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Abstract
The goal of this paper is to show the existence (using prob-

abilistic tools) of configurations of lines, boxes, and points

with certain interesting combinatorial properties. (i) First,

we construct a family of n lines in R3
whose intersection

graph is triangle-free of chromatic number Ω(n1∕15). This

improves the previously best known bound Ω(log log n) by

Norin, and is also the first construction of a triangle-free

intersection graph of simple geometric objects with poly-

nomial chromatic number. (ii) Second, we construct a set

of n points in R𝑑
, whose Delaunay graph with respect to

axis-parallel boxes has independence number at most n ⋅
(log n)−(𝑑−1)∕2+o(1)

. This extends the planar case considered

by Chen, Pach, Szegedy, and Tardos.
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1 INTRODUCTION

The purpose of this paper is to present several interesting constructions of geometric configurations,

with the help of simple probabilistic ideas.

1.1 Coloring lines

Given a graph G, how does its clique number 𝜔(G) relate to its chromatic number 𝜒(G)? Clearly,

𝜒(G) ≥ 𝜔(G), but not much can be said in the other direction. Sophisticated probabilistic arguments

show the existence of n-vertex triangle-free graphs of chromatic number n1∕2−o(1)
, see for example,
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2 TOMON

[22]. The situation completely changes, however, if we assume that our graph is an intersection or

disjointness graph of certain geometric shapes.

The intersection graph of a family  of sets is the graph, whose vertex set is  , and two vertices

are joined by an edge if they have a nonempty intersection. The disjointness graph of a family is

the complement of its intersection graph. In the past sixty years, the relationship between the clique

number and chromatic number of intersection and disjointness graphs of certain geometric objects has

been extensively studied. In almost all instances, the following tight connections have been observed.

A family  of graphs is 𝜒-bounded, if there exists a function f such that 𝜒(G) ≤ f (𝜔(G)) for every

member G ∈ . If  is a family of intersection or disjointness graphs of certain nice shapes (e.g. disks,

boxes, segments, convex sets, curves), then either  is 𝜒-bounded [4, 9, 15, 19, 21, 25, 27, 28, 30], or

the chromatic number grows by at most a polylogarithmic function of the number of vertices assuming

the clique number is fixed [8, 18, 24, 29, 30, 36, 37, 39, 40]. In particular, a general result of Fox and

Pach [18] shows that if G is the intersection graph of n arc-wise connected sets in the plane (also known

as a string graph), then 𝜒(G) ≤ (log n)O(log𝜔(G))
. Another general result of Tomon [37] states that if

the shapes can be defined by a semilinear relation, then both the intersection and disjointness graph

G satisfies 𝜒(G) ≤ (𝜔(G) ⋅ log n)O(1), where the constant hidden in the O(.) notation depends only on

the complexity of the relation (we refer the interested reader to [7] or [37] for formal definitions).

So far, the only family which does not fit into this pattern that we are aware of is the family of dis-

jointness graphs of arcwise-connected sets in the plane. For every n, Suk and Tomon [35] constructed

such graphs on n vertices that are triangle-free and have chromatic number Ω(n1∕4). One goal of the

current manuscript is to show another, perhaps even more natural family of geometric graphs with

similar behavior.

Pach, Tardos, and Tóth [27] asked whether the family of intersection graphs of lines in R3
is

𝜒-bounded. This was answered by Norin [26] in the negative by showing that so called double shift
graphs can be realized as intersection graphs of lines. This infinite family of graphs was introduced

by Erdős and Hajnal [16] in 1964, and they proved that every n-vertex member of this family is

triangle-free of chromatic number Θ(log log n). The argument of Norin was published by Davies [14],

who also proved that there are intersection graphs of lines of arbitrarily large girth and chromatic num-

ber. However, in Davies’s construction the chromatic number grows even more slowly as a function of

the number of vertices. Here, we show that somewhat surprisingly, there are triangle-free intersection

graphs of lines with polynomial chromatic number.

Theorem 1.1. There exists c > 0 such that for every positive integer n, there exists a
triangle-free intersection graph of n lines in R3 of chromatic number at least cn1∕15

.

In particular, we construct a triangle-free intersection graph of n lines with independence number

O(n14∕15). Previously, it was not known whether independence number o(n) can be achieved for such

graphs. Moreover, Theorem 1.1 suggests that the aforementioned result of Fox and Pach about string

graphs is unlikely to have any reasonable extensions to higher dimensions. Finally, we remark that the

family of disjointness graphs of lines in R3
is well-behaved, Pach, Tardos, and Tóth [27] proved that

it is 𝜒-bounded.

1.2 Zarankiewicz problem for boxes

The Zarankiewicz problem [41] asks for the maximum number of edges in a bipartite graph on n + n
vertices containing no copy of the complete bipartite graph Ks,t. A geometric variant of this problem

was recently introduced by Basit, Chernikov, Starchenko, Tao, and Tran [7]. Given a set P and family

of sets  , the incidence graph of (P, ) is the bipartite graph with vertex classes P and  , where p ∈ P
and F ∈  are joined by an edge if p ∈ F.
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TOMON 3

Basit et al. [7] proved that if G is the incidence graph of n points and n boxes (here and later,

boxes are always axis-parallel) in R𝑑
, and G is Kt,t-free, then G has average degree O𝑑,t((log n)2𝑑). This

was recently improved to O𝑑

((
log n

log log n

)𝑑−1)
by Chan and Har-Peled [10], who also highlighted that a

construction matching their upper bound already appeared in a 1990 paper of Chazelle [11].

Theorem 1.2 (Chazelle [11]). Let 𝑑 be a positive integer. Then there exists c > 0 such
that the following holds for every sufficiently large n. There exists a set of n points P and
family of n boxes  in R𝑑 such that the incidence graph of (P,) is K2,2-free of average
degree at least c

(
log n

log log n

)𝑑−1

.

