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Abstract

In observational studies weighting techniques are often used to overcome bias due to con-

founding. Modeling approaches, such as inverse propensity score weighting, are popular,

but often rely on the correct specification of a parametric model wherein neither balance

nor stability are targeted. More recently, balancing approach methods that directly target

covariate imbalances have been proposed, and these allow the researcher to explicitly set

the desired balance constraints. In this study, we evaluate the finite sample properties of

different modeling and balancing approach methods, when estimating the marginal haz-

ard ratio, through Monte Carlo simulations. The use of the different methods is also illus-

trated by analyzing data from the Swedish stroke register to estimate the effect of

prescribing oral anticoagulants on time to recurrent stroke or death in stroke patients with

atrial fibrillation. In simulated scenarios with good overlap and low or no model misspecifi-

cation the balancing approach methods performed similarly to the modeling approach

methods. In scenarios with bad overlap and model misspecification, the modeling

approach method incorporating variable selection performed better than the other meth-

ods. The results indicate that it is valuable to use methods that target covariate balance

when estimating marginal hazard ratios, but this does not in itself guarantee good perfor-

mance in situations with, e.g., poor overlap, high censoring, or misspecified models/bal-

ance constraints.

Introduction

Establishing causal relationships is a primary objective of scientific research, and randomized

controlled trials (RCTs), which allow for unbiased estimation of average treatment effects [1],

are often regarded as the gold standard. However, RCTs involving human subjects have practi-

cal limitations relating to, e.g., study duration and ethics, and there is a growing interest in

using observational data to emulate the conditions found in RCTs, e.g., by removing con-

founding bias, and establishing causal links between variables [2, 3].
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Weighting methods are commonly used for this purpose, wherein weights are used to

adjust and balance the empirical distributions of the observed covariates with the goal of mak-

ing the treatment groups similar in terms of background characteristics. Traditionally, weights

are calculated using the propensity score (PS), i.e., the probability of receiving treatment con-

ditional on the observed covariates, and the use of inverse probability of treatment weighting

(IPTW) [4] is widespread. PS is typically estimated using a regression model such as logistic

regression, and it is known that resulting weights can exhibit high variability, leading to insta-

bility of final effect estimates [5, 6]. This approach to weighting has been called the ‘modeling

approach’ [7], since focus is on maximizing the fit of a treatment assignment model which is

later used to derive weights. A more recent approach to weighting is the balancing approach

[7], which encompasses methods that directly find weights with certain features, without

explicitly specifying a functional form for the underlying PS model. The use of IPTW to esti-

mate treatment effects, similar to those reported in RCTs, in a survival outcome setting has

been described in previous work by Austin [8], and evaluated in a series of Monte Carlo simu-

lations [9]. However, to our knowledge, the finite sample properties of balancing approach

methods have not been studied in this context.

The aim of this study was to investigate the finite sample properties of different weighting

methods when used to estimate population level treatment effects, i.e., marginal treatment

effects, using survival data. The paper is structured as follows: First, relevant causal inference

and survival analysis concepts are reviewed; second, methods within the modeling and balanc-

ing approaches to weighting are described; third, the design and results of an extensive simula-

tion study are described; fourth, the weighting methods are applied to a real dataset; and last,

the results are discussed.

Materials and methods

Ethical considerations

Statistical method development for fair comparisons of stroke care and outcome was part of

the EqualStroke-project, approved by the Ethical Review Board in Umeå (Dnr: 2012–321-

31M, 2014–76-32M). Patients and next of kin are informed about the registration and aim of

the Riksstroke-register and their right to decline participation (opt-out consent).

