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Abstract
This study aims to evaluate the performance of Item Response Theory (IRT) kernel equating in the
context of mixed-format tests by comparing it to IRT observed score equating and kernel equating
with log-linear presmoothing. Comparisons were made through both simulations and real data
applications, under both equivalent groups (EG) and non-equivalent groups with anchor test
(NEAT) sampling designs. To prevent bias towards IRT methods, data were simulated with and
without the use of IRT models. The results suggest that the difference between IRT kernel
equating and IRT observed score equating is minimal, both in terms of the equated scores and
their standard errors. The application of IRT models for presmoothing yielded smaller standard
error of equating than the log-linear presmoothing approach. When test data were generated
using IRT models, IRT-based methods proved less biased than log-linear kernel equating.
However, when data were simulated without IRT models, log-linear kernel equating showed less
bias. Overall, IRT kernel equating shows great promise when equating mixed-format tests.
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Introduction

Multiple forms of the same test are commonly administered in large-scale or high-stakes testing
programs to ensure adequate testing security. As a result, test scores from multiple forms need to
be compared for the purpose of, for example, university program admission. To be able to directly
compare test scores from two or more test forms, one must place the scores from each form onto a
common scale. This is typically done using a statistical process referred to as test score equating
(González & Wiberg, 2017; Kolen & Brennan, 2014).
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There might be different types of test items in the equated test forms, and the best-performing
equating method may depend on the equated forms. Test forms may contain only dichotomously
scored items like multiple-choice items, only polytomously scored items which are typically
constructed response items or a mixture of the two types. Test forms that contain a mixture of these
scoring types are commonly referred to as mixed-format tests (Ercikan et al., 1998; Kim et al.,
2008, 2010a, 2010b; Kolen & Lee, 2014). By using a combination of different item formats, tests
can be designed to measure a broader set of skills than tests using a single format. Some examples
of mixed-format tests include the National Assessment of Educational Progress, the Advanced
Placement Program, SAT Reasoning Test, and national tests in mathematics in Sweden.

Although traditional (e.g., Kolen & Brennan, 2014) and item response theory (IRT) equating
procedures (Lord, 1980) have been discussed thoroughly in the literature, kernel equating (von
Davier et al., 2004) has seen an increase in popularity in the past decades and is, for example, used
alongside other equating methods to equate the Swedish scholastic aptitude test (SweSAT). In
kernel equating, the test score distributions are typically presmoothed before conducting the actual
equating in order to remove irregularities in the data due to sampling. In most research, log-linear
models have been used to presmooth the test score distributions. We will refer to this method as
log-linear kernel equating (LLKE). LLKE has been extensively studied and proven to work well in
several different contexts (e.g., von Davier et al., 2004, 2006; Mao et al., 2006; Moses et al., 2007;
Liu & Low, 2008).

Andersson and Wiberg (2017) proposed an alternative to log-linear models: the use of di-
chotomous IRT models for presmoothing. This approach demonstrated promising outcomes when
measured against log-linear presmoothing, both in reducing bias and standard errors. This ap-
proach can be seen as a fusion of item response theory observed score equating (IRTOSE, Lord,
1980) and LLKE, as it applies IRT models for presmoothing and kernel smoothing for the actual
equating. This method, which we denote as item response theory kernel equating (IRTKE), was
later extended by Andersson (2016) to be applicable to polytomously scored items using pol-
ytomous IRT models. More recently, Wiberg and González (2021) investigated the influence of
item discrimination, sample size, and proportions of dichotomous items through simulations in the
equivalent groups (EG) design for IRTKE. However, the potential application of IRTKE to mixed-
format test forms and comparisons with other IRT-based methods, such as IRTOSE, remain
unexplored in previous studies.

The purpose of this research is to assess the efficiency of IRTKE in equating mixed-format
tests, under both the EG and NEAT designs. We expand on previous research on IRTKE by
comparing it with both LLKE and IRTOSE. Two empirical mixed-format equating examples are
presented with real test data from two test forms of the Swedish national test in mathematics, using
an EG design, as well as two test forms from the SweSAT, using a non-equivalent groups with
anchor test (NEAT) design. In addition, a simulation study using both the EG and NEAT designs is
included in order to evaluate the equating transformation performance when different conditions
are varied; including the ability of the test taker populations, test form difficulty, and the pro-
portions of dichotomously and polytomously scored items in the test forms.

In the next section, a description of kernel equating together with IRT models for presmoothing is
provided. This is followed by the empirical examples. Subsequently, there is an overview of the
simulation study, along with the results derived from these simulations. To conclude, the final section
offers a discussion on the results obtained, coupled with several suggestions for future research.