We present this construction, as we build on it later. We highlight that the author of this paper [37]

also proved that there exists a set of n points and n rectangles in the plane, whose incidence graph has

girth g and average degree Ωg(log log n).
Given a graph G, its separation dimension is the smallest positive integer 𝑑 for which there exists an

embedding 𝜙 ∶ V(G)→ R𝑑
satisfying the following. If {x, y} and {x′, y′} are disjoint edges of G, then

the box spanned by𝜙(x) and𝜙(y) is disjoint from the box spanned by𝜙(x′) and𝜙(y′). Alon, Basavaraju,

Chandran, Mathew, and Rajendraprasad [2] conjectured that for every 𝑑 there exists c = c(𝑑) such that

every graph of separation dimension 𝑑 has average degree at most c. They proved the 𝑑 = 2 case of

their conjecture, while Scott and Wood [32] confirmed it in the case 𝑑 = 3. In general, Scott and Wood

showed that an n-vertex graph of separation dimension 𝑑 has average degree at most O𝑑((log n)𝑑−3).
However, it was observed by Tomon and Zakharov [38] that if G is a K2,2-free incidence graph

of points and rectangles, then G has separation dimension at most 4. Therefore, the 𝑑 = 2 case of

Theorem 1.2 implies the existence of graphs on n vertices of separation dimension 4, with average

degreeΩ
(

log n
log log n

)
, thus disproving the conjecture. Following the ideas of [38], we show that a K2,2-free

incidence graph of points and boxes in R𝑑
has separation dimension at most 2𝑑, thus establishing the

following corollary.

Corollary 1.3. Let 𝑑 be a positive integer. For every sufficiently large n, there exists a
graph on n vertices with average degree at least c

(
log n

log log n

)𝑑−1 of separation dimension at
most 2𝑑, where c = c(𝑑) > 0 only depends on 𝑑.

Recently, the author of this paper [37] studied Ramsey properties of so called semilinear graphs to

model coloring properties of intersection and disjointness graph. A graph G is semilinear of complexity

t, if the vertices of G are points in some real space R𝑑
, and the edges depend only on the sign pattern

of t linear functions f1, … , ft ∶ R𝑑 × R𝑑 → R. In [37], it is shown that every semilinear graph G
on n vertices of complexity t satisfies 𝜒(G) ≤ (𝜔(G) log n)Ot(1). We raised the question whether the

power of log n in the upper bound needs to increase with t. Combining Theorem 1.2 with ideas of [37],

one can show that there exist triangle-free semilinear graphs of complexity O(𝑑) on n vertices with

chromatic number Ω
((

log n
log log n

)𝑑−1)
, answering this question.

1.3 Delaunay graphs with respect to boxes

The Delaunay graph of a set of points P in the plane is the graph on vertex set P in which x and y are

joined by an edge if there exists a disk containing x and y, and no other point of P. The Delaunay graph

of every set of n points is planar and thus contains an independent set of size at least n∕4. As observed

by Even, Lotker, Ron, and Smorodinsky [17], this fact implies that any set of n points has a conflict-free
coloring with respect to disks using O(log n) colors. That is, a coloring of P such that for every disk D
containing a point of P there is a color assigned to exactly one element of P∩D. Conflict-free colorings
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4 TOMON

are motivated by, for example, frequency assignment problems in cellular telephone networks. We refer

the interested reader to the survey of Smorodinsky [33].

Generally, given a set of points P in R𝑑
and a collection  of subsets of R𝑑

, one can define the

Delaunay graph of P with respect to , denoted by D(P), as the graph on vertex set P, in which x and

y are joined by an edge if there exists some C ∈  with C ∩ P = {x, y}. Given a conflict-free coloring

of P with respect to  (defined analogously), every colorclass is an independent set of D(P). This

motivates the study of independence numbers of Delaunay graphs.

Even et al. [17] and Har-Peled, Smorodinsky [20] asked whether the Delaunay graph of a set

of n points in the plane with respect to rectangles contains an independent set of size Ω(n). This

was disproved by Chen, Pach, Szegedy, and Tardos [12], who showed that this independence num-

ber might be as small as O
( n(log log n)2

log n

)
. On the other hand, the best known lower bound is Ω(n0.617)

due to Ajwani, Elbassioni, Govindarajan, and Ray [1]. Here, we extend the upper bound for boxes

in R𝑑
for 𝑑 ≥ 3.

Theorem 1.4. For every 𝑑 ≥ 3 there exists c > 0 such that the following holds for every
sufficiently large n. There exists a set of n points in R𝑑 whose Delaunay graph with respect
to boxes has independence number at most

cn(log log n)(𝑑+3)∕2

(log n)(𝑑−1)∕2
.

In particular, Chen, Pach, Szegedy, and Tardos [12] proved that their upper bound is achieved by

a uniform random point set in [0, 1]2 with high probability. Our upper bound in Theorem 1.4 is also

achieved by a uniform random point set in [0, 1]𝑑 , after some modification. However, we note that our

analysis of the Delaunay graph of a random point set is quite different from that of [12], which we were

unable to extend already for the case 𝑑 = 3. We employ a more graph theoretic approach, involving

the celebrated graph container method [23, 31].

1.4 Organization

This paper is organized as follows. In Section 2, we prove Theorem 1.1. Then, in Section 3, we prove

Theorem 1.2 and Corollary 1.3, and in Section 4, we prove Theorem 1.4. We conclude the paper with

some open problems and remarks.

2 COLORING LINES—PROOF OF THEOREM 1.1

In this section, we prove Theorem 1.1. For integers a ≤ b, let [a, b] = {a, … , b} and [a] = {1, … , a}.
First, we show that there is a set of Ω(N3∕2) vectors in [N]3 such that any three of them are linearly

independent (over R). This bound is the best possible [6]. Constructions of such sets and generaliza-

tions are already available [5, 6, 34]. We need some extra properties as well, and the most convenient

way to ensure these properties is to give self-contained proof.

Say that a vector (a, b, c) ∈ Z3
is indivisible if the greatest common divisor of a, b, c is 1.

Lemma 2.1. There exists c, 𝜀 > 0 such that the following holds for every positive integer
N. There exists a set S ∈ [⌈𝜀N⌉,N]3 of size at least cN3∕2 such that any 3 elements of S
are linearly independent, and every element of S is indivisible.
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TOMON 5

Proof. Let p be a prime such that
1

2
N3∕2

< p < N3∕2
, which exists by Bertrand’s postulate.

First, we shall work over the field Fp. For u, v ∈ F3
p ⧵ {0}, write u ∼ v if u = 𝜆v for some

𝜆 ∈ Fp. Clearly, ∼ is an equivalence relation. A representative of u is any element from

its equivalence class.

Let Q = [−N,N]3, then every nonzero element of F3
p has a representative in Q, see,

for example, lemma 4.1 in [34]. Furthermore, let R be the set of vectors in Q which

have a coordinate in
[
− N

200
,

N
200

]
, then |R| ≤ 3 ⋅ (2N) ⋅ (2N) ⋅ N

100
<

N3

8
. Say that

v ∈ F3
p is bad if it has a representative in R, otherwise say that v is good. Clearly,

the number of bad elements is at most |R|(p − 1) <
N3

8
(p − 1) <

p3

2
. In particu-

lar, we get that at least half of (Fp ⧵ {0})3 is good, we write F for the set of good

elements.