Treatment effects and survival analysis

In the potential outcomes framework [10, 11], every subject i is associated with a vector of

observed baseline covariates Xi, treatment status Zi and pair of potential outcomes Yi(0) and

Yi(1). These latter denote, respectively, the outcome under no treatment (Zi = 0) and outcome

under (active) treatment (Zi = 1). The observed outcome is Yi = ZiYi(1) + (1 − Zi)Yi(0). Two

common parameters of interest are the average treatment effect, ATE = E[Yi(1) − Yi(0)], and

the average treatment effect on the treated, ATT = E[Yi(1) − Yi(0)|Z = 1]. Under randomiza-

tion ATE = ATT, but this does not hold in observational studies due to the existence of con-

founding variables. With a nonrandomized treatment assignment, ATE and ATT can only be

identified under the assumptions of unconfoundedness (Y(0), Y(1) ⫫ Z|X), overlap (0 < Pr
(Z = 0|X)< 1), and no potential outcome of a subject being affected by the assignment of treat-

ments to the other subjects (stable unit treatment assumption; SUTVA).

In a survival analysis setting, the potential outcomes of a subject are the time to some event

of interest under treatment, and no treatment. {Ti, Di, Zi, Xi; i = 1, 2, . . ., n} denotes indepen-

dent and identically distributed data for n subjects, where Ci is the censoring time, Di ¼ 1Yi�Ci

the event indicator, Ti = min{Yi, Ci} the observed time, and Yi, Zi and Xi are defined as above.
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n1 ¼
Pn

i¼1
Zi and n0 = n − n1 denotes the sample size in the treatment and no treatment group,

respectively. The censoring is assumed to be independent, i.e., Ci⫫ Yi|Zi, Xi. In this right-cen-

sored setting ATE and ATT, defined as mean differences in survival time, may not be possible

to estimate nonparametrically [12].

Arguably, the most common estimand in survival settings is the conditional hazard ratio

(CHR), which is typically estimated by a Cox model [13], where a hazard at time t is given by

lðtjZ;XÞ ¼ expðaZZ þX>αÞl0ðtÞ; ð1Þ

where λ0 is the baseline hazard function, αZ is the parameter relating the treatment variable to

the hazard, and α is a column vector of parameters relating the covariates to the hazard. The

CHR is given by exp(αZ). A hazard ratio that is not conditional on a certain set of covariate val-

ues is the marginal hazard ratio (MHR), roughly the hazard ratio we would see when applying

the treatment to an entire population [14]. Given the Cox model in 1, CHR is equal to MHR in

randomized studies, which is not expected in observational studies. If the treatment assign-

ment is randomized, MHR can be estimated using a Cox model that includes only the treat-

ment variable Z. In an observational study, weights that adjust for differences in X are

required in addition to the latter model [8, 12]. Similar to ATE and ATT, we can be interested

in MHR in an entire population or MHR in the treated population. We define MHRATE as the

MHR that is obtained if a dataset containing both the potential outcomes of all individuals is

used to fit a Cox model with the treatment status indicator as the sole covariate. Similarly, we

define MHRATT as the MHR obtained if this hypothetical analysis was restricted to those that

actually received the treatment.

In this study we focus on estimating MHR, since it is a measure often reported in RCTs.

Note however that, even in RCTs, MHR does not have a proper causal interpretation, because

the initial unconfoundedness at baseline is broken after the first failure event [15, 16]. For

recently proposed alternative estimands see Mao [12] and references therein.

Weighting methods

Since the treatment assignment is nonrandomized in observational studies, it is necessary to

balance the covariates of the data to facilitate unbiased estimation of treatment effects. The

data can be considered balanced with respect to X if the probability distribution of X is similar

in the treated and untreated groups, i.e., Pr(X|Z = 1) = Pr(X|Z = 0) [17]. Weighting methods

are commonly used to balance covariates due to not requiring modeling of the outcome [18].

Balance assessment. Balance can be assessed using a variety of methods [19]; the most

common, and the one employed in this paper, is comparing means and proportions of covari-

ates between treated and untreated subjects [20, 21]. For a continuous covariate X, we define

the absolute standardized mean difference as

d ¼
j�X treated �

�Xuntreatedjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2

treated þ s2
untreatedÞ=2

p ;

where �X treated and �Xuntreated are the sample means of X in treated and untreated subjects, respec-

tively, and s2
treated and s2

untreated the analogous sample variances. For binary covariates, d is defined

as the absolute unstandardized difference in proportions, since these are already on the same

scale. The higher d, the more disparate are the means of the two populations. A covariate is

generally considered to be ‘balanced’ if d is less than 0.25, but stricter thresholds, e.g., 0.10,

have also been suggested [20, 22, 23].

