++ [6]. The fillers are placed based on given prob-
ability density functions (PDFs) of the input parameters. The flowchart for our meso-scale modeling
approach is summarized in Fig 2 on the upper side, while the discretization with quadratic tetrahedra
elements is illustrated in Fig 3. Regarding the element type, we apply DC3D4 in the finite element
model for both matrix and inside fillers.

At the meso-scale, we also consider the presence of agglomerations and dispersions of graphene
sheets, which can occur when there is a high aspect ratio and high volume fraction of graphene. To
analyze and quantify the degree of agglomeration, we use a two-parameter method. This approach
involves generating different spheres that can be regarded as gathered zones, as shown in Fig 4. The
spherical area within these zones is considered as the ’inclusions’. The entire space is divided into two
components - V inclusionGraphene and V matrixGraphene:

VGraphene = V inclusionGraphene + V matrixGraphene (1)

where the V inclusionGraphene and V matrixGraphene denote the graphene sheets placed in the inclusions and matrix,
respectively. The agglomeration index ξ and dispersion index ζ are defined as

ξ =
Vinclusion

V
, ζ =

V inclusionGraphene

VGraphene
(2)

The agglomeration index ξ is the volume fraction of inclusions relative to the entire volume of the RVE.
Additionally, we use the dispersion index ζ, which represents the inner volume fraction of graphene
sheets in the inclusion relative to the total volume of the disks. When ξ = ζ, the disks are uniformly
distributed in the RVE, indicating no agglomeration. However, when ξ > ζ, the disks are unevenly
spaced in the RVE, indicating agglomeration.

Determining a suitable RVE size is the first step, and one approach is to use the sample enlargement
method. This method involves increasing the RVE size incrementally until the homogenized thermal
conductivity converges to a specific value. The convergence criterion is based on averaging the values
of the thermal conductivity over a large number of samples:

〈R〉 =
1

M

M∑
K=1

R(K) (3)

where R(k) is the current value in the k−th RVE, and M is the total RVE number. After the ensemble
is averaged, a convergence criterion must be satisfied to define a suitable RVE size:∣∣∣∣ 〈R(K+1)〉 − 〈R(K)〉

〈R(K)〉

∣∣∣∣ < Tol = 1% (4)

where R(k) is the current value in the k− th RVE, and R(k+1) is the k+ 1− th RVE. The heat transfer
problem is governed by

Cf
∂θ

∂t
+∇ · q −Q = 0 (5)

where θ represents the absolute temperature and Q is the heat source. The heat capacity is denoted
by Cf , and the heat flux vector is given by q. For quasi-steady problems, the time-dependent term
Cf

∂θ
∂t is commonly neglected. Substituting Fourier’s law into the governing equation yields

div(κ∇θ) +Q = 0 in Ω (6)
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with natural boundary conditions

qn = −q · n = q on Γq (7)

where n is the normal vector and q is the flux at boundary Γq. The weak form of the heat equation
is given by: Find θ ∈ ν such that:∫

Ω

κ∇θ · ∇δθdΩ = −
∫

Γq

δθq̄dΓ +

∫
Ω

δθQdΩ ∀δθ ∈ ν0 (8)

with θ ∈ ν and δθ ∈ ν0, in which θ denotes the trial function and δθ the test function. As Fig
5 suggests, we apply two different heat fluxes from one direction through the cubic RVE results in a
temperature gradient. We then apply Fourier’s law to compute the homogenized thermal conductivity:

q = −κ∇T (9)

with κ =

κxx 0 0
0 κyy 0
0 0 κzz

 (10)

where κxx = κyy = κzz is defined by applying boundary conditions at different RVE edges and κ is the
conductivity of the composite. The macroscopic thermal conductivity of the composite is the output
at the meso-scale.

Figure 3: The RVE cube and Meshing

RVE

Inclusion

Inclusion

Figure 4: The agglomeration and dispersion in the Cubic
RVE

3.1.2. Macro-scale modeling

The Mori-Tanaka method is a widely used model for estimating the effective thermal conductivity
of composite materials [6]. It provides a means to predict the overall thermal conductivity of a com-
posite based on the properties of its constituents and their spatial arrangement. At the macroscopic
level, a larger structure is considered to account for uncertainties, and it is homogenized by randomly
distributing cubes with different thermal properties extracted from simulations at the mesoscale, see
Fig 6. In the context of thermal conductivity, the Mori-Tanaka method considers the thermal con-
ductivities of the matrix material and the reinforcement material, as well as their volume fractions
in the composite. It utilizes an averaging technique to estimate the effective thermal conductivity
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Figure 6: The material region in macro-scale modeling

by assuming the thermal conductivity of the composite is governed by two main mechanisms: the
thermal conductivity of the matrix and the enhanced thermal conduction pathways provided by the
reinforcement.

