
PYTHON IN A WEEK — CONCEPTUAL TESTS
FOR LEARNING AND COURSE DEVELOPMENT

Christopher Blöcker1, Thomas Mejtoft2, Nina Norgren3,4

1Integrated Science Lab, Department of Physics,
Umeå University, Umeå, Sweden

2Department of Applied Physics and Electronics,
Umeå University, Umeå, Sweden

3Department of Molecular Biology, Training Hub,
Science for Life Laboratory, Umeå University, Umeå, Sweden

4Department of Molecular Biology, National Bioinformatics Infrastructure Sweden,
Science for Life Laboratory, Umeå University, Umeå, Sweden

ABSTRACT

Programming has gradually become an essential skill for engineers and scientists across dis-
ciplines and is an important part of the CDIO Syllabus covering fundamental knowledge and
reasoning. Recently, there has been a shift away from introductory programming languages
like C and Java towards Python, especially in programs where the focus lies on handling and
analysing large quantities of data, such as energy technology, biotechnology, and bioinformat-
ics. This paper illustrates the successful setup of a one-week-long introductory Python program-
ming course with a hands-on approach. Given the limited time, a challenge is how to effectively
teach students a meaningful set of skills that enables them to self-guide their future learning.
Moreover, since the course does not include any summative assessment, we need other means
of measuring students’ learning and guiding course development. We address these challenges
by coupling short lectures with short quizzes for formative assessment, adding another learning
activity to the course. We find that, in the absence of summative assessment, short, frequent
quizzes with immediate feedback are an excellent tool to track the learning of a class as a whole.
Students report that the quizzes, albeit challenging, improved their understanding of program-
ming concepts, made them aware of potential mistakes, and were a fun learning experience.
Furthermore, the results from this paper illustrate how a new programming language can be
taught to students without prior programming skills in a short period of time. We summarise our
lessons learnt for designing and integrating quizzes in short-format programming courses.

KEYWORDS

Python programming, conceptual test, formative assessment, Standards: 2, 4, 7, 8, 10, 11

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
470

INTRODUCTION

The CDIO framework (Crawley, Malmqvist, Östlund, & Brodeur, 2007) mentions knowledge and
skills that need to be part of the syllabus for our students to enable them to conceive, design,
implement, and operate in their future professions. In the CDIO syllabus 3.0 (Malmqvist et al.,
2022), Personal and professional skills and attributes (2) are emphasised, including everything
from fundamental skills to creativity and ethical responsibility. Under Analytical reasoning and
problem-solving (2.1) and Experimentation, investigation and knowledge discovery (2.2), there
are many important parts that focus on modelling, analysis, and other aspects requiring good
skills within data manipulation, that is, programming skills, for providing high-quality results and
solutions. Consequently, not only the ability to use computers defines successful engineers
but the ability to program computers. Having basic skills within programming provides a better
foundation for engineers across disciplines to solve complex problems (e.g. Ball & Zorn, 2015).

Today, many different programming languages are taught to students, chosen depending on
what skills are required within their discipline. For example, computer scientists need to be able
to implement highly-efficient programs for complex real-world business applications and often
learn C/C++ or Java, both of which are widely adopted in the industry. Physicists and engineers
create models for running simulations and computations, typically using languages like C++ for
efficient implementations, or MATLAB because it is specialised for numerical computations.
Common tasks for data scientists include pooling data from various sources, performing statis-
tical analyses, automating workflows, and visualising results, often done in languages such as R
and Python. During recent years, academia has started to shift away from “traditional” introduc-
tory programming languages towards Python. Reasons for this shift include Python’s simple
syntax which makes it easy to learn and its increasing relevance in industry (Bogdanchikov,
Zhaparov, & Suliyev, 2013; Cheng, Jayasuriya, & Lim, 2010; Jayal, Lauria, Tucker, & Swift,
2011; Leping et al., 2009; Mannila, Peltomäki, & Salakoski, 2006). Moreover, the abundance
of available Python libraries for statistical analyses, machine learning, and visualisations has
made Python a common tool across disciplines and a de-facto standard for data scientists.

