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Abstract. OWL and SHACL are two prominent W3C standards for
managing RDF graphs, the data model of the Web. They are used for
different purposes and make different assumptions about the com-
pleteness of data: SHACL is used for expressing integrity constraints
on complete data, while OWL allows inferring implicit facts from
incomplete data; SHACL reasoners perform validation, while OWL
reasoners do logical inference. Integrating these two tasks into one
uniform approach is a relevant but challenging problem. The SHACL
standard envisions graph validation in combination with OWL en-
tailment, but it does not provide technical guidance on how to re-
alize this. To address this problem, we propose a new intuitive se-
mantics for validating SHACL constraints with OWL 2 QL ontolo-
gies based on a suitable notion of the chase. We propose an algo-
rithm that rewrites a set of recursive SHACL constraints (with strat-
ified negation) and an OWL 2 QL ontology into a stand-alone set of
SHACL constraints that preserves validation for every input graph,
which can in turn be evaluated using an off-the-shelf SHACL valida-
tor. We show that validation in this setting is EXPTIME-complete in
combined complexity, but only PTIME-complete in data complexity,
i.e., if the constraints and the ontology are fixed.

1 Introduction

SHACL and OWL are two prominent W3C standards for manag-
ing RDF data, the graph-based data model of the Web. They were
specifically designed to target two different issues. OWL was stan-
dardized in parallel with RDF to address information incomplete-
ness of RDF data by means of ontological axioms that complete the
data with missing information. OWL and its profiles are based on
Description Logics (DLs) [4] and make the open-world assumption
(OWA), which intuitively means that the data only presents a par-
tial description of the domain of interest and missing facts may also
be true. RDF and OWL were soon adopted by increasingly many
applications, including enterprise systems and critical areas such as
healthcare, and making decisions based on correct data became par-
ticularly crucial.

To check the correctness of RDF data, W3C proposed the so-called
Shapes Constraint Language (or SHACL) [17], a machine-readable
constraint language for describing and validating RDF graphs. Un-
like OWL, SHACL operates under the closed-world assumption
(CWA) and assumes completeness of data. SHACL specifies the no-
tion of a shapes graph, which consists of a set of shape constraints
paired with the so-called targets, which is a selection of nodes of the
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data graph that must be validated against the constraints. The precise
semantics of SHACL in the presence of recursion was not described
in the W3C standard, which led to recent works that propose seman-
tics based on first-order logic and logic programming [7, 15, 2].

Combining SHACL and OWL into a setting that allows to perform
RDF data validation while taking into account the implicit facts in-
ferred using an OWL ontology is a relevant but challenging problem.

Indeed, the W3C SHACL specification envisions graph validation
in the presence of OWL entailment but does not provide guidance on
how to realize this.

To our knowledge, this has only been addressed in [16], which
considers positive SHACL constraints only.

To see the benefits of taking into account ontologies
when performing validation, consider an example of a
simplistic database of pet owners containing the facts
hasWingedPet(linda, blu),Bird(blu),PetOwner(john),
hasPet(john, ace) and consider the simple constraint

petOwnerShape ← PetOwner ∨ ∃hasPet

with the target petOwnerShape(linda), which asks to verify
whether linda is a pet owner. Clearly, one would expect the input
data to validate linda as a pet owner given that she has a winged
pet. However, this is not the case since the setting is missing the
background knowledge that owning a winged pet implies owning
a pet. The latter can be expressed through the ontological axiom
hasWingedPet � hasPet , which would allow us to obtain the de-
sired validation result.

Identification of a proper semantics in this setting requires inte-
grating the OWA of OWL and the CWA of SHACL. There are sev-
eral proposals by the DL and database communities to relax the
OWA and combine it with CWA [11, 14, 13, 10]. Another chal-
lenge when defining a validation semantics is dealing with the non-
monotonic behavior of SHACL constraints due to the presence of
negation. Roughly speaking, adding facts to the input data graph
may cause a previously valid setting to become invalid. Such non-
monotonic behavior is known when combining ontologies and nega-
tion in the so-called conjunctive queries or database constraints (see
e.g., [5, 14, 8]).

The contributions of this paper can be summarized as follows:
◦ We present a novel notion of SHACL validation in the presence of
a DL-LiteR ontology, the logic underlying OWL 2 QL [12]. Specif-
ically, we consider stratified SHACL constraints, which support a
limited form of recursion (specifically, limiting the interaction be-
tween recursion and negation). Our notion of stratification is derived
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from the well-known class of stratified logic programs [3]. We note
that the current SHACL standard defines the semantics only for non-
recursive constraints, leaving the recursive case open.

◦ Since SHACL constraints involve negation, defining a semantics
of validation in the presence of ontologies is challenging. In our ap-
proach, knowledge stemming from the ontology is included by com-
pleting the input data graph with additional facts to satisfy the on-
tological axioms. This completion is reminiscent to the chase proce-
dure known in databases. We adopt a completion that is austere in the
sense that only a minimal amount of new facts is added at each step of
the procedure. Validation of SHACL constraints over a data graph in
the presence of an ontology is defined as validation of the constraints
in the possibly infinite austere canonical model that we introduce.

◦ Since validation in this paper is defined over the (potentially infi-
nite) austere canonical model, its computational complexity is not
obvious. We prove that this problem is decidable and is PTIME-
complete in data complexity. This coincides with the complexity
of stratified constraints over plain data graphs [2], and shows that
adding a DL-LiteR ontology actually does not incur additional costs
in data complexity. This is different for combined complexity, which
turns out to be EXPTIME-complete. The high combined complexity
is somewhat surprising, since individually standard reasoning in DL-
LiteR ontologies and validation of stratified SHACL constraints over
plain data graphs are tractable in combined complexity.

◦ Our upper bounds on complexity follow from a constraint rewrit-
ing technique that we introduce in this paper. We design an inference
procedure that takes as input an ontology T together with a set C of
stratified constraints, and produces as output a new set CT of strati-
fied constraints such that CT alone is equivalent to the pair of (T , C),
i.e. for validation, CT and (T , C) behave the same on any input data
graph.1 Thus an infinite austere canonical model does not need to be
built explicitly in order to perform validation. The rewriting method
is interesting in its own right as it opens the way to reuse standard
SHACL validators to perform validation in the presence of ontolo-
gies, and it thus joins the ranks of other rewriting-based methods for
reasoning with infinite structures (see, e.g., [9]).