Kernel Equating

Consider a test situation where test formX is administered to a sample from population P and test form
Y is administered to a sample from population Q. Under the EG design, the populations P and Q are
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assumed to be equal. Under the NEAT design, the populations are not assumed to be equal and instead
an anchor test form, A, containing a set of common items is administered to both samples in order to
adjust for population differences when performing the equating. Test scores are considered random
variables, represented as X, Y and A for each respective test form X, Y and A. Let the discrete
cumulative distribution functions (cdfs) for X and Y be denoted by FX(x) and FY(y). Let FAP(a) be the
cdf for A in population P, and FAQ(a) be the cdf for A in population Q. For continuous cdfs, the
equipercentile equating transformation is defined φðxÞ ¼ F�1

Y ðFX ðxÞÞ. As the test score cdfs are
typically discrete, kernel equating (von Davier et al., 2004) estimates φ(x) using continuous ap-
proximations of the discrete test score cdfs through kernel smoothing. Although different kernels can
be used, themost common choice is to use aGaussian kernel (vonDavier et al., 2004;Mao et al., 2006;
Moses et al., 2007; von Davier et al., 2006), which we used for all equatings in this study. When a
Gaussian kernel is used, the continuous approximation of FX(x) is given by

FhX ðxÞ ¼
XK
j¼0

rjΦ

�
x� uX xj � ð1� uX ÞμX

uX hX

�
, (1)

whereK is the maximum score on form X, μX is the mean of the X scores, xj is the jth score value, rj
is the probability for the jth score value,Φ(�) denotes the standard normal distribution function, hX

is the bandwidth, and uX ¼
ffiffiffiffiffiffiffiffiffiffiffi
σ2X

σ2Xþh2X

r
where σ2X is the variance X. The corresponding approxi-

mations of FY(y), FAP(a) and FAQ(a) are defined analogously and are denoted by FhY ðyÞ, FhAPðaÞ
and FhAQðaÞ. The bandwidth parameter hX determines the smoothness of FhX ðxÞ and can be selected
using several different methods. As the bandwidth selection method has little effect on the equated
values (Wallin et al., 2021), we chose to use the most common method which is to minimize the
penalty function

PENðhX Þ ¼
XK
j¼0

�
rj � d

dx
FhX

�
xj
��2

: (2)

Under the NEAT design, two competing equating methods exist under the kernel equating
framework: chained equating (CE) and post-stratification equating (PSE) (von Davier et al.,
2004). Under the EG design and for the NEAT PSE method, the cdfs FhX ðxÞ and FhYðyÞ are
computed for a target population T, from which the estimator for the equating transformation is
derived bφðxÞ ¼ F�1

hY
ðFhX ðxÞÞ. Under the EG design, T = P = Q as the test taker populations are

assumed to be equivalent. For NEAT PSE, T is defined as the synthetic population T = wP + (1 �
w)Q where 0 ≤ w ≤ 1 is the weight given to P. When the NEAT CE method is used, X is
transformed into Y in two-steps. First, X is equated to A in population P and then A is equated to Y
in population Q through the equation bφðxÞ ¼ F�1

hY
ðFhAQðF�1

hAP
ðFhX ðxÞÞÞÞ.

Before computing the aforementioned continuous cdfs, presmoothing of the univariate (under the
EG design) or bivariate (under the NEAT design) score distributions is typically performed to reduce
the effect of sampling variation. The use of IRT models for presmoothing is described in the sub-
sequent section. For details on log-linear models, the reader is referred to von Davier et al. (2004).

IRT Models for Presmoothing

In IRTKE, IRT models are used to presmooth the data. A commonly used model for polytomously
scored items is the generalized partial credit (GPC) model (Muraki, 1992). AssumingMi response
categories for item i, the GPC model is defined as
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PimðθÞ ¼

8>>>>>><>>>>>>:

1

1þPMi�1
g¼1

�
exp

Pg
t¼1½aiðθ � bitÞ�

�, if m ¼ 1

exp

� Pm�1

t¼1
½aiðθ � bitÞ�

�
1þPMi�1

g¼1

�
exp

Pg
t¼1½aiðθ � bitÞ�

�, otherwise

(3)

where Pim(θ) is the probability of a test taker with ability θ responding in response category m on
item i, ai is the so-called item discrimination parameter and bit is the item category difficulty
parameter. Note that for dichotomous items (Mi = 2), the GPC model is equivalent to the two
parameter logistic model, defined as PiðθÞ ¼ ð1þ expð�aiðθ � biÞÞ�1, where bi is the only item
difficulty parameter. The underlying assumptions of these models are that the latent variable θ is
unidimensional and that the responses to each item are conditionally independent given θ. After
the item probabilities have been modelled using IRT, the probability for each total score con-
ditional on θ can be computed using the algorithm described by Thissen et al. (1995). The
marginal total score probabilities, rj in Equation (1), can then be obtained by integrating over θ.

Empirical Examples

To compare the performance of IRTKE, IRTOSE, and LLKE in a practical setting, different
datasets were equated under the EG and NEAT designs. The empirical study serves to show how
each method functions in a real equating setting, and to obtain a realistic data-generating process
for the simulation study. Under the EG design, the 2019 form (XMath) of a national test in
mathematics was equated to the 2018 form (YMath). The test is given to Swedish high school
students taking the mathematics 3c course, a mandatory course for students taking the natural
sciences and technology programs. The test has a large impact on the course grade for a student
and consists of a mixture of free response items, some requiring short answers and some requiring
more in depth step-by-step solutions. Summary statistics for XMath and YMath are displayed in
Table 1. Both XMath and YMath had 9 dichotomous items and 12 items with three response
categories. XMath had three items with four response categories and four items with five response
categories, while YMath had four four-category items and three five-category items, resulting in a

Table 1. Summary Statistics for Each Test Form.