The equation for estimating the effective thermal conductivity of a polymeric graphene-enhanced
composite using the Mori-Tanaka method is as follows:

keff = km +
4kgVg

(1− Vg) + km
kg

(11)

where keff is the effective thermal conductivity of the composite; km is the thermal conductivity of the
polymer matrix; kg is the thermal conductivity of graphene, and Vg is the volume fraction of graphene
in the composite. This equation assumes that the graphene flakes are thin and have a high aspect
ratio, allowing heat to be conducted mainly along the graphene plane.

3.2. Stochastic modeling

In this study, uncertainties are considered at different scales, encompassing material properties,
micro-structure, and manufacturing processes (see Table 1). While the boundary conditions are as-
sumed to be deterministic, a stochastic analysis is performed by defining a probability density function
(PDF) for each uncertain input parameter, which includes its mean and variance. To efficiently model
the stochastic behavior of the system, the Latin Hypercube Sampling (LHS) method is utilized [34].
This approach generates a design matrix of size N ×m, where m is the number of input parameters,
and N is the number of intervals where the cumulative probability curve is equally divided. By using
the PDF of the input parameters, the mean, standard deviation, and variance of the output parameter
can be determined. The design matrix is then mapped to the physical model to calculate the actual
target output value [35]. LHS optimizes the sampling cost by randomly generating multiple input
parameters, which reduces the calculation cost and sampling time compared to Monte Carlo Sampling
(MCS) [36]. Finally, surrogate models are used to dramatically reduce the computational cost for
uncertainty analysis.

4. Data-driven method

4.1. Dataset Preparation

We obtain the ’raw data’ directly from physical models at different scopes, i,e., FE simulations
by generating RVE at the mesoscale and numerical analysis with MATLAB at the macroscale. This
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Table 1: Model uncertainties

Scale Inputs mean
standard
deviation

Type of distribution Sources

Meso Thermal conductivity of fillers 3978.85 580.79 Suchismita, et al. [37]

Thermal conductivity of Matrix 0.252806 0.098237 A. Moisala et al. [38]

Interface resistance 20.2356 5.9294 M.Freitag et al.[39]

Aspect ratio 59.1911 123.2185 Khoa Bui et al. [40]

Agglomeration index 0.55105 0.26127 Nam Vu-Bac et al. [16]

Dispersion index 0.55010 0.26154 Nam Vu-Bac et al. [16]

Macro Volume fraction 0.054164 0.025811 M.Shokrieh,et al.[15]

initial data is divided into two groups: the training set, which accounts for 80% of the entire database,
and the remaining 20% called test set.

Subsequently, all the data should be normalized to ensure that the data of attributes are com-
pressed to the same scale. It can reduce the computational cost and increase the robust. Predictability
and accuracy are measured by coefficient of determination (R2), root mean square error (RMSE), and
mean absolute error (MAE). All those metrics are functions of model residuals, where RMSE, R2 and
MAE values can be calculated with

RMSE =

√√√√ 1

N

N∑
i=1

(Yri − Ypi)2 (12)

R2 = 1−
∑N
i=1(Yri − Ypi)2∑N

i=1(Yri − Ymean)2
(13)

MAE =

∑N
i=1 |Yri − Ypi|

n
(14)

Lastly, the Interpretability should be discussed based on previous steps. SHAP is then used to
explain the model predictions, i.e., feature importance and Shapley values.

4.2. Cross Validation and Hyper-parameters tuning

Cross-validation (CV) is effectively used in machine learning methods for estimating hyper-
parameters and building integral models. CV avoids over-fitting to the training data by putting
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divided data into different training and test or validation sets. The most commonly applied CV
method is K-Fold, that is, K verification sets are separated. During training process, the test set does
not participate in but verify the performance of models and determine the insufficiency in fitting. If
the model performance on the test set is much lower than that on the training set, it indicates the
model is over-fitting, otherwise it is under-fitting.

Specifically, the basic idea behind k-fold cross-validation is to split the available data into k subsets,
or ’folds’, and then use each fold as a testing set while training the model on the remaining k-1 folds.
This process is repeated k times, with each fold used once as the testing set. The performance of
the model is then calculated by averaging the performance metric (such as accuracy or mean squared
error) obtained over the k folds. This provides a more reliable estimate of the model’s performance on
unseen data compared to using a single train-test split. K-fold cross-validation is particularly useful
when the size of the dataset is small, as it allows us to use all of the data for both training and testing.
It can also help to reduce the impact of bias and variance in the model by testing it on multiple subsets
of the data.