2 Preliminaries

Data Graphs and Interpretations. Let NC ,NR,NI denote count-
ably infinite, mutually disjoint sets of concept names (also known
as class names), role names (or, property names), and individuals
(or, constants), respectively. An assertion is an expression of the
form A(c) or of the form p(c, d), where A ∈ NC , p ∈ NR and
c, d ∈ NI . An ABox (or a data graph) A is a finite set of asser-
tions. An interpretation is a pair I = (ΔI , ·I), where ΔI is a
non-empty set (called domain) and ·I is a function that maps ev-
ery A ∈ NC to a set AI ⊆ ΔI , every p ∈ NR to a binary re-
lation pI ⊆ ΔI × ΔI , and every individual c ∈ NI to an element
cI ∈ ΔI . The canonical interpretation IA for an ABoxA is defined
by setting ΔIA = NI , AIA = {c | A(c) ∈ A} for all A ∈ NC ,
pIA = {(c, d) | p(c, d) ∈ A} for all p ∈ NR, and cIA = c for
every individual c ∈ NI .

Syntax and Standard Semantics of OWL 2 QL. As usual in the
literature, we consider the underlying logic DL-LiteR. We let N+

R =
{r, r− | r ∈ NR} denote the set of roles. For r ∈ NR, we let

1 The impossibility of such a rewriting for SHACL with negation given in
Theorem 1 of [16] does not apply to our semantics, nor to the minimal-
model semantics adopted in [16], as acknowledged by the authors in per-
sonal communication.

cI,S = {cI}
sI,S = {c | s(c) ∈ S}

(¬s)I,S = {c ∈ ΔI | s(c) 	∈ S}
AI,S = AI

(¬A)I,S = ΔI \AI

(ϕ1 ∧ ϕ2)
I,S = (ϕ1)

I,S ∩ (ϕ2)
I,S

(∃r.ϕ)I,S = {e ∈ ΔI | ∃e′ : (e, e′) ∈ rI ∧ e′ ∈ ϕI,S}

Figure 1: Evaluating shape expressions

(r−)− = r. A basic concept is a concept name A ∈ NC or an
expression of the form ∃r such that r ∈ N+

R. A concept inclusion
is an expression of the form C � D or C � ¬D, where C,D are
basic concepts. A role inclusion is an expression of the form r � s
or r � ¬s, where r, s are roles. A TBox T is a set of concept and
role inclusions. We use K to denote a pair (T ,A) of a TBox and an
ABox. The semantics is defined in terms of interpretations I in the
usual way. The notions of satisfaction and of model of an inclusion,
a TBox, and an ABox are standard, as is the definition of logical
entailment. In particular, we write T |= γ if every model of the
TBox T is also a model of γ (where the latter may be an inclusion,
an TBox, or an ABox). We say that A is consistent with T (or K is
consistent) if there is a model of A and T .

Basic SHACL notions. We let NS denote a countably infinite set of
shape names, disjoint from NC , NR, and NI . A shape expression ϕ
is an expression built according to the following grammar:

ϕ ::= c | A | ¬A | s | ¬s | ϕ ∧ ϕ | ∃r.ϕ,

where c ∈ NI , A ∈ NC , s ∈ NS , and r ∈ N+
R. In the following, we

use ∃r as a shorthand for ∃r.�. A shape constraint is an expression
of the form s ← ϕ, where s ∈ NS and ϕ is a shape expression. A
shapes graph is a pair (C,G), where C is a set of shape constraints
and G is a set of shape atoms (targets or goals) of the form s(c),
where s ∈ NS and c ∈ NI .

A shape assignment for an interpretation I is a set S of atoms of
the form s(c), where s ∈ NS and c ∈ ΔI . Given a shape expression
ϕ, a shape assignment S and an interpretation I with NI ⊆ΔI , we
define the set ϕI,S ⊆ΔI inductively as shown in Figure 1.

Given an interpretation I and a shapes graph (C,G), we are inter-
ested in validating the targets in G given the information in I and
the constraints in C. Specifically, the goal of validation is to find a
shape assignment S with G ⊆ S and such that S satisfy C and I. For
recursive SHACL, there are several validation semantics, i.e., differ-
ent meanings of “satisfy”. For illustration, we recall the supported
model semantics from [7]. We say S is a supported model of C and
I, if the following holds: s(a) ∈ S iff there exists s ← ϕ ∈ C with
a ∈ ϕI,S . Validation under the supported model semantics consists
of finding a supported model S for I and C such that G ⊆ S. The sup-
ported model semantics suffers from unfounded justifications. Con-
sider the singleton constraint set C = {s ← ∃r.s}, the target set
G = {s(a)}, an interpretation I with (a, a) ∈ rI , and a shape as-
signment S = s(a). Then S is a supported model of I and C and
it validates s(a). However, the validation of s(a) is clearly not well-
founded. Another semantics is the stable model semantics introduced
in [2], which allows to eliminate such unfounded inferences.
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3 Stratified SHACL

In this paper, we are interested in shape assignments where each
shape atom has a proper justification. We do not resort to the full sta-
ble model semantics, as we are interested in cases with polynomial
time data complexity. We focus on stratified sets of constraints which
support negation, but also admit a partition of constraints (stratifica-
tion) such that a justified shape assignment can be constructed by
processing each partition individually. This approach is based on the
syntax and semantics of stratified logic programs, and thus we mainly
only adapt the notions from [3].

Definition 3.1. We say a shape name s occurs negatively in a shape
constraint s′ ← ϕ if ¬s occurs in ϕ. We say a shape name s is
defined in a set C of constraints if s← ϕ ∈ C for some ϕ.

A set C of constraints is stratified if it can be partitioned into sets
C0, . . . , Ck such that, for all 0 ≤ i ≤ k, the following hold:

1. If i < k and s′ occurs in ϕ for some s ← ϕ ∈ Ci, then s′ is not
defined in Ci+1 ∪ . . . ∪ Ck.

2. If s′ occurs negatively in ϕ for some s ← ϕ ∈ Ci, then s′ is not
defined in Ci ∪ . . . ∪ Ck.

A set of constraints is stratified if it admits a stratification.

We now define the notion of a consequence operator TI,C that,
given a shape assignment S, adds new shape atoms to satisfy the
constraints that are fired by the constraints in C based on S and I.

Definition 3.2. For a set C of constraints, an interpretation I with
NI ⊆ ΔI , we define an immediate consequence operator TI,C that
maps shape assignments to shape assignments as follows:

TI,C(S) = S ∪ {s(a) | s← ϕ ∈ C and a ∈ (ϕ)I,S}.