In this paper, we describe how we have designed short quizzes and incorporated them into the
setup of the one-week long course Introduction to Python — with Applications in Bioinformatics
offered by the National Bioinformatics Infrastructure Sweden (NBIS) to the Swedish research
community. Our quizzes are tightly coupled with the lectures’ topics and inspired by the princi-
ples behind concept inventories (Taylor et al., 2014); their purpose is to help teachers identify
and address students’ misconceptions to improve their conceptual programming understand-
ing. The first version of our quiz, which we made available on GitHub, contains 21 questions.
We used the learning management system Canvas to run the quizzes and provide immediate
feedback to the students, explaining why their answers were correct or incorrect and discussing
the remaining open questions in class. Using the quizzes for the first time in 2022, we found
that they work well as a learning activity, help improve students’ conceptual programming un-
derstanding, and provide insights for improving teaching material.

RELATED WORK

According to Robins, Rountree, and Rountree (2003), teaching programming involves program-
ming-language-specific knowledge, problem-solving strategies, and mental models of the prob-

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
471

lem and program domain to enable students to design, implement, and evaluate solutions. Tra-
ditional programming courses are often knowledge-driven and use textbooks focusing on pre-
senting syntactic and semantic knowledge, supported with examples and exercises. However,
problem-based instruction has been found to improve student learning. For example, Cheng et
al. (2010) suggest focusing on analysing, decomposing, and solving problems instead of merely
memorising programming syntax. They approach teaching programming from a constructivist
approach, letting students learn and draw their own conclusions through experimentation. Vial
and Negoita (2018) emphasise that learning programming is a social activity, which has impli-
cations for choosing teaching strategies and assessments. They propose a course setup with
Python, Jupyter notebooks, and GitHub to facilitate collaboration and make programming an
active engagement with others.

Vial and Negoita (2018) argue that teaching programming to non-computer science students re-
moves certain constraints: Theoretical foundations that are part of traditional computer science
curricula need not be covered as rigorously. They suggest focusing on solving problems in a
specific domain instead of, as commonly done, teaching programming without considering an
application context. Mironova et al. (2015) agree that problems should be selected based on the
students’ discipline. Vial and Negoita (2018) emphasise that the main objective of teaching pro-
gramming to non-computer science students is not to educate future programmers, but rather
teach students to think like programmers and develop computational thinking skills. However,
different from our situation, programming courses for non-computer science students often aim
at first-year students who are not yet domain experts in their field of study and typically span
a whole semester (Cheng et al., 2010; Mironova, Amitan, Vendelin, Vilipõld, & Saar, 2016;
Mironova et al., 2015; Vial & Negoita, 2018).

Concept inventories are tools that help teachers identify students’ misconceptions through a set
of open or closed-ended questions and problems (Taylor et al., 2014). They are well-established
in physics education to assess students’ understanding of concepts such as force (Hestenes,
Wells, & Swackhamer, 1992), mechanical waves (Caleon & Subramaniam, 2010), or electric-
ity and magnetism (Maloney, O’Kuma, Hieggelke, & Van Heuvelen, 2001), but have also been
systematically studied and applied for computer science education in general, and, more specifi-
cally, for teaching Python (Johnson, McQuistin, & O’Donnell, 2020; Kaczmarczyk, Petrick, East,
& Herman, 2010; Taylor et al., 2014). Independent of the subject, misconceptions can cause
a significant challenge for students and hinder their ability to understand and apply concepts
and principles. Therefore, identifying and addressing misconceptions is critical for ensuring
that students have a strong foundation and are able to apply their knowledge effectively. In
programming, misconceptions can arise due to a variety of factors, including differences in
the semantics of the same word in programming and natural language, prior math knowledge,
flawed mental models regarding how a computer executes code, inadequate problem-solving
strategies, or, more generally and from a constructivist point of view, the entirety of students’
previous experience (Qian & Lehman, 2017; Robins et al., 2003).

