
European Journal of Combinatorics 118 (2024) 103887

e
s
o

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

On an extremal problem for locally sparse
multigraphs✩

Victor Falgas-Ravry
Institutionen för Matematik och Matematisk Statistik, Umeå Universitet, Sweden

a r t i c l e i n f o

Article history:
Received 22 February 2021
Accepted 5 November 2023
Available online xxxx

a b s t r a c t

A multigraph G is an (s, q)-graph if every s-set of vertices in G
supports at most q edges of G, counting multiplicities. Mubayi
and Terry posed the problem of determining the maximum of the
product of the edge-multiplicities in an (s, q)-graph on n vertices.
We give an asymptotic solution to this problem for the family
(s, q) = (2r, a

(2r
2

)
+ex(2r, Kr+1)−1) with r, a ∈ Z≥2. This greatly

generalises previous results on the problem due to Mubayi and
Terry and to Day, Treglown and the author, who between them
had resolved the special case r = 2. Our result asymptotically
confirms an infinite family of cases in (and overcomes a major
obstacle to a resolution of) a conjecture of Day, Treglown and
the author.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Problem and results

In this paper, we study a family of extremal problems for multigraphs that are locally sparse, in
the sense that for some s ≥ 2, s-sets of vertices cannot support too many edges. Formally, we make
the following definition:

Definition 1.1. Given integers s ≥ 2 and q ≥ 0, we say a multigraph G = (V , w) is an (s, q)-graph if
very s-set of vertices in V supports at most q edges:

∑
xy∈X (2) w(xy) ≤ q for every X ∈ V (s). We say

uch multigraphs have the (s, q)-property, and denote by F(n, s, q) the collection of all (s, q)-graphs
n the vertex set [n].
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In 1963, Erdős [5] raised the question of determining the maximum number of edges an
rdinary graph on n vertices with the (s, q)-property could have. In the 1990s, Bondy and Tuza
nd Kuchenbrod considered a first generalisation of this Erdős problem to multigraphs.

efinition 1.2. Given integers s ≥ 2 and q ≥ 0, we define

exΣ (n, s, q) := max{e(G) : G ∈ F(n, s, q)} and exΣ (s, q) := lim
n→∞

exΣ (n, s, q)(n
2

) .

Bondy and Tuza [3] and Kuchenbrod [9] initiated the study of exΣ (n, s, q). Their results were
astly extended by Füredi and Kündgen [8], who determined the asymptotics of exΣ (n, s, q) (i.e. the
alue of exΣ (s, q)) for all pairs (s, q) with q sufficiently large, and in addition determined the exact
alue in many cases. We are interested in a different generalisation of Erdős’s question, raised in
ecent papers of Mubayi and Terry [10,11] with motivation coming from counting problems and
pplications of container theory to multigraphs.

efinition 1.3. Given a multigraph G = (V , w), let P(G) denote the product of the edge-
ultiplicities in G,

P(G) :=

∏
uv∈V (2)

w(uv).

efinition 1.4. Given integers s ≥ 2 and q ≥ 0, we define

exΠ (n, s, q) := max{P(G) : G ∈ F(n, s, q)} and exΠ (s, q) := lim
n→∞

(
exΠ (n, s, q)

)1/(n2)
.

roblem 1.5 (Mubayi–Terry Problem). Given a pair of integers s ≥ 2, q ≥ 0, determine exΠ (s, q).

One may think of exΣ (s, q) as the asymptotically maximal arithmetic mean of edge weights
n an (s, q)-graph, while exΠ (s, q) is the asymptotically maximal geometric mean. By the AM-GM
nequality, it is immediate that

exΠ (s, q) ≤ exΣ (s, q),

ith equality attained if and only if q = a
(s
2

)
for some integer a ≥ 1 (in which case both

uantities are equal to a). But what happens when q lies strictly between a
(s
2

)
and (a + 1)

(s
2

)
?

he Mubayi–Terry problem can be rephrased as asking for the extent to which one may improve
n the AM–GM inequality for (s, q)-graphs with (s, q) in this range, and thereby the extent to which
um-maximisation and product-maximisation differ for these multigraphs.
Our main result in this paper is a resolution of the Mubayi–Terry problem for (s, q) = (2r, a

(2r
2

)
+

x(2r, Kr+1)−1), a, r ∈ Z≥2, where the Turán number ex(n, Kr+1) is the maximum number of edges
n a Kr+1-free graph on n vertices.

heorem 1.6. For any a, r ∈ Z≥2, we have:

exΠ

(
2r, a

(
2r
2

)
+ ex(2r, Kr+1) − 1

)
= a

1−x⋆(r,1)
r−1 (a + 1)

r−2+x⋆(r,1)
r−1 ,

where x⋆(r, 1) := log
( a+1

a

)/
log
(

(a+1)r

(a−1)r−1a

)
.

Theorem 1.6 greatly extends earlier results due to Mubayi and Terry [10, Theorem 2.4] and Day,
algas–Ravry and Treglown [4, Theorem 3.5], who had established it in the special cases where
= 2, a = 2 and where r = 2, a ≥ 2 respectively. Further, Theorem 1.6 asymptotically confirms

an infinite family of cases in a conjecture of Day, Falgas–Ravry and Treglown (see Conjecture 1.10
in Section 1.3), and overcomes one of the two main obstacles towards that conjecture identified

by these authors by tackling cases where the extremal multigraphs have a much more complicated
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structure than had previously been managed (the other obstacle being cases where the extremal
multigraphs feature a broader range of edge multiplicities — see the discussion at the beginning of
Section 5).

A striking feature of the result, which was noted by Mubayi and Terry, is that (assuming
chanuel’s conjecture from number theory) the quantity x⋆(r, 1) is transcendental for all r, a ≥ 2
see [4, Proposition A.2] for a proof of this fact). In particular, the extremal constructions for
heorem 1.6 feature partitions of the vertex-set [n] into a number of parts each of which contains
n asymptotically transcendental proportion of the vertices. While not wholly surprising given
he product setting of the Mubayi–Terry problem, this is still an unusual feature in extremal
ombinatorics.
As an application of Theorem 1.6, we also obtain the following Erdős–Kleitman–Rothschild-type

ounting results for multigraphs:

heorem 1.7. For all integers a, r ≥ 2, we have:⏐⏐⏐⏐F (n, 2r, (a − 1)
(
2r
2

)
+ ex(2r, Kr+1) − 1

)⏐⏐⏐⏐ =

(
a

1−x⋆(r,1)
r−1 (a + 1)

r−2+x⋆(r,1)
r−1

)(1+o(1))(n2)
.

Further, using a result from [4], we can derive some further asymptotic cases of a conjecture of
Day, Falgas-Ravry and Treglown from Theorem 1.6 — see Theorem 1.12 below.

1.2. Motivation

The Mubayi–Terry problem is a natural alternative generalisation of the Erdős question on
the number edges in graphs with the (s, q)-property to multigraphs. In addition, it is the ‘‘right’’
generalisation insofar as counting problems are concerned. In their classical 1976 paper, Erdős,
Kleitman and Rothschild [6] established that the number of Kr -free graphs on [n] is

2ex(n,Kr )+o(n2).

ince this foundational work, there has been a great interest from the research community in
stimating the size and characterising the typical structure of graphs in monotone properties or
ereditary properties. The paradigmatic heuristic guiding work in the area is that both size and
ypical structure should be determined by the size and structure of ‘extremal’ graphs in the property.

In a spectacular breakthrough in 2015, Balogh, Morris and Samotij [1] and Saxton and Thoma-
on [12] developed powerful theories of hypergraph containers, which have since had a myriad of
pplications within extremal combinatorics (for more details, see the ICM survey of Balogh, Morris
nd Samotij [2]). Using hypergraph containers, one can make the aforementioned heuristic rigorous:
iven an extremal result and a supersaturation result for a given hereditary graph property, the
heory of container immediately implies a counting result for the number of graphs in that property;
urther, this implication of container theory holds not just for hereditary properties of graphs but
lso for hereditary properties for a much larger class of objects (see for instance [7,13] for general
mplications of container theory).

In particular, Mubayi and Terry realised that to prove analogues of the Erdős–Kleitman–
othschild theorem (which is about counting graphs with the (r,

(r
2

)
−1)-property) and estimate the

umber of (s, q)-graphs on n vertices, one must determine not the sum-extremal quantity exΣ (s, q)
etermined by Füredi and Kündgen in [8], but rather the product-extremal quantity exΠ (s, q). More
recisely, Mubayi and Terry showed in [10, Theorem 2.2] that for q >

(s
2

)
,⏐⏐⏐F(n, s, q −

(
s
2

))⏐⏐⏐ = exΠ (s, q)(
n
2)+o(n2). (1.1)

Thus the Erdős–Kleitman–Rothschild-type problem of estimating the size of the multigraph family
F(n, s, q −

(s
2

)
) is equivalent to the Turán-type problem of determining exΠ (s, q). This motivated

ubayi and Terry’s introduction of Problem 1.5, and also shows how Theorem 1.7 is an immediate
orollary of Theorem 1.6.
3
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1.3. Previous work and extremal constructions

Mubayi and Terry resolved Problem 1.5 in the cases where a
(s
2

)
−

s
2 ≤ q ≤ a

(s
2

)
+ s − 2,

∈ Z≥2 [11, Theorems 3–4], (s, q) = (4, 9) [11, Theorem 5] and (s, q) = (4, 15) [10, Theorem 2.4].
ay, Falgas-Ravry and Treglown [4, Theorem 3.5] extended the latter result, determining exΠ (s, q)
hen (s, q) = (4, a

(4
2

)
+ 3) with a ∈ Z≥2. In addition the same authors determined exΠ (s, q) when

s, q) = (s, a
(s
2

)
+ 2s − 5) with s ∈ {5, 6, 7} [4, Theorems 3.6–3.8], and when q = a

(s
2

)
+ ex(s, Kr+1)

ith a ∈ Z≥1, s > r ≥ 2 [4, Theorem 3.10]. Further, they formulated a general conjecture on the
alue of exΠ (s, q) for many values of (s, q), which guides our work in the present paper.
To state their conjecture precisely, we must first introduce some notation and define certain

families of constructions. For n ∈ N, write [n] as a shorthand for the set {1, 2, . . . , n}. Day,
Falgas-Ravry and Treglown considered the following family of constructions in [4]:

Construction 1.8. Let a, r ∈ N and d ∈ {0} ∪ [a− 1]. Given n ∈ N, let Tr,d(a, n) denote the collection
of multigraphs G on [n] for which V (G) can be partitioned into r parts V0, . . . , Vr−1 such that:

(i) all edges in G[V0] have multiplicity a − d;
(ii) for all i ∈ [r − 1], all edges in G[Vi] have multiplicity a;
(iii) all other edges of G have multiplicity a + 1.

Given G ∈ Tr,d(a, n), we refer to ⊔
r−1
i=0 Vi as the canonical partition of G.

Definition 1.9. Let Σr,d(a, n) and Πr,d(a, n) respectively denote the maximal edge-sum and the
maximal edge-product that can be achieved inside Tr,d(a, n),

Σr,d(a, n) := max{e(G) : G ∈ Tr,d(a, n)}, Πr,d(a, n) := max{P(G) : G ∈ Tr,d(a, n)}.