We further let:

• TI,C ↑0 (S) = S,
• TI,C ↑n+1 (S) = TI,C(TI,C ↑n (S)),
• TI,C ↑ω (S) =

⋃∞
n=0 TI,C(S).

The following two propositions are a direct consequence of the
characterizations from [3] in the context of stratified logic programs.

Proposition 3.3. If C is a constraint set that does not define any
shape names that occur negatively in C, then the following hold:

1. TI,C is monotonic, i.e. if S ⊆ S′, then TI,C(S) ⊆ TI,C(S
′);

2. TI,C is finitary, i.e. TI,C(
⋃∞

n=0 Sn) ⊆
⋃∞

n=0 TI,C(Sn) for all
infinite sequences S0 ⊆ S1 ⊆ · · · ;

3. TI,C is growing, i.e. TI,C(S2) ⊆ TI,C(S3) for all S1, S2, S3 such
that S1 ⊆ S2 ⊆ S3 ⊆ TI,C ↑ω (S1).

Proposition 3.4. If I is an interpretation and C0, . . . , Ck is a strat-
ification of C, then all TI,C0 , . . . , TI,Ck are monotone, finitary, and
growing. Thus, for any shape assignment S and each 0 ≤ j ≤ k,
TI,Cj ↑ω (S) is a fixpoint of TI,Cj .

Based on the above, we can now define the computation of the
desired shape assignment along a stratification C0, . . . , Ck of C.

Definition 3.5. Assume I is an interpretation, C is a stratified set of
constraints, and let C0, . . . , Ck be a stratification of C. Then let

M0 = TI,C0 ↑
ω (∅)

Mi = TI,Ci ↑
ω (Mi−1) for each 1 ≤ i < k.

We let Mk be the perfect assignment for C and I, and let
PA(C, I)=Mk. An interpretation I (resp., ABox A) validates a
shapes graph (C,G) if G ⊆ PA(C, I) (resp., G ⊆ PA(C, IA)).

Assume an interpretation I and a shapes graph (C,G), where C is
a stratified set of constraints. We first note that PA(C, I) does not
depend on a concrete stratification, i.e. any stratification yields the
same PA(C, I). Moreover, PA(C, I) is a supported model of C and
I, which follows from the corresponding result in [3] for stratified
logic programs. Since the stable model semantics for SHACL in [2]
was defined for finite structures only, we cannot precisely formalize
here a connection between our semantics and the semantics in [2].
However, for a data graph A that contains all nodes mentioned in
(C,G), we have that PA(C, IA) restricted to the nodes of A is the
only stable model of C. Thus A validates (C,G) under the stable
model semantics iff G ⊆ PA(C, IA).

To check whether a set of constraints admits a stratification we
can construct the dependency graph [3]. The dependency graph of a
set of constraints C is a marked directed graph, where the nodes are
the shape names occurring in C, and there is an edge (s1, s2) from
node s1 to node s2 if there is a constraint s1 ← φ in C such that
s2 occurs in φ, and the edge is marked if s2 occurs negatively in
φ. A set of constraints C is stratified iff the dependency graph of C
has no cycles involving a marked edge. Computing a stratification is
tractable: for a stratified set of constraints C, any topological ordering
of its dependency graph provides a stratification [3].

4 Validating SHACL with Ontologies

In this section we propose an intuitive validation semantics for
SHACL in the presence of a DL-LiteR ontology. More precisely, for
a given a TBox T , an ABox A, and a shapes graph (C,G), we need
to define when (T ,A) validates (C,G). A natural first idea would be
to follow the usual open-world semantics of DL-Lite and check for
validation over all models of A and T . While this works for posi-
tive constraints, it does not yield a natural result in the presence of
negation, as illustrated in the following simple example.

Example 4.1. Consider an ABox A, consisting of the facts
hasPet(linda, blu),Bird(blu),PetOwner(linda), and an empty
TBox T . Let (C,G) be a shapes graph, where C only contains the
constraint

s← ∃hasPet ∧ ¬∃hasPet .Dog

and the target to be checked for validation is G = {s(linda)}.
The perfect assignment PA(C, IA) naturally includes the target

s(linda) since linda has a pet, and does not have a pet that is a dog.
Note that since we have an empty TBox, we are in the usual setting
of validation here. Thus, A validates (C,G) and clearly, one would
expect (T ,A) to validate (C,G). However, if we consider all possi-
ble models of (T ,A), we have non-validation since there may be a
model I of A and T that includes a hasPet-fact for linda to some
pet b that is a Dog . Indeed, the interpretation I does not validate the
shapes graph since the target s(linda) is not included in PA(C, I).

The problem in the above example is the non-monotonicity of the
constraints. Roughly speaking, adding facts to the data may cause a
previously valid setting to become invalid. We want an intuitive se-
mantics that coincides with the usual validation in case the TBox is
empty. As done in related settings (see e.g., [5, 14, 8]) we rely on
the chase procedure [1] known from Knowledge Representation and
Database Theory. Roughly speaking, a chase procedure takes as in-
put an ABox and a TBox and iteratively applies the axioms of the
TBox to the data by adding atoms over possibly fresh individuals un-
til all the axioms in the TBox are satisfied. The result of the chase
is a so-called canonical or universal model, and since it can be ho-
momorphically embedded into every other model of the ABox and
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TBox, the canonical model can be used as a representative of all
the models. For DL-LiteR ontologies, such chase procedures may
not terminate and result in infinite models. There are several chase
variants producing different canonical models [8]. While for positive
constraints these differences do not matter, constraints with negation
can distinguish between them, resulting in different validation an-
swers as we illustrate in Example 4.6.

4.1 Semantics over the Austere Canonical Model

The semantics we propose is based on a special chase procedure that
constructs an austere canonical model, in the sense that each chase
step introduces as few fresh successors as possible, without merging
any successors unless the TBox is forcing us to do so.

We first define an auxiliary notion of a good successor configu-
ration, which, given a node e and the set of basic concepts that are
assumed to hold at e, determines the minimal set of fresh successors
of e and the roles connecting e to each of them.