Statistic

EG NEAT

XMath YMath XSAT YSAT ASAT ASAT

Year 2019 2018 2014 2013 2014 2013
Sample size 1401 1008 2859 2469 2859 2469
Number of items 28 28 60 60 30 30
Dichotomous items 9 9 50 50 25 25
Polytomous items 19 19 10 10 5 5
Total score 58 57 80 80 40 40
Mean 25.54 25.72 40.12 40.94 17.56 17.71
Standard deviation 12.62 12.12 12.88 13.34 7.06 7.13
Skewness .15 .30 .35 .32 .56 0.6
Kurtosis 2.34 2.45 2.49 2.46 2.77 2.78
Correlation with A — — .85 .86 — —
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one point lower total score on YMath. Strictly speaking, equating is conducted between two forms
constructed using the same statistical specifications. Despite the total score differences between
the forms, the need to compare test scores from different administrations is still there. Therefore, as
the test taker populations are similar in age with similar educational background, the forms were
equated under the EG design.

Under the NEAT design, the 2014 form (XSAT) of the SweSAT was equated to the 2013 form
(YSAT) with a set of common items (ASAT). The SweSAT is used in the higher education ap-
plication process in Sweden and opportunities to take the test are given twice a year. The test
comprises both a verbal and a quantitative part. In this study, only the verbal part was considered.
The verbal part consists of three different types of multiple-choice items. The first type is sentence
completion, where sentences with missing parts are presented to the test taker and the test taker is
asked to select the response alternatives which “fills in the blank.” In the second type, a word is
presented and the test taker is asked to select the option corresponding to the meaning of the word.
In the third type, the test taker answers several multiple-choice questions related to a text in order
to assess reading comprehension. When conducting IRTKE and IRTOSE, the scores on the
multiple-choice items of the third type corresponding to the same text were added together and
treated as polytomous, as these items cannot be assumed to be independent given test taker ability.
Summary statistics for each SweSAT form are displayed in the NEAT columns in Table 1. The
polytomous items in test forms XSAT and YSAT consisted of six items with three response cat-
egories, two items with five categories, and two items with six. The anchor test, ASAT, had three
items with three categories, one item with four and one with five. The summary statistics for the
anchor test were almost the same for both the 2013 and 2014 test taker groups, indicating that the
test taker populations were similar in ability.

The R programming language (R Core Team, 2021) and the R package kequate (Andersson
et al., 2013) were used to conduct LLKE and IRTKE. IRTOSE was performed using our own
implementation together with the mirt and equate R packages. For IRTKE and IRTOSE, GPC
models were used for presmoothing under both the EG and NEAT designs. Under the NEAT
design, IRTKE with PSE and IRTOSE with PSE require the coefficients from each IRT model to
be aligned on a common scale through a linking method. The mean-mean method (Kolen &
Brennan, 2014) was used for this procedure because it is the only method for polytomously scored
items implemented in the kequate package. It is also used in practice when equating the SweSAT.
Consequently, it is important to highlight that our results and discussion regarding IRTKE PSE
and IRTOSE PSE will exclusively focus on their application in the context of the mean-mean
linking method. For LLKE, polynomial log-linear models were used to model the score fre-
quencies for each test form. Under the EG design, order four polynomials were chosen for both
test forms based on the Akaike information criterion (AIC). Under the NEAT design, the log-linear
models were chosen based on the Bayesian information criterion (BIC), which has been shown to
be more efficient than AIC for bivariate smoothing (Moses & Holland, 2010). The bandwidths for
each equating method under both designs were selected based on minimization of Equation (2)
and are shown in Appendix A.

In order to visualize the differences between LLKE and IRTKE, Figure 1(a) and (c)) show the
contrasts between the estimated equating transformations bφðxÞ and their corresponding XMath/
XSAT scores. A positive difference indicates a higher score on YMath/YSAT for a certain XMath/XSAT

score. Recall that the total score on YMath was one score point lower than on XMath when in-
terpreting Figure 1(a), thus, a difference of zero does not imply equal test form difficulty.

The standard error of equating (SEE) is defined as SEEðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðbφðxÞÞp

. The estimated SEEs
for each equating method are shown in Figure 1(b) and (d). For fair comparisons, these were
computed using bootstrap, although analytical derivations also exist for the kernel equating
methods, see von Davier et al. (2004) and Andersson (2016) for details.
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Under the EG design, the equating functions and the SEEs resulting from IRTKE and IRTOSE
are almost indistinguishable. The same is true under the NEAT design when comparing IRTKE
PSE against IRTOSE PSE, as they use the same presmoothing method. The effect on the equating
transformation from choosing a different presmoothing method (IRT or log-linear) is much larger
than the difference between different smoothing methods (kernel or equipercentile).