As shown in [4], the sum- and product-extremal multigraphs in Tr,d(a, n) have in general
very different canonical partitions. Indeed [4, (3.1)–(3.3)], in sum-maximising multigraphs |V0| =

1
d(r−1)+r n + o(n), while in product maximising multigraphs |V0| = x⋆(r, d)n + o(n), where x⋆ is the
unction of a, r, d given by

x⋆(r, d) :=
log
( a+1

a

)
log
(

(a+1)r

(a−d)r−1a

) , (1.2)

hich is strictly smaller than 1
d(r−1) [4, Proposition 5.4]; in both cases, the remaining parts V1 to Vr−1

have balanced sizes. Substituting in the values of the optimal part sizes for sum-maximisation and
product-maximisation respectively, one obtains the following asymptotic expressions for Σr,d(a, n)
and Πr,d(a, n):

Σr,d(a, n) =

(
a + 1 −

d + 1
(r − 1)d + r

+ o(1)
)(

n
2

)
,

Πr,d(a, n) =

(
a

1−x⋆(r,d)
r−1 (a + 1)

r−2+x⋆(r,d)
r−1 +o(1)

)(n2)
. (1.3)

Since multigraphs in Tr,d(a, n) have the (s, Σr,d(a, s))-property, it is immediate that

exΠ (n, s, Σr,d(a, s)) ≥ Πr,d(a, n). (1.4)

Day, Falgas-Ravry and Treglown conjectured [4, Conjecture 3.2] that this lower bound is tight for
s, n sufficiently large, i.e. that exΠ (n, s, Σr,d(a, s)) is attained by product-extremal multigraphs from
Tr,d(a, n).

Conjecture 1.10 (Day, Falgas-Ravry and Treglown [4]). For all integers a, r, s, d with a, r ≥ 1, d ∈

{0} ∪ [a − 1], s ≥ (r − 1)(d + 1) + 2 and all n sufficiently large,
exΠ (n, s, Σr,d(a, s)) = Πr,d(a, n).

4
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Remark 1.11. Observe that for any r ≥ 2, Σr,1(a, 2r) = a
(2r
2

)
+ex(2r, Kr+1)−1, so that Theorem 1.6

asymptotically confirms this conjecture when s = 2r and d = 1.

The condition s ≥ (r − 1)(d + 1) + 2 in Conjecture 1.10 above is related to the minimum ‘size’
f s such that sum-extremal s-vertex subgraphs can tell Tr,d(a, n) apart from Tr ′,d′ (a, n) with r < r ′

r r = r ′ and d′ < d. In addition to Construction 1.8, the authors of [4] also provided some other
amilies of constructions to bridge some of the gaps and cover q-s lying in the intervals between
uccessive values of Σr,d(a, s). These are however significantly more intricate – they correspond to
terated versions of Construction 1.8 – and do not give a complete picture; see the discussion in
ection 5.
Extending earlier results of Mubayi and Terry, Day, Falgas-Ravry and Treglown showed Conjec-

ure 1.10 is true for

• d = 0 and all a ≥ 1, s > r ≥ 1 [4, Theorem 3.10] — this can be viewed as a multigraph
generalisation of Turán’s theorem, with q = a

(s
2

)
+ ex(s, Kr+1);

• d = 1, r = 2, s ∈ {4, 5, 6, 7} and all a ≥ 2 [4, Theorems 3.5–3.8].

urther they showed [4, Theorem 3.11] that for r, d fixed the ‘base cases’ s = (r − 1)(d + 1) + 2,
≥ d + 1 of Conjecture 1.10 implies the ‘higher cases’ s′ > (r − 1)(d + 1) + 2 hold for all
> a0 = a0(r, d, s′) sufficiently large. As an immediate corollary of this latter result and of

heorem 1.6 proved in this paper, we have the following:

heorem 1.12. For all integers r, s with s ≥ 2r ≥ 4 and all positive integers a sufficiently large,

exΠ (s, Σr,1(a, s)) = (a + 1)
r−2+x⋆(r,1)

r−1 a
1−x⋆(r,1)

r−1 .

In other words, Conjecture 1.10 is asymptotically true for d = 1 and a sufficiently large.
Finally, it would be remiss not to mention here the results of Füredi and Kündgen. These authors

showed in [8] that for all q sufficiently large1

exΣ (s, q) = min

{
m ∈ Q :

s−1∑
i=1

⌊1 + mi⌋ > q

}
.

In the particular case (s, q) =
(
2r, Σr,1(a, 2r)

)
=
(
2r, (a + 1)

(2r
2

)
− r − 1

)
, this gives that for all a

sufficiently large

exΣ (2r, Σ2,1(a, 2r)) = a +
2r − 3
2r − 1

,

ith the same extremal constructions as the ones that attain Σr,1(a, n) inside the family Tr,1(a, n).
hus for both sum-maximisation and production-maximisation of (2r, Σr,1(a, 2r))-graphs one must
ook to the generalised Turán multigraphs from Construction 1.8, albeit with different weights
ssigned to the various parts in the canonical partition.

.4. Proof ideas and organisation of the paper

The proof of Theorem 1.6 proceeds by induction on r , and by structural and optimisation
rguments. The base case r = 2 was proved in [4, Theorem 3.5], using somewhat different
rguments. For the inductive step, a simple vertex-removal argument shows it is sufficient to
stablish that for all n sufficiently large, every G ∈ F

(
n, 2r + 2, Σr+1,1(a, 2r + 2)

)
must contain

a vertex with low product-degree. Further, one can show that one can restrict one’s attention to
those multigraphs G belonging to a certain subset of the family F

(
n, 2r + 2, Σr+1,1(a, 2r + 2)

)
with

helpful properties (see Proposition 2.14).

1 Formally Füredi and Kündgen proved the upper bound and a matching lower bound hold for Z-weighted graphs, i.e.
llowing negative edge multiplicities. However their lower bound construction only involve positive weights when q is

sufficiently large with respect to s.
5
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A key observation is then that in a product-extremal multigraph from Tr+1,1(a, n) there are two
kinds of vertices: those from Vi, i ∈ [r], sending edges of multiplicity a + 1 to a set of vertices
inducing a copy of a product-extremal multigraph from Tr,1

(
a,
( r−1+x⋆(r+1,1)

r

)
n
)
, and those from

0, sending edges of multiplicity a + 1 to a set of vertices inducing a copy of a product-extremal
ultigraph from Tr,0 (a, (1 − x⋆(r + 1, 1)) n).
Our arguments builds on a similar dichotomy: we pick a vertex x, and consider the set Y of

ertices sending edges of multiplicity a+1 to x. If the product of edge multiplicities in Y is not much
arger than if Y had the (2r, Σr,1(a, 2r)) property, then we use optimisation arguments to show that
hat G contains a vertex with low product-degree (Lemma 3.1). On the other hand, if the product of
dge multiplicities in Y is larger than this, then we show by a different argument that we can find
ertain ‘good’ r-partite structures in Y , which can then be used to show that G contains a vertex
ith low product-degree (Lemma 3.3). The bulk of the work of the paper is showing these ‘good’
-partite structures can indeed be found. This requires some careful structural analysis and some
eighted geometric averaging arguments that together form the paper’s main technical innovations
n previous work.
Our paper overcomes one of the two main challenges towards a proof of Conjecture 1.10 (the

ther, harder one being the case d ≥ 2 where the conjectured extremal examples feature a broader
ange of edge multiplicities). We suspect large parts of the proof framework we have developed in
his paper may be helpful in tackling the general case of Conjecture 1.10, so we have taken some
are to present it in a modular fashion, and in particular to prove general forms of our key lemmas.
The paper is structured as follows. In the next subsection, we gather some useful notation. In

ection 2, we show that in investigations of Conjecture 1.10 we can restrict our attention to multi-
raphs G with a much more favourable structure (Proposition 2.14). In Section 3 we prove some
ery general optimisation lemmas, in particular Lemmas 3.1 and 3.3 alluded to above. Finally in
ection 4 we leave the general setting and specialise to the cases (s, q) =

(
2r + 2, Σr+1,1(2r + 2)

)
;

e establish the existence of ‘good’ r-partite structures (or low product-degree vertices) in this
ection, completing the proof of Theorem 1.6. We end the paper in Section 5 with some remarks
n further questions, open problems and future directions for work on the Mubayi–Terry problem.

.5. Notation

Given a set A and t ∈ Z≥0, we let A(t) denote the collection of all subsets of A of size t . A
ultigraph is a pair G = (V , w), where V = V (G) is a set of vertices and w = wG is a function
: V (2)

→ Z≥0 assigning to each pair {a, b} ∈ V (2) a weight or multiplicity wG({a, b}). We usually
rite ab for {a, b} and, when the host multigraph G is clear from context, we omit the subscript G
nd write simply w(ab) for wG({a, b}).
Given a multigraph G and a set X ⊆ V (G), we write S(G[X]) or, when the host multigraph G is

lear from context, S(X) for the sum of the edge multiplicities of G inside X ,

S(G[X]) :=

∑
v1v2∈X (2)

w(v1v2).

imilarly, we write P(G[X]) or P(X) for the product of the edges multiplicities of G inside X ,

P(G[X]) :=

∏
v1v2∈X (2)

w(v1v2).

urther, given disjoint sets X, Y ⊂ V (G) we write S(G[X, Y ]) (S(X, Y )) and P(G[X, Y ]) (P(X, Y )) for,
respectively the sum and the product of the edge multiplicities of G over all edges xy with x ∈ X
and y ∈ Y .

We define dG(v) (or simply d(v)) to be
∑

u∈V (G) wG(uv), and refer to this quantity as the degree
f v in G. Analogously, we use pG(v) to denote

∏
u∈V (G) wG(uv), and refer to this quantity as the

roduct-degree of v in G. When G is clear from context we write p(v) for pG(v), and given X ⊆ V (G)
we also use pX (v) to denote P({v}, X), the product of the edge multiplicities of the edges sent by v
into X in the multigraph G.

Finally, in our arguments we will need to consider the subgraph of edges with a given multiplicity
m in a multigraph G. It is therefore convenient to introduce the following notation.
6
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Definition 1.13. Given a multigraph G = (V , w), and m ∈ Z≥0, let G(m) denote the ordinary graph
iven by

G(m)
=

(
V , {e ∈ V (G)(2) : w(e) = m}

)
.

Given v ∈ V and a subset X ⊆ V , we also let

N (m)
X (v) := {x ∈ X : w(vx) = m}.

e refer to G(m) as the m-subgraph of G and to N (m)
X (v) as the m-neighbourhood of v in X . When

X = V , we drop the subscript X and simply write N (m)(v) for the m-neighbourhood of v in G.

2. Preliminaries: properties of near-extremal multigraphs

Our problem involves interaction between sums and products. It is thus unsurprising that an
integral version of the AM–GM inequality plays a part in our arguments.

Proposition 2.1 (Integral AM–GM Inequality). Let a, n ∈ N, t ∈ {0} ∪ [n], and let w1, . . . , wn be
non-negative integers with

∑n
i=1 wi = an + t. Then

∏n
i=1 wi ≤ an−t (a + 1)t .

We shall also repeatedly use the following simple weighted geometric averaging bound.

Proposition 2.2 (Weighted Geometric Averaging). Let α1, α2, . . . αm be non-negative real numbers
summing to 1, and let p1, p2, . . . , pm be non-negative real numbers. Then there exists some i ∈ [m]

such that pi is at most the (αj)mj=1-weighted geometric mean of the quantities (pj)mj=1:

pi ≤

m∏
j=1

(pj)αj .

2.1. Behaviour of Σr,d(a, s) and Πr,d(a, n)

It shall be useful in our proof of Theorem 1.6 to understand the size and structure of sum-
maximising multigraphs from Tr,d(a, s). To this end, we shall use the following proposition from [4]:

Proposition 2.3 (Proposition 5.3 from [4]). Let r ∈ Z≥2, a ∈ N, d ∈ {0} ∪ [a − 1]. Let s, j ∈ N. Then
there exists G ∈ Tr,d(a, s) with e(G) = Σr,d(a, s) whose canonical partition ⊔

r−1
i=0 Vi satisfies |V0| = j if

and only if one of the following hold:

(a) j > 1 and (r − 1)(d + 1)(j − 1) + (j − 1) + r − 1 ≤ s ≤ (r − 1)(d + 1)j + j + r − 1;
(b) j = 1 and s ≤ (r − 1)(d + 1) + r = (r − 1)(d + 2) + 1.