Definition 4.2. For a set of roles R, let clT (R) be the set of all roles
r′ such that T |= r � r′ and r ∈ R. Given a DL-LiteR TBox T and
a set of basic concepts U , a good successor configuration succT (U)
for U is a possibly empty set of roles such that:

1. There do not exist r, r′ ∈ succT (U) such that r ∈ clT ({r′});
2. If C ∈ U , T |= C � ∃r and ∃r 	∈ U , then there exists r′ ∈

succT (U) such that r ∈ clT ({r′});
3. If r ∈ succT (U), there exists C ∈ U such that T |= C � ∃r;
4. succT (U) ∩ clT ({r | ∃r ∈ U}) = {}.

Lemma 4.3. For each set of basic concepts U , there exists a unique
good successor configuration succT (U) for U .

The following example illustrates the notion of a good successor
configuration.

Example 4.4. Consider the TBox T containing three axioms:

PetOwner � ∃hasPet hasWingedPet � hasPet
PetOwner � ∃hasWingedPet.

Then, succT ({PetOwner}) is the set {hasWingedPet}, which
trivially satisfies items (1) to (4). Indeed succT ({PetOwner})
cannot contain hasPet since by item (1), hasPet ∈
clT ({hasWingedPet}).

All other sets of basic concepts will have empty
sets as successor configurations. In particular, the set
U = {PetOwner , ∃hasWingedPet} cannot have any of the
roles of the TBox as a successor role due to item (4), since
clT ({hasWingedPet}) = {hasWingedPet , hasPet}.

The good successor configuration prescribes how to satisfy the
TBox axioms locally. We use it to build a canonical model layer by
layer that we call austere.

Definition 4.5. Let K = (T ,A) be a pair of a DL-LiteR TBox T
and ABoxA. Let NI(A) be the set of individuals occurring inA. Let
NK be the set of finite words of the form ar1r2 . . . rn, with n ≥ 1,
a ∈ NI(A) and r1, . . . , rn are roles, such that the following hold:

1. Let Ua = {A | A(a) ∈ A} ∪ {∃r | r(a, a′) ∈ A}, then r1 ∈
succT (Ua);

2. For every 1 ≤ i < n, ri+1 ∈ succT (Uri), where Uri = {∃r−i }.

We denote by tail(w) the last role appearing in a word w ∈ NK.
The austere canonical model can(K) of K is the interpretation I
with domain ΔI := NI(A) ∪ NK such that for all a ∈ NI(A),
concept names A and roles r, the following hold:

1. aI := a;
2. AI := {a | K |= A(a)} ∪ {w ∈ NK | T |= ∃tail(w)− � A};
3. rI := {(a, a′) | K |= r(a, a′)}} ∪ {(w1, w2) | w2 ∈ NK, w2 =

w1r
′, r ∈ clT ({r′}).

For a consistentK = (T ,A), the austere canonical model can(K)
exists and it is unique. It is standard to show that can(K) is a canoni-
cal model ofK, which is a model ofK that can be homormorphically
embedded into every other model of K. The number of successor
nodes in can(K) is determined by the good successor configuration.

Our notion of austere canonical model is closely related to the
core chase [8]. It will typically create fewer fresh successors than the
oblivious chase, which, roughly speaking, applies the axioms of the
TBox without first checking whether the axiom is already satisfied.
It may also create fewer successors than the restricted chase, which
may be sensitive to the order of rule applications.

Example 4.6. Consider K = (T ,A) where the ABox

A = {PetOwner(linda), hasWingedPet(linda, blu),Bird(blu)}

and the TBox T is as in Example 4.4. The good successor config-
uration succT (Ulinda) is the empty set. More precisely, Ulinda =
{PetOwner , ∃hasWingedPet} and as shown in Example 4.4, it
cannot have any of the roles of the TBox as a successor role. Thus,
NK in the canonical model is empty, and no fresh objects are intro-
duced. The austere canonical model can(K) (right in Figure 2) will
only add a hasPet-role from linda to blue . In contrast, the canon-
ical model obtained from the oblivious chase (left in Figure 2) will
introduce two fresh objects to satisfy the two existential axioms.

linda; PetOwner

blu; Bird b c

linda; PetOwner

blu; Bird

hasWP,hasP hasP

hasWP,hasP

hasWP,hasP

Figure 2: Result of oblivious chase (left) and austere canonical model
(right). We use hasWP and hasP instead of hasWingedPet and hasPet.

Consider now the shapes graph (C,G) with C = {s ←
∃hasPet .¬Bird} and G = {s(linda)}. The shapes graph asks to
validate whether linda has a pet that is not a bird. Clearly, the austere
canonical model provides the expected answer, as it does not validate
(C,G). In contrast, the canonical model on the left-hand-side of the
figure—and thus the semantics of [14] adopted for SHACL in [16]—
results in the unintended validation of (C,G).

The semantics of validation with DL-LiteR ontologies is given in
terms of validation over the austere canonical model.

Definition 4.7 (Validation with DL-LiteR). Assume K = (T ,A)
and (C,G) is a shapes graph, where C is a stratified set of constraints.
We say K validates (C,G) if can(K) validates (C,G).

We illustrate the notion of validation with an example.

Example 4.8. Consider again Example 4.6 and the shapes graph
(C,G) with C = {s ← ∃hasPet .¬Bird} and G = {s(linda)}.
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Intuitively, the shapes graph asks to validate whether linda has a pet
that is not a bird. Clearly, can(K) provides the expected answer, as it
does not validate (C,G). In contrast, the canonical model on the left-
hand-side of Figure 2 provides the unintended validation of (C,G).

5 Rewriting

In the rest of the paper, we will only consider ABoxes that are consis-
tent with the given TBox. Furthermore, note that disjointness axioms
will not play any role in the rewriting.

Given a TBox T and a set of stratified constraints C, we want to
compile T and C into a new set CT of stratified constraints so that
for every ABox A consistent with T , and every target G, we have

(T ,A) validates (C,G) iff A validates (CT ,G).

This will be achieved by means of an inference procedure that uses
a collection of inference rules to capture the possible “propagation”
of shape names in the annonymous part of the cannonical model. To
ease presentation, we assume C contains only normalized constraints
of the following forms:

(NC1) s← D (NC2) s← s1 ∧ s2
(NC3) s← ∃r.s′ (NC4) s← ¬s′

where D is an individual or a (DL-LiteR) basic concept. Every set of
constraints can be easily normalized without affecting validation (see
e.g., [2]). This can be done in polynomial time by introducing fresh
shape names. Note that we may say negative constraints to refer to
constraints of the form (NC4) and positive constraints to refer to the
constraints of the form (NC1) to (NC3).

In the first stage, we define the rewriting procedure for constraints
without negation. We later show how that procedure can be upgraded
to handle stratified negation.