Now choose randomly three numbers a, b, c ∈ Fp ⧵ {0} from the uniform distribution,

independently from each other, and set T = {(a, bt, ct2) ∶ t ∈ Fp ⧵ {0}}. The set T is

also known as a moment curve. Firstly, we show that any three elements of T are linearly

independent. Otherwise, there exists z ∈ F3
p ⧵ {0} and distinct t1, t2, t3 ∈ Fp such that

⟨z, (a, bti, ct2

i )⟩ = 0 for i ∈ [3]. But this means that t1, t2, t3 are distinct roots of the nonzero

quadratic polynomial f (x) = az(1) + bz(2) ⋅ x + cz(3) ⋅ x2
, a contradiction. Secondly, note

that for every t ∈ Fp ⧵ {0}, the vector (a, bt, ct2) is uniformly distributed in (Fp ⧵ {0})3.

Therefore, with probability at least 1∕2 the vector (a, bt, ct2) is good. This implies that

there is a choice for a, b, c such that at least half of the elements of T are good. Fix such a

choice.

Now for each u ∈ F ∩ T , let u′ ∈ Z3
be a vector such that u′ is a representative

of u over Fp, and the maximal absolute value of a coordinate of u′ is minimal among

such representatives. Clearly, u′ is indivisible. Let S0 = {u′ ∶ u ∈ F ∩ T}. Any three

vectors in S0 are linearly independent over Q, as they are linearly independent over Fp.

Also, for x ∈ S0 and i ∈ [3], we have
N

200
≤ |x(i)| ≤ N. Finally, |S0| = |F ∩ T| ≥

p−1

2
≥

N3∕2

8
.

The set S0 is almost what we want, we just need to get rid of the negative coordinates.

Clearly, there exists S1 ⊂ S0 of size at least |S1| ≥
1

8
|S0| ≥

N3∕2

64
such that the sign-pattern

of every vector in S1 is the same. By flipping the negative coordinates of the elements of

S1, if necessary, we get a set S with the desired properties. Hence, c = 1

64
and 𝜀 = 1

200

suffices. ▪

We remark that in order to get a bound of the form nΩ(1) in Theorem 1.1, it would have been enough

to guarantee a set of size Nc
for any c > 0 in Lemma 2.1. It is not hard to argue that a random sample

of [⌈𝜀N⌉,N]3 of size Nc
gives a desired set if c > 0 is sufficiently small.

Now we prepare the proof of Theorem 1.1. In our arguments, we may assume that n is sufficiently

large, and we systematically omit the use of floors and ceilings whenever they are not crucial. Let k > r
be positive integers specified later with respect to n, and let m ∶= k

r
. We assume that k, r,m are also

sufficiently large, which is ensured by their dependence on n.

Let 𝜀 be the constant guaranteed by Lemma 2.1, let N = m
2

, and fix a set S ⊂ [⌈𝜀N⌉,N]3 satisfying

the conditions of Lemma 2.1. Then |S| ≥ csm3∕2
for some absolute constant cs, every coordinate of

every element in S is between
𝜀m
2

and
m
2

, and any three vectors in S are linearly independent. After

removing some elements of S arbitrarily, we may assume that |S| = csm3∕2
.

For a vector v ∈ R3 ⧵ {0}, say that a line 𝓁 in R3
is v-type if 𝓁 is parallel to v. Let  be the set of

lines 𝓁 such that 𝓁 is v-type for some v ∈ S, and |𝓁 ∩ [k]3| ≥ r.
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6 TOMON

Lemma 2.2. || ≥ c𝓁 ⋅ k3|S|
r

for some constant c𝓁 > 0.

Proof. Let v ∈ S and x ∈ [k∕2]3. As every coordinate of v is at most N = k
2r

, the line

𝓁x,v = {x + t ⋅ v ∶ t ∈ R}

contains at least r points of [k]3, and so is contained in . On the other hand, as every

coordinate of v is at least
𝜀m
2
= 𝜀k

2r
and v is indivisible, 𝓁x,v contains at most

r
𝜀

points of

[k∕2]3. This means that every 𝓁 ∈  coincides with at most
r
𝜀

lines 𝓁x,v with (x, v) ∈
[k∕2]3 × S. Hence,

|| ≥
|S| ⋅ (k∕2)3

r∕𝜀
= 𝜀k3|S|

8r

which shows that c𝓁 ∶= 𝜀

8
suffices. ▪

Our strategy to find the desired configuration of lines is to take a random sample of, each element

sampled independently with some appropriate probability p, and then clean this sample a bit to elim-

inate the triangles. The challenging part is then to show that the resulting graph has large chromatic

number, which is ensured by estimating its independence number. In order to execute this strategy, we

need to analyze certain properties of .

Let G be the intersection graph of . Then the independence number 𝛼(G) satisfies 𝛼(G) ≤ k3

r
, as

each line in  contains at least r points of [k]3. Furthermore, as any three elements of S are linearly

independent, we immediately get that if three lines of  have a pairwise nonempty intersection, then

they must go through the same point z ∈ R3
. As a precaution, it is worth pointing out that z need not

be an element of [k]3.

For distinct u, v ∈ S, let u,v denote the set of planes H such that H contains both a u-type and a

v-type line of . Also, let

 =
⋃

u,v∈S
u≠v

u,v.

The following observation is crucial.

Lemma 2.3. |u,v| ≤ ch ⋅
k3

r2
for some constant ch > 0.

Proof. We show that for every H ∈ u,v, we have |H ∩ [k]3| ≥ 𝜀r2

16
. Then the lemma

follows by setting ch = 16

𝜀
, as the elements ofu,v are pairwise disjoint.

Let 𝓁 ∈  be a u-type line contained in H. Then there exists x ∈ [k]3 ∩ 𝓁 such that

xi ∶= x − i ⋅ u ∈ [k]3 ∩ 𝓁

for i = 0, … , r− 1. Using that each coordinate of u is at least
𝜀m
2

and that xr−1 ∈ [k]3, we

deduce that every coordinate of xi is at least
𝜀m
2
⋅ (r − 1 − i).

Let yi,j = xi − j ⋅ v for i, j = 0, … , r. As H contains a v-type line, we have yi,j ∈ H.