In particular, Proposition 2.3 implies that for s′ < (r − 1)(d + 1) + 2 we have

Σr,d(a, s′ + 1) − Σr,d(a, s′) = s′(a + 1) −

⌊ s′ − 1
r − 1

⌋
≥ s′(a + 1) − d − 1, (2.1)

ince there exist sum-maximising multigraphs in Tr,d(a, s′ + 1) and Tr,d(a, s′) whose canonical
artitions satisfy |V0| = 1. Also, for i ∈ [d], Proposition 2.3 implies

Σr,d(a, (r − 1)(d − i + 2) + 2) < Σr,d−i(a, (r − 1)(d − i + 2) + 2). (2.2)

ndeed, given G′
∈ Tr,d(a, (r−1)(d− i+2)+2) with e(G′) = Σr,d(a, (r−1)(d− i+2)+2), consider the

raph G ∈ Tr,d−i(a, (r − 1)(d− i+ 2)+ 2) obtained from G′ by replacing each edge with multiplicity
− d by an edge with multiplicity a − d + i.
If the canonical partition of G′ satisfies |V0| > 1, then clearly e(G′) < e(G) ≤ Σr,d−i(a, (r −

)(d − i + 2) + 2). On the other hand if the canonical partition of G′ (which is also a canonical
artition of G) satisfies |V0| = 1, then by Proposition 2.3 part (b), the graph G is not sum-extremal
n Tr,d−i(a, (r − 1)(d − i + 2) + 2), and thus e(G′) = e(G) < Σr,d−i(a, (r − 1)(d − i + 2) + 2). This
establishes (2.2).
7
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Proposition 2.4 (Equation (3.3) in [4]). Let r ∈ Z≥2, a ∈ N, d ∈ {0} ∪ [a − 1], G ∈ Tr,d(a, n) with
(G) = Πr,d(a, n), and let ⊔

r−1
i=0 Vi be the canonical partition of G. Then the following hold:

(i) |V0| = x⋆(r, d)n + O(1);

(ii) P(G) = Πr,d(a, n) = a(
n
2)
( a+1

a

)( r−2+x⋆(r,d)
r−1

)
(n2)+O(n)

,

here we recall that x⋆(r, d) was defined in (1.2) and is given by x⋆(r, d) :=
log
(
a+1
a

)
log
(

(a+1)r

a(a−d)r−1

) .

emark 2.5. The quantity x⋆(r, d) satisfies the following recurrence relation: for all r, d ≥ 1,

x⋆(r + 1, d) =

(
r − 1 + x⋆(r + 1, d)

r

)
x⋆(r, d). (2.3)

This identity can be verified algebraically, and has a natural combinatorial interpretation. Consider a
product-maximising multigraph G from Tr+1,d(a, n) and let ⊔

r
i=0Vi be its canonical partition. Then the

parts ⊔
r−1
i=0 Vi induce an (almost) product maximising multigraph G′ from Tr,d(a, n−|Vr |). In particular

the special part V0 satisfies both |V0| = x⋆(r + 1, d)n+ o(n) and |V0| = x⋆(r, d)(n− |Vr |)(1+ o(1)) =

x⋆(r, d)
( r−1+x⋆(r+1,d)

r

)
n + o(n).

Note that in the special case r = 1, equality (2.3) is true but vacuous: x⋆(1, d) = 1 for all d,
and (2.3) is the tautological fact that x⋆(2, d) = x⋆(2, d).

2.2. Properties of near-extremal multigraphs

Fix positive integers a, r, d with r ≥ 3, d ≥ 1, a ≥ d+1. Set s = (r −1)(d+1)+2. Let x⋆(r, d) be
as in Proposition 2.4. As we show in the elementary proposition below, one can essentially reduce
the problem of showing exΠ (n, s, q) =

(
Πr,d(a, n)

)1+o(1) to the problem of showing all (s, q)-graphs
ontain vertices with low product-degree.

roposition 2.6. If for all n ∈ N we have

exΠ

(
n + 1, s, Σr,d(a, s)

)
≤ exΠ

(
n, s, Σr,d(a, s)

)
an
(
a + 1
a

)( r−2+x⋆(r,d)
r−1

)
n+o(n)

, (2.4)

hen

exΠ (n, s, Σr,d(a, s)) =
(
Πr,d(a, n)

)1+o(1)
.

roof. Applying our hypothesis n − 1 times, we have

exΠ

(
n, s, Σr,d(a, s)

)
≤

n−1∏
i=1

ai
(
a + 1
a

)( r−2+x⋆(r,d)
r−1

)
i+o(i)

= a(
n
2)
(
a + 1
a

)( r−2+x⋆(r,d)
r−1

)
(n2)+o(n2)

,

nd the claim then follows from Proposition 2.4 part (ii) together with our observation in (1.4) that
r,d(a, n) is a lower bound for exΠ

(
n, s, Σr,d(a, s)

)
. □

Our goal in this subsection is to show that we may in fact restrict our attention to the problem
of showing that all multigraphs within a certain ‘nice’ subset of F(n, s, Σr,d(a, s)) contain vertices
ith low product-degrees.

efinition 2.7. Let G
(
n, s, Σr,d(a, s)

)
be the set of multigraphs on [n] that have the (s′, Σr,d(a, s′))-

property for all integers s′: 2 ≤ s′ ≤ s.

Remark 2.8. Observe that multigraphs in G
(
n, s, Σr,d(a, s)

)
have bounded multiplicity: they have

he (2, Σr,d(a, 2)) = (2, a+1)-property, meaning that in such multigraphs all edges have multiplicity
t most a + 1. We shall make heavy use of this fact in our proof of Theorem 1.6.
8
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As a corollary of (the proof of) a result of Day, Falgas-Ravry and Treglown [4], every multigraph
∈ F(n, s, Σr,d(a, s)) either belongs to the more restricted subfamily G

(
n, s, Σr,d(a, s)

)
or contains

a vertex with low product-degree.

Proposition 2.9 (Corollary of [4, Theorem 6.1]). Let G ∈ F(n, s, Σr,d(a, s)). Then either there exists
v ∈ V (G) with

pG(v) ≤ an
(
a + 1
a

)( r−2
r−1

)
n+O(1)

,

or G ∈ G(n, s, Σr,d(a, s))

Generalising ideas from [4,11], we consider an even nicer subfamily of G(n, s, Σr,d(a, s)).

Definition 2.10. Two vertices u and v in a multigraph G are clones if for every z ∈ V (G) \ {x, y} we
have wG(xz) = wG(yz).

Definition 2.11. Let H(n, s, Σr,d(a, s)) denote the set of multigraphs G from G(n, s, Σr,d(a, s)) such
that:

(i) every edge in G has weight at least a − d;
(ii) if wG(uv) = a − d, then u and v are clones in G;

emark 2.12. Property (ii) above implies that the subgraph G(a−d) of G consisting of edges of
multiplicity a − d is a disjoint union of cliques.

Proposition 2.13. Let G ∈ G(n, s, Σr,d(a, s)). Then there exists G′
∈ H(n, s, Σr,d(a, s)) such that

P(G) ≤ P(G′).

Proof. We modify G in two phases, the first to raise the minimum edge multiplicity to a − d, and
the second to ensure that all vertices joined by an edge of multiplicity a−d are clones of each other.

First phase: suppose G contains an edge uv of multiplicity wG(uv) < a − d. We define a new
multigraph G1 from G by increasing the multiplicity of uv to a − d and keeping all other edge
multiplicities unchanged. Clearly P(G1) > P(G). We claim that in addition, like G, G1 belongs to
G(n, s, Σr,d(a, s)).

Indeed, we clearly have G1 ∈ F(n, 2, a + 1). Suppose G1 ∈ F(n, s′, Σr,d(a, s′)) for some s′:
≤ s′ < s. Consider an (s′ − 1)-set X ⊆ V \ {u, v}. Then

S(G1[X ∪ {u, v}]) = S(G[X ∪ {u}]) + S(G[X, {v}]) + wG1 (uv)
≤ Σr,d(a, s′) + (s′ − 1)(a + 1) + a − d = Σr,d(a, s′) + s′(a + 1) − (d + 1),

hich is less than Σr,d(a, s′ +1) by (2.1). This immediately implies that G1 ∈ F(n, s′ +1, Σr,d(a, s′ +
)) as well. Thus G1 ∈

⋂s
s′=2 F(n, s′, Σr,d(a, s′)) = G(n, s, Σr,d(a, s)) as required.

Sequentially increasing the edge multiplicities of edges with wG(uv) < a−d in this way, we have
hat after at most

(n
2

)
steps we have produced a multigraph G2 ∈ G(n, s, Σr,d(a, s)) with P(G2) ≥ P(G)

in which all edge multiplicities are at least a − d.
Second phase: we shall go through the multigraph G2 in several passes. While there exist edges

uv in G2 such that wG2 (uv) = a−d and u, v are not clones of each other in G2, we run the following
algorithm:

(1) among all vertices of G2 incident with such edges, we select one with maximum product-
degree in G2, and denote it by u;

(2) we set Bu to be the collection of vertices in V (G2) that are joined to u by an edge of multiplicity
a− d and are not clones of u. While Bu is non-empty, we pick a vertex v ∈ Bu and modify G2
by changing the multiplicity of vw to wG2 (uw) for all w ∈ V (G2) \ {u, v} – in other words, we

replace v by a clone of u.

9
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Observe that each time we select v ∈ Bu and replace it by a clone of u in an iteration of Step (2) of
ur algorithm, the value of pG2 (v

′) does not increase for any v′
∈ N (a−d)(u). Indeed, the multiplicity

f vv′ is changed to a − d ≤ wG2 (vv′). It follows in particular that after our change we still have
G2 (u) ≥ pG2 (v

′) for all v′
∈ N (a−d)(u). This ensures that our procedure does not decrease the value

f P(G2) (since our modification of the graph changed this product by a multiplicative factor of
G2 (u)/pG2 (v) ≥ 1).
Further, each time we replace some v ∈ Bu by a clone of u in an iteration of Step (2), it is easy to

check that after our modification, the multigraph G2 still lies in G(n, s, Σr,d(a, s)). Indeed, this can
be shown in exactly the same way that we proved G1 ∈ G(n, s, Σr,d(a, s)) in the first phase. Also if
v′

∈ N (a−d)(u) \ Bu, then by definition the multiplicities of uv and vv′ were the same, so v′ remains
clone of u. In particular after at most |Bu| < n iterations of this procedure, Bu becomes empty.
hen this occurs, we have that all vertices in N (a−d)(u) are clones of u (and of each other), and in
articular Cu := {u}∪N (a−d)(u) forms an isolated clique in G2

(a−d) (i.e. all edges from Cu to V (G2)\Cu
ave multiplicity strictly greater than a − d while all edges in Cu have multiplicity equal to a − d)
nd wG2 (uw) = wG2 (u

′w) for all u, u′
∈ Cu, w /∈ Cu. Both of these properties are maintained in all

ubsequent iterations of Steps (1)–(2), from which it follows that no vertex of Cu will ever again be
elected in an iteration of Step (1). Thus our algorithm will terminate after at most n/2 iterations.
The final multigraph G′ obtained when our algorithm terminates then has all the claimed

roperties: P(G′) ≥ P(G2) ≥ P(G), G′
∈ G(n, s, Σr,d(a, s)), and whenever wG′ (uv) = a − d, u and

are clones in G′. □

We now combine Propositions 2.9 and 2.13 with Proposition 2.6 to show that to prove
heorem 1.6 it will be enough to restrict our attention to multigraphs from the ‘nice’ family
(n, s, Σr,d(a, s)) rather than the whole of F(n, s, Σr,d(a, s)), and to show that these multigraphs
ontain low product-degree vertices.

roposition 2.14. If for all n ∈ N and every G ∈ H(n + 1, s, Σr,d(a, s)) there exists v ∈ V (G) with

pG(v) ≤ an
(
a + 1
a

)( r−2+x⋆(r,d)
r−1

)
n+o(n)

,

hen

exΠ (n, s, Σr,d(a, s)) =
(
Πr,d(a, n)

)1+o(1)
.

roof. By Proposition 2.6, it is enough to show that (2.4) holds for all n. Consider G ∈ F(n +

1, s, Σr,d(a, s)) with P(G) = exΠ (n + 1, s, Σr,d(a, s)).
Suppose G /∈ G(n + 1, s, Σr,d(a, s)). Then by Proposition 2.9, there is a vertex v in G with

pG(v) ≤ an
( a+1

a

) r−2
r−1 n+O(1)

. By removing v from G to obtain the multigraph G−v ∈ F(n, s, Σr,d(a, s)),
e see that

exΠ (n + 1, s, Σr,d(a, s)) = P(G) = P(G − v)pG(v) ≤ exΠ

(
n, s, Σr,d(a, s)

)
an
(
a + 1
a

) r−2
r−1 n+O(1)

,

nd (2.4) is satisfied.
On the other hand, suppose that G ∈ G(n+ 1, s, Σr,d(a, s)). Then by Proposition 2.13 there exists

G′
∈ H(n+1, s, Σr,d(a, s)) with P(G) ≤ P(G′). Let v be a vertex with minimum product-degree in G′.