Hyper-parameter tuning is the process of selecting the optimal values for the hyper-parameters
of a machine learning model. Hyper-parameters are parameters that cannot be learned during the
training process and must be set prior to training. It is an important step in building a successful
machine learning model. Choosing the right hyper-parameters can significantly improve the accuracy
and performance of the model. However, hyper-parameter tuning can be a challenging and time-
consuming task, as the optimal values for the hyper-parameters are often not known beforehand and
must be determined through trial and error. Regardless of the approach used, hyper-parameter tuning
is an iterative process that involves training and evaluating the model with different sets of hyper-
parameters until the optimal set is found. It is important to carefully consider the trade-offs between
model complexity and performance, as overly complex models can lead to overfitting, while overly
simple models may underfit the data. In this case we use Particle Swarm Optimization to tune the
hyper-parameters. The PSO algorithm, which has been proven successful also in our previous studies
[18][19]. The SSE is selected as fitness function from the 10-fold CV; it is minimized continuously
during the PSO process. It is given below:

SSE =
1

N

N∑
i=1

(Yri − Ypi)2 (15)

where Yri and Ypi are the required and predicted i − th output parameters, respectively; N is the
number of output parameters. A swarm size of 450 is chosen, ω , c1 and c2 are 1 and (2.0,2.0),
respectively [19].

4.3. Regression-Tree-based approaches

The tree-based model employs a divide-and-conquer strategy to establish a connection between
inputs and outputs. As illustrated in the accompanying Fig 7, the model divides the data multiple
times, with each division corresponding to an if-then judgment. The model’s three key elements are
the depth and complexity of the tree, the segmentation points, and the prediction equations at the
final node. However, a regression model with a single regression tree may not fit the data sufficiently.
To address this issue, we utilize two integrated tree-based models: Random Forest (RF) and Gradient
Boost Machine (GBM), both of which are based on a tree architecture. The only difference between
the two methods is their contribution ratio to the total result obtained by different branches.

4.3.1. Random Forest

Random Forest is a powerful machine learning algorithm proposed by Breiman [41] that is com-
monly used for classification, regression, and other predictive modeling tasks. It is an ensemble learning
method that combines multiple decision trees, which are individually weak classifiers, into a strong
classifier. In a Random Forest model, multiple decision trees are trained on random subsets of the
original data set, with each tree making its own independent prediction. The final prediction of the
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Random Forest model is obtained by aggregating the predictions of all individual trees, usually by
taking the majority vote. The architecture of this tree-based model is illustrated in Fig 8. One of the
main advantages of Random Forest is that it is highly accurate and robust to overfitting, which can
be a major issue for decision trees. By combining multiple decision trees, the Random Forest model
is able to reduce the variance of the model and improve its generalization performance. Random
Forest is also able to handle missing values and outliers in the data, making it a useful tool in many
real-world applications. Additionally, it can be used to extract feature importance, which can help in
understanding the underlying patterns in the data and improve the interpretability of the model [42].
Alg 1 presents the random forest algorithm

Algorithm 1 Random Forest Algorithm

Require: The number of predictors k;
The number of trees t;
The number of split points s;

Ensure: Predictive value Y (x);
1: Choose the number of models m
2: For t=1,2,...,m do
3: Generate a bootstrap sample from the original data
4: Train a tree model on this sample
5: For s=1,2,...,m do
6: Randomly extract k < d attributes as predictors
7: Choose the optimal variable among k attributes
8: end for
9: Tree model rule termination conditions take effect

10: end for
11: return Y (x);

x <5 x 5

y <3 y 3

y 3y <4

Figure 7: The illustration of regression tree

Tree 1 Tree 2 Tree 2 Tree n

Random Forest

    Instance 

Set A Set B Set C Set N

Majority-Voting

Final Output

Figure 8: The framework of Random Forest

4.3.2. Gradient Boosting Machine

Gradient Boosting Machine (GBM) is a powerful machine learning technique used for both re-
gression and classification problems. GBM is an ensemble method that combines multiple weak or
base models into a stronger predictive model [43]. The idea behind GBM is to iteratively train weak
models, where each subsequent model is trained to improve the predictions made by the previous
models. The term ”gradient” in GBM refers to the use of gradient descent optimization to minimize
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the loss function. The algorithm uses a differentiable loss function, such as mean squared error or
binary cross-entropy, to measure the difference between the predicted values and actual values. The
gradient of this loss function is then computed, and the algorithm tries to minimize the loss function
by updating the parameters of the weak models in the direction of the negative gradient. The weak
models in GBM are typically decision trees, where each tree makes a prediction based on a set of rules
or conditions on the input features. The trees in GBM are trained in a sequential manner, where each
tree is trained to correct the errors made by the previous trees. The final prediction is made by com-
bining the predictions of all the trees. Alg. 2 shows a pseudo code of the Gradient Boosting Machine.
GBM has several advantages over other machine learning algorithms. It can handle a large number
of input features, can capture non-linear relationships between the features and the target variable,
and can handle missing data. The Gradient Boosting Machine (GBM) exhibits certain similarities to
the Random Forest algorithm in integration. The Gradient Boosting Machine (GBM) shares similar-
ities with the Random Forest algorithm, as both employ a similar integrated idea to improve overall
performance. However, there is a fundamental difference between them. In the Random Forest, the
individual components are trained simultaneously and contribute equally to the complete model. In
contrast, the GBM relies on chain relationships between neighboring components. This means that
each component is trained sequentially to improve upon the errors made by the previous one, resulting
in a more refined and accurate final model.