5.1 Rewriting Positive Constraints

Our rewriting algorithm uses pairs of the form (W,H), where W is
a set of basic shape expressions and H is a set of shape names.

Definition 5.1. If A is a concept name, r is a role, s is a shape
name, and c an individual, then c, A, ∃r.�, ∃r.s, ¬c, ¬A, ¬∃r.�,
and ¬∃r.s are called basic shape expressions; the former four are
positive, the latter four are negative. For a set W of basic shape ex-
pressions, we let

cr(W ) ={∃r | ∃r.� ∈W or ∃r.s ∈W} ∪ {A | A ∈W}.

The core of our technique is an inference procedure that derives a
set I of pairs (W,H). Intuitively, (W,H) ∈ I tells us that an object
that satisfies all expressions in W validates all shape names in H .

Example 5.2. Let T = {∃q � ∃p, ∃p− � A} and

C = {s← ∃p.sA, sA ← A, s′ ← ∃q}.

We want our rewritten CT to expand the constraints C above with

s← ∃q sA ← ∃p−

allowing us to validate the target s(a) over the ABoxA = {q(a, b)},
or the target sA(b) over the ABox A = {p(a, b)}, without having to
build can(T ,A). This will be achieved by deriving a set of pairs
that includes ({∃q}, {s, s′}), which keeps the constraint s′ ← ∃q
while also adding the new constraint s ← ∃q, as well as the pairs
({∃p−}, {sA}) and ({A}, {sA}), witnessing the constraints for sA.

In the following definition, we assume a given set I of pairs
(W,H) as above. The role of this set will become clear later when
we lift the algorithm to constraints with stratified negation.

Definition 5.3. Let T be a TBox and C a set of normalized con-
straints. Let ΣC,T be the set of all basic shape expressions that can
be formed from the concept, role, and shape names occurring in T
and C. We let satC,T (I) be the smallest set of pairs, containing I ,
closed under the following rules:

1. If S ∈ ΣC,T is a positive basic shape expression, then ({S}, {})
belongs to satC,T (I).

2. If s ← S ∈ C for some basic shape expression S, then
({S′}, {s}) belongs to satC,T (I) for each S′ ∈ ΣC,T such that:

• S′ = S = c for some individual c; or

• T |= S′ � S and S, S′ are basic DL-LiteR concepts; or

• T |= r′ � r and S, S′ are of the forms ∃r.s′ and ∃r′.s′ re-
spectively.

3. If {(W,H), (W ′, H ′)} ⊆ satC,T (I) such that there is no basic
concept or individual D with {D,¬D} ⊆ W ∪W ′ ∪ cr(W ) ∪
cr(W ′), and no two distinct individuals {c, c′} ⊆ NI with
{c, c′} ⊆W∪W ′, then (W∪W ′, H∪H ′) belongs to satC,T (I).

4. If s ← s1 ∧ s2 ∈ C, (W,H) ∈ satC,T (I) and {s1, s2} ⊆ H ,
then (W,H ∪ {s}) belongs to satC,T (I).

5. If s ← ∃r.s′ ∈ C, {(W,H), (W ′, H ′)} ⊆ satC,T (I), s′ ∈ H ′

and there are r′ ∈ N+
R and R ⊆ N+

R such that:

• r′ ∈ succT (cr(W )), R = clT ({r′}), and r ∈ R,

• cr(W ′) = {∃r | r− ∈ R},
• {s′′ | ∃r′′.s′′ ∈ W ′} ∪ {¬s′′ | ¬∃r′′.s′′ ∈ W ′, r′′− ∈ R} ⊆

H ,

then (W∪{¬∃p | r ∈ clT ({p})}, H∪{s}) belongs to satC,T (I).

We let CT ,I be the set that contains, for each (W,H) ∈ I and each
s ∈ H , the constraint

s←
∧

S∈W

S.

We let CT = CT ,I with I = satC,T (∅).

The following example illustrate the application of each of the
rules in Definition 5.3.

Example 5.4. Consider T = {A � ∃p, ∃p− � ∃q, ∃q− � B, p �
r, q � r} and

C = {s← ∃r.s, s← sB ∧ s′, sB ← B,

s′ ← ∃r−.s′, s′ ← A}.

Given the ABox A = {A(a)}, the austere canonical model
can(T ,A) can be found in Figure 3.

a; A b c; B
p,r q,r

Figure 3: Austere canonical model can(T ,A) from Example 5.4

Let us consider the target G = {s(a)}. It is now an easy check that
can(T ,A) validates (C,G); just compute the perfect assignment.

To see that we can reach the same result with our rewriting, first ap-
ply Rule 2 two times to find {({∃q−}, {sB}), ({∃r−.s′}, {s′})} ⊆
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I , where we use I as a shorthand for satC,T (∅). By apply-
ing first Rule 3, then Rule 4 on these two pairs, we find that
({∃q−, ∃r−.s′}, {sB , s′, s}) ∈ I too. Call this pair (W ′, H ′). Note
that this pair is simulating the environment of c, which has as incom-
ing q edge, and an incoming r edge from b, for which we assume
that s′(b) is validated. In such a context, we can correctly infer that
sB(c), s′(c), and s(c) are validated. Let’s now look at the environ-
ment W of b, which contains ∃p− and ∃r− and, according to the
good successor configuration, such a node has a q-successor.

Let (W,H) = ({∃p−, ∃r−.s′}, {s′}) be constructed from apply-
ing Rule 2 on s′ ← ∃r−.s′ (intuitively, this reflects that s′(a) and
s′(b) are in the perfect assignment), followed by Rule 1 and 3 to add
∃p− to W . We can now apply Rule 5 where we consider the con-
straint s← ∃r.s: let r′ = q, R = {q, r}. Since (W ′, H ′) is simulat-
ing the environment of c, and ∃r−.s′ ∈ W ′, we need to check that
s′ ∈ H , or in words, that s′(b) is validated. It is now easy to see that
all conditions of Rule 5 are met: ({∃p−, ∃r−.s′,¬∃q}, {s′, s}) ∈ I .
Note that the function of ¬∃q is to make sure that we can never add
∃q to the left-hand side of the pair; adding this would break our as-
sumption that a q-successor is introduced by the good successor con-
figuration.