Removing v from G′ to obtain the multigraph G′
− v ∈ H(n, s, Σr,d(a, s)) and using our assumption

to bound pG′ (v), we have

exΠ (n + 1, s, Σr,d(a, s)) ≤ P(G′) = P(G′
− v)pG′ (v)

≤ exΠ (n, s, Σr,d(a, s))an
(
a + 1
a

)( r−2+x⋆(r,d)
r−1

)
n+o(n)

and see again that (2.4) is satisfied. The result follows. □
10
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3. Optimisation in neighbourhoods

Throughout this section, let r, a, d be positive integers with r ≥ 2, a > d ≥ 1. Set s = r(d+1)+2.
et G ∈ H(n, s, Σr+1,d(a, s)). Let x ∈ V (G). Recall that N (m)(x) is the collection of vertices sending an
dge of multiplicity m to x in G. Set X := N (a−d)(x)∪ {x}, Y := N (a+1)(x) and Z := V (G) \ (X ∪ Y ). Let
X | = αn, |Y | = βn. We begin by proving a general lemma which shows that if G[Y ] has a vertex
ith low product-degree, then so does G.

emma 3.1. If there exists y ∈ Y such that

pY (y) ≤ aβn
(
a + 1
a

)( r−2+x⋆(r,d)
r−1

)
βn+o(n)

,

hen G contains a vertex v with

p(v) ≤ an
(
a + 1
a

)( r−1+x⋆(r+1,d)
r

)
n+o(n)

.

roof. We have

p(x) ≤ (a − d)|X |−1(a + 1)|Y |an−|X |−|Y |
= an

(
a + 1
a

)(−α
log(a/(a−d))
log((a+1)/a) +β

)
n+O(1)

(3.1)

nd, by our assumption on y,

p(y) ≤ (a + 1)n−|Y |pY (y) ≤ an
(
a + 1
a

)(1−( 1−x⋆(r,d)
r−1

)
β

)
n+o(n)

. (3.2)

ow the maximum over all α, β ≥ 0 satisfying α + β ≤ 1 of the function

min
{
−α

log
( a
a−d

)
log
( a+1

a

) + β, 1 −

(
1 − x⋆(r, d)

r − 1

)
β

}
s attained at α = 0 and β satisfying

β

(
1 +

(1 − x⋆(r, d))
r − 1

)
= 1.

Rearranging terms we see the maximum is precisely equal to

1

1 +
(1−x⋆(r,d))

r−1

=
r − 1

r − x⋆(r, d)
,

hich by (2.3) and rearranging terms again is equal to (r −1+ x⋆(r +1, d))/r . Combining the result
of this optimisation with the bounds (3.1) and (3.2) on p(x) and p(y), we get that

min{p(x), p(y)} ≤ an
(
a + 1
a

)( r−1+x⋆(r+1,d)
r

)
n+o(n)

,

hereby proving the lemma. □

As indicated in the introduction, a key part of our proof strategy will be to consider certain ‘good’
-partite structures inside G[Y ], which we define below.

efinition 3.2. Let H = (VH , EH ) be an ordinary graph. A good copy of H in G is a set X ⊆ V (G) of
VH | vertices such that (i) all edges in X (2) have multiplicity at least a in G, and (ii) the edges in X (2)

ith multiplicity a + 1 form a graph isomorphic to H .
11
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We use ‘G contains a good H ’ as a shorthand for ‘G contains a good copy of H ’. Good complete
-partite graphs will play a key role in our proof. For integers r, t1, t2, . . . , tr > 0, we let
r (t1, t2, t3, . . . , tr ) denote the complete r-partite (ordinary) graph with part-sizes t1, t2, . . . , tr . It
ill be convenient to have a slightly more compact notation for such graphs. For 0 ≤ r ′

≤ r , we
rite Kr (t′(r

′)t(r−r ′)) to denote the complete r-partite graph in which the first r ′ parts have size t ′ and
he last r − r ′ parts have size t . Similarly, we write Kr (t) to denote an r-partite structure in which
ll r parts have size t; and when t = 1, we just write Kr for the complete graph on r vertices.

emma 3.3. Suppose R ≥ d + 1 is a positive integer such that

(a − d + i)R ≤ (a + 1)R−d+i−1(a − d)d−i+1 for all i ∈ [d]. (3.3)

hen if G[Y ] contains a good Kr (R), G must contain a vertex v with

p(v) ≤ an
(
a + 1
a

)( r−1+x⋆(r+1,d)
r

)
n+o(n)

.

emark 3.4. Clearly (3.3) is satisfied for all R sufficiently large. Indeed, for R = d(1 + d + d2), we
ave that for all i ∈ [d],

(a + 1)R−d+i−1(a − d)d−i+1
≥ (a + 1)d(d+d2)(a − d)d >

((
ad+d2

+ (d + d2)ad+d2−1
)
(a − d)

)d
=

(
a1+d+d2

+ ad+d2−1 (ad2 − d2(d + 1)
))d

≥ ad(1+d+d2)

≥ (a − d + i)R,

where in the penultimate inequality we used a ≥ d+ 1. In particular for d = 1 we have that R = 3
suffices — a fact we will use in the proof of Theorem 1.6.

Proof. Let W be a set of rR vertices in Y inducing a good Kr (R), and let ⊔
r
i=1Wi be the associated

partition of W into R-sets. Since G ∈ H(n, s, Σr+1,d(a, s)) and R ≥ d + 1, the following hold:

(i) the graph G(a+1) is Kr+2-free. In particular if a vertex v ∈ V \ ({x} ∪ W ) sends an edge of
multiplicity a + 1 to x, then it can send at most (r − 1)R edges of multiplicity a + 1 into W .

(ii) if v ∈ V \ ({x} ∪ W ) sends an edge of multiplicity a − d to x, then it sends exactly rR edges
of multiplicity a + 1 into W .

(iii) for i ∈ [d], (r(d − i + 2) + 2)-sets in G support at most Σr+1,d(a, r(d − i + 2) + 2) edges.
Now by (2.2), we have Σr+1,d(a, r(d − i + 2) + 2) < Σr+1,d−i(a, r(d − i + 2) + 2). Further,
we know by Proposition 2.3 that there is a multigraph H in Tr+1,d−i(a, r(d − i + 2) + 2) with
e(H) = Σr+1,d−i(a, r(d − i + 2) + 2) and whose canonical partition satisfies |V0| = 2. In
particular if v ∈ V \ ({x} ∪ W ) sends an edge of multiplicity a − d + i to x, then at least one
of the parts Wi must receive at most d − i + 1 edges of multiplicity a + 1 from v. Indeed
otherwise we could select d− i+ 2 vertices from each of the parts Wi to form an r(d− i+ 2)
set W ′ such that

Σr+1,d(a, r(d − i + 2) + 2) ≥ e(G[W ′
∪ {x, v}]) ≥ e(H) = Σr+1,d−i(a, r(d − i + 2) + 2),

contradicting (2.2). Thus we have S(v,W ) ≤ (a+1) ((r − 1)R + d − i + 1)+a (R − d + i − 1),
which by the integral AM-GM inequality (2.1) implies that P(v,W ) ≤ aR−d+i−1(a+1)(r−1)R+d−i+
12
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Now consider the quantity p := (pG(x))x⋆(r+1,d) (∏
w∈W pG(w)

) 1−x⋆(r+1,d)
rR . By the observations (i)–(iii)

above, the contribution to p made by a vertex v ∈ V \ ({x} ∪ W ) is at most⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
( a+1

a

)x⋆(r+1,d) ( a+1
a

) r−1
r (1−x⋆(r+1,d))

= a
( a+1

a

) r−1+x⋆(r+1,d)
r if wG(xv) = a + 1

a
( a+1

a

)− log
(

a
a−d

)
log
(
a+1
a
) x⋆(r+1,d) ( a+1

a

)(1−x⋆(r+1,d))
= a

( a+1
a

) r−1+x⋆(r+1,d)
r if wG(xv) = a − d

a
( a+1

a

)− log
(

a
a−d+i

)
log
(
a+1
a
) x⋆(r+1,d) ( a+1

a

)(1− R−d+i−1
rR

)
(1−x⋆(r+1,d))

if wG(xv) = a − d + i,
i ∈ [d]

Now our assumption (3.3) on R ensures that

−
log
( a
a−d+i

)
log
( a+1

a

) x⋆(r + 1, d) +

(
1 −

R − d + i − 1
rR

)
(1 − x⋆(r + 1, d))

=
r − 1 + x⋆(r + 1, d)

r
+

log
(

(a−d+i)R

(a+1)R−d+i−1(a−d)d−i+1

)
R log

(
(a+1)r+1

(a−d)r a

) ≤
r − 1 + x⋆(r + 1, d)

r
.

hus in all three cases, v contributes at most a
( a+1

a

) r−1+x⋆(r+1,d)
r to p. Since p is a weighted geometric

ean of the product-degrees of the vertices in {x} ∪ W , it follows that there is some vertex
u ∈ {x} ∪ W satisfying

p(u) ≤ p ≤ an
(
a + 1
a

)( r−1+x⋆(r+1,d)
r

)
n+o(n)

,

s required. □

We next prove an optimisation lemma that will be a key tool in Section 4 when we try to find
ood r-partite structures in Y with sufficiently large part-sizes.

emma 3.5. If (a + 1)r (a − d) ≥ ar+1 and there exist y ∈ Y ∪ Z such that

pY∪Z (y) ≤ a(1−α)n
(
a + 1
a

) r−1
r βn+ r

r+1 (1−α−β)n+o(n)

,

then G contains a vertex v with

p(v) ≤ an
(
a + 1
a

)( r−1+x⋆(r+1,d)
r

)
n+o(n)

.

emark 3.6. The condition (a + 1)r (a − d) ≥ ar+1 will always be satisfied when d = 1 and r ≥ 2
which is all that we need in a proof of Theorem 1.6, since the base case (r, d) = (2, 1) was proved
n [4]). For larger d, however, this condition will only be satisfied for sufficiently large r — it is
.g. easy to check r ≥ d(d+1) will do with a calculation similar to that in Remark 3.4. This suggests
more precise form of Lemma 3.5 may be one of the tools necessary to tackle the cases d ≥ 2 of
onjecture 1.10.

roof. We have

p(x) ≤ (a − d)|X |−1(a + 1)|Y |an−|X |−|Y |
= an

(
a + 1

)(−α
log(a/(a−d))
log((a+1)/a) +β

)
n+O(1)