Furthermore, as every coordinate of v is at most m, we have for b ∈ [3] that

yi,j(b) ≥ xi(b) − j ⋅ v(b) ≥ 𝜀m
2
⋅ (r − 1 − i) − j ⋅ m.
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TOMON 7

Hence, for i = 0, … ,

⌊
r
2

⌋
− 1 and j = 0, … ,

⌊
𝜀r
4

⌋
− 1, every coordinate of yi,j is positive

(and from above bounded by k trivially), so yi,j is contained in [k]3. This gives

⌊ r
2

⌋
⋅
⌊
𝜀r
4

⌋
>
𝜀r2

16

distinct points of [k]3 ∩ H, finishing the proof. ▪

This lemma has a number of important consequences. First, we use it to count triangles.

Lemma 2.4. The number of triangles in G is at most ct ⋅
|S|3k9

r6
for some constant ct > 0.

Proof. Let 𝓁1,𝓁2,𝓁3 be three lines forming a triangle in G, and let vi ∈ S be the type

of 𝓁i for i ∈ [3]. Clearly, v1, v2, v3 are pairwise distinct, and then linearly independent

by the choice of S. Hence, as we remarked earlier, 𝓁1,𝓁2,𝓁3 must go through the same

point. Let Hi be the unique plane containing 𝓁i+1 and 𝓁i+2 (indices meant modulo 3), then

Hi ∈ vi+1
,vi+2

. The crucial observation is that the triple (H1,H2,H3) uniquely determines

(𝓁1,𝓁2,𝓁3) as 𝓁i = Hi+1 ∩ Hi+2.

Therefore, the number of triangles of G is upper bounded by the number of triples

(H1,H2,H3) ∈ v
2
,v

3
×v

3
,v

1
×v

1
,v

2
, where v1, v2, v3 ∈ S. The number of such triples

is at most |S|3 ⋅
( chk3

r2

)3

by Lemma 2.3. Hence, ct = c3

h suffices. ▪

Let  denote the set of maximal independent sets of G with respect to containment. Next, we

estimate the size of  . The author is grateful to János Pach and Gábor Tardos for the elegant idea of

the next proof, see also the concluding remarks of [36] where the same ideas are discussed.

Lemma 2.5. | | ≤ 2
cj|S|2k3∕r2 for some constant cj > 0.

Proof. For H ∈ , let BH be the subgraph of G induced by the lines of  contained in H.

Then BH is a complete bipartite graph. Indeed, H contains lines of exactly two types, and

any two lines of different types in H have a nonempty intersection. Furthermore, every

edge of G is contained in a unique BH . Therefore, {BH}H∈ forms a partition of the edge

set of G into complete bipartite graphs.

We write XH and YH for the vertex classes of BH . Furthermore, let I be an independent

set of G. Define the set C(I) ⊂ V(G) as follows. As I is an independent set, I intersects at

most one of XH and YH for H ∈ , let ZH ∈ {XH ,YH} the one it intersects. If I is disjoint

from XH ∪ YH , then set ZH = XH . For v ∈ V(G), put v into C(I) if and only if for every

H ∈  for which v ∈ XH ∪ YH holds, we have v ∈ ZH .

First of all, note that I ⊂ C(I) trivially. Furthermore, C(I) is an independent set.

Indeed, if e is an edge of G, then it is covered by some BH , and then the endpoint of

e not in ZH cannot be contained in C(I). This implies that if I is a maximal indepen-

dent set, then I = C(I). Hence, writing  = {C(I) ∶ I is an independent set of G},
we get  ⊂ . On the other hand, each element of  is determined by the sequence

{ZH}H∈ , so

|| ≤ 2
||
≤ 2

ch|S|2k3∕r2

,

where the last inequality holds by Lemma 2.3. Hence, cj ∶= ch suffices. ▪
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8 TOMON

Now we randomly sample the elements of  independently with probability p ∈ (0, 1), and let

H be the subgraph of G induced by the sampled elements. In what follows, we analyze the expected

properties of H. During our arguments, we use standard concentration inequalities. We refer the reader

to [3] as a general reference.

Lemma 2.6 (Multiplicative Chernoff bound). Let X be the sum of independent indicator
random variables. If 𝜆 ≥ 2E(X), then P(X ≥ 𝜆) ≤ e−𝜆∕6

. Also, P(X ≤ E(X)∕2) ≤ e−E(X)∕8
.

Let T be the number of triangles in H. The next lemma summarizes the expected properties of H.

The constants c𝓁 , ct, cj are the constants guaranteed by Lemmas 2.2,2.4,2.5, respectively.

Lemma 2.7. Let p ≥ 6cj|S|2

r
. Then,

1. P(|V(H)| ≥ c𝓁pk3|S|
2r

) ≥ 3

4
,

2. P(T ≤ 4ctp3|S|3k9

r6
) ≥ 3

4
,

3. P(𝛼(H) ≤ 2pk3

r
) ≥ 3

4
.

Proof.

1. We have E(|V(H)|) = p|| ≥ c𝓁pk3|S|
r

. Hence,

P

(
|V(H)| < c𝓁pk3|S|

2r

)
≤ P

(
|V(H)| ≤ 1

2
E(|V(H)|)

)
≤ e−E(|V(H)|)∕8

<
1

4
.

Here, the second inequality holds by the multiplicative Chernoff bound, while the last

inequality (generously) holds by our lower bound on E(|V(H)|).
2. We have E(T) ≤ ctp3|S|3k9

r6
by Lemma 2.4. Hence, by Markov’s inequality, we can write

P

(
T >

4ctp3|S|3k9

r6

)
≤

E(T)
4ctp3|S|3k9∕r6

≤
1

4
.

3. Let I ∈  . As E(|I ∩ V(H)|) = p|I| ≤ pk3

r
, we can apply the multiplicative Chernoff

bound to get

P

(
|I ∩ V(H)| ≥ 2pk3

r

)
≤ e−pk3∕3r

≤ 2
−pk3∕3r

.

By the union bound and using Lemma 2.5,

P

(
∃I ∈  ∶ |I ∩ V(H)| ≥ 2pk3

r

)
≤ | | ⋅ 2

−pk3∕3r
≤ 2

cj|S|2k3∕r2−pk3∕3r
.

Our lower bound on p was chosen such that the right hand side is at most 2
−cj|S|2k3∕r2

<
1

4
. Hence, with probability at least 3∕4, H contains at most

2pk3

r
elements of every

maximal independent set of G, which implies 𝛼(H) ≤ 2pk3

r
.

▪

From the previous estimates, we deduce the following.