Next, we apply Rule 5 on the pair (W,H) = ({A}, {s′}) and
the pair (W ′, H ′) = ({∃p−, ∃r−.s′,¬∃q}, {s′, s}). We find that
({A,¬∃p}, {s′, s}) ∈ I . This means that the following constraint is
in CT :

s← A ∧ ¬∃p,

which shows that indeed A validates (CT ,G).

We generalize this in the following theorem: the rewriting gives a
sound and complete set of constraints.

Theorem 5.5. Let T be a TBox and C a set of positive constraints.
Then for every target G and every ABox A that is consistent with T ,
we have that (T ,A) validates (C,G) iff A validates (CT ,G).

Proof. (Sketch) To show soundness, assume an arbitrary but fixed
sequence of rule applications leading to satC,T (∅), let Ii be the set
of pairs after i steps, and let CT ,Ii be the constraints obtained from
Ii. It suffices to show by induction on i, that for every arbitrary target
s(a), if can(T ,A) validates (CT ,Ii , {s(a)}), then can(T ,A) val-
idates (C, {s(a)}). For i = 1, only Rule 1 or 2 can be applied. In
the case of Rule 1 the claim is trivial as pairs (W, ∅) do not generate
constraints. In the case it is Rule 2, it is also straightforward since
the added (W,H) will result in a constraint of the form s← S′ and
if S′ is a basic concept then there is some basic concept S such that
s← S ∈ C, and from T |= S′ � S it is the case that a ∈ S′can(T ,A)

implies a ∈ Scan(T ,A). Hence, if s(a) ∈ PA(CT ,Ii , can(T ,A)),
then s(a) ∈ PA(C, can(T ,A)). The argument for S, S′ of the
forms ∃r.s′ and ∃r′.s′ is similar. For the induction step, by inspect-
ing the Rules 2 to 5 one can easily show that each pair (W,H) is
correctly obtained at rule application i+1 and it will generate sound
constraints.

For completeness, suppose can(T ,A) validates (C, {s(a)}).
Then there exists a justification tree indicating which domain ele-
ments of can(T ,A) validate which shape names that are used in the
fixed point computations. In this tree, nodes are of the form (x, S),
where x ∈ NI(A) ∪ NK and S ∈ NS ∪ {D | D a basic concept}.
The root is (a, s). Each node has none, one or two children and there
are no infinite branches. Moreover, the following conditions hold.
• (x, S) has no children iff S is a basic concept. If (x, S) appears as

a leaf and S = A for some concept A, then x ∈ Acan(T ,A); and

if S = ∃r for some role r, there exists y ∈ Δcan(T ,A) such that
(x, y) ∈ rcan(T ,A).

• If (x, s) has only one child, if it is of the form (x,D) or (x′, s′).
If the form is (x,D), then s ← D ∈ C. If the form is (x′, s′),
then x′ = xr′ such that r ∈ clT ({r′}) or x = x′r′ such that
r− ∈ clT ({r′}) and s← ∃r.s′ ∈ C.

• If (x, s) has two children, they are of the form (x, s′) and (x, s′′)
and s← s′ ∧ s′′ ∈ C.

Define the weight of a tree as the number of nodes (w, S) with
w ∈ NK. We call a leaf strictly justified if there exists a pair
(W,H) such that cr(W ) = {∃r | r ∈ clT ({tail(x)−})} and
{∃r.s | r ∈ N+

R , s ∈ NS} ∩W = {}, moreover, we need to add
some more constraints to make sure that negative shape expressions
in W are not clashing with shape names satisfied by the parent of w
in can(T ,A) and the role connecting the two, tail(w).

We claim we can decrease the weight of this tree while ensuring
that: (i) each edge is either an edge occurring in the original tree, or
a marked edge, and (ii) each leaf is strictly justified, or of the form
(a′, S) for a′ ∈ NI(A), or of the form (x, S) for S ∈ ND . Intu-
itively, a marked edge indicates that we can rewrite the pair (W,H)
that ‘justifies’, a weaker notion than strict justification, also allowing
∃r.s in W , the child node, as soon as we have it, into a justification
for the parent. If on a branch of the tree there are no nodes such that
(x, S) is the parent of (x′, S′) and |x| > |x′|, we call this branch a
loose end. The weight can be lowered easily by cutting off leaves on
loose ends.

However, a U-turn can also happen in the anonymous part of our
justification: from (x, S) there exists a path to (x, S′) such that all
nodes appearing on this path are of the form (x′, S′′), where x′ = xr
for some r. If we are cutting off leaves on loose ends, we might find
a node with two children, one of them a leaf. In this case, we cut
off the leaf and mark the edge to the other child. The other option is
that we find a connected set of nodes M such that if (x′, S) ∈ M ,
then x′ = xr and if some (x′′, S′) 	∈ M is the child or parent of
some (x′, S) ∈ M , then x′′ = x. We can take out complete sets
M at once, in such a way that the parent of this set will become the
new parent of M ’s children, but with a marked edge. Note that rule
5 deals explicitly with this case.

As the weight of the final tree is 0, we can use Rules 1, 2 and 3
to create pairs (W,H) for each leave node left. Normal edges cor-
respond to already existing shapes that we can use here too. Marked
edges tell us that there exists a rewriting from the child to the parent:
we know we can rewrite the incoming pair (W,H) in the needed
form. This tells us how A validates (CT , {s(a)}).

5.2 Constraints with Stratified Negation

We now extend the above rewriting to additionally handle constraint
sets C that involve stratified negation. Intuitively, this is done by run-
ning the saturation procedure at each stratum of C, starting with the
lowermost. For this, we need to make sure that the outcome of the sat-
uration at a non-topmost stratum is completed with negative informa-
tion and is passed to the next stratum. To this end, we w.l.o.g. assume
that all constraints from C with the same shape name on the left-
hand-side occur together in the same stratum.

We will operate now on pairs (W,H), which are similar to the
ones in the previous section, except that H might additionally contain
expressions of the form ¬s for a shape name s. For a set I of such
pairs, we say (W,H) is maximal in I , if (W,H) ∈ I and there is
no H ′ ⊃ H with (W ′, H ′) ∈ I such that W ′ contains exactly the
same basic shape expressions as W . Then the notion of completion
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is defined as follows:

Definition 5.6. The completion compC,T (I) of a set I of implication
pairs w.r.t. a TBox T and a constraint set C is a set defined as follows:

compC,T (I) = {(W ∪ W̄ ,H ∪ H̄) | (W,H) is maximal in I} with

H̄ := {¬s | s occurs in C, s 	∈ H}

W̄ := {¬D | there is no D′ ∈ cr(W ) s.t. T |= D′ � D} ∪

{¬∃r.s′ | s← ∃r.s′ ∈ C, s 	∈ H} ∪ {¬c | s← c ∈ C, s 	∈ H}.