For the national mathematics test, 1a), all methods suggest that each XMath score corresponds to
a marginally higher YMath score on the lower part of the XMath score scale. The largest differences
between IRTKE and LLKE are found for higher scores on XMath, reaching magnitudes higher than
one score point for scores between 47 and 56. The average value of the equating transformation
obtained using IRTKE was .23 points below the average obtained using LLKE. Under the NEAT
design (see Figure 1(c)), the equated scores are within 2 points of their corresponding scores on
XSAT over the whole score scale for all equating methods. The equating transformations have
similar shapes and the largest differences are found at the lower end of the XSAT score scale. All
methods suggest that a score over 36 on XSAT equates to a marginally higher score on YSAT.

Under the EG design, the SEEs for IRTKE were marginally lower for most XMath scores
compared to the LLKE SEEs, the exceptions being scores in the range 38–49. The average SEE
was .61 for IRTKE and .67 for LLKE. Under the NEAT design, the average SEEs were .40, .45,
.57, and .52 for IRTKE CE, IRTKE PSE, LLKE CE, and LLKE PSE, respectively. Using IRT

Figure 1. The estimated equating transformations are shown in plots (a) and (c), where the X score is
subtracted from the estimated equating transformation for each method. Plots (b) and (d) show the
estimated SEEs for each X score.
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models for presmoothing resulted in slightly larger SEEs compared to using log-linear models in
the middle score range. However, in the upper and lower ends of the score scales, IRTKE and
IRTOSE performed much better than LLKE in terms of SEE.

Simulation Study

The purpose of the simulation study was to evaluate the performance of IRTKE in comparison
with IRTOSE and LLKE for mixed-format tests under the EG and NEAT designs. The R pro-
gramming language was used for all simulations. The procedures for bandwidth selection, se-
lection of log-linear models, and IRTKE PSE/IRTOSE PSE parameter linking described in the
‘Empirical study’ section were also used for the simulations. The simulation code can be obtained
at https://github.com/joakimwallmark/kernel-mixed.

A common approach for generating test data for simulations has been through the use of IRT
models (Andersson, 2016; Uysal & Kilmen, 2016;Wang &Kolen, 2014). This approach produces
realistic looking datasets where it is easy to adjust test taker ability and change item difficulty.
However, one drawback is that it might give an advantage to IRT-based equating methods such as
IRTKE and IRTOSE when compared to LLKE. Different ways of circumventing this problem
have been explored in the literature (e.g., Kim et al., 2008; Leôncio et al., 2022; Leôncio &
Wiberg, 2018; Wang et al., 2020). In this study, both IRT and non-IRT data-generating processes
were used to overcome this issue and these are described in detail in the upcoming subsections.
The effect of varying test form difficulty difference, test taker ability, and the number of binary and
polytomous items on each of the test forms was explored in different scenarios using both data-
generating processes. A previous study has shown that IRTKE-equated scores are largely un-
affected by sample size in a mixed-format setting (Wiberg & González, 2021). Consequently, we
did not vary sample size and generated data from 1500 test takers in all simulated scenarios for
both the IRT and non-IRT simulations.

IRT Simulations

The GPC models fit to the SweSAT forms, summarized in Table 1, were used to simulate test
scores in the IRT simulations. The model item parameters from the 2014 test form were used as a
base scenario for all three test forms: X, Y, and A. The item parameters from XSAT were used to
generate both X and Y data. Note that this results in the true equating transformation φ(x) = x,
because X and Yare the same test forms. The item parameters from the ASAT GPC model fit using
the 2014 test taker group were used to generate anchor test data.

We artificially constructed various test forms to vary the number of polytomous and di-
chotomous items in different scenarios. The polytomous items from the GPC model fit to the
2013 SweSAT test taker data were added to each test form to construct scenarios with a larger
number of polytomous items. Dichotomous items were randomly removed to keep the same total
scores on each test form.

To examine the effect of varying test form difficulty, we made the Y form easier in each
scenario, while keeping the X and A forms unchanged. All items from the 2013 and 2014 SweSAT
GPC models were placed into a large item pool. Then, items were randomly sampled from the
easiest 67% (based on difficulty parameters) of this item pool until the scenario-specific number of
polytomous and dichotomous items had been reached, thus creating an easier Y form.

Scenarios with equal and non-equal test taker populations were considered. In scenarios with
equal test taker populations, test taker abilities were drawn from the standard normal distribution,
Nð0; 1Þ, for both P and Q. In scenarios with non-equal test taker populations, the ability
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distribution for P was kept Nð0; 1Þ, while the distribution for Q was changed to Nð0:5; 1:2Þ.
These parameter distributions have been used in previous studies and a population mean dif-
ference of .5 points is considered relatively large (Andersson, 2016; Meng, 2012; Ogasawara,
2003).

Non-IRT Simulations

To generate data without using IRT models, we adopted an approach similar to Leôncio et al.
(2022), generating total test scores directly from continuous probability distributions. To ensure
realistic score distributions, probability density functions (pdfs) were fit to selected items from the
SweSAT datasets using smoothing splines with the R package gss (Gu, 2014).

The pdf in Figure 2(a) was fit to the scores on the XSAT form and used to generate test scores on
form X in all simulated scenarios. The continuous scores were rounded to obtain sum scores. To
simulate scenarios with equal test form difficulty, the same pdf was used to generate form Y
scores. To create scenarios in which the test forms differed in difficulty, a less difficult Y form was
created. This was done by randomly sampling items from the 75% least difficult items (in the sense
of percentage correct responses) on YSAT and ASAT until a total score of 80 had been reached. The
resulting pdf is shown in Figure 2(b).