COURSE SETUP

Introduction to Python — with Applications to Bioinformatics is a one-week-long course offered
to the research community in Sweden by NBIS, and aimed towards bioinformatics and data
science, thus focusing mostly on usage and understanding of code, rather than an in-depth un-

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
472

Mon Tue Wed Thu Fri

9

10

11

12

13

14

15

16

17

Ti
m

e
9

10

11

12

13

14

15

16

17

Intro + Types
Exercise

Operations

Exercise

Quiz

Loops
Exercise

if/else + files

Exercise
Quiz

Project

Review
Review answers

Pseudocode

Exercise

Quiz

Functions/Methods
Exercise

Exercise
Quiz

Project

Review
Review answers

Exercise

Dictionaries

Exercise

Quiz

Functions
Exercise

sys.argv
Exercise

Quiz

Project

Review
Review answers

Functions

Exercise

Modules
Quiz

Pandas

Exercise
Quiz

Project

Review
Review answers

Regex
Exercise

Regex in Python
Exercise

Quiz

Sum up

Exercise

Review Exercise

Project

Figure 1. Course schedule where lectures are shown in green, exercises in red, quizzes in blue,
and project sessions in grey. Each quiz session is thematically coupled with the previous lecture.
Between lectures and quiz sessions, students have the opportunity to revisit and practice new
material in the exercises.

derstanding of underlying computer science principles. The course assumes no previous pro-
gramming knowledge and aims to bring students’ knowledge to a level where they can directly
apply Python and continue learning Python on their own. Achieving this level of understanding
in one week is challenging and requires an effective course setup: we group short informative
lectures together with practical exercises aimed at solidifying the students’ new knowledge. In
a hands-on project that spans the entire week, students work on an open-ended real bioinfor-
matics problem, albeit simplified to fit the course’s time frame, and put their newly learnt skills
to work. To continuously monitor the effectiveness of this setup as well as students’ learning,
we have designed short formative quizzes that are thematically coupled with the lectures, and
that the students answer in two quiz sessions per day (Figure 1). The learning outcomes for
Introduction to Python — with Applications to Bioinformatics are listed in Figure 2.

NBIS, which is part of the Science for Life Laboratory (SciLifeLab), has several learning paths
for becoming an expert bioinformatician or data scientist and offers a range of courses includ-
ing Neural Networks and Deep Learning, Omics Integration and Systems Biology, Single Cell
RNAseq Data Analysis, and Advanced Python. NBIS’ courses contribute to life-long learning for
researchers at all career stages, targeting mainly PhD students and postdoctoral researchers,
and are a continuation rather than a part of formal education; therefore they do not contain any
formal assessments. Because Python has become an important foundation in data science,
all of the above courses use Python and build on Introduction to Python — with Applications to
Bioinformatics or equivalent knowledge as a prerequisite (Figure 2).

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
473

• Use variables and explain how operators
work

• Process data using loops
• Separate data using if/else statements
• Use functions to read and write to files
• Describe their own approach to a coding task
• Understand the difference between functions

and methods
• Be able to read the documentation for built-in

functions/methods
• Give examples of use cases for dictionaries
• Write data to a simple dictionary
• Understand concept and syntax of functions

• Write basic functions for processing data

• Describe pandas dataframes

• Give examples of how to use pandas for pro-
cessing data

• Explain how regular expressions can be used

• Define Python syntax for regular expressions

• Combine basic concepts to create functional
stand-alone programs to process data

• Write file processing programs that produce
output to the terminal and/or external files

• Explain how to debug and further develop
your skills in Python after the course

Figure 2. Learning outcomes for Introduction to Python — with Applications to Bioinformatics.

QUIZ DESIGN

Creating a concept inventory typically involves four steps: setting the scope, identifying mis-
conceptions, developing questions, and validation (Goldman et al., 2010). In our case, we use
the course’s learning outcomes to set the scope. We have identified misconceptions and devel-
oped questions connected to each lecture topic with the purpose to improve students’ learning
by confronting them with related, but slightly more advanced situations. Our questions aim
to prepare students for typical programming challenges and common mistakes they are likely
to face when applying their programming knowledge in day-to-day work. To achieve this, we
designed our quizzes based on three sub-goals: they should (i) test higher-level cognitive pro-
cesses according to Bloom’s revised taxonomy (Krathwohl, 2002), (ii) help identify students’
programming misconceptions, and (iii) provide insights for improving the course.