We need to augment the inference rules of the previous section
with an additional rule to handle constraints of the form s← ¬s′.

Definition 5.7. Let T be a TBox, C a set of normalized constraints.
We let satC,T (I) be the smallest set of pairs containing I closed
under Rules 1–5 in Def. 5.3, and additionally under the following
Rule 6:

6. If s ← ¬s′ ∈ C and (W,H) ∈ satC,T (I) such that ¬s′ ∈ H ,
then (W,H ∪ {s}) belongs to satC,T (I).

Now can we define the inference procedure that processes strata
from the lowest to the topmost, performing saturation using the up-
dated set of rules at every stratum, interleaved with a computation of
the completion in between.

Definition 5.8. For a TBox T and a constraint set C with stratifica-
tion C0, . . . Cn, we let I0 = satC0,T (∅) and for 0 < i ≤ n

Ii = satCi,T (compCi−1,T (Ii−1)).

We let CT = CT ,In , where CT ,In is defined as in Definition 5.3.

Example 5.9. Consider T = {A � ∃p} and the set C of constraints:

s← ∃p.s′ s′ ← ¬sB sB ← B.

Let C0, C1 be a stratification of C such that C0 = {sB ← B}
and C1 = {s ← ∃p.s′, s′ ← ¬sB}. The rewriting, among oth-
ers, will produce the pair ({∃p−}, {}) with Rule 1, which is max-
imal in I0, and hence, the pair ({∃p−,¬A,¬B,¬∃p}, {¬sB})
is included in compC0,T (I0). By Rule 6, the pair (W ′, H ′) =

({∃p−,¬A,¬B,¬∃p}, {¬sB , s′}) is added in I1. By applying
Rule 5 to the pairs (W ′, H ′) and (W,H) = ({A}, {}), the pair
({A,¬∃p}, {s}) is added to I1. This is translated into the constraint
s← A∧¬∃p ∈ CT . Consider now the ABoxA1 = {A(a)}. Clearly,
(A1, T ) validates (C, {s(a)}) and A1 (CT , {s(a)}).

The rewriting gives other pairs (W,H) in I1 as well, including
({B}, {sB}), ({∃p.s′}, {s}) and constraints in which a subset of
{A,B, ∃p, ∃p−, ∃p.s′} is added to W . In addition, by taking the
completion of satC0,T (∅), we find pairs with ¬sB ∈ H if B 	∈ W .
Now consider the ABox A2 = {A(a), p(a, b), B(b)}. We cannot
use any pair (W,H) introduced by Rule 5, as W then contains ¬∃p,
so we have that A2 does not validate (CT , {s(a)}), as desired.

Now consider A3 = {A(a), p(a, b)}. A3 validates (CT , {s′(b)})
witnessed by ({∃p−,¬A,¬B,¬∃p}, {¬sB , s′}) ∈ I1, and it vali-
dates (CT , {s(a)}), witnessed by ({∃p.s′}, {s}) ∈ I1.

Theorem 5.10. Let T be a TBox and C a set of stratified constraints.
Then, for every target G and every ABoxA that is consistent with T ,
we have that (T ,A) validates (C,G) iff A validates (CT ,G).

Proof. (Sketch) Let C0, . . . , Cn be a stratification of C. We want to
show that, for each i, (T ,A) validates (C0 ∪ ... ∪ Ci, {s(a)}) iff A
validates (CT ,Ii , {s(a)}), for an arbitrary target atom s(a). We prove
this together with another claim: that for each i ≤ k, each s ∈ NS ,
and each x ∈ Δcan(T ,A),

s(x) ∈ PA(CT ,Ii , can(T ,A)) iff s(x) ∈ PA(
⋃

j≤i

Cj , can(T ,A)).

The proof is by induction on i. For the base case, note that the con-
straints in C0 are all positive, thus the first claim directly follows from
Theorem 5.5. The second claim follows as C is contained in CT and
the added constraints in CT are sound.

Now suppose we are considering the i-th stratum. We add an-
other type of leaves to the definition of a justification tree: leaves
of the form (x,¬s). Also the definition of justified leaves is adapted
accordingly: for (x,¬s) to be correct, there must exist (W,H) ∈
satCi,T such that ¬s ∈ H and the positive basic shape expressions
in W are exactly the following: {A | x ∈ Acan(T ,A)} ∪ {∃r |
exists y.(x, y) ∈ rcan(T ,A)} ∪ {∃r.s′ | exists y.x = py, r ∈
cl(p), can(T ,A) validates (CT ,Ii−1 , s

′(y)}.
To make the step from one stratum to the next, suppose s(x) 	∈

PA(CT ,Ii−1 , can(T ,A)). By IH, this happens iff there is no
(W,H) ∈ satCi−1,T , maximal in Ii−1, such that s ∈ H and the
set of positive basic shape expressions in W is exactly as needed
for the correctness of a leaf of the form (x,¬s). Since by construc-
tion compCi−1,T ({(W,H)}) ⊆ satCi,T (compCi−1,T (Ii−1)), we
use this as the basis for the rest of the induction step.

To prove the first claim, note that we can generalize both the
soundness and the completeness of Theorem 5.5 with the updated
justification tree, combined with what we just derived. For the sec-
ond claim, the fact that we can build the justification tree is enough
to show completeness. Soundness works similarly as in 5.5.

6 Complexity

We now discuss the computational complexity of SHACL validation
in the presence of DL-LiteR TBoxes. Specifically, we discuss the
combined complexity and the data complexity of the problem. The
former is measured by in terms of the combined size of all input
components, while the latter is measured assuming all components
except the ABox are of fixed size.

Theorem 6.1. In the presence of DL-LiteR TBoxes, SHACL vali-
dation is EXPTIME-complete in combined complexity and PTIME-
complete in data complexity. This holds also for positive constraints.

Proof. For data complexity, the PTIME lower bound was shown
in [2], which already applies in the absence of ontologies. The match-
ing PTIME upper bound follows from Theorem 5.10 and the fact that
validation under stratified constraints without ontologies in feasible
in polynomial time in data complexity [2]. We note that checking if
the input graph is consistent with a TBox is in logarithmic space.