To create scenarios in which the abilities of P and Q were equal, a pdf fit to ASAT test scores
from 2014 was used to generate anchor test scores for both test taker groups, see Figure 2(c). To
create scenarios where the test taker populations differed in ability, a different anchor density
function was created to generate anchor responses for the population taking the Y test. In a similar
manner to how the more difficult Y test was created, items were sampled from the 75% least

Figure 2. Spline-estimated pdfs used for simulation study data-generation. Each pdf is plotted on top of the
relative score frequencies used to estimate the pdf. (a) X/Y (b) less difficult Y (c) A (d) more able group A.
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difficult ones on YSAT and ASAT until a total test score of 40 had been reached. This results in an
anchor test density function with higher probabilities for higher scores (reflecting more able
students), see Figure 2(d). Note, however, that changing the distribution of the anchor test scores
for one population indirectly alters the difficulty difference between X and Y, thus changing the
true equating transformation. This is an undesirable consequence as we want to compare different
scenarios varying one factor at a time. This problem was overcome by adjusting the distribution
for Y in scenarios with non-equal anchor pdfs to match the test form difficulty differences in
scenarios with equal anchor pdfs. The procedure is described in detail in Appendix B. Addi-
tionally, the scores for the anchor test need to be highly correlated with the scores for the main test
forms in order for the anchor test to serve its intended purpose. In the simulations, these cor-
relations were set to .85, which mimics the correlations found in the SweSAT forms, see Table 1.
To achieve this, we used samples from bi-variate standard normal variables with the specified
correlation using the mvrnorm() function in the MASS R package. The sampled values were then
put through the standard normal cdf function to obtain their cumulative probabilities. Finally, the
resulting probabilities were converted to spline distribution quantiles using the gss package.

Generating total test scores is sufficient to perform LLKE, but for IRTKE and IRTOSE, the
scores for each item are required in order to fit the IRT models. To resolve this problem, an item
response matrix of 1’s and 0’s was generated to match the simulated total scores. Note that
randomly generating correct and incorrect responses, with equal probabilities for each item, until a
total test score has been achieved would create an unrealistic situation as no item will appear to be
particularly difficult or easy. Instead, item responses were generated using probability weights
associated with each item. To mimic the true probabilities of getting each item correct in the
SweSAT data, the weights were selected using an iterative procedure presented in Appendix D for
each test form. The weights were computed for each scenario before running the actual simu-
lations. To construct polytomous items, randomly chosen triplets of dichotomous items from the
generated response matrix were summed together. The number of polytomous items was varied
between 10, 15, and 20 for test forms X and Y, and between 5 and 10 for the anchor tests. They
always contained four response categories, that is, a maximum score of 3.

Performance Measures

Let bφlðxÞ denote the estimated equating transformation from the l:th simulation iteration and φðxÞ
the mean of bφlðxÞ across all 1000 iterations. In each simulated scenario, bias, SEE and root mean
squared error (RMSE) were computed to evaluate equating performance locally at each score
point on form X

biasðxÞ ¼ φðxÞ � φðxÞ

SEEðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1000� 1

X1000
l�1

½bφlðxÞ � φðxÞ�2
s

RMSEðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1000

X1000
l¼1

½bφlðxÞ � φðxÞ�2
s

:

We will refer to these as local measures. To measure overall performances, global measures
were formed both by averaging each local measure over all X scores and by summing up and
weighting each local measure by its X score prevalence. Specifically, the global measures
considered were average absolute bias (AAB), average SEE (ASEE), average RMSE (ARMSE),
weighted absolute bias (WAB), weighted SEE, and weighted RMSE (WRMSE).
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The true equating transformation φðxÞ must be known for estimation of bias and RMSE. Even
using simulated data, what constitutes the true equating is not obvious. To circumvent this
problem, we took the approach of defining one equating transformation as the true one (see e.g.,
Leôncio et al., 2022; Wang et al., 2008; Wiberg & González, 2016). For the non-IRT simulations,
we defined φðxÞ as the CE transformation φY ðxÞ ¼ F�1

Y ðFAQðF�1
AP ðFX ðxÞÞÞÞ, computed using the

spline fit cdfs. For the IRT simulations, φðxÞ was defined as the IRTOSE transformation. See
Appendix C for details. Using this equating method as the true equating transformation has been a
common choice in simulation studies in which IRT models have been used to generate test data
(e.g., Ogasawara, 2003; Wang et al., 2008).

Simulation Results

Tables 2 and 3 show the global measures for the simulated scenarios containing 50 dichotomous
and 10 polytomous items were used on test forms X and Y, together with 25 dichotomous and
5 polytomous items on the anchor test. With 1000 simulation iterations, the Monte Carlo SEs of
the estimated performance measures (SEs of the simulation estimates) are smaller than .004 for all
bias measures and smaller than .003 for all SEE measures. See Appendix E for formulas and
derivation.