Modeling approach methods. The most common weighting method for balancing covar-

iates uses PS, Pr(Z = 1|X), since if the assumption of unconfoundedness is true given the
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observed covariates, it also holds given PS [18]. Using the inverse of PS as a weighting factor, it

is possible to estimate treatment effects on a population level. With γ = 1 if the target parameter

is MHRATE and γ = 0 if it is MHRATT, the IPTW weights are defined as

wi ¼
g

PrðZi ¼ 1jXiÞ
þ ð1 � gÞ

� �

Zi þ
PrðZi ¼ 1jXiÞð1 � ZiÞ

1 � PrðZi ¼ 1jXiÞ

� �

:

For MHRATE, IPTW gives larger weights to treated subjects with low PS and untreated subjects

with high PS. The main goal of the weights is to balance the covariates, making it possible to

estimate the parameter of interest without bias. However, in some cases the estimated weights

have high variance themselves, due to some subjects having very high or very low PS, which

then produces parameter estimates with high variance. With a correctly specified PS model the

highly variable weights accurately describe reality, but in practice we do not know if the model

was in fact correctly specified.

In practice PS has to be estimated and, although several machine learning methods can be

applied, the most commonly used method is logistic regression, the advantages of which are

simplicity, ease of implementation and interpretation, and familiarity to researchers in a vari-

ety of disciplines [24]. Henceforth, IPTW with logistic regression is referred to in this paper as

‘GLM’. In situations where the covariate vector (potentially including transformations, e.g.,

higher order terms and interactions) is of high dimensionality, least absolute shrinkage and

selection operator (LASSO) regularization [25] is an option. Fitting a prespecified PS model

using logistic regression or using LASSO regularization with a shrinkage parameter selected by

cross-validation (which is common practice) implies targeting treatment assignment predic-

tion, rather than covariate balance and treatment effect estimation [26]. However, LASSO reg-

ularization with a shrinkage parameter selection strategy directly targeting the balance of the

covariates is possible [27]. In this study the shrinkage parameter is selected such that the aver-

age balance of the covariates is maximized, i.e., the average d after weighting is minimized (we

will refer to this as LASSO). It should be noted that the outcome itself is never used in this

selection process.

Balancing approach methods. In contrast to PS methods, which often rely on specifica-

tion of a parametric regression model, methods without the need to specify a functional form

for the PS, such as the class of minimal weights [28], have been developed. If the target parame-

ter is MHRATT, the aim is to find weights to reweight the untreated subjects such that the

reweighted untreated sample has similar covariate distributions as the treated sample. For this

purpose, the class of minimal weights, explicitly targeting both covariate balance and stability

of the weights, is solved for the following mathematical program [7, 28]:

minimize
w

Xn

i¼1

ð1 � ZiÞf ðwiÞ

subject to
�
�
�
�

Xn

i¼1

wið1 � ZiÞBpðXiÞ �
1

n1

Xn

i¼1

ZiBpðXiÞ

�
�
�
� � dp; p ¼ 1; . . . ; P;

ð2Þ

where f is a convex function of the weights w, and Bp(Xp) are smooth functions of the covari-

ates. It is advisable to balance not only the original covariates but also transformations, e.g.,

basis functions of the covariates. Hence, the term ‘covariate’ when used in relation to 2 above,

can also refer to a such a transformation. δp are tolerance values that limit the distance between

the weighted mean and the mean of the covariates. In addition to the balance constraints in 2,
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the weights can also be subject to normalizing constraints:

Xn

i¼1

ð1 � ZiÞwi ¼ 1 and wi � 0:

It should be also noted that, for the estimation of ATT weights, all treated individuals receive

the same weights, and the sum of the weights for the treated individuals will also be equal to 1.