Algorithm 2 Gradient Boosting Machine

Require: The Depth of trees D;
The number of iterate K;

Ensure: Predictive value Y (x)
1: Calculate the mean of the response variable as the initial predicted value of each sample
2: For k=1,2,...,K do
3: Calculate the residual between observed value and predictive value;
4: Use residuals as response variables to fit a tree with depth D;
5: Use the previous steps to get the regression tree to predict each sample;
6: Update each sample and add the obtained in the previous step;
7: end for
8: return Y (x);

4.4. Neural-network-based approach

A neural network-based approach is a type of machine learning algorithm that is inspired by the
structure and function of the human brain. It involves the use of artificial neural networks, which are
composed of interconnected nodes or neurons, to process and analyze data [44]. Neural networks learn
from examples, and they are trained using large sets of labeled data. During training, the network
adjusts the strengths of the connections between its neurons to minimize the difference between its
output and the desired output. Once the network has been trained, it can be used to make predictions
on new, unseen data. Neural networks are widely used in a variety of applications, including image
and speech recognition, natural language processing, and autonomous driving. They have the ability
to learn complex patterns in data, and can often outperform traditional machine learning algorithms
in tasks that involve large amounts of data or complex relationships between variables .

In our network, we consider l hidden layers, where the 0-th layer represents the input layer and
the (l + 1)-th layer represents the output layer. To obtain the output for the l-th layer, we use the
following equation:

Y li = Fl−1(

ml−1∑
i=1

(X l−1
t ωlij) + bli) (16)

where Y li represents the weighted input into the i-th neuron on the l-th layer; W l
ij is the weight and

bli is the bias. The activation function in the l-th layer is denoted by Fl−1, and ml−1 is the number
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of neurons in the (l − 1)-th layer. For the input layer and hidden layer 1, we use the Rectified Linear
Unit (ReLU) activation function, which is also employed for hidden layer 1 and hidden layer 2. The
equations for these activation functions are:

FReLU (x) = max(0, x) (17)

To self-adjust the initial weights and biases after minimizing the computational error, we utilize the
Back Propagation method (Alg 3). The Stochastic Gradient Descent (SGD) method is used during
the training process to minimize the loss function. Starting from the input layer, the BP algorithm
transmits data layer by layer until it reaches the output layer. Once the error between the target value
and the output generated by the network is calculated, the error is backpropagated to the hidden layers
for comparison, resulting in the adjustment of weights and biases. Each iteration of this process is
called an epoch, and the epochs are repeated multiple times until a stopping condition is satisfied. To
perform these computations, we use the TensorFlow r2.0 platform with Python/Rstudio, utilizing the
RMSProp optimizer, an extension of the Stochastic Gradient Descent (SGD). We define an improved
L2-loss Root Mean Square Error (RMSE) as our loss function.

Algorithm 3 Back Propagation method

Require: The training set D = (xk, yk)mk=1;
The learning rate η;

Ensure: Minimize the cumulative error on D
1: Randomly initialize weights and deviations in the range of (0, 1)
2: For all (xk, yk)∈ D do
3: Calculate the output of the current sample ŷk;
4: Calculate the gradient of the neurons in the output layer gj ;
5: Calculate the gradient of hidden layer neurons eh;
6: Update connection weight whj , vih and bias θj , γh
7: end for
8: return Neural network Y with determined weights and biases

4.5. Interpretable Machine-Learning Methods

Interpretable machine learning (IML) refers to the ability to understand and interpret the decisions
made by machine learning models [45]. This is particularly important in applications where the
decision-making process of the model can have significant consequences. Interpretable machine learning
methods are designed to address this issue and make machine learning models more transparent and
explainable. These methods include Feature importance, Model visualization, Rule-based models,
Surrogate models, Counterfactual explanations. By improving the transparency and interpretability
of machine learning models, interpretable machine learning methods can increase trust in machine
learning models and enable their use in critical applications.