First, we aimed to test students’ higher-level cognitive abilities according to Bloom’s revised tax-
onomy, more specifically their ability to analyse and evaluate Python code and to make predic-
tions about the result that a piece of code produces. We did not cover the create level because
it is addressed by the hands-on project; we regard the quizzes as an additional learning activity
that helps prepare students for applying the learnt programming knowledge in real situations.
To ensure that the quizzes test the intended Bloom’s level, we purposefully designed questions
that go beyond the material discussed in the lectures. Otherwise, students could answer the
questions by simply recalling the respective information without activating higher-level cognitive
processes. Instead, we require students to combine several concepts that were discussed in
the lectures in a new way. For example, Figure 3 shows a question that tests students’ under-
standing of variable scopes. Before answering this question, the students had learned about
variables, functions, and scoping rules.

Second, we wanted to use the quizzes in a similar manner as concept inventories are used, that
is, as a tool that helps teachers identify students’ misconceptions, and address them in a timely
manner. Therefore, we have coupled the quizzes with the lectures and run quiz sessions twice
per day, one in the morning and one in the afternoon (Figure 1). However, between the lectures

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
474

x = 1
y = 2

def my_function(x):
x *= 2
return x*y

y = 4
z = my_function(2)
print(x,y,z)

What does the code print?

(a) 1,2,4
(b) 1,4,8
(c) 1,4,16
(d) 2,4,4
(e) 2,4,8
(f) 2,4,16

Students answered

(a) 0%
(b) 31%
(c) 38%
(d) 0%
(e) 8%
(f) 23%

Figure 3. Scopes of local and global variables. A code snippet is shown on the left, possible
outputs in the middle with the correct answer underlined, and students’ answers on the right.

and quizzes, students have time to revisit and practice new material in short exercises. We de-
signed the possible quiz answers so that they all appear plausible while incorrect answers point
out what misconception a student holds. For implementing the quizzes in practice, we used
the learning management system Canvas because it enables providing immediate feedback.
The immediate feedback helps students understand their misconceptions, allowing them to re-
fine their mental models if necessary, which plays an important role in making the quizzes an
effective learning experience.

Third, we intended the quizzes as a way to collect feedback for improving lecture and exercise
content to teach programming concepts more effectively. Collecting answer statistics through
Canvas provides a basis on which we can identify the most common misconceptions to develop
our teaching material accordingly.

In total, we designed a quiz with 21 questions that we split up into 9 quiz sessions. The complete
set of questions is available online1. To summarise, our quiz addresses higher-level cognitive
processes by requiring students to combine learnt knowledge in new ways, helps identify mis-
conceptions and refine mental models, and provides a basis for improving course content.

USING THE QUIZ AND STUDENTS’ RESULTS

Introduction to Python — with Applications to Bioinformatics has been running for several years,
but 2022 was the first time we used our quizzes as a learning activity. In 2022, there were 24
students from all over Sweden who took the course, mostly PhD students and postdocs. Their
prior knowledge ranged from never having done any programming to knowing another program-
ming language. On average, students answered 52% of the questions correctly (Figure 4a).

For example, 38% answered the scoping question (Figure 3) correctly. However, 39% answered
that z has value 8 when printed, indicating that they have a misconception regarding when the
value for y is accessed: at the time when my_function is defined, y holds the value 4, which
would indeed result in setting z to 8. But at the time my_function is executed, the global variable
y holds the value 4, which is used when assigning a value to z. 31% answered that x has value