Special cases of minimal weights are: entropy balancing (EB) weights [29] with f(x) = x log(x/

q) (usually q = 1/n0) and δ = 0; the empirical balancing calibration (CAL) weights [30] with

f(x) = D(x, 1) and δ = 0, where D(x, x0) is a distance measure for a fixed x0 2 R (continuously

differentiable in x0, nonnegative and strictly convex in x); and stable balancing weights (SBW)

[31] with f(x) = (x − 1/n0)2 and d 2 Rþ
0

. Since δ = 0 for EB and CAL these methods result in

exact balancing, while SBW results in approximate balancing. Under certain assumptions,

minimal weights, e.g., SBW, consistently estimate the true inverse PS weights [28], albeit in a

different way than traditional modeling approaches to weighting [32].

When the covariates are balanced in an approximate manner, δp> 0, it is in practice neces-

sary for the researcher to either assign individual values for δp, p = 1, . . ., P, or choose a single

tolerance factor for δ that is scaled for each covariate according to the covariate’s standard

deviation. In Algorithm 1 below an algorithm for selecting δ is presented [28, 33].

Algorithm 1 Tuning δ
for Each δ in a grid D of possible imbalances (in units of standard
deviation) do
Compute wi(δ) by solving Eq 2 using the original dataset So
for each b 2 1, . . ., B do
Take a bootstrap sample Sb from So
Evaluate the covariate balance Cb(δ) on Sb

end for
Compute the mean covariate balance CðdÞ ¼ 1

B

PB
b¼1

CbðdÞ

end for
Output d

∗
¼ argmind2DCðdÞ

When the target parameter is MHRATT the covariate balance measure is

CbðdÞ ¼
1

P

XP

p¼1

�
�
�
�

P
i2Sb
ð1 � ZiÞwiðdÞBpðXiÞ

P
i2Sb
ð1 � ZiÞwiðdÞ

�

P
i2So

ZiBpðXiÞ
P

i2So
Zi

�
�
�
�

1

s0
o;p

;

where

s0

o;p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i2So
ð1 � ZiÞðBpðXiÞ � m̂

0
o;pÞ

2

ð
P

i2So
ð1 � ZiÞÞ � 1

v
u
u
t

and

m̂0

o;p ¼
1

P
i2So
ð1 � ZiÞ

X

i2So

ð1 � ZiÞBpðXiÞ

is the standard deviation and mean of covariate p in the untreated subsample of So, respec-

tively. The algorithm is based on the idea that an optimal tolerance value for δ is one that bal-

ances not only the population but also any draws from the same population. As such, covariate

balance is evaluated on bootstrapped samples considering the weights estimated in the original

dataset. This does not guarantee that the selected value is optimal in a given problem, but it has

PLOS ONE Modeling and balancing approaches using weights to estimate effects in observational time-to-event settings

PLOS ONE | https://doi.org/10.1371/journal.pone.0289316 December 7, 2023 5 / 19

https://doi.org/10.1371/journal.pone.0289316


been shown that Algorithm 1 selects δ in a manner that is optimal or close to optimal, in terms

of root mean squared error (RMSE) [28].

Estimating MHRATE instead of MHRATT requires solving an optimization problem, similar

to the one presented in 2, twice. In the first step the weights needed to reweight the untreated

sample, such that it has similar covariate distributions to the full sample, are ascertained; in the

second step weights needed to reweight the treated sample such that it becomes similar to the

full sample are found.

EB was initially proposed as a preprocessing method without consideration of how this

would impact any subsequent inference [29], but has since been shown to be doubly robust in

settings where the outcome model is linear and the PS model is logistic [34]. CAL and SBW

have been shown to be semiparametrically efficient for estimating ATE in a non-survival set-

ting [7, 28, 30]. Depending on how the objective function is formulated, CAL can be used to

derive, e.g., exponential tilting weights (CAL-ET; equivalent to EB with uniform base weights)

and empirical likelihood weights [30]. EB/CAL-ET and SBW have been shown to outperform

GLM in some non-survival settings [29, 31, 35–40] and some survival settings [36, 39]. Com-

parisons between EB/CAL-ET and SBW when estimating ATE and ATT in a non-survival set-

ting have shown that the methods performed similarly in ‘good overlap’ settings but SBW

outperformed EB/CAL-ET in ‘bad overlap’ settings [28].