(3.4)

a

13
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and, by our assumption on y,

p(y) ≤ (a + 1)|X |pY∪Z (y) ≤ an
(
a + 1
a

)αn+ r−1
r βn+ r

r+1 (1−α−β)n+o(n)

. (3.5)

As in Lemma 3.1 we perform some optimisation on the exponents of (a+ 1)/a in (3.4) and (3.5) to
bound min{p(x), p(y)}. Set

f1(α, β) = −α
log(a/(a − d))
log((a + 1)/a)

+ β and f2(α, β) =
r

r + 1
+

α

r + 1
−

β

r(r + 1)
.

et f3(α, β) = min{f1(α, β), f2(α, β)} and S := {(α, β) ∈ [0, 1]2 : α + β ≤ 1}.

laim 3.7. The maximum of f3(α, β) over S is attained on the boundary {(α, β) : α + β = 1}.

roof. Indeed, suppose (α, β) ∈ S is such that α+β < 1. Then there exists some ε > 0 such that the
air (α′, β ′) given by α′

= α+ε log
( a+1

a

)
and β ′

= β+ε log
( a
a−d

)
lies in S. Now f1(α′, β ′) = f1(α, β)

nd

f2(α′, β ′) − f2(α, β) =
ε

(r(r + 1))
log
(
(a + 1)r (a − d)

ar+1

)
≥ 0,

here the inequality follows from our assumption that (a + 1)r (a − d) ≥ ar+1. Thus f3(α′, β ′) ≥

3(α, β) and α′
+ β ′ > α + β . It immediately follows that the maximum of f3(α, β) in S is attained

n the boundary α + β = 1, as claimed. □

By Claim 3.7, the maximum of f3(α, β) over S is the same as the maximum of f3(α, 1 − α) over
∈ [0, 1]. This is readily computed:

f1(α, 1 − α) = 1 − α
log
( a+1
a−d

)
log
( a+1

a

) , f2(α, 1 − α) =
r − 1
r

+
α

r
,

nd these two functions are respectively strictly decreasing and strictly increasing in α, so that
the maximum of f3(α, 1 − α) is attained at α = x⋆(r + 1, d), when the two functions are equal to
r−1+x⋆(r+1,d)

r . Combining this optimisation result with the bounds on p(x) and p(y) given in (3.4) and
(3.5), we get that

min{p(x), p(y)} ≤ an
(
a + 1
a

)( r−1+x⋆(r+1,d)
r

)
n+o(n)

,

hereby proving the lemma. □

. Proof of Theorem 1.6

We shall proceed by induction on r . The base case r = 2 was proved in [4, Theorem 3.5]. Suppose
hat we had proved Theorem 1.6 holds for all (r ′, a) with r ′

≤ r and a ≥ 2, for some r ≥ 2.

roof of the inductive step. Fix a ∈ Z≥2. Let G ∈ H
(
n, 2r + 2, Σr+1,1(a, 2r + 2)

)
. Recall that by

he definition of the family H (see Remarks 2.8 and 2.12), this implies in particular that all edges in
G have multiplicity a− 1, a or a+ 1, that G(a−1) is a disjoint union of cliques, and that two vertices
oined by an edge of multiplicity a − 1 are clones of each other in G. These are key properties we
hall use repeatedly in our proof.
Let x ∈ V (G). Set X := N (a−1)(x) ∪ {x}, Y := N (a+1)(x) and Z := V (G) \ (X ∪ Y ) = N (a)(x). Let

|X | = αn, |Y | = βn.

Definition 4.1. A vertex v in G is said to be product-poor if p(v) ≤ an
( a+1

a

)( r−1+x⋆(r+1,1)
r

)
n+o(n)

.
Further, v is said to be strictly product-poor if there exists some constant δ > 0 such that p(v) ≤

n
( a+1 )( r−1+x⋆(r+1,1)

r −δ

)
n+o(n)

.
a

14
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Our goal is to show that G contains a product-poor vertex, which by Proposition 2.14 is enough
to prove the inductive step. By considering the product-degree of x, we may thus assume that

β ≥
r − 1 + x⋆(r + 1, 1)

r
+ o(1) >

r − 1
r

. (4.1)

Indeed, if this was not the case, then by (3.1) it would follow that x is a product-poor vertex, and
we would be done.

Before embarking on the main body of the proof, let us record the following elementary
observations about neighbourhoods of vertices in Y .

Proposition 4.2. The following hold:

(i) G(a+1) is Kr+2-free;
(ii) G(a+1)

[Y ] is Kr+1-free;
(iii) for R ≥ 1, t ≥ 0, every (rR + t)-set in Y spanning Σr,0(a, rR + t) edges in G[Y ] induces a good

Kr (R(r−t)(R + 1)(t)) in G[Y ];
(iv) all edges from Z to Y have multiplicity at least a;
(v) if z ∈ Z and W is a 2r-set in Y inducing a good Kr (2) in G[Y ], then z sends at most 2r − 1 edges

of multiplicity a + 1 into in W.

Proof. Since G ∈ H(n, 2r + 2, Σr+1,1(a, 2r + 2)), the graph G(a+1) must be Kr+2-free (else we have
an (r + 2)-set with strictly more than Σr+1,1(a, r + 2) = (a + 1)

(r+2
2

)
− 1 edges, a contradiction).

This establishes part (i). In turn, part (i) implies that Y , being the (a + 1)-neighbourhood of x, does
not contain a Kr+1 in which all edges have multiplicity a + 1, establishing part (ii).

Part (iii) follows from part (ii) and Turán’s theorem. Indeed, if Y ′
⊆ Y is an rR+ t-set spanning at

least Σr,0(a, rR+ t) edges of G, then it needs to support at least ex(rR+ t, Kr+1) edges of multiplicity
a+1 (since G contains no edges of multiplicity greater than a+1). By Turán’s theorem, this implies
that either G(a+1)

[Y ′
] contains a copy of Kr+1, which contradicts (ii), or that G(a+1)

[Y ′
] is a copy of

the r-partite Turán graph on rR+ t vertices, with all other edges in G[Y ′
] having multiplicity exactly

a — in other words, G[Y ′
] is a good Kr (R(r−t)(R + 1)(t)), as claimed.

Part (iv) follows from the fact that the multiplicity of edges from Z to x and from Y to x have
different multiplicities. Thus vertices in Z and Y cannot be clones of each other, whence by definition
of H(n, 2r + 2, Σr+1,1(a, 2r + 2)) they cannot be joined by edges of multiplicity a − 1.

For part (v), observe that otherwise z, x together with W induces a good Kr+1(2) in G, i.e. a
2r + 2-set spanning Σr+1,0(a, 2r + 2) = Σr+1,1(a, 2r + 2) + 1 edges, a contradiction. □

Suppose G[Y ] does not contain a good Kr (2). Then by Proposition 4.2(iii), this implies that every
2r-set in Y spans at most Σr,0(a, 2r)−1 = Σr,1(a, 2r) edges. Then by our inductive hypothesis and
averaging, G[Y ] must contain some vertex y with product-degree

pY (y) ≤ aβn
(
a + 1
a

) r−2+x⋆(r,1)
r−1 βn+o(n)

,

hence G contains a product-poor vertex by Lemma 3.1 and we are done.
We may thus assume that G[Y ] contains a good Kr (2). By Lemma 3.3 and Remark 3.4, we may

urther assume that G[Y ] does not contain a good Kr (3) (since otherwise G contains a product-poor
ertex). Let us then define t: 0 ≤ t ≤ r − 1 to be the largest integer such that G[Y ] contains a
ood Kr (2(r−t)3(t)). Let Ui = {ui,1, ui,2}, i ∈ [r − t], and Wi = {wi,1, wi,2, wi,3}, i ∈ [t] be r disjoint
ets of vertices in Y that induce such a structure, with all edges in the U (2)

i and the W (2)
i having

ultiplicity a, and all other edges between these sets having multiplicity a + 1. Set U :=
⋃r−t

i=1 Ui
and W :=

⋃t
i=1 Wi.

Lemma 4.3. Either t > 0 or G contains a product-poor vertex.

Proof. Suppose t = 0. Fix a vertex y ∈ Y \ U . If y sends at least one edge of multiplicity a + 1
to each of the r parts U , U , . . . , U , then G(a+1)

[U ∪ {y}] contains a copy of K , contradicting
1 2 r r+1

15
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Proposition 4.2(ii). Thus every vertex y ∈ Y \U sends edges of multiplicity a+ 1 to at most r − 1 of
he parts Ui, i ∈ [r], and in particular sends at most 2(r − 1) such edges into U in total. Further, if y
ends exactly 2(r − 1) edges of multiplicity a + 1 into U , then there exists a unique part Ui, i ∈ [r],
o which it sends no such edge. By the maximality of t , at least one of the edges y sends into this
nique part Ui must then have multiplicity a − 1 (for otherwise G would have a good Kr (2(r−1)3(1))
iving inside the set U ∪ {y} ⊆ Y ).

Since (a − 1)(a + 1) < a2, it follows from the observations in the paragraph above that for all
∈ Y \ U ,

pU (y) ≤ max
{
(a + 1)2(r−1)a(a − 1), (a + 1)2(r−1)−1a3

}
= (a + 1)2(r−1)−1a3.

urther, by Proposition 4.2(v), each vertex z ∈ Z can send at most 2(r − 1)+ 1 edges of multiplicity
+ 1 into U , so that

pU (z) ≤ (a + 1)2r−1a.

By averaging over vertices in U , it follows that some u ∈ U satisfies

p(Y\U)∪Z (u) ≤

⎛⎝ ∏
y∈Y\U

pU (y)
∏
z∈Z

pU (z)

⎞⎠ 1
|U |

≤
(
(a + 1)2(r−1)−1a3

) |Y\U |

2r
(
(a + 1)2r−1a

) |Z |

2r

= a(1−α)n
(
a + 1
a

)( r−1
r −

1
2r

)
βn+

(
r−1
r +

1
2r

)
(1−α−β)n+O(1)

.

ppealing to the bound β > (r − 1)/r from (4.1), we have(
r − 1
r

β +
r

r + 1
(1 − α − β)

)
−

((
r − 1
r

−
1
2r

)
β +

(
r − 1
r

+
1
2r

)
(1 − α − β)

)
≥

β

2r
− (1 − β)

(
1
2r

−
1

r(r + 1)

)
>

1
r2

(
r − 2
2

+
1

r(r + 1)

)
> 0.

his implies that

pY∪Z (u) =
(
(a + 1)2(r−1)a

)
p(Y\U)∪Z (u) ≤ a(1−α)n

(
a + 1
a

) r−1
r βn+ r

r+1 (1−α−β)n+O(1)

,

hence G contains a product-poor vertex by Lemma 3.5. □

Lemma 4.4. If 0 < t ≤ r − 2, then G contains a product-poor vertex.

roof. Suppose 0 < t ≤ r − 2 (and in particular W ̸= ∅). Let pU and pW be the geometric-mean
of the product-degrees pY∪Z (v) over v ∈ U and v ∈ W respectively, pU :=

∏
v∈U pY∪Z (v)

1
2(r−t) and

W :=
∏

v∈W pY∪Z (v)
1
3t .

Let us consider what contribution a vertex y ∈ Y \(U ∪ W ) can make to pU and pW . Recall that by
Proposition 4.2(ii), G(a+1)

[Y ] is Kr+1 free, whence every vertex y ∈ Y can send an edge of multiplicity
a + 1 to at most r − 1 of the parts U1, . . . ,Ur−t , W1, . . . ,Wt . It follows that all such vertices y fall
into exactly one of the following three types.