When the test taker populations were identical, all methods performed relatively well in terms
of AAB and WAB, see Tables 2 and 3. The results show only small differences between IRTKE
and IRTOSE in all performance measures (comparing IRTKE EG to IRTOSE EG and IRTKE PSE
to IRTOSE PSE). These differences are likely negligible in most practical settings. In the IRT
simulations, the IRTKE methods exhibited lower bias compared to their LLKE counterparts in all
scenarios. However, in the non-IRT simulations, there was no such clear distinction between the
presmoothing methods. As expected, the EG methods were highly biased when the test taker
populations differed. The CE methods outperformed the PSE method scenarios with different test
taker populations in the non-IRT setting, while IRTKE PSE had the lowest AAB and WAB in all
scenarios in the IRTsimulations. The effect of changing test form difficulty was relatively small in
terms of bias in comparison to the effect resulting from changing test taker ability. The WAB was
generally smaller in scenarios where the test form difficulty was equal, provided all other factors
remained the same.

IRTKE CE showed the smallest ASEE and WSEE in all scenarios in both the IRT and non-IRT
settings. However, using CE resulted in larger ASEEs and WSEEs compared to PSE when LLKE
was used. The effect on the SEEs from changing test difficulty and population ability was
relatively small. In the non-IRT simulations, the use of the anchor test using the NEAT design
resulted in lower ASEE and WSEE compared to the EG methods even in scenarios where
populations were the same, see Table 2. As shown in Table 3, similar findings were observed in the
IRT simulations, although LLKE EG showed lower ASEE than LLKE CE in three out of four
scenarios. In terms of ARMSE andWRMSE, IRTKE CE performed the best among all methods in
both the IRT and non-IRT simulations.

Figure 3 presents plots of the simulation estimated bias and SEE for each method in the non-
IRT simulations. Plots for IRTOSE were omitted due to its close similarities with IRTKE. The
plotted curves correspond to scenarios with equal test form difficulty, 50 dichotomous and
10 polytomous items on test forms X and Y along with 25 dichotomous and 5 polytomous
items on the anchor test. As shown in Figure 3(a), the IRTKE methods were largely unbiased
when the populations and test forms were equal, while LLKE showed some bias at the edges of
the score scale, see Figure 3(b). When comparing Figure 3(a) and (b) with Figure 3(c) and (d),
it is clear that population differences together with differences in test form difficulty led to
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increased bias and enlarged the differences in bias between the equating methods. As il-
lustrated in Figure 3(e)–(h), the SEEs were larger at the upper and lower ends of the score scale
for the LLKE methods when compared to their IRTKE counterparts in all scenarios. These
findings were consistent throughout all simulated scenarios using both data-generating
processes. For plotted curves, see Appendix F.

No effects on bias, SEE, or RMSE from varying the number of polytomous and dichotomous
items in the main and/or anchor tests could be identified. Consequently, results from scenarios
with numbers of dichotomous/polytomous items differing from those already presented have been
omitted, but can be obtained upon request from the corresponding author.

Table 2. Global Performance Measures From the Non-IRT Simulations. X ≠ Y Indicates Whether or Not
the Test Forms Differed in Difficulty and P ≠ Q Indicates Whether or Not the Test Takers Taking Each Form
Differed in Ability. The Bold Numbers Indicate the Smallest Value in Each Scenario.

Method X ≠ Y P ≠ Q

Non-IRT Simulation Results

AAB WAB ASEE WSEE RMSE WRMSE

IRTOSE EG .02 .02 .55 .56 .55 .56
IRTOSE PSE .03 .03 .45 .44 .45 .44
IRTKE EG .01 .02 .56 .57 .55 .57
IRTKE CE .02 .02 .38 .35 .38 .35
IRTKE PSE .02 .03 .45 .44 .45 .44
LLKE EG .04 .02 .93 .64 .93 .64
LLKE CE .02 .02 .63 .43 .63 .43
LLKE PSE .02 .01 .59 .40 .59 .40
IRTOSE EG x .22 .12 .55 .62 .65 .64
IRTOSE PSE x .21 .12 .46 .50 .54 .52
IRTKE EG x .24 .12 .56 .62 .67 .64
IRTKE CE x .22 .09 .38 .39 .49 .41
IRTKE PSE x .24 .13 .47 .50 .57 .52
LLKE EG x .14 .08 .93 .69 .95 .70
LLKE CE x .32 .14 .61 .47 .72 .50
LLKE PSE x .30 .12 .58 .44 .68 .46
IRTOSE EG x 6.19 8.37 .55 .58 6.22 8.39
IRTOSE PSE x 1.40 1.62 .44 .47 1.52 1.72
IRTKE EG x 6.22 8.37 .56 .58 6.25 8.39
IRTKE CE x .35 .20 .39 .38 .56 .45
IRTKE PSE x 1.42 1.62 .45 .47 1.53 1.73
LLKE EG x 6.32 8.35 .97 .65 6.50 8.38
LLKE CE x .15 .08 .71 .46 .72 .47
LLKE PSE x .92 1.27 .67 .43 1.27 1.36
IRTOSE EG x x 6.57 9.14 .56 .62 6.59 9.16
IRTOSE PSE x x 1.51 1.97 .45 .51 1.61 2.07
IRTKE EG x x 6.63 9.14 .57 .62 6.66 9.16
IRTKE CE x x .27 .17 .39 .41 .52 .47
IRTKE PSE x x 1.55 1.98 .45 .51 1.65 2.07
LLKE CE x x .45 .15 .70 .50 .87 .53
LLKE x x 6.66 9.13 .97 .69 6.82 9.16
LLKE PSE x x 1.34 1.41 .66 .47 1.51 1.50
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Discussion