Lemma 2.8. Let p be such that

6cj|S|2

r
< p <

c1∕2

𝓁 r5∕2

4c1∕2

t |S|k3

. (1)
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TOMON 9

Then there exists an induced subgraph H′ of G such that H′ is triangle-free, |V(H′)| ≥
c𝓁pk3|S|

4r
and 𝛼(H′) ≤ 2pk3

r
.

Proof. Let H be defined as above. By Lemma 2.7, with probability at least 1∕4, H satisfies

the following conditions simultaneously: |V(H)| ≥ c𝓁pk3|S|
2r

, T ≤ 4ctp3|S|3k9

r6
, and 𝛼(H) ≤

2pk3

r
. Fix some H satisfying these conditions. Our upper bound on p was chosen so that

|V(H)| ≥ 2 ⋅ T . Remove an arbitrary vertex from each triangle of H, and let H′
be the

resulting graph. We have |V(H′)| ≥ |V(H)| − T ≥ 1

2
|V(H)|, H′

is triangle-free, and

𝛼(H′) ≤ 𝛼(H). Hence, H′
satisfies the desired conditions. ▪

Now we are ready to prove our main theorem. All that is left is to set the parameters k, r
appropriately and do a bit of calculation.

Proof of Theorem 1.1. In what comes, c0, c1, c2, c3, c4 > 0 denote some unspecified con-

stants, whose existence follows from simple calculations. Let r ∶= c0k15∕16
, where c0 is

sufficiently large. Then

|S| = csm3∕2 = cs

(k
r

)3∕2

= cs

c3∕2

0

⋅ k3∕32
.

Hence, the left-hand side of (1) is

6cj|S|2

r
=

6cjc2
s

c4

0

⋅ k−3∕4
,

while the right-hand side is

c1∕2

𝓁 r5∕2

4c1∕2

t |S|k3

=
c1∕2

𝓁 c4

0

4c1∕2

t cs
⋅ k−3∕4

.

This shows that by choosing c0 sufficiently large, we can ensure that the left-hand side

is indeed smaller than the right-hand side. Also, we can choose p = c1k−3∕4
in between,

that is, satisfying the inequalities in (1). By Lemma 2.8, we get a triangle-free induced

subgraph H′
of G satisfying

|V(H′)| ≥ c𝓁pk3|S|
4r

= c2k45∕32

and

𝛼(H′) ≤ 2pk3

r
= c3k42∕32

.

Finally, choose k such that n = c2k45∕32
holds. Then the graph H′

satisfies |V(H′)| ≥ n and

𝛼(H′) ≤ c4n14∕15
. We can remove further vertices of H′

arbitrarily to get a graph H′′
with

exactly n vertices. The graph H′′
is a triangle-free intersection graph of n lines in R3

and

𝜒(H′′) ≥ n
𝛼(H′′)

≥
1

c4

n1∕15
,

finishing the proof. ▪
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10 TOMON

3 ZARANKIEWICZ FOR BOXES—PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2 and Corollary 1.3. Unlike in the previous section, given real

numbers a, b, [a, b] denotes the closed real interval with endpoints a and b. We fix some positive integer

parameters first. Let k be the solution of the equation

n = (100k2𝑑)k(𝑑−1) ⋅
(k + 𝑑 − 1

𝑑 − 1

)

(where we omit the detail that k might not be an integer). Then k = Θ𝑑
(

log n
log log n

)
. Furthermore, define

s ∶= 100k2𝑑
and m ∶= sk

, and observe that n = m𝑑−1

(
k+𝑑−1

𝑑−1

)
. Also, n being sufficiently large with

respect to 𝑑 ensures that s, k,m are also sufficiently large.

First, we define our family of boxes . Given t ∈ N𝑑
and p ∈ Z𝑑

, let B(s)t (p) = Bt(p) denote the

st(1) × · · · × st(𝑑)
sized box

𝑑∏

i=1

[
st(i)p(i), st(i)p(i) + st(i))

.

Call Bt(p) a t-block, or simply a block. Clearly, the t-blocks partition R𝑑
for every t ∈ N𝑑

. Furthermore,

for 𝓁 ∈ N, let

T𝓁 =

{

t ∈ N
𝑑 ∶

𝑑∑

i=1

t(i) = 𝓁

}

,

then |T𝓁| =
(
𝓁+𝑑−1

𝑑−1

)
. Finally, let  be the family of all blocks of volume m = sk

contained in [0,m]𝑑 .

Formally,  is the family of all blocks Bt(p), where t ∈ Tk and p(i) ∈ {0, … , sk−t(i) − 1} for every

i ∈ [𝑑]. Note that || = |Tk| ⋅ m𝑑−1 = n by the choice of our parameters. We remark that this family

of boxes is also studied in a recent work of the author [36] in the context of piercing numbers. An

important property of  is that for any distinct B,B′ ∈ , the intersection B ∩ B′ is either empty, or it

is a t-block for some t satisfying
∑𝑑

i=1
t(i) ≤ k − 1. To this end, define


− = {B ⊂ [0,m]𝑑 ∶ B is a t-block for some t ∈ Tk−1}.

Then for every distinct B,B′ ∈ , B ∩ B′ is empty or contained in an element of −. Note that the

volume of every element of − is
m
s

and |−| = |Tk−1|sm𝑑−1
.

Now, we define the set of points P. In case 𝑑 = 2, there is a perfect set for our purposes (well known

in discrepancy theory), the van der Corput set [13]. Assuming n = 2
t
, and writing numbers in binary

representation, the points of this set are (0.x1 … xt, 0.xt … x1), where (x1, … , xt) ∈ {0, 1}t
. The van

der Corput set has the property that every rectangle of area
1

n
contains at most one of its points. Scaling

the unit square by a factor of m, we get a set of n points P in [0,m]2 such that no rectangle of area
m2

n

contains two points of P. Here, by our choice of parameters, we have
m2

n
= m

|Tk|
= m

k+1
>

m
s

. Let G be

the incidence graph of (P,). Then every point in P is contained in exactly |Tk| = k + 1 rectangles

of , so G has average degree k + 1 = Ω
(

log n
log log n

)
. Also, the incidence graph of G is K2,2-free, as the

intersection of any two rectangles in  has area at most
m
s

. This concludes the case 𝑑 = 2.

Now we assume that 𝑑 ≥ 3. We show that instead of a well structured set such as the previously

described van der Corput set, a random set of points also works (which works in the case 𝑑 = 2 as well).
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TOMON 11

Lemma 3.1. There exists a set of n points P in [0,m]𝑑 such that every block B ∈ −
contains at most one element of P. Moreover, the number of triples of points of P that are
contained in the same block B ∈  is at most 32|Tk|3n.