4.5.1. Interpretable Machine Learning

In traditional machine learning, models are often black boxes, where it’s difficult to understand
how the model made its predictions or decisions. This lack of transparency can be a significant
issue, particularly in applications where the decision-making process of the model can have important
consequences. Interpretable machine learning (ML) methods have gained popularity recently because
they address the long-standing issue of black-box models. It aims to increase the degree to which
humans can understand the reason for a model’s output given specific inputs. This not only involves
the theoretical mapping of inputs to outputs but also considers factors such as feature importance and
how each feature influences the model’s output for individual samples and the entire dataset [46].

There are two main categories of interpretable methods: model-specific and model-agnostic [46].
Model-specific methods are limited to certain types of models, such as linear regression or decision trees,
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which have explicit mathematical rules and a reduced model complexity. However, many advanced
ML methods are not inherently interpretable, such as random forests and gradient boosting machine,
which combine multiple decision trees.

Model-agnostic interpretable methods are not specific to any particular ML model, and can be
applied to a variety of models. These methods analyze the relationship between inputs and outputs,
such as feature importance or partial dependence plots. Among the model-agnostic methods, SHAP
has gained popularity due to its ability to provide both global and local interpretability [47]. Global
interpretability refers to the ability of a model to explain its overall behavior by showing how the output
is influenced by different features across the entire dataset. It provides a summary of the model’s
behavior on a global scale. On the other hand, local interpretability focuses on understanding how the
model arrives at its output for a specific input or sample. It provides a detailed understanding of how
each feature affects the model’s output for a single data point. Both global and local interpretability
are important for understanding the behavior of a model and can be achieved using model-agnostic
methods such as SHAP. It quantifies the importance of each feature and how it affects the model’s
prediction on both a whole database and a single sample level, making it a valuable tool for interpretable
ML.

4.5.2. Shapley Additive Explanations

Shapley Additive Explanations (SHAP) is a method for interpreting the output of machine learning
models. The method is based on Shapley values, which is a concept from cooperative game theory used
to assign a value to each player in a game based on their contribution to the overall outcome [48]. In
the context of machine learning, Shapley values are used to determine the contribution of each feature
in the input data to the final prediction of the model. It provides a way to explain the predictions of
any machine learning model by assigning a contribution value to each feature in the input data. This
contribution value indicates how much each feature contributes to the final prediction of the model.
The contribution value can be positive or negative, depending on whether the feature increases or
decreases the prediction. The framework of this method is illustrated in Fig. 9.

The SHAP method is model-agnostic, which means it can be used to explain the output of any
machine learning model, regardless of the algorithm used to train the model. To compute SHAP
values, the method uses a sampling-based approach to estimate the contribution of each feature to the
prediction. The method generates many possible combinations of input features and calculates the
prediction for each combination. It then uses these predictions to estimate the contribution of each
feature using the Shapley value concept. The contribution of each feature is represented by a Shapley
value [49]. Consequently, the explanation model, g(x0), can be defined as follows:

g (x′) = ϕ0 +
M∑
i=1

ϕix
′
i (18)

where x′ represents the vector of simplified input variables that are derived from the original input
variables x in the dataset. M represents the number of features in the dataset, while ϕ0 is a constant
when all inputs are 0. The attribution values for each feature i are represented by ϕi. The SHAP
method uses game theory to assign the contribution of each feature to the output of the model, with
the Shapley value representing the contribution of each feature.

The explanation model must meet certain requirements, including the following:

• Local accuracy: The output generated by the explanation model should be consistent with the
output produced by the original machine learning model for the specific input being explained:

g (x′) = ϕ0 +

M∑
i=1

ϕix
′
i = ϕ(x) (19)

In this context, ϕ(x) refers to the machine learning model, for instance, decision tree-based models.
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• Missingness: If a feature is absent in a sample, the corresponding feature attribution value will
be zero.

x′i = 0⇒ ϕi = 0 (20)

• Consistency: the feature attribution values, such as the Shapley value, should have consistent
changes in their contributions. For instance, if we have two machine learning models φ and φ′, we
expect the feature attribution values to vary consistently, as expressed by the following equation:

φx′ (z
′)− φx′ (z′\i) ≥ φx (z′)− φx (z′\i)⇒ ϕi(φ, x) ≥ ϕi (φ′, x) (21)

In the given equation, z′ represents a subset of the input x′, and z′\i refers to the subset z′i = 0 with
the i− th feature removed (i.e., its value is set to zero).

The three properties mentioned earlier need to be constrained to obtain a unique solution for the
explanation model g(∆). It has been theoretically established that there is only one value of φi that
satisfies these properties and leads to a unique solution.

ϕi(φ, x) =
∑
z′⊆x′

|z′|! (M − |z′| − 1)!