In this study, the efficiency of IRTKE for mixed-format tests was evaluated. IRTKEwas contrasted
against its close methodological relatives, IRTOSE and LLKE, under both EG and NEAT data
collection designs. In a real data setting, we used data from two test forms from the Swedish
national test in mathematics and two test forms from a college admission test. In a simulation
study, we further evaluated the equating performance when different conditions were varied,
including the ability of the test taker populations, test form difficulty, and the proportions of
dichotomously and polytomously scored items in the test forms.

In all comparisons, IRTKE consistently provided similar equated scores and SEEs as IRTOSE.
This indicates that the choice of presmoothing method has a much larger effect on the equated

Table 3. Global Performance Measures From the IRT Simulations. X ≠ Y Indicates Whether or Not the
Test Forms Differed in Difficulty and P ≠ Q Indicates Whether or Not the Test Takers Taking Each Form
Differed in Ability. The Bold Numbers Indicate the Smallest Value in Each Scenario.

Method X ≠ Y P ≠ Q

IRT Simulation Results

AAB WAB ASEE WSEE RMSE WRMSE

IRTOSE EG .04 .03 .52 .56 .53 .56
IRTOSE PSE .03 .02 .43 .46 .44 .46
IRTKE EG .03 .03 .52 .56 .53 .56
IRTKE CE .02 .01 .35 .32 .35 .33
IRTKE PSE .02 .02 .43 .46 .43 .46
LLKE EG .04 .03 .80 .62 .80 .62
LLKE CE .05 .01 .88 .47 .88 .47
LLKE PSE .04 .01 .77 .43 .77 .43
IRTOSE EG x .04 .01 .52 .60 .54 .60
IRTOSE PSE x .04 .02 .46 .54 .48 .54
IRTKE EG x .01 .02 .53 .60 .53 .60
IRTKE CE x .01 .01 .36 .36 .36 .36
IRTKE PSE x .02 .02 .47 .54 .47 .54
LLKE EG x .18 .11 .78 .68 .83 .69
LLKE CE x .27 .11 .78 .50 .84 .52
LLKE PSE x .34 .15 .66 .45 .76 .48
IRTOSE EG x 4.13 5.83 .52 .58 4.21 5.87
IRTOSE PSE x .03 .04 .43 .46 .43 .46
IRTKE EG x 4.16 5.83 .53 .58 4.25 5.87
IRTKE CE x .22 .16 .35 .33 .42 .38
IRTKEPSE x .03 .04 .43 .46 .43 .46
LLKE EG x 4.25 5.84 .77 .67 4.46 5.90
LLKE CE x .17 .17 .82 .48 .85 .52
LLKE PSE x .84 .87 .73 .46 1.22 1.03
IRTOSE EG x x 3.99 5.92 .55 .61 4.09 5.97
IRTOSE PSE x x .05 .04 .44 .48 .45 .49
IRTKE EG x x 4.03 5.92 .56 .61 4.13 5.97
IRTKE CE x x .21 .17 .35 .35 .42 .40
IRTKE PSE x x .03 .04 .44 .48 .44 .49
LLKE EG x x 4.20 5.93 .79 .69 4.40 6.00
LLKE CE x x .33 .22 .81 .53 .89 .58
LLKE PSE x x .81 .88 .75 .51 1.21 1.06
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scores compared to whether or not one uses equipercentile equating or kernel equating to smooth
out the score distributions. Despite the similarities in the equated scores, IRTKE could potentially
be seen as a more attractive method, as the kernel equating framework allows for analytically
computed SEEs. Kernel equating also has intuitive appeal in that the smoothed score distribution
retains the same mean and standard deviation as the discrete scores.

IRT-presmoothing models were found to provide smaller SEEs at the lower and upper ends of
the score scales when compared to log-linear models. This property of IRTKE/IRTOSE was
consistent throughout the real data examples and all simulated scenarios. Similar findings were
also observed in the simulation study conducted by Andersson and Wiberg (2017), where IRTKE
and LLKE were compared using dichotomous items. A possible explanation for this phenomenon
is that log-linear models, as opposed to IRT models, directly smooth the observed score fre-
quencies of each total test score. As a result, a few extra test takers in the lower and/or upper ends
of the test score scale due to sampling error typically leads to a shift in the lower and/or upper
quantiles of the presmoothed distribution when log-linear models are used. In contrast, with IRT
presmoothing, item response curves are fit for each item, and the item response curves (which are
typically monotone) of the chosen IRT model are enforced upon all items. In other words,
smoothing is done at an item level, and the parametric form of the chosen IRT model lowers the

Figure 3. Estimated bias and SEE in selected scenarios from the non-IRT simulations. The x-axis shows the
test score of form X. X ≠ Y indicates whether or not the test forms differed in difficulty and P ≠ Q indicates
whether or not the test takers taking each form differed in ability. (a) IRTKEX = Y P = Q (b) LLKE X = Y P = Q
(c) IRTKE X ≠ Y P ≠ Q (d) LLKE X ≠ Y P ≠ Q (e) IRTKE X = Y P = Q (f) LLKE X = Y P = Q (g) IRTKE X ≠ Y P ≠ Q
(h) LLKE X ≠ Y P ≠ Q.