Proof. First, let Q be a set of 2n points chosen randomly and independently in [0,m]𝑑
from the uniform distribution. We show that after some cleaning, i.e. deleting some of the

points, we get a K2,2-free incidence graph with large average degree.

Say that a pair of distinct points x, y ∈ Q is bad if there exists a block B ∈ − with

x, y ∈ B. Let X be the number of bad pairs. For any pair x, y of independent points from

the uniform distribution on [0,m]𝑑 , and B ∈ −, we have P(x, y ∈ B) = 1

(sm𝑑−1)2
. Hence,

P(∃B ∈ − ∶ x, y ∈ B) ≤ |−|
s2m2(𝑑−1) =

|Tk−1|
sm𝑑−1

.

But then,

E(X) ≤ (2n)2 ⋅ |Tk−1|
sm𝑑−1

= 4n|Tk| ⋅ |Tk−1|
s

<
4nk2𝑑

s
≤

n
4
,

By Markov’s inequality, P(X ≥ n) ≤ 1

4
.

Also, let T be the number of triples of points of Q that are contained in the same block

B ∈ . For any triple x, y, z of independent points from the uniform distribution on [0,m]𝑑 ,

we have P(x, y, z ∈ B) = 1

m3(𝑑−1) . Hence, P(∃B ∈  ∶ x, y, z ∈ B) ≤ ||
m3(𝑑−1) =

|Tk|
m2(𝑑−1) .

But then,

E(T) ≤ (2n)3 ⋅ |Tk|
m2(𝑑−1) = 8|Tk|3n.

By Markov’s inequality, P(T ≥ 32|Tk|3n) ≤ 1

4
.

Hence, there exists a set of points Q satisfying X ≤ n and T ≤ 32|Tk|3n. Fix such a

set. Let P′ be the set we get by removing all points of Q that are contained in a bad pair.

Then we removed at most X points in total, so |P′| ≥ n. Remove some further points of P′
arbitrarily to get a set P with exactly n elements. This concludes the construction of our

point set. ▪

We remark that the condition on the number of triples in not needed for the proof of Theorem 1.2,

but it be useful later.

Let P be a set guaranteed by Lemma 3.1, and we analyze the incidence graph G of (P,). Note

that the degree of every element in P is exactly

|Tk| =
(k + 𝑑 − 1

𝑑 − 1

)
≥

k𝑑−1

(𝑑 − 1)!
≥ c

(
log n

log log n

)𝑑−1

where c > 0 is some appropriate constant depending only on 𝑑. Hence, G has average degree |Tk| ≥
c
(

log n
log log n

)𝑑−1

. Finally, G is K2,2-free, as no t-block for t ∈ Tk−1 contains more than one element of P.

This finishes the proof of Theorem 1.2.

We conclude this section with the proof of Corollary 1.3.

Proof of Corollary 1.3. Let P be a set of n points and be a set of n boxes in R𝑑
guaranteed

by Theorem 1.2. Let G be the incidence graph of (P,), and recall that G is K2,2-free.
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12 TOMON

We show that G has separation dimension at most 2𝑑, which then finishes the proof. Our

task is to find an embedding 𝜙 ∶ V(G) → R2𝑑
such that if p, p′ ∈ P and B,B′ ∈  such

that p ∈ B and p′ ∈ B′, then the box spanned by 𝜙(p) and 𝜙(B) is disjoint from the box

spanned by 𝜙(p′) and 𝜙(B′).
We define 𝜙 ∶ V(G) → R2𝑑

as follows. If p ∈ P, then 𝜙(p)(i) = p(i) and 𝜙(p)(i+𝑑) =
−p(i) for i ∈ [𝑑]. Also, given a box B ∈  such that B = [a1, b1] × · · · × [a𝑑, b𝑑], let

𝜙(B)(i) = bi and 𝜙(B)(i + 𝑑) = −ai for i ∈ [𝑑]. We show that 𝜙 suffices.

Define the partial ordering ≺ on R2𝑑
such that x ⪯ y if x(i) ≤ y(i) for every i ∈ [𝑑].

Observe that p ∈ B for some p ∈ P and B ∈  if and only if 𝜙(p) ⪯ 𝜙(B). Also, the

box spanned by p and B is exactly the set of points y ∈ R2𝑑
such that 𝜙(p) ⪯ y ⪯ 𝜙(B).

Therefore, suppose that p, p′ ∈ P and b, b′ ∈ B are such that p ∈ B, p′ ∈ B′, and the box

spanned by 𝜙(p) and 𝜙(B) intersects the box spanned by 𝜙(p′) and 𝜙(B′) in some y ∈ R2𝑑
.

Then 𝜙(p), 𝜙(p′) ≺ y ≺ 𝜙(B), 𝜙(B′), which implies that p′ ∈ B and p ∈ B′ as well. But

then {p, p′,B,B′} are the vertices of a copy of K2,2 in G, contradiction. ▪

4 DELAUNAY GRAPHS—PROOF OF THEOREM 1.4

In this section, we prove Theorem 1.4. The Delaunay graph of a point set always refers to its Delaunay

graph with respect to boxes. We give a brief outline of our strategy.

4.1 Proof strategy

Let  and − be the same systems of blocks as defined in the previous section (with the parameters

k, s,m slightly changed with respect to n). Given a set of points P ⊂ [0,m]𝑑 , one can define the graph

G = GP by connecting two points with an edge if they are contained in the same block B ∈ . Observe

that if B contains exactly two points x, y ∈ P, then the edge connecting x and y is also an edge of the

Delaunay graph of P. Our aim is to find a set of n points P such that every block B ∈  contains at

most two points of P and GP has small independence number. Then GP is a spanning subgraph of the

Delaunay graph of P, which then also has small independence number.

In order to find P, we first consider a larger set Q with the property that every B ∈ − contains at

most one point of Q. Such a set is already constructed in the previous section. Our goal is to show that

a random sample P0 of Q with some appropriate probability is close to our desired set P. In order to

control the independence number of GP
0
, we apply the graph container method. That is, we show that

there is a small collection of small subsets of Q such that every independent set of GQ is contained

in one of these sets. The existence of such a collection follows from a supersaturation result. More

precisely, the result we need and prove is that every subset of Q of size 𝜆m𝑑−1
(𝜆 ≥ 2) induces a

subgraph in GQ of maximum degree at least
𝜆

2
|Tk|. The proof of this property uses the fact that every

B ∈ − contains at most one point of Q.