• Type Y1: y sends edges of multiplicity a+ 1 to all of W . This implies that there is at least one
part Ui, i ∈ [r − t], such that y sends no edge of multiplicity a+1 into Ui, and in particular that
y sends at most 2(r − t − 1) edges into U . Further, if y sends exactly 2(r − t − 1) edges into U
then the aforementioned part Ui is unique, and it follows from the maximality of t that y sends
an edge of multiplicity a − 1 into Ui (since otherwise G[{y} ∪ U ∪ W ] would contain a good
Kr (2r−t−13(t+1)), contradicting the maximality of t). Thus pU (y) is at most (a+1)2(r−t−1)a(a−1)
if y send 2(r−t−1) edges of multiplicity a+1 into U , and at most (a+1)2(r−t−1)−1a3 otherwise.
16
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Since (a+ 1)(a− 1) < a2, it follows that y’s contribution to pU is at most a
( a+1

a

)1− 3
2(r−t) , while

its contribution to pW is a + 1;
• Type Y2: y sends edges of multiplicity a+1 to at least 2(r−t−1)+1 vertices in U . Then by the

pigeon-hole principle, y sends an edge of multiplicity a+ 1 to each of the parts Ui, i ∈ [r − t],
whence there is at least one part Wj, j ∈ [t] that receives no edge of multiplicity a + 1 from
y. In particular, y sends at most 3(t − 1) edges of multiplicity a + 1 to W . It follows that y

contributions to pU and pW are at most (a + 1) and a
( a+1

a

)1− 1
t respectively;

• Type Y3: y sends at most 2(r − t − 1) edges of multiplicity a + 1 into U and at most 3t − 1
edges of multiplicity a + 1 in W . Its contribution to pU and pW are thus at most a

( a+1
a

)1− 1
r−t

and a
( a+1

a

)1− 1
3t respectively.

e now turn our attention to the contributions of vertices z ∈ Z to pU and pW . Recall that by
roposition 4.2(iv), all edges from Z to U ∪ W ⊆ Y have multiplicity a or a + 1. Further, by
roposition 4.2(v), each z ∈ Z can send at most 2r − 1 edges of multiplicity a + 1 into a 2r-set
nducing a copy of a good Kr (2). In particular, if z sends edges of multiplicity a + 1 to all 2(r − t)
ertices of U , it must be the case that there is one part Wi, i ∈ [t] receiving at most one edge of
ultiplicity a + 1 from z, and thus z can send at most a total of 3(t − 1) + 1 edges of multiplicity
+ 1 into W . It follows from these observations that vertices z ∈ Z fall into one of the following
wo mutually exclusive types:

• Type Z1: z sends at most 2(r − t − 1) + 1 edges of multiplicity a + 1 into U , whence its
contributions to pU and pW are at most a

( a+1
a

)1− 1
2(r−t) and a + 1 respectively;

• Type Z2: z sends 2(r − t) edges of multiplicity a+1 into U and at most 3(t −1)+1 such edges
into W , whence its contributions to pU and pW are at most a+1 and a

( a+1
a

)1− 2
3t respectively.

For i ∈ [3] let θi be the proportion of vertices in Y \ (U ∪ W ) of Type Yi, and let φ be the proportion
f vertices in Z of Type Z1. Plugging in our upper bounds on the contributions of the vertices of the

various types to pU and pW , and recalling that |Y | = βn, |Z | = (1 − α − β)n and θ1 + θ2 + θ3 = 1,
we have

pU
a|Y∪Z |

≤

(
a + 1
a

)(θ1(1− 3
2(r−t)

)
+θ2+θ3

(
1− 1

r−t

))
|Y |+

(
φ

(
1− 1

2(r−t)

)
+(1−φ)

)
|Z |+|U∪W |

=

(
a + 1
a

)(fUβ+gU (1−α−β))n+O(1)

,

and

pW
a|Y∪Z |

≤

(
a + 1
a

)(θ1+θ2

(
1− 1

t

)
+θ3

(
1− 1

3t

))
|Y |+

(
φ+(1−φ)

(
1− 2

3t

))
|Z |+|U∪W |

=

(
a + 1
a

)(fW β+gW (1−α−β))n+O(1)

,

where the functions fU = fU (θ1, θ2), fW = fW (θ1, θ2), gU = gU (φ), gW = gW (φ) are given by

fU :=1 −
1

r − t
−

θ1

2(r − t)
+

θ2

r − t
, fW := 1 −

1
3t

+
θ1

3t
−

2θ2
3t

gU :=1 −
φ

2(r − t)
, gW := 1 −

2
3t

+
2φ
3t

.

e shall consider a weighted geometric mean of pU and pW to deduce from the information above
hat G contains a product-poor vertex. In order to do so, we shall need a constraint on the values
of θ1, θ2, which will follow from the claim below.

Claim 4.5. If f ≤
r−2 , then G contains product-poor vertex.
W r−1

17
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Proof. Our classification of vertices of Y \ (U ∪W ) into types Y1, Y2 and Y3 and our bound on their
contributions to pW imply that(∏

w∈W

pY (w)
a|Y |

) 1
|W |

≤

(
a + 1
a

)fW |Y |+|U∪W |

.

hus if fW ≤
r−2
r−1 , then substituting in |Y | = βn in the bound above, we see by averaging that there

xists w ∈ W with product-degree at most a
1

r−1 βn(a + 1)
r−2
r−1 βn+O(1) in Y . By Lemma 3.1 this w’s

existence implies G contains a product-poor vertex, proving our claim. □

We may thus assume that fW > r−2
r−1 , which by rearranging terms implies that

θ1 − 2θ2 > 1 −
3t

r − 1
. (4.2)

ow since β > r−1
r by (4.1), we have:(

r − 1
r

β +
r

r + 1
(1 − α − β)

)
−

((
r − t
r

fU +
t
r
fW

)
β +

(
r − t
r

gU +
t
r
gW

)
(1 − α − β)

)
= β

2 + θ1 − 2θ2
6r

− (1 − α − β)
(

1
3r

+
φ

6r
−

1
r(r + 1)

)
>

1
6r2

(
(r − 1) (2 + θ1 − 2θ2) −

(
2 + φ −

6
(r + 1)

))
>

1
6r2

(3(r − 1 − t) − 3) ≥ 0,

here the last three inequalities follow from (4.2), φ ≤ 1 and the assumption t ≤ r − 2. Consider
now p := (pU )

r−t
r (pW )

t
r . By the inequality we have just proved, and our bounds on pU , pW in terms

of fU , fW , gU and gW ,

p = a|Y∪Z |

( pU
a|Y∪Z |

) r−t
r
( pW
a|Y∪Z |

) t
r

≤ a(1−α)n
(
a + 1
a

) r−t
r (fUβ+gU (1−α−β))n+ t

r (fW β+gW (1−α−β))n+O(1)

≤ a(1−α)n
(
a + 1
a

) r−1
r βn+ r

r+1 (1−α−β)n+O(1)

.

Since p is a weighted geometric mean of the product-degrees of vertices from U ∪ W in Y ∪ Z ,
it follows some v ∈ U ∪ W satisfies pY∪Z (v) ≤ p. Given our upper-bound on p, this implies by
Lemma 3.5 that G contains a product-poor vertex, and we are done. □

By Lemma 4.4, we may thus assume t = r − 1. This is by far the most delicate case. As a first
step, we show that it is enough for us to find an ‘almost’ good Kr (3).

efinition 4.6. Let H be the (ordinary) graph obtained from Kr (3) by deleting one edge. We say
hat G contains an almost good Kr (3) if it contains a good copy of H .

emma 4.7. If G[Y ] contains an almost good Kr (3), then G conducts a product-poor vertex.

roof. This is somewhat similar to the proof of Lemma 4.4. Let Ui = {ui,1, . . . , ui,3}, i ∈ [2], and
i = {wi,1, . . . , wi,3}, i ∈ [r − 2] be r disjoint sets in Y such that all edges from Ui to Wj and all
dges from U1 to U2 except u1,3u2,3 have multiplicity a+ 1, and all other edges inside U = U1 ∪ U2

nd W =
⋃r−2

i=1 Wi have multiplicity a (so U ∪ W induces an almost good Kr (3) in G[Y ]).
Case 1: r = 2. Let pU be the geometric mean of the pY∪Z (u), u ∈ U . Since G(a+1)

[Y ] is K3-free, for
very vertex y ∈ Y we must have that N (a+1)(Y ) ∩ U is a subset of one of U1 or U2 or {u1,3, u2,3}.

In particular y can send at most three edges of multiplicity a + 1 into U , and can only do so if
18
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N (a+1)(y)∩U = Ui for some i ∈ [2]. Further, if N (a+1)(y)∩U = Ui for some i ∈ [2] and y /∈ U3−i, then
y must send an edge of multiplicity a − 1 into U3−i, for otherwise {y, u1,3−i, u2,3−i} ∪ Ui induces a
good copy of K2(3) in G, a contradiction.

Summarising our observations in the paragraph above, every y ∈ Y \ U sends either (a) exactly
three edges of multiplicity a+ 1 and at least (in fact exactly) one edge of multiplicity a− 1 into U ,
or (b) at most two edges of multiplicity a + 1 into U . Since (a − 1)(a + 1) < a2, it follows that the
contribution to pU of each y ∈ Y \ U is at most a

( a+1
a

) 1
2 −

1
6 < a

( a+1
a

) 1
2 .

On the other hand, every z ∈ Z can send at most four edges of multiplicity a+ 1 into U; indeed
uppose this was not the case and z sent at least five edges of multiplicity a + 1 into U . Then one
an choose 2-vertex subsets U ′

1 ⊂ U1 and U ′

2 ⊂ U2 such that U ′
= U ′

1 ∪ U ′

2 induces a good copy of
2(2) and z sends edges of multiplicity a+1 into all vertices of U ′, contradicting Proposition 4.2(v).
The contribution of each z ∈ Z to pU is thus at most a

( a+1
a

) 2
3 . By geometric averaging, it follows

hat there exists u ∈ U with

pY∪Z (u) ≤ pU < a(1−α)n
(
a + 1
a

) 1
2 βn+ 2

3 (1−α−β)n+O(1)

,

whence by Lemma 3.5 G contains a product-poor vertex and we are done.
Case 2: r ≥ 3. Let pU and pW be the geometric-means of the product-degrees pY∪Z (v) over v ∈ U

and v ∈ W respectively. Let us now consider the contribution of y ∈ Y \ (U ∪ W ) to pU and pW .
Note that since G(a+1)

[Y ] is Kr+1-free, every such vertex y can send edges of multiplicity a+ 1 to at
most r − 1 of the parts U1, U2, W1, . . . , Wr−2. It follows that each such vertex y must fall within
one of the following mutually exclusive types.

• Type Y1: y send edges of multiplicity a + 1 to all of W . Then there is some part Ui, i ∈ [2] to
which y sends no edge of multiplicity a+1. If all edges from y to this part Ui have multiplicity
a, then we note that at least one of the edges from y to U3−i must have multiplicity a − 1,
since otherwise

(
U \ {u3,i}

)
∪ {y} ∪W (which is a subset of Y ) induces a good copy of Kr (3), a

contradiction.
Summarising, y sends either (a) at most two edges of multiplicity a + 1 into U , or (b) exactly
three edges of multiplicity a + 1 and at least (in fact, exactly) one edge of multiplicity a − 1
into U . Since (a + 1)(a − 1) < a2, it follows that y’s contribution to pU is at most a

( a+1
a

) 1
3 ,

while its contribution to pW is a + 1;
• Type Y2: y sends edges of multiplicity a + 1 to at least four vertices in U — and in particular

to both parts U1 and U2. As we observed, this implies there is some part Wi, i ∈ [r − 2], such
that y sends no edge of multiplicity a+ 1 into Wi. In particular y sends at most 3(r − 3) edges
of multiplicity a + 1 to W , whence its contributions to pU and pW are at most (a + 1) and
a
( a+1

a

)1− 1
r−2 respectively;

• Type Y3: y sends at most three edges of multiplicity a + 1 into U and at most 3(r − 2) − 1
edges of multiplicity a+1 into W , whence its contributions to pU and pW are at most a

( a+1
a

) 1
2

and a
( a+1

a

)1− 1
3(r−2) respectively.