508 Applied Psychological Measurement 47(7-8)



effect of random “bumps” in the total score sample frequencies. As illustrated in this study and the
study by Andersson and Wiberg (2017), IRT presmoothing is an effective way of reducing the
SEEs at the lower and upper ends of the score scale where there are typically fewer test takers in
the data. One should note that small SEEs do not necessarily indicate good equating, and the IRT
approach could potentially introduce bias at the extremes if the chosen IRT model is a poor fit.
Since no true equating transformation is known in a practical setting, multiple equating methods
should be considered for comparison purposes. If no method appears to be clearly inaccurate, and
if there is no reason to prefer one over another, a possible solution could be to use the average
results from different methods (Holland & Strawderman, 2011).

From the simulations, it is clear that ability differences between the test taker populations led to
relatively large bias for LLKE PSE compared to its CE alternative. This is also in line with
previous research in non–mixed-format settings (Mao et al., 2006; Wang et al., 2008). Wang et al.
(2008) recommended the use of PSE in situations where the population differences are small,
because of smaller SEEs obtained using the PSE method when compared to the values obtained
with CE. However, in our study, similar findings were only observed when using log-linear
presmoothing models. When IRTKE was used, CE showed smaller average SEEs compared to
PSE in both the real-data example and the simulation study. The smaller SEEs led to smaller
RMSEs even in scenarios where IRTKE PSE produced less biased results. For this reason, we
recommend CE over PSE when conducting equatings under the NEAT design using the IRTKE
framework. It should be noted that these results only apply when using the mean-mean IRT
coefficient linking method for IRTKE PSE, as this was the only approach considered in this study.
Previous studies on coefficient linking methods have shown that the Haebara and Stocking–Lord
methods tend to outperform moment-based methods such as the mean-mean method (e.g.,
Andersson, 2018). However, to what extent the linking method affects the actual IRTKE PSE
equatings remains unclear, and is a topic for future study.

In our simulation study, we compared the results from two types of data-generating processes.
Both were based upon real test data from the SweSAT, but used different true equating trans-
formations for bias estimation. In the non-IRTsimulations, where the true equating transformation
was defined using CE, the CE methods had smaller bias than the PSE methods. In contrast, in the
IRT simulations, where the IRTobserved score equating transformation for a synthetic population
was defined as the true equating transformation, IRTKE PSE had the lowest bias. As expected, the
bias was generally smaller when IRTKEwas used in the IRTsimulations, while the results differed
between scenarios in the non-IRT simulations. The contradicting results between the IRT and the
non-IRT simulations highlight the importance of selecting appropriate data-generating processes
and true equating transformations when conducting simulation studies. This issue has been
previously discussed in the study by Wiberg and González (2016), where the authors encouraged
the use of multiple true equating transformations for more fair comparisons between methods. In
our study, we used two different processes for generating test data, each with their own true
equating. If we had only used IRTsimulations, which is the more common approach, it would have
appeared that IRTKE PSE outperformed the other methods in terms of bias. We argue that these
types of studies where multiple simulation methods are used result in a more fair comparison, even
though in this case the results are less conclusive.

One limitation of the current study is that strictly unidimensional test forms were assumed
throughout the simulations. However, in a multidimensional setting, when item types measure
different constructs, as is common in many practical situations (Lee & Lee, 2014; Tate, 2000;
Wang & Kolen, 2014), there would probably be a larger impact resulting from varying the number
of items of each item type. This should be investigated further.

Another limitation is that we used only GPC models to model both dichotomous and pol-
ytomous items during IRTKE. As the sample sizes are often large in situations where equating is
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conducted, it would be of interest to explore the effects on the estimated equating transformations
of using simultaneous calibration of mixed IRT models (Chon et al., 2010). For example, a three
parameter logistic model for dichotomous items (which are commonly multiple-choice items) and
a GPC model for polytomous items could be used. In this way, the effect of guessing on the
dichotomous items would be modelled without increasing the model complexity for polytomous
items. Additionally, parametric IRT models sometimes do not fit the data, and the possibility of
using non-parametric models (e.g., Arenson & Karabatsos, 2018; Wiberg et al., 2019) in the
presmoothing step should also be explored.

In conclusion, when compared to LLKE and IRTOSE, IRTKE appears to be a promising
approach for mixed-format test data. IRTKE outperformed LLKE in terms of RMSE and SEE in
most simulated scenarios, with a larger difference for both high and low scoring test takers. In both
the simulations and the empirical study, IRTKE and IRTOSE produced similar results. However, a
key distinguishing factor is that IRTKE leverages several advantages inherent to kernel equating.
For example, it facilitates analytical SEEs and provides considerable flexibility in the con-
tinuization of discrete score distributions through adjustable bandwidth. These attributes un-
derscore the potential of IRTKE as a potent tool in test equating methodologies.
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