M !
[φx (z′)− φx (z′\i)] (22)

where z′ ⊆ x′ represents the set of all possible subsets of x′, and |z′| refers to the number of non-zero
entries in the subset z′.

It is evident that solving Eq. 22 directly can be computationally expensive, considering the large
number of possible subsets of features. Therefore, various approximation methods have been proposed
to calculate the Shapley value. In this case, TreeSHAP is adopted as it is a natural match for tree-
based models like random forest and gradient boosting machine, and provides efficient computation of
Shapley values for all features. Once the Shapley values are computed, they can be used to explain the
output of the model. The individual interpretation plot including Shapley values can be generated for
different samples. The Shapley value can be positive (in red) or negative (in blue), indicating whether
the feature has a positive or negative impact on the model output, respectively.

When we get the Shapley Value, we also need to consider the impact of different features on the
final model prediction results. A feature dependence plot is a visualization tool used to explore the
relationship between a feature and the target variable in a machine learning model. It is a type of
partial dependence plot (PDP) that shows the marginal effect of a feature on the predicted outcome,
while holding all other features constant at their average values or a specific value. In a feature
dependence plot, the x-axis represents the values of the feature of interest, and the y-axis shows the
corresponding predicted values of the target variable. The plot may also include shaded areas or error
bars to indicate the degree of uncertainty in the predictions.

5. Numerical results and discussion

5.1. Multi-scale modeling results

Regarding the convergence study, the Fig. 10 shows the predicted macroscopic thermal conduc-
tivity with the RVE size in the trend converges to a stationary size at specific point. The temperature
distribution inside the FEM-RVE model is presented in both Figures 11 and 12.

The Table 2 shows the cubes composition in specific material region with different volume fraction
extracted from finer scale. It yields a final thermal conductivity of 1.49147853(W/mk) with overall
volume fraction 8.99%. We also make a comparison between the values in the literature and in the
Table 3, where the models’ outputs generated by stochastic modeling in multi-scale approach.
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Figure 9: The framework of Shap Additive Explanations
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Figure 10: Thermal conductivity versus RVE size
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Table 2: The distribution of properties in material region

Numbers Vf (%)
Thermal
conductivity(W/mk)

Numbers Vf (%)
Thermal
conductivity(W/mk)

1 0.096 3.1925 9 0.019 1.3347
2 0.028 0.2741 10 0.045 1.1527
3 0.047 0.2116 11 0.091 0.9655
4 0.085 0.3651 12 0.04 2.8799
5 0.053 2.8005 13 0.081 0.8083
6 0.037 1.3141 14 0.016 3.9115
7 0.048 1.5166 15 0.048 2.0096
8 0.072 0.4339 16 0.093 1.9335

Thermal conductivity in Voigt model: 1.49147853(W/mk) (Volume fraction: 8.99%)

Table 3: The comparison between experimental value and FEM-RVE predictive value

Literature Materials Properties Thermal conductivity (W/mk)
κm Vf Experiment value RVE-FEM value Percent Error

Sung Ho Song
[50]

f-GFs/epoxy
(0.19W/mk)

10% 1.53 1.6671 8.22%

Fuzhong Wang
[51]

GnP-C750/epoxy
0.16W/mk )

3% 0.37 0.4849 23.69%

5% 0.45 0.5718 21.3%

Yan-Jun Wan
[52]

DGEBA-f-
GO/epoxy
(0.14W/mk )

4.64% 0.72 0.5698 20.86%

Jingjing Chen
[53]

PA6/graphene-GO
(0.2575W/mk )

10% 2.14 2.2681 5.64%

7.5% 1.78 1.7179 3.4%
5% 1.39 1.2571 9.50%
2.5% 0.82 0.9139 10.27%
1% 0.57 0.4644 18.52%

Zhenghai Tang
[54]

BE/graphene
0.05W/mk )

2.5% 0.542 0.3214 8.17%

5.2. Machine learning modeling results

The first is the result of PSO hyperparameter tuning describing the optimal parameters of the
random forest, as shown in the Figs. 13 14 15, where the complexity, the minimum sample of the
split is 0, 5, 10. The Figure 16 illustrates the GBM’s hyperparameter tuning, where the learning rate,
maximum number of regression tree, and interaction depth are 0.01, 10000, 9 respectively. Besides the
optimal values of neural networks are presented in Fig. 17. The loss and mean absolute error over
various epochs is shown in Fig. 18. All the selected hyper-parameters is summarized in Table 4.

Table 5 presents all the performance of each model. All of them are reliable and supportive to
predict the required properties, however, Deep neural network with two hidden layers perform the best
among all models.