For the upper bound in combined complexity, we discuss the
rewriting algorithm of the previous section. Assume K = (T ,A)
and a set C of constraints. Observe that the number of different pairs
(W,H) over the signature of K and C that can be added to I during
the rewriting is bounded by an exponential in the size ofK and C. An
application of any of the 6 rules takes polynomial time in the size of
K, C and I , which is bounded by an exponential in the size of K and
C. Computing CT ,I is polynomial in the size of I . Thus overall we
get a procedure that runs in exponential time in the size of K and C.
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To prove EXPTIME-hardness in combined complexity we reduce
the word problem of polynomially space-bounded Alternating Turing
Machines (ATMs) to validating shapes under a DL-LiteR ontology.

An ATM is defined as a tuple of the form

M = (Σ, Q∃, Q∀, q0, qacc, qrej , δ)

where Σ is an alphabet, Q∃ is a set of existential states, Q∀ is a set
of universal states, disjoint from Q∃, q0 ∈ Q∃ is an initial state,
qacc ∈ Q∃ ∪ Q∀ is an accepting state and qrej ∈ Q∃ ∪ Q∀ is a
rejecting state, and δ is a transition relation of the form

δ ⊆ Q× (Σ ∪ {B})×Q× (Σ ∪ {B})× {−1, 0,+1}

with Q = Q∃ ∪ Q∀. Here B is the the blank symbol. We let
δ(q, a) = {(q′, b,D) | (q, a, q′, b,D) ∈ δ}. W.l.o.g. we assume
that inM, universal and existential states are strictly alternating: if
(q, a, q′, b,m) ∈ δ and q ∈ Q∃ (resp., q ∈ Q∀), then q′ ∈ Q∀
(resp., q′ ∈ Q∃). We further assume that |δ(q, a)| = 2 for all
combinations of states q ∈ Q and symbols a ∈ Σ. If δ(q, a) =
{(q1, a1, D1), (q2, a2, D2)}, we let δ�(q, a) = (q1, a1, D1) and
δr(q, a) = (q2, a2, D2).

A run of an ATMM on an input word w is defined as usual. We
assume a word w = d1 · · · dn ∈ Σ∗ with n > 0 together with
an ATMM that only uses the tape cells where the input word was
written, i.e., it only uses the first n cells. Checking if suchM accepts
w is an EXPTIME-hard problem.

We show how to construct K = (T ,A) and (C, {s(a)}) such that
M accepts w iff K validates (C, {s(a)}). The reduction takes poly-
nomial time in the size ofM and w. It uses the following symbols:

• a concept name Init and a shape name sacc ;
• role names succ, succ�, succr;
• shape names sq for all states q ∈ Q∃ ∪ q ∈ Q∀;
• shape names hi for all 1 ≤ i ≤ n;
• shape names c(i)b for all b ∈ Σ ∪ {B} and 1 ≤ i ≤ n.

We let K = (T ,A) be such that A = {Init(a)} and the TBox T
consists of the following inclusions:

Init � ∃succ� succ� � succ ∃succ− � ∃succ�
Init � ∃succr succr � succ ∃succ− � ∃succr .

The interpretation can(K) will provide us an infinite binary tree. In
there, the root is representing the starting configuration of M and
each child of a node represents a next step in the run of the ATMM.

To mimic the start configuration, we define the following shapes:

h1 ← Init sq0 ← Init c
(i)
di
← Init for all 1 ≤ i ≤ n

Intuitively, this is setting the starting state to q0 (sq0 ), putting the
head in the starting position (h1), and stating the starting symbol
written on each tape cell (c(i)di

).
The next step is to encode the transition relation of the M. For

each 1 ≤ i ≤ n, each (q, a) ∈ Q × (Σ ∪ {B}), and γ ∈ {�, r} we
add the following shapes, where (q′, b,D) = δγ(q, a):

sq′ ← ∃succ−γ .(sq ∧ hi ∧ c
(i)
a )

c
(i)
b ← ∃succ−γ .(sq ∧ hi ∧ c

(i)
a )

hi+D ← ∃succ−γ .(sq ∧ hi ∧ c
(i)
a ).

Furthermore, the tape cells that are not under the read-write head
have their content preserved. Thus, for each 1 ≤ i < j ≤ n, add

c(i)a ← ∃succ−.(c(i)a ∧ hj).

We now identify subtrees that represent accepting computations.
For all q ∈ Q∃ and all q′ ∈ Q∀ we add the following:

sacc ← sqacc
sacc ← sq ∧ ∃succ.sacc
sacc ← sq′ ∧ ∃succ�.sacc ∧ ∃succr.sacc .

This concludes the reduction. It is not too difficult to check thatM
accepts w iff K validates (C, {s(a)}).

7 Conclusions and Outlook

We have considered the validation of SHACL constraints in the pres-
ence of OWL 2 QL ontologies. We have defined the semantics over
a carefully constructed notion of canonical model (aka chase) that
minimizes the number of fresh successors introduced to satisfy the
ontology axioms at each chase step, and we have argued that this se-
mantics is natural and intuitive. We proposed a rewriting algorithm
for recursive SHACL constraints with stratified negation. It takes as
an input a SHACL shapes graph and an ontology, and constructs a
new SHACL shapes graph (also with stratified negation) that can be
used for sound and complete validation over the data graph alone,
without needing to reason about the ontology at validation time. We
showed that, under our semantics, validation in the presence of OWL
2 QL ontologies is complete for EXPTIME, but it remains PTIME

complete in data complexity, and hence it is not harder than valida-
tion of stratified SHACL alone, without the ontology.

There are several directions for future work. The first is to extend
our approach to support more syntactic features of SHACL, like com-
plex path expressions and counting (number restrictions on paths).
We believe the mentioned features can be incorporated and supported
by our rewriting approach in principle, but it requires a substantial
extension. Another direction is to support ontology languages that
go beyond OWL 2 QL. We believe our approach can be elegantly
generalized to ontologies expressed in Horn-SHIQ, but it is more
challenging to support non-Horn ontology languages. An implemen-
tation of our approach also remains for future work. The rewriting
algorithm in this paper was meant to demonstrate the principle feasi-
bility of the approach. As presented, our rewriting is best-case expo-
nential since rule 3 in Definition 5.3 forces us to add exponentially
many pairs (W,H). A way to avoid this problem will be needed in
order to achieve an efficient implementation of the rewriting. Extend-
ing the SHACL fragment to consider unstratified negation is also an
interesting direction for future work. For this, the well-founded se-
mantics for SHACL seems like a promising starting point [2, 6].
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