1https://github.com/chrisbloecker/python-in-a-week-quiz

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
475

https://github.com/chrisbloecker/python-in-a-week-quiz

Va
ria

bl
e

as
sig

nm
en

ts
St

rin
g

sli
cin

g
Bo

ol
ea

n
ex

pr
es

sio
ns

In
de

nt
at

io
n

Sh
or

t-c
irc

ui
t e

va
lu

at
io

n
M

ut
ab

le
 d

at
a

Ps
eu

do
co

de
De

co
m

po
sin

g
pr

ob
le

m
s

Fu
nc

tio
ns

 a
nd

 m
et

ho
ds

W
rit

in
g

to
 fi

le
s

Se
ts

Di
ct

io
na

rie
s

M
ut

ab
le

 d
at

a
in

 d
ict

io
na

rie
s

Sc
op

in
g

Co
m

m
an

d
lin

e
ar

gu
m

en
ts

Br
ea

k
an

d
co

nt
in

ue
fo

r l
oo

p
an

d
br

ea
k

De
fa

ul
t a

rg
um

en
ts

pa
nd

as
Re

gu
la

r e
xp

re
ss

io
ns

 1
Re

gu
la

r e
xp

re
ss

io
ns

 2

0

20

40

60

80

100

%
 c

or
re

ct
 a

ns
we

rs

a)

No
ne

Ca
n

ru
n

sc
rip

ts

Kn
ow

 o
th

er
 la

ng
ua

ge

Prior experience

0

20

40

60

80

100

%
 c

or
re

ct
 o

ve
ra

ll

b)

Figure 4. Quiz results and prior experience. a) Percentage of students answering the questions
correctly. Questions are arranged in the same order as they are presented to the students during
the course. b) Overall quiz results per student, separated by self-reported prior knowledge.

2 when printed, indicating a misconception regarding variable shadowing: the local variable x
in my_functions’s local scope shadows the global variable x, which remains unchanged.

The most challenging question, according to the overall results, was related to short-circuit
evaluation (Figure 5). A possible misconception source may be the difference between how
the logical conjunctions and and or are used in natural language and formal logic. However,
the reason why this question was more challenging is probably how we have formulated the
question: we are not interested in a variable assignment for which the condition evaluates to
True. Instead, we ask for an assignment that prevents the code from crashing. Despite our hint
that “not all variables are defined”, students seem to forget about the objective and select the
variable assignment that evaluates the condition to True, happy that ok will be printed. Nev-
ertheless, 70% chose answer (d), indicating a good understanding of short-circuit evaluation,
highlighting that it is important to be aware of which answers reveal which misconceptions.

From a teaching perspective, the quizzes provided timely insights into students’ learning and
revealed what parts of the introduced material were challenging. This allowed us to select the
most relevant concepts for discussion after each quiz session for clarification. Moreover, the
results showed what parts of the lectures require revision for more effective learning. Setting
up the quizzes with detailed feedback in Canvas took some time, however, we find that this was
time well spent because it allowed giving meaningful feedback to the students. Moreover, once

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
476

What variable assignment will prevent this code
from crashing? Note that not all variables are
defined in all cases.

if (a and b) or (not a and c) and (d != e):
print(ok)

(a) a=False, b=False, d=False, e=True (10%)

(b) a=True, c=False, d=True, e=False (15%)

(c) a=False, c=False, d=False, e=True (5%)

(d) a=False, c=True, d=False, e=True (70%)

Figure 5. Short-circuit evaluation of Boolean expressions.

set up, the quizzes require no additional time from the teachers, give instant feedback to both
students and teachers when students take the quizzes, and can easily be re-used.

On course signup, students reported their prior programming knowledge, choosing between
• I have never written any code before,
• I can run scripts written by others,
• I know another programming language (for example Perl, Java, R, etc.).

The correlation between prior programming knowledge and overall quiz result suggests that a
higher level of prior knowledge tends to lead to a better quiz outcome (Figure 4b). However,
because data is sparse, we can only report the results for this particular course instance and
drawing general conclusions is not warranted.

In the course evaluation, we asked the students to describe how they experienced the quizzes
and their contribution to their learning experience. Overall, they appreciated the quizzes as an
activity that enhanced their learning. One student commented that they learned “A lot, it was
a good way to practice and digest the info.”. Another student said about the quizzes “They
certainly helped me a lot and made me aware of details that I would have otherwise missed.”.

CONCLUSION AND FUTURE WORK

We have designed a basic Python programming quiz consisting of 21 questions and integrated
it into NBIS’ introductory Python programming course, Introduction to Python — with Application
to Bioinformatics. The quiz serves three purposes: (i) it tests students’ higher-level cognitive
skills by requiring a combination of several programming concepts, (ii) it helps identify students’
programming misconceptions, and (iii) it provides data for improving the course. We used the
quiz for the first time in 2022 when 24 students participated in the course. Despite being chal-
lenging, the students reported that the quizzes were a good learning activity and helped them
understand programming concepts better.