Let’s illustrate the scatter plots of the specific model prediction. The scatter plot of the random
forest is shown in the Fig. 19, where the most predictions are distributed on the Y=T line. The 20
presents the prediction performance of GBM, and the data are mostly concentrated near the diagonal.
Fig. 21 and Fig 22 show the performance of the single hidden layer neural network (ANN) and the
deep neural network (DNN). It can be seen from all model performances that DNN is not only better
than ANN but also better than other regression tree-based models. In addition, the scattered points
are more concentrated in the data interval [0-2.5],, indicating the prediction is more accurate in this
domain.
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When comparing different algorithms, the computational cost also needs to be considered, i.e.,
the computational complexity. The computational complexity of all models has summarized in Table
6. From here we can see that the regression tree is the most lightweight algorithm, requiring only
a small computational cost. The advantage of regression trees is faster prediction and the strongest
interpretability. Random forest is an integration of regression trees, and it also has great advantages
in terms of computational cost. Meanwhile, the training time increases significantly as the number of
samples increases. Figure 23 shows how computational time increases with sample size. Regression
trees are apparently the least sensitive while DNN have the most significant time increase due to the
highest complexity.
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Figure 13: Hyper-parameter tuning in Regression Tree (Complexity Parameter)
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Figure 14: Hyper-parameter tuning in Regression Tree (Max Tree Depth)

5.3. Model Interpretations

In terms of interpretable machine learning, it is divided into Global Interpretations, Individual
Interpretations, and Feature Dependency. The SHAP value can be applied to observe the internal
mechanism of ’black box’.

Let’s begin with global interpretability. We take the absolute mean of each feature’s SHAP value as
the feature’s importance, resulting in a standard bar chart shown in Fig 24. This indicates the general
influences of features on different predictions. It can be observed from that, the thermal conductivity of
the matrix has a significant effect on the macroscopic thermal conductivity of the composite material,
while the dispersion index are the least important. Volume fraction also affects composite thermal
conductivity, but with less importance. The effects from agglomeration and dispersion index on the
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Randomly Selected Predictors
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Figure 15: Hyper-parameter tuning in Random Forest
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Figure 16: Hyper-parameter tuning in GBM method with different metrics

Figure 17: Hyper-parameter tuning in ANN method with different metrics
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Figure 18: The loss function w.r.t epoch in training with Tensorflow

Table 4: Hyper-parameters tuning

ML method
hyper-

parameters
Definition Interval Optimum Value

Random Forest Cp Complexity parameter [0,1] 0
Min-sample-

split
The minimum samples for split [2,5] 5

M The maximum depth of tree [1,10] 10

Max-DT
The maximum numbers of regression
tree

[100,10000] 10000

Gradient Boosting
Machine

λ The learning rate [0.001,0.99] 0.01

N
The maximum number of regression
tree

[100,10000] 10000

Dia Interaction depth [1,10] 9
Artificial Neural
network (1 hidden
layer)

Nhn The number of neurons in hidden layer [1-100] 17

λ The learning rate [0.001-1] 0.001
Deep Neural net-
work (2 hidden lay-
ers)

Nhn The number of neurons in hidden layer [1-100] [64,64]

λ The learning rate [0.001-1] 0.001
Epochmax The maximum epoch [1-10000] 3000

Table 5: Predictive performance in ML models

Training Test
ML method R2 RMSE MAE R2 RMSE MAE

Random Forest 0.9018358 0.2318173 0.08378478 0.9277542 0.1550168 0.0469515
Gradient Boosting Machine 0.9104604 0.2091706 0.06196632 0.94626539 0.13263531 0.04831758
Artificial neural network 0.9439432 0.2875832 0.12312090 0.8332558 0.2371077 0.1157105
Deep neural network 0.9998 0.1420634 0.02745 0.95744352 0.16056436 0.05418494
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Figure 19: The predictive performance of RF in test set
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Figure 20: The predictive performance of GBM in test set
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Figure 21: The predictive performance of ANN in test set
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Figure 22: The predictive performance of DNN in test set

Table 6: Time complexity in ML models( n is the samples number )

ML method Time complexity Computation time

Regression Tree O(log2n) 18.321s
Random Forest O(m(logn)) 270.964s
Gradient Boosting Machine O(mnlogn) 3042.084s
Artificial Neural network O(mn2) 12167.895s
Deep Neural network O(n3) 2571s(42m51s)
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Figure 23: The time complexity among ML models

result are relatively small. The SHAP summary plot, i.e., distribution of SHAP values for each feature
is demonstrated in Fig 25, where the corresponding influence trend is also indicated. It can better
understand the overall models and allow the detection of predicted outliers. The color marks the
feature value (red - high, blue - low). According to the color and SHAP value in Fig 25, it can be
seen that the thermal conductivity of graphene and kapitza resistance have an effect on improving the
predicted performance of the ML model. These plots give a global interpretations about how input
feature variables affect predictive outputs.