We now turn our attention to z ∈ Z . Recall that by Proposition 4.2(iv), all edges from z to U ∪W ⊆ Y
have multiplicity at least a. We classify z ∈ Z into two types, as follows.

• Type Z1: z sends at most four edges of multiplicity a + 1 into U , whence its contributions to
pU and pW are at most a

( a+1
a

) 2
3 and a + 1 respectively;

• Type Z2: z sends at least five edges of multiplicity a + 1 into U . Then it is possible to choose
size two subsets U ′

1 ⊂ U1 and U ′

2 ⊂ U2 such that U ′

1 ∪ U ′

2 ⊆ N (a+1)(z) and at least one of the
vertices u1,3, u2,3 is missing from the 4-set U ′

1 ∪ U ′

2. Now U ′

1 ∪ U ′

2 ∪ W induces a good copy
of Kr (2(2)3(r−2)) in G[Y ]. By Proposition 4.2(v), we know that z can send at most 2r − 1 edges
into a good copy of Kr (2) lying inside G[Y ]. This implies that there is some part Wi, i ∈ [r −2],
such that z sends at most one edge of multiplicity a + 1 into W . In particular, z can send at
i
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most 3(r − 3) + 1 edges of multiplicity a + 1 into W in total. Its contributions to pU and pW
are thus at most a + 1 and a

( a+1
a

)1− 2
3(r−2) respectively.

or i ∈ [3] let θi be the proportion of vertices in Y \(U ∪ W ) of Type Yi, and let φ be the proportion of
ertices in Z of type Z1. Then, using |Y | = βn, |U ∪ W | = O(1) and θ1+θ2+θ3 = 1, the contribution
o pW from vertices y ∈ Y is at most⎛⎝∏

y∈Y

pW (y)

⎞⎠ 1
|W |

< (a + 1)|U∪W |

⎛⎝ ∏
y∈Y\(U∪W )

pW (y)

⎞⎠ 1
3(r−2)

≤ aβn
(
a + 1
a

)(θ1+θ2

(
1− 1

r−2

)
+θ3

(
1− 1

3(r−2)

))
βn+O(1)

= aβn
(
a + 1
a

)( r−3
r−2 +

θ1+
2
3 θ3

r−2

)
βn+O(1)

.

If r−3
r−2 +

θ1+
2
3 θ3

r−2 ≤
r−2
r−1 , then by geometric averaging there is some vertex w ∈ W with pY (w) ≤( a+1

a

) r−2
r−1 βn+O(1)

, which by Lemma 3.1 implies G contains a product-poor vertex, and so we are
one. Rearranging terms, we may thus assume that

(r − 1)
(

θ1 +
2
3
θ3

)
> 1. (4.3)

Now consider the quantity p given by p := (pU )
2
r (pW )

r−2
r . Substituting the upper bounds we derived

n the contributions of vertices of Types Y1–Y3 and Z1–Z2 to pU and pW , we see that

p
a|Y∪Z |

=

( pU
a|Y∪Z |

) 2
r
( pW
a|Y∪Z |

) r−2
r

<

(
a + 1
a

)|U∪W |+|Y\(U∪W )|
(

2
r

(
θ1
3 +θ2+

θ3
2

)
+

r−2
r

(
θ1+

θ2(r−3)
r−2 +

θ3(3(r−2)−1)
3(r−2)

))
+|Z |

(
2
r

(
2φ
3 +1−φ

)
+

r−2
r

(
φ+

(1−φ)(3(r−2)−2)
3(r−2)

))

=

(
a + 1
a

)( r−1
r −

(θ1+θ3)
3r

)
βn+

(
r−1
r +

1
3r

)
(1−α−β)n+O(1)

=

(
a + 1
a

) r−1
r (1−α)n− 1

3r (β(θ1+θ3)−(1−α−β))n+O(1)

.

Since β > r−1
r by (4.1) and since (r−1)(θ1+θ3) > 1 by (4.3), p is at most a(1−α)n

( a+1
a

) r−1
r (1−α)n+O(1)

.
By weighted geometric averaging, some vertex v ∈ U ∪W satisfies pY∪Z (v) ≤ p, whence G contains
a product-poor vertex by Lemma 3.5, and we are done. □

With Lemma 4.7 in hand, we shift our perspective slightly. Recall we had shown in Lemma 4.4
that G[Y ] contains a good Kr (2(1)3(r−1)). It follows that there is a 3(r −1)-set W in G such that G[W ]

induces a good Kr−1(3) and such that the joint neighbourhood

NW :=

⋂
w∈W

N (a+1)(w)

contains a good K2(1, 2) (with x corresponding to the part of size 1). Note thatW and NW are disjoint
(since G[W ] contains edges of multiplicity a).

We now prove three lemmas about NW to conclude our proof. All of these will be proved by
weighted geometric averaging arguments reminiscent of those used in Lemma 3.3. Let C5 denote
the 5-cycle and P4 denote the path on 4 vertices (i.e. the graph obtained from C5 by deleting one
f the vertices).

emma 4.8. If N contains a good C , then G contains a product-poor vertex.
W 5
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Proof. By Lemmas 3.3 and 4.7, we may assume that for every vertex v ∈ V , the (a + 1)-
eighbourhood of v contain no good or almost good Kr (3). Let C denote the vertex-set of a good C5
n NW . Consider the quantity

p :=

(∏
v∈W

p(v)

) 1−x⋆(r+1,1)
3r

(∏
v∈C

p(v)

) 1+(r−1)x⋆(r+1,1)
5r

.

Observe that p is just a weighted geometric mean of the product-degrees of the vertices in C ∪ W .
Consider now a vertex v ∈ V \ (C ∪ W ). We have three cases to consider.

Case 1. If v sends at most 3(r − 2) edges of multiplicity a + 1 into W , then the contribution of

v to p is at most a
( a+1

a

) r−1+x⋆(r+1,1)
r .

Case 2. If on the other hand v sends exactly 3(r −2)+1 edges of multiplicity a+1 into W , then,
ince G contains no good Kr+2, we have that v can send at most two edges of multiplicity a+1 into
(indeed otherwise v sends an edge of multiplicity a + 1 to each of the parts of W and to both

nds of an edge in NW ). The contribution of v to p is thus at most

a
(
a + 1
a

)1− 2(1−x⋆(r+1,1))
3r −

3(1+(r−1)x⋆(r+1,1))
5r

.

ince
2(1 − x⋆(r + 1, 1))

3r
+

3(1 + (r − 1)x⋆(r + 1, 1))
5r

−
1 − x⋆(r + 1, 1)

r

=
4 + (9r − 4)x⋆(r + 1, 1)

15r
> 0,

t follows that v contributes (strictly) less than a
( a+1

a

) r−1+x⋆(r+1,1)
r to p.

Case 3. Finally if v sends at least 3(r − 2) + 2 edges of multiplicity a + 1 into W , then it cannot
end any edge of multiplicity a−1 into W (recall that vertices joined by such edges must be clones
of each other, and observe that v cannot be the clone of any vertex in W as all vertices in W send
exactly 3(r − 2) edges of multiplicity a + 1 into W ).

Suppose v sends an edge of multiplicity a + 1 into some vertex c ∈ C . If v sends an edge of
ultiplicity a + 1 into both vertices of N (a+1)(c) ∩ C , then G(a+1)

[W ∪ C ∪ {v}] contains a copy of
Kr+2, contradicting Proposition 4.2(i). Thus v sends at least one edge of multiplicity at most a into
N (a+1)(c) ∩ C; if it sends edges of multiplicity at least a into both vertices of N (a+1)(c) ∩ C , then
W ∪ {v} ∪ C contains a good or almost good Kr (3), again a contradiction. So v must send an edge
of multiplicity a − 1 to one of the vertices in N (a+1)(c) ∩ C . Since (a + 1)2(a − 1) > a3 for a ≥ 3
his gives a larger contribution to p than if v sent only edges of multiplicity a into C . Using also the
nequality (a + 1)2(a − 1) < (a + 1)a2, we can thus upper-bound the contribution of v to p by

a
(
a + 1
a

)1− 4
5r (1+(r−1)x⋆(r+1,1))

.

ow for all a ≥ 2, we have (a + 1)3(a − 1) > a3, and thus

4
5r

(1 + (r − 1)x⋆(r + 1, 1)) −
1 − x⋆(r + 1, 1)

r
=

1
5r

log
(

(a+1)3r (a−1)r

a4r

)
log
(

(a+1)r+1

(a−1)r a

) > 0,

hence in this last case again v contributes at most a
( a+1

a

) r−1+x⋆(r+1,1)
r to p.

It follows from our case analysis that p ≤ an
( a+1

a

) r−1+x⋆(r+1,1)
r n+O(1)

, whence by geometric
veraging one of the vertices in C ∪ W is product-poor, and we are done. □

emma 4.9. If N contains a good P , then G contains a product-poor vertex.
W 4
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Proof. By Lemmas 3.3 and 4.7, we may assume that for every vertex v ∈ V , the (a + 1)-
eighbourhood of v contains no good or almost good Kr (3). Further by Lemma 4.8 we may assume
hat NW does not contain a good C5.

Let U = {u1, u2, u3, u4} induce a P4 in NW , with u1 and u4 being the ends of the path, and u2, u3
he two middle vertices. Consider the quantity

p :=

(∏
v∈W

p(w)

) 1−x⋆(r+1,1)
3r (

p(u1)p(u4)
) 1+(r−1)x⋆(r+1,1)

6r
(
p(u2)p(u3)

) 1+(r−1)x⋆(r+1,1)
3r

,

hich is a weighted geometric mean of the product-degrees of the vertices in U ∪ W .
Consider a vertex v ∈ V \ (C ∪ W ). We have four cases to consider.
Case 1. If v sends at most 3(r − 2) edges of multiplicity a + 1 into W , then the contribution of

to p is at most a
( a+1

a

) r−1+x⋆(r+1,1)
r .

Case 2. If v sends exactly 3(r −2)+1 edges of multiplicity a+1 into W , then, as G is Kr+2-free, v
annot send edges of multiplicity a+1 to both ends of an edge in NW . In particular, the set of vertices
n U it sends edges of multiplicity a + 1 to must be a subset of one of the pairs {u1, u3}, {u2, u4},
u1, u4}. It follows from this that the contribution of v to p is at most the maximum contribution
ecorded in Case 1 multiplied by a factor of(

a + 1
a

) 1−x⋆(r+1,1)
3r

(
a + 1
a

)−
1+(r−1)x⋆(r+1,1)

2r

< 1.

Case 3. If v sends exactly 3(r − 2) + 2 edges of multiplicity a + 1 into W , then the last edge it
ends into W must have multiplicity a (it cannot be a − 1, since v clearly cannot be the clone of a
ertex in W : vertices in W only send 3(r − 2) edges of multiplicity a + 1 into W ).
Suppose v sends an edge of multiplicity a + 1 into one of the middle vertices {u2, u3} of U , say

2. Then v must send an edge of multiplicity a−1 to one of u2’s neighbours u1 and u3, as otherwise
(a+1)(u2) contains an almost good Kr (3). If vu1 has multiplicity a − 1, then v is a clone of u1 and
ence we have

w(vu1) = a − 1, w(vu2) = a + 1, w(vu3) = a, w(vu4) = a.