We summarise our lessons learnt for designing and integrating conceptual tests in the form of
a quiz in a short-format programming course:

• It is important to take the time to set up the questions, including detailed feedback on both
the right and wrong answers.

• Emphasise for the students that the quizzes are not to be understood as summative as-
sessments, but rather as learning activities. Therefore, they should not feel bad for not
answering everything correctly, but rather learn from their mistakes and take the opportu-
nity to improve their understanding.

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
477

• Since taking the quizzes was not mandatory, some students did not answer all questions.
Make sure to explain the importance to the students, and allocate enough time to finish
the quizzes.

• Clarify that the quizzes are supposed to be solved using pen and paper, and running
the code through the Python interpreter to get the right answer defies the purpose of the
learning activity.

Even though this pilot test has been carried out on PhD students and postdoctoral researchers,
we believe that the results are interesting for engineering education. Giving engineering stu-
dents the possibility to quickly learn basics in a new programming language will create new
opportunities to give students more complex tasks in terms of, for example, data manipula-
tion. Furthermore, letting students learn and practice basics in several programming languages
during their studies will lower the bar for using those programming languages in their future pro-
fession and increase their confidence. Hence, to further extend the results from this study, this
concept should be introduced in undergraduate education programs in the immediate vicinity of
tasks that benefit from using Python.

Future work that remains to be done is to revise our lecture material based on the students’ quiz
outcomes and validate the quizzes over a longer period of time with each revision. Long-term
follow-up of the students, and how, in their experience, the quizzes have contributed to their
knowledge should be done, ideally around 6-12 months after the course is finished.

ACKNOWLEDGEMENTS

We would like to thank Dimitrios Bampalikis, Nanjiang Shu, Jeanette Tångrot, and all TAs who
have been involved in teaching the course.

FINANCIAL SUPPORT ACKNOWLEDGEMENTS

The authors received no financial support for this work.

REFERENCES

Ball, T., & Zorn, B. (2015). Teach Foundational Language Principles. Communications of the
ACM, 58(5), 30–31.
Bogdanchikov, A., Zhaparov, M., & Suliyev, R. (2013, apr). Python to learn programming.
Journal of Physics: Conference Series, 423(1), 012027.
Caleon, I. S., & Subramaniam, R. (2010). Do Students Know What They Know and What They
Don’t Know? Using a Four-Tier Diagnostic Test to Assess the Nature of Students’ Alternative
Conceptions. Research in Science Education, 40(3), 313–337.
Cheng, T. K., Jayasuriya, M., & Lim, J. (2010). Removing the fear factor in Programming. The
Python Papers Monograph, 2, 1–9.
Crawley, E. F., Malmqvist, J., Östlund, S., & Brodeur, D. R. (2007). Rethinking Engineering
Education: The CDIO Approach. Boston, MA: Springer.