In addition to the global interpretations, individual interpretations for each single sample also
be provided by SHAP values. Figs 26 and 27 are two selected typical samples which can be better
illustrated. The basic idea in these figures is pushing the model’s predictions from the base value to the
final model output. The red bars indicates the features that contribute to increases in model output
from the base value, whereas blue bars represent features that lead to decreases. The length of the bar
presents the corresponding increases and decreases. Regarding sample 34, the aspect ratio and Kpatiza
resistance have positive effects on predicting the most critical features, whereas the agglomeration index
has a negative effect on the final prediction. In terms of sample 23, the volume fraction and Kapitza
resistance positively affect the final output of the data model while thermal matrix has a negative
effect on the final prediction to some extent.

To understand how a single feature’s value affects the final model’s output, we can compare the
SHAP value of that feature with the all feature values of whole samples in the dataset. Fig 28 shows
the interaction between single feature and others. Among all of them, the data in Fig 28 (a) is the
most concentrated, and its trend is relatively obvious. For relatively large aspect ratios, the increase
of thermal conductivity of matrix has a negative interaction with its SHAP value, i,e., it reduces
the influence on the final model outputs. High kapitza resistance in Fig 28 (b) also has a negative
SHAP value interaction with increasing volume ratio compared to other features. However, at higher
values of matrix thermal conductivity - Fig 28 (d), the increase of Kapitza has a positive effect on its
SHAP value. As same as volume ratio’s interaction -Fig 28 (e), the increase of thermal conductivity
of graphene has a positive effect on the prediction of the final model.

Since SHAP gives detailed impact rules of different features on composites’ thermal conductivity,
it can be applied to explore new structures of components for materials. These results/rules can also
be used to devise a new form that will efficiently probe the sought-after behavior in an optimal manner.
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Figure 24: Global interpretations by SHAP values (SHAP
feature importance)

Figure 25: Global interpretations by SHAP values (SHAP
summary plot)
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Figure 26: Individual interpretations for Sample 34
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Figure 27: Individual interpretations for Sample 23
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Figure 28: Feature dependence plots

6. Conclusions

We employ a data-driven multi-scale methodology to predict the thermal conductivity of Polymeric
Graphene-Enhanced Composites. Our approach involves a hierarchical stochastic analysis that encom-
passes both meso- and macro-scales. This comprehensive data-driven modeling process comprises three
distinct steps: bottom-up modeling, stochastic modeling, and interpretable machine learning. From
mesoscopic Representative Volume Elements (RVE) and macroscopic Finite Element Modeling (FEM),
we carefully select seven critical effective parameters or features. These include the thermal conductiv-
ity of fillers, the thermal conductivity of the matrix, interface resistance, aspect ratio, agglomeration
index, dispersion index, and volume fraction. We rigorously quantify the uncertainties associated with
these parameters based on their probability density functions (PDFs). To model and predict the ther-
mal conductivity, we harness the power of integrated machine learning techniques, both tree-based
(Random Forests and Gradient Boost Machine) and neural network-based (Artificial Neural Networks
and Deep Neural Networks). All of these machine learning approaches yield credible and reasonable
output models.

Furthermore, we employ the SHAP model to provide insight into the mechanisms underlying our
models and enhance interpretability. This includes offering global interpretations, individual interpre-
tations, and depicting feature dependencies separately. By utilizing SHAP values, we elucidate the
inner workings of the so-called ’black box’ in a visually accessible and comprehensible manner.

This data-driven method can significantly reduce the requirements for analytical modeling and
simulation in materials structural design, and it can also considerably reduce computational cost than
previous multi-scale stochastic modeling. The following conclusion can be summarized:

1. PSO and 10-fold CV can significantly find the global optimal on hyper-parameter tuning.
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2. Each ML model has good performance on predictive outputs. The Deep neural networks (DNN)
is the most accurate one but also computationally most expensive. RF has relative low accuracy but
lower time complexity in terms of computation time.

3. SHAP is demonstrated to provide both global and local interpretations for the outputs predic-
tions. At the global level, it not only produce feature importance but also define the distribution of
Shapley values.

4. In terms of global interpretations by SHAP values, the thermal conductivity of the matrix has
a significant effect on the macroscopic thermal conductivity, then comes to volume fraction, while the
dispersion index are the least important.

5. At the local level, the final prediction of a specific sample is decomposed into base value and
contributions by each feature, and thus the effects of those individual features could be quantified in
a visible manner.

6. The variation of effects for each feature on the macroscopic thermal conductivity against its
value is also quantified by SHAP. These results provide detailed and intuitive insights into on how
they work. This information from the outputs can be applied for searching optimal value ranges for
the single features and their different combinations for developing the composite structural design.
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