We now execute the above strategy formally. Let N be a parameter specified later, and define k, s,m
as in the previous section, but now with respect to N instead of n. That is N = (100k2𝑑)k(𝑑−1)

(
k+𝑑−1

𝑑−1

)
,

s = 16k2𝑑
and m = sk

, and these parameters satisfy k = Θ𝑑
((

log N
log log N

)𝑑−1)
, N = m𝑑−1

(
k+𝑑−1

𝑑−1

)
. Also,

define blocks,  and − in the same manner. Then by Lemma 3.1, there exists a set Q ⊂ [0,m]𝑑 of N
points such that no block in − contains more than one element of Q, and the number T of triples of

points contained in some block of  is at most 32|Tk|3N.
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TOMON 13

Define the graph G on vertex set Q such that two points are connected by an edge if they are

contained in the same block B ∈ . Note that each edge of G comes from a unique block B. Next, we

randomly sparsify the set Q to get a set P0 which is close to our desired set P. In order to control the

independence number of a random induced subgraph of G, we employ the celebrated graph container

method [23, 31]. We would like to show that there is small collection  of small subsets of Q, called

containers, such that every independent set of G is contained in some element of . In order to show

the existence of such a collection, one needs to ensure that large subsets of Q induce subgraphs of G
of large maximum degree. We prove such a result in the next lemma.

Lemma 4.1. Let 𝜆 ≥ 2 and C ⊂ Q such that |C| ≥ 𝜆 ⋅ m𝑑−1
. Then the maximum degree

of G[C] is at least 𝜆

2
|Tk|.

Proof. Let B ∈  and let nB = |B ∩ C|. As G[B ∩ C] is a complete graph,

e(G[B ∩ C]) =
n2

B − nB

2
.

Therefore,

e(G[C]) =
∑

B∈
e(G[B ∩ C]) =

∑

B∈

(
n2

B
2
− nB

2

)
≥

(∑
B∈ nB

)2

2||
−
∑

B∈ nB

2
.

Here, the first equality holds by the fact that every edge of G is contained in exactly one

of the blocks, and the last inequality is due to the Cauchy-Schwartz inequality. But note

that
∑

B∈ nB = |Tk| ⋅ |C|, as each element of Q is contained in exactly |Tk| blocks of .

Therefore, we can rewrite the right hand side as

e(G[C]) ≥ |Tk|2|C|2
2|Tk| ⋅ m𝑑−1

− |Tk||C|
2

= 𝜆 − 1

2
⋅ |Tk| ⋅ |C| ≥

𝜆

4
⋅ |Tk| ⋅ |C|.

This shows that the average degree of G[C] is at least
𝜆

2
|Tk|, finishing the proof. ▪

Now we are ready to state and prove our container lemma. The proof should be mostly standard to

anyone familiar with the container method.

Lemma 4.2. There exists a collection  ⊂ 2
Q with the following properties.

(i) Every independent set of G is contained in some C ∈ .

(ii) |C| ≤ 3m𝑑−1 for every C ∈ .

(iii) || ≤ exp

(
cm𝑑−1

|Tk|
(log log N)2

)
for some c1 = c1(𝑑).

Proof. Let < be an arbitrary total ordering of the elements of Q. For a subgraph H of G
and vertex v ∈ V(H), NH(v) = {w ∈ V(H) ∶ vw ∈ E(H)} denotes the neighborhood of v
in H.

Fix an independent set I of G. We construct a fingerprint S and a set f (S) (depending

only on S) for I with the help of the following algorithm.

Let S0 = ∅ and G0 = G. If Si and Gi are already defined, we define Si+1 and Gi+1 in the

following manner. Let v ∈ R be the first vertex (with respect to <) of maximum degree

in Gi.
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14 TOMON

1. If |V(Gi)| ≤ 2m𝑑−1
, then stop, and set S ∶= Si and f (S) ∶= V(Gi).

2. Otherwise, if v ∉ I, then set Si+1 = Si, remove v from Gi, and let the resulting graph

be Gi+1.

3. If v ∈ I, then set Si+1 = Si ∪ {v}, and remove {v} ∪ NGi(v) from Gi, let Gi+1 be the

resulting graph.

We analyze this algorithm. At each step, the size of Gi decreases, so the algorithm

stops after a finite number of steps. The first observation one has to make is that f (S)
indeed only depends on S. We omit the details, as this argument is standard (one has to

check that at every step, Gi only depends on Si). Secondly, as I is an independent set, we

have I ⊂ Si ∪ V(Gi) for every i, so in particular I ⊂ S ∪ f (S).
Finally, we have |S| ≤ c

0
m𝑑−1

|Tk|
log log N for some c0 = c0(𝑑). Indeed, in case we added a

vertex v to Si to get Si+1, we removed at least 1+ |NGi(v)| vertices from Gi to get Gi+1. But

v is a vertex of maximum degree in Gi, and |V(Gi)| ≥ 2m𝑑−1
, so we can apply Lemma 4.1

with 𝜆 = |V(Gi)|
m𝑑−1

to get

1 + |NGi(v)| >
|V(Gi)||Tk|

2m𝑑−1
.

Therefore,

|V(Gi+1)| ≤
(

1 − |Tk|
2m𝑑−1

)
|V(Gi)| < exp

(
− |Tk|

2m𝑑−1

)
|V(Gi)|.

From this, we deduce that exp

(
− |S|⋅|Tk|

2m𝑑−1

)
⋅ |Q| ≥ 2m𝑑−1

. Solving the inequality gives

|S| ≤ 2m𝑑−1

|Tk|
⋅ log

|Q|
2m𝑑−1

≤
c0m𝑑−1

|Tk|
log log N,

where c0 is some constant depending only on 𝑑. In particular, we have |S∪ f (S)| ≤ 3m𝑑−1
.