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
478

Goldman, K., Gross, P., Heeren, C., Herman, G. L., Kaczmarczyk, L., Loui, M. C., & Zilles,
C. (2010, jun). Setting the Scope of Concept Inventories for Introductory Computing Subjects.
ACM Trans. Comput. Educ., 10(2).
Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The Physics
Teacher , 30(3), 141–158.
Jayal, A., Lauria, S., Tucker, A., & Swift, S. (2011). Python for Teaching Introductory Pro-
gramming: A Quantitative Evaluation. Innovation in Teaching and Learning in Information and
Computer Sciences, 10(1), 86–90.
Johnson, F., McQuistin, S., & O’Donnell, J. (2020). Analysis of Student Misconceptions Using
Python as an Introductory Programming Language. In Proceedings of the 4th conference on
computing education practice 2020. New York, NY, USA: Association for Computing Machinery.
Kaczmarczyk, L. C., Petrick, E. R., East, J. P., & Herman, G. L. (2010). Identifying Student Mis-
conceptions of Programming. In Proceedings of the 41st acm technical symposium on computer
science education (pp. 107–111). New York, NY, USA: Association for Computing Machinery.
Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy: An Overview. Theory Into Practice,
41(4), 212–218.
Leping, V., Lepp, M., Niitsoo, M., Tõnisson, E., Vene, V., & Villems, A. (2009). Python Prevails.
In Proceedings of the International Conference on Computer Systems and Technologies and
Workshop for PhD Students in Computing. New York, NY, USA: Association for Computing
Machinery.
Malmqvist, J., Lundqvist, U., Rosén, A., Edström, K., Gupta, R., Leong, H., … Spooner, D.
(2022). The CDIO syllabus v3.0 - An updated statement of goals. In M. S. Gudjonsdottir et al.
(Eds.), Proceedings of the 18th International CDIO Conference (pp. 18–36). Reykjavik Univer-
sity/CDIO Initiative.
Maloney, D. P., O’Kuma, T. L., Hieggelke, C. J., & Van Heuvelen, A. (2001). Surveying students’
conceptual knowledge of electricity and magnetism. American Journal of Physics, 69(S1), S12–
S23.
Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What about a simple language? Analyzing
the difficulties in learning to program. Computer Science Education, 16(3), 211–227.
Mironova, O., Amitan, I., Vendelin, J., Vilipõld, J., & Saar, M. (2016). Teaching programming
basics for first year non-IT students. In 2016 IEEE Global Engineering Education Conference
(p. 15-19).
Mironova, O., Vendelin, J., Amitan, I., Vilipõld, J., Saar, M., & Rüütmann, T. (2015). Teaching
computing for non-IT students experience of Tallinn University of Technology. In 2015 IEEE
Global Engineering Education Conference (p. 305-309).
Qian, Y., & Lehman, J. (2017, oct). Students’ Misconceptions and Other Difficulties in Introduc-
tory Programming: A Literature Review. ACM Trans. Comput. Educ., 18(1).
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review
and discussion. Comput. Sci. Educ., 13(2), 137-172.
Taylor, C., Zingaro, D., Porter, L., Webb, K., Lee, C., & Clancy, M. (2014). Computer science
concept inventories: past and future. Computer Science Education, 24(4), 253–276.
Vial, G., & Negoita, B. (2018). Teaching Programming to Non-Programmers: The Case of
Python and Jupyter Notebooks. In International conference on interaction sciences.

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
479

BIOGRAPHICAL INFORMATION

Christopher Blöcker is a Senior Research Engineer at the Integrated Science Lab, Department
of Physics at Umeå University. He holds a PhD in Computational Science and Engineering from
Umeå University and has a background in computer science. He has worked as a Research
Associate in Bioinformatics at Duke-NUS Medical School in Singapore and as a Software En-
gineer in an industrial setting in Germany. His research is focused on Community Detection
in Complex Networks, and his teaching includes courses about mathematical modelling with
networks, information theory, and technology for social media.

Thomas Mejtoft is an Associate Professor at the Department of Applied Physics and Elec-
tronics at Umeå University. He holds a PhD from the Royal Institute of Technology (KTH) in
Stockholm and since 2011 acting as the director of the five-year integrated Master of Science
study program in Interaction Technology and Design at Umeå University. His teaching includes
interaction technology, interaction design, technology for social media, and business develop-
ment.

Nina Norgren is a Training Manager for the Science for Life Laboratory (SciLifeLab) Training
Hub, and a Training Coordinator at the National Bioinformatics Infrastructure Sweden (NBIS),
SciLifeLab. She holds a PhD in Medical Genetics from Umeå University. Her research interests
include pedagogics and life-long learning, with a specific interest in bioinformatics and data
science. She is also the responsible course leader for the Python course.

Corresponding author

Nina Norgren
Department of Molecular Biology
National Bioinformatics Infrastructure Sweden
Science for Life Laboratory
Umeå University
SE-901 87, Umeå, Sweden
nina.norgren@umu.se

This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivs 4.0 International License

Proceedings of the 19th International CDIO Conference, hosted by NTNU, Trondheim, Norway, June 26–29, 2023
480

mailto:nina.norgren@umu.se
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