On the other hand if vu3 has multiplicity a − 1, then v is a clone of u3 and

w(vu1) = a, w(vu2) = a + 1, w(vu3) = a − 1, w(vu4) = a + 1.

inally if v fails to send any edge of multiplicity a + 1 into {u2, u3}, then

w(vu1) ≤ a + 1, w(vu2) ≤ a, w(vu3) ≤ a, w(vu4) ≤ a + 1.

lugging these three different bounds on the multiplicities of edges from v to U into the definition
f p, we see that in Case 3, the contribution of v to p is at most that recorded in Case 1 multiplied
y a factor of(

a + 1
a

) 2(1−x⋆(r+1,1))
3r

(
a + 1
a

)−
2(1+(r−1)x⋆(r+1,1))

3r

< 1,

attained if w(vu1) = w(vu4) = a + 1 and w(vu2) = w(vu3) = a.
Case 4. If v sends edges of multiplicity a + 1 to all 3(r − 1) vertices in W , then we have two

possibilities to consider.
If v sends an edge of multiplicity a + 1 into one of the middle vertices of U , say u2, then, as in

the Case 3, it must send an edge of multiplicity a − 1 into one of {u1, u3}, so that we have

(w(vu1)w(vu4)) · (w(vu2)w(vu3))2 = (a − 1)a3(a + 1)2 or (a − 1)2a(a + 1)3. (4.4)

n the other hand, suppose v does not send an edge of multiplicity a + 1 into the middle vertices
u2, u3} of U . Then both vu2 and vu3 must have multiplicity exactly a — indeed otherwise v would
ave to send an edge of multiplicity a − 1 to one of {u , u }, say u , which would imply v is a
2 3 2
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clone of u2 and thus sends an edge of multiplicity a + 1 to u3, a contradiction. Since NW does not
ontain a good C5, this implies that v can send an edge of multiplicity a+ 1 into at most one of the
nd-vertices {u1, u4} and

(w(vu1)w(vu4)) · (w(vu2)w(vu3))2 ≤ a5(a + 1). (4.5)

sing our bounds (4.4) and (4.5) on the contribution to p of edges from v to U and the fact that
5(a + 1) > max

{
(a − 1)a3(a + 1), (a − 1)2a(a + 1)3

}
, we see that v’s contribution to p is at most

hat recorded in Case 1 multiplied by a factor of(
a + 1
a

) (1−x⋆(r+1,1))
r

(
a + 1
a

)−
5(1+(r−1)x⋆(r+1,1))

6r

=

(
a + 1
a

) 1−(5r+1)x⋆(r+1,1)
6r

< 1,

with the last inequality following from the fact that for all a ≥ 2, (a + 1)4(a − 1) > a5 and hence

(5r + 1)x⋆(r + 1, 1) − 1 =

log
(

(a+1)4r (a−1)r

a5r

)
log
(

(a+1)r+1

(a−1)r a

) > 0.

Since in each of Cases 1–4 the contribution to p is at most that recorded in Case 1, we get that

p ≤ an
(
a + 1
a

) r−1+x⋆(r+1,1)
r n+o(n)

.

y geometric averaging, it follows that one of the vertices in U ∪ W is product-poor, and we are
one. □

emma 4.10. Either NW contains a good P4 or G contains a product-poor vertex.

Proof. As we have shown, either G contains a product-poor vertex or NW contains a good K2(1, 2).
et {x} and U = {u1, u2} be the vertex-sets corresponding to the two parts in this K2(1, 2). Suppose
hat NW does not contain a good P4. We shall show this implies G contains a product-poor vertex.

Note that by Lemmas 3.3 and 4.7 we may assume that the (a + 1)-neighbourhood of x (indeed,
f any vertex) does not contain a good or almost good Kr (3).
Let pW denote the geometric mean of the product-degrees of the vertices from W and set

U :=
√
p(u1)p(u2). Consider the quantity

p :=

(
p(x)

)x⋆(r+1,1)(
pU
) 1−x⋆(r+1,1)

r
(
pW
) (r−1)(1−x⋆(r+1,1))

r
,

hich is a weighted geometric mean of the product-degrees of the vertices in {x} ∪ U ∪ W . Much
as in the proof of Lemma 3.3 we shall show that p cannot be too large. Indeed, consider a vertex
v ∈ V \ ({x} ∪ U ∪ W ).

Case 1. If v sends an edge of multiplicity a − 1 to x, then its contribution to p is exactly

(a − 1)x⋆(r+1,1)(a + 1)1−x⋆(r+1,1)
= a

(
a + 1
a

) r−1+x⋆(r+1,1)
r

.

Case 2. If v sends an edge of multiplicity a + 1 to x, then it can send edges of multiplicity a + 1
o at most r − 1 of the parts of the good Kr (2(1)3(r−1)) induced by U ∪ W (for otherwise we would
ave a good Kr+2 in G). Thus its contribution to p is at most

a
(
a + 1
a

)1− 1−x⋆(r+1,1)
r−1

= a
(
a + 1
a

) r−1+x⋆(r+1,1)
r

.

Case 3. If v sends an edge of multiplicity a to x, then we claim it sends either (a) an edge of
ultiplicity a − 1, or (b) at least 2 edges of multiplicity a into U ∪ W .
Indeed, suppose neither of these occurs, i.e. that all edges from v to U ∪ W have multiplicity at

least a, and that all but at most one have multiplicity a+1. If all these edges have multiplicity a+1,
23
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then G(a+1)
[{x, v} ∪ U ∪ W ] contains a copy of Kr+2, contradicting Proposition 4.2 part (i). Thus we

ay assume that v sends exactly one edge of multiplicity a into U ∪W . If this edge of multiplicity a
is to a vertex in U , then U ∪{x, v} induces a good P4 in NW , a contradiction. On the other hand if the
edge of multiplicity a is to a vertex in W , then {x, v}∪U ∪W contains a good Kr+1(2), contradicting

∈ H(n, 2r + 2, Σr+1,1(a, 2r + 2)).
It readily follows that the contribution of v to p is at most

a
(
a + 1
a

)1−x⋆(r+1,1)− 2(1−x⋆(r+1,r))
3r

< a
(
a + 1
a

) r−1+x⋆(r+1,r)
r

,

ith the inequality following from the fact that

1
3r

(1 − x⋆(r + 1, 1)) − x⋆(r + 1, 1) = −
1
3r

log
(

(a+1)2r (a−1)r

a3r

)
log
(

(a+1)r+1

(a−1)r a

) < 0

or all a ≥ 2.
Since in every case the contribution to p is at most a

( a+1
a

) r−1+x⋆(r+1,r)
r , it follows that

p ≤ an
(
a + 1
a

) r−1+x⋆(r+1,1)
r n+o(n)

.

y geometric averaging, one of the vertices in {x} ∪ U ∪ W is product-poor, and we are done. □

Combining Lemmas 4.3, 4.4, 4.9 and 4.10 we see that irrespective of the value of t , Gmust contain
a product-poor vertex. This concludes the proof of the inductive step. □

5. Further questions and conjectures

There is much work yet to be done on the Mubayi–Terry problem. We discuss below some of
the more promising directions we see for future research.

Other cases of Conjecture 1.10. The most obvious open problem is that of the remaining cases of
Conjecture 1.10. With the techniques developed in this paper, we suspect resolving the d = 2 case
(by working out how to handle a broader range of possible edge multiplicities in putative extremal
constructions) could lead to a resolution of the full conjecture. One possible path towards this would
be some appropriate refinement of Lemma 3.5 which takes into account the fact that Z is split up
into the d − 1 sets Zi, i = 0, 1, . . . , d − 1 with Zi = N (a−i)(x). The special case (s, q) = (5,

(5
2

)
a + 4)

with a ≥ 3 is the smallest open case, and would provide a good testing ground for such refinements.
Stability and exact values. We strongly believe that the equality exΠ (n, 2r, Σr,1(a, 2r)) =

Πr,1(a, n) holds for all a, r ≥ 2 and all n sufficiently large, so that the asymptotic equality we
established in Theorem 1.6 is not the last word even in the case of Conjecture 1.10 treated in
this paper. A natural step towards such an exact result would be to obtain a stability result for
Theorem 1.6 showing almost product-extremal G in F(n, 2r, Σr,1(a, 2r)) must lie close in edit
distance to product-extremal graphs from Tr,1(a, n).

We have not attempted to prove such a result in this paper, which is already overly long
and technical. However we suspect a partial stability result can be extracted from our proof.
Indeed, one can show by a simple vertex-removal argument that an almost product-extremal G′ in
H(n, 2r, Σr,1(a, 2r)) must contain at most o(n) strictly product-poor vertices. The case analyses in
the proofs of our Lemmas in Section 4 then imply that all but o(n) vertices must fall within one given
ype (since usually only a small subset of the types give an optimal contribution to the various p, pu
nd pW quantities we consider in our averaging arguments, while the other types give strictly worse
ontributions). Such information could be used to characterise the large-scale structure of G. The
ain challenge would be then to show that almost product-extremal multigraphs G from the larger

amily F(n, 2r, Σr,1(a, 2r)) lie close in edit distance to some multigraph G′
∈ F(n, 2r, Σr,1(a, 2r)):
it is not immediately obvious how to obtain such a stability version of Proposition 2.13.
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Other values of (s, q). The next most obvious open problem is to resolve what happens for (s, q)
hen q is not of the form q = Σr,d(a, s) for some integers r ≥ 1 and a > d ≥ 0. In [4, Construction
2.1], Day, Falgas-Ravry and Treglown considered ‘iterated’ versions of Construction 1.8 — multi-
raphs obtained by taking a graph from Tr,d(a, n), replacing the special part V0 by a multigraph
rom Tr ′,d′ (a − d, |V0|), and repeating this procedure. This gives lower-bound constructions for
additional pairs (s, q) not covered by Conjecture 1.10. The authors of [4] asked whether these were
asymptotically tight. Given the previous work of Füredi and Kündgen (in which similar iterated
constructions appear, albeit with very different and much simpler relative part sizes) and the work
in the present paper, it is tempting to guess that the answer to this question might be affirmative.
The smallest test case of this may be (s, q) = (6,

(6
2

)
a + 8) for a ≥ 2.

Asymptotically flat intervals. Even with the iterated constructions above and a large, there
re still values of (s, q) which do not have their ‘‘own’’ lower-bound constructions, but only
onstructions that are also valid for (s, q − 1). We think these pairs may correspond to intervals
n which the value of exΠ (s, q) does not change as we change the value of q (keeping s fixed).

Our intuition is based on the special case q0 = Σr,0(a, s): if we want to make any non-trivial
ncrease to the asymptotic product of the edge multiplicities, and we restrict ourselves to ‘iterated’
ersions of Construction 1.8, we must introduce at least one new part to our construction, which in
urn suggests the maximum edge-sum over s-sets must increase by at least

⌊ s−1
r

⌋
. Thus for any q

ith q0 ≤ q < q0 + ⌊
s−1
r ⌋ there should be no other asymptotically different constructions available

han those from Tr,0(a, n). Formally, this yields:

onjecture 5.1. For every r, a ∈ N and for every s ≥ 2r + 1, we have

exΠ (s, Σr,0(a, s)) = exΠ (s, Σr,0(a, s) + 1) = · · · = exΠ

(
s, Σr,0(a, s) +

⌊ s − 1
r

⌋
− 1

)
= a

1
r (a + 1)

r−1
r .

Mubayi and Terry showed in [11, Theorem 3] that Conjecture 5.1 holds for r = 1. Revisiting
heir work may provide a path towards proving Conjecture 5.1. Beyond that, there may be other
symptotically flat intervals where the value of exΠ (s, q) does not change as we increase q — the
eta-conjecture should perhaps be that for any s and all q large enough, exΠ (s, q) is the maximum
f the asymptotic product density P(G)1/(

n
2) over G belong to the collection of ‘iterated versions

f Construction 1.8 on n vertices with the (s, q)-property’, but we are currently quite far from a
osition in which we could confidently put forward such a statement.
Reducing to the base case in Conjecture 1.10. Finally, it would be nice to improve [4, Theorem

.11] by getting rid of the ‘‘a sufficiently large’’ condition, so that showing exΠ (n, s, Σr,d(a, s)) =

r,d(a, n)1+o(1) holds for s = (r−1)(d+1)+2 and a = d+1 ensures it holds for all s ≥ (r−1)(d+1)+2
nd a ≥ d + 1 (if this statement is true!).
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