Let  be the collection of all the sets S ∪ f (S), where S is the fingerprint of some

independent set I. Then (i) and (ii) are satisfied. Also, as each fingerprint has size at most

z ∶= c
0
m𝑑−1

|Tk|
log log N, we can bound the size of  by simply counting all subsets of V(G)

of size at most z. Therefore,

|| ≤
z∑

i=0

(|Q|
i

)
≤

(
4N
z

)z

≤ exp

(
c1m𝑑−1

|Tk|
(log log N)2

)

with some appropriate c1 = c1(𝑑), where the last inequality holds by observing that
N
z

is

polylogarithmic in N. ▪

Let n = N
400|Tk|3∕2

= m𝑑−1

400|Tk|1∕2
(or rather, fix the parameter k with respect to n such that this equality is

satisfied), and let p ∶= 4n
N
= 1

100|Tk|3∕2
. We highlight that log n = (1+ o(1)) log N, which is used subtly

in calculations later. Let P0 be the random sample we get by selecting each element of Q independently

with probability p. Then E(|P0|) = 4n, so by the multiplicative Chernoff bound, we have P(|P0| ≥
2n) ≥ 3∕4.
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TOMON 15

Let T ′ be the number of triples in P0 that are contained in the same block B ∈ . Then

E(T ′) = p3T ≤ 32

(
3n
N

)3

|Tk|3N ≤ n
4
.

Hence, by Markov’s inequality, we have P(T ≥ n) ≤ 1

4
.

Finally, let H0 = G[P0] and 𝛼 = 10c
1
m𝑑−1

|Tk|
(log log N)2, where c is the constant given by Lemma 4.2.

Lemma 4.3. 𝛼(H0) ≤ 𝛼 with probability at least 3

4
.

Proof. Let  be the collection given by Lemma 4.2. Then every C ∈  satisfies |C| ≤
3m𝑑−1

. In particular,

E(|C ∩ P0|) ≤ 3pm𝑑−1
<
𝛼

2
.

But then by the multiplicative Chernoff bound,

P(|C ∩ P0| ≥ 𝛼) ≤ e−𝛼∕6
.

Furthermore, by the union bound,

P(∃C ∈  ∶ |C ∩ P0| ≥ 𝛼) ≤ ||e−𝛼∕6
<

1

4
.

Therefore, with probability at least
3

4
, we have |C ∩ P0| ≤ 𝛼 for every C ∈ . But every

independent set of G is contained in some element of , so 𝛼(H0) ≤ 𝛼 with probability at

least
3

4
. ▪

Hence, with positive probability, there exists P0 such that |P0| ≥ 2n, T ′ ≤ n and 𝛼(H0) ≤ 𝛼. Fix

such a set P0. Let P1 be the set of points we get by removing a member of every triple of P0 that is

contained a block of . Then |P1| ≥ |P0| − T ′ ≥ n, so we can remove some further points arbitrarily

to get a set P ⊂ P1 with exactly n elements. Define H = H0[P] = G[P]. Then

𝛼(H) ≤ 𝛼(H0) ≤ 𝛼 =
10c1m𝑑−1

|Tk|
(log log N)2 = 4000c1n

|Tk|1∕2
(log log N)2 ≤ cn(log log n)(𝑑+3)∕2

(log n)(𝑑−1)∕2
,

for some constant c depending only on 𝑑. Furthermore, every block of B ∈  contains at most two

points of P. The latter ensures that H is a spanning subgraph of the Delaunay graph D of P, so 𝛼(D) ≤
𝛼(H). This finishes the proof of Theorem 1.4.

5 CONCLUDING REMARKS

5.1 Coloring lines

As mentioned in the introduction, Davies [14] proved that for every pair of positive integers g and 𝜒

there is an intersection graph of lines with girth g and chromatic number 𝜒 . We believe that for any

fixed girth g, the chromatic number grows polynomially as a function of the number of lines.
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16 TOMON

Conjecture 5.1. For every g ∈ N there exists 𝜀 > 0 such that the following holds. For
every sufficiently large n, there exists an intersection graph of n lines in R3 of girth at
least g and chromatic number at least n𝜀.

Furthermore, it would be interesting to see whether Theorem 1.1 can be extended to the projective

space PR3
. The construction of Norin (see [14]) shows that there are triangle-free intersection graphs

of lines in PR3
of arbitrarily large chromatic number. However, in the proof of Theorem 1.1, and in

the aforementioned construction of Davies as well, it is crucial to use large sets of parallel lines.

Conjecture 5.2. There exists 𝜀 > 0 such that for every sufficiently large n, there exists a
triangle-free intersection graph of n lines in PR3 of chromatic number at least n𝜀.

We remark that if we work in the finite projective space PF3
p, then there is a family of n = n(p, g)

lines, whose intersection graph has girth more than g and chromatic number at least n1∕g−o(1)
(unpub-

lished). This shows that if the previous two conjectures fail, then the reason must be geometric rather

than algebraic.

5.2 Small independent sets

In order to show that a family  of graphs is not 𝜒-bounded, it is enough to find members G ∈ 
that are triangle-free of independence number o(v(G)). We proved Theorem 1.1 by constructing such

intersection graphs of lines. Suk and Tomon [35] showed that the family of disjointness graphs of

curves, and Walczak [40] showed that the family of intersection graphs of segments in the plane contain

triangle-free n-vertex graphs of independence number o(n). However, it remains open whether a similar

statement holds for the intersection graph of boxes in three or higher dimensions, see also [40] for the

same question raised.

Conjecture 5.3. For every 𝛼 > 0 there exist n and a triangle-free intersection graph of n
boxes in R3 with independence number at most 𝛼n.

5.3 Delaunay graphs and posets

Define the partial ordering ≺ on R𝑑
by writing x ⪯ y if x(i) ≤ y(i) for every i ∈ [𝑑]. Given a finite set

of points P ⊂ R𝑑
, (P,⪯) is a 𝑑-dimensional poset. The Hasse diagram of this poset is a subgraph of

the Delaunay graph of P with respect to boxes.

Chen, Pach, Szegedy, and Tardos [12] proved that there exists a set of n points in the plane whose

Delaunay graph with respect to rectangles has independence number O
( n(log log n)2

log n

)
. They used a sim-

ilar argument to show that there are two-dimensional posets on n vertices, whose Hasse diagram has

roughly the same independence number. Therefore, one might wonder whether Theorem 1.4 can be

also extended to Hasse diagrams of 𝑑-dimensional posets.

Conjecture 5.4. There exists c > 0 such that for every 𝑑 ≥ 3 and every sufficiently large
n, there exists a 𝑑-dimensional poset, whose Hasse diagram has independence number at
most n

(log n)c𝑑
.

Suk and Tomon [35] proved that an n-vertex Hasse diagram (with no restriction on its dimension)

can have independence number O(n3∕4). We now repeat a problem from [12], which asks whether

similar behavior can be achieved for bounded dimensional posets.

Conjecture 5.5. For every 𝑑 ≥ 2 and 𝜀 > 0, if n is sufficiently large, then every n-vertex
Hasse diagram of a poset of dimension 𝑑 has independence number at least n1−𝜀

.
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