A related method, the Covariate Balancing Propensity Score (CBPS) was introduced as a

method for simultaneously optimizing covariate balance and parametrically estimating PS

[41]. Later, a nonparametric version of CBPS (npCBPS) was developed [42] wherein there is

no need to specify a functional form for PS. npCBPS finds weights that maximize the empirical

likelihood for certain balancing constraints. The npCBPS optimization procedure can, how-

ever, be slow and the problem does not always admit a solution, since the empirical likelihood

is not generally convex.

Monte Carlo simulation

Simulations were performed to study the finite sample properties of weighting methods

when estimating MHRATT for various data generating processes (DGPs). Each setup was

iterated 1000 times. Data generation and all computations were performed with the software

R [43].

Generating data. A framework that was suitable for studying estimation under model

misspecification was used to generate data [9, 44]. Ten independent covariates, X1 to X10, were

simulated; X2, X4, X7, and X10 were standard normally distributed and the other six were Ber-

noulli distributed with a success probability of 0.5. Observational data was then generated

according to seven different scenarios (A to G), ranging from a linear additive treatment

assignment model to more complex models exhibiting various degrees of nonlinearity and/or

nonadditivity. X1 to X4 were directly related to the probability of receiving treatment and to

the time-to-event outcome; X5 to X7 were directly associated only with the probability of treat-

ment; and X8 to X10 were only directly connected to the time-to-event outcome. The subject-

specific probability of treatment for each scenario was:

(A). Additivity and linearity (main effects only):

logitðPrðZi ¼ 1jXiÞÞ ¼ b0 þ b1X1;i þ b2X2;i þ b3X3;ib4X4;iþ

b5X5;i þ b6X6;i þ b7X7;i
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(B). Mild nonlinearity (one quadratic term):

logitðPrðZi ¼ 1jXiÞÞ ¼ b0 þ b1X1;i þ b2X2;i þ b3X3;i þ b4X4;iþ

b5X5;i þ b6X6;i þ b7X7;i þ b2X2
2;i:

(C). Moderate nonlinearity (three quadratic terms):

logitðPrðZi ¼ 1jXiÞÞ ¼ b0 þ b1X1;i þ b2X2;i þ b3X3;i þ b4X4;iþ

b5X5;i þ b6X6;i þ b7X7;i þ b2X2
2;iþ

b4X2
4;i þ b7X2

7;i:

(D). Mild nonadditivity (four interaction terms):

logitðPrðZi ¼ 1jXiÞÞ ¼ b0 þ b1X1;i þ b2X2;i þ b3X3;i þ b4X4;iþ

b5X5;i þ b6X6;i þ b7X7;i þ 0:5� b1X1;iX3;iþ

0:7� b2X2;iX4;i þ 0:5� b4X4;iX5;i þ 0:5� b5X5;iX6;i:

(E). Mild nonadditivity and nonlinearity (one quadratic term and four interaction terms):

logitðPrðZi ¼ 1jXiÞÞ ¼ b0 þ b1X1;i þ b2X2;i þ b3X3;i þ b4X4;i þ b5X5;iþ

b6X6;i þ b7X7;i þ b2X2
2;i þ 0:5� b1X1;iX3;iþ

0:7� b2X2;iX4;i þ 0:5� b4X4;iX5;i þ 0:5� b5X5;iX6;i:

(F). Moderate nonadditivity (ten interaction terms):

logitðPrðZi ¼ 1jXiÞÞ ¼ b0 þ b1X1;i þ b2X2;i þ b3X3;i þ b4X4;i þ b5X5;iþ

b6X6;i þ b7X7;i þ 0:5� b1X1;iX3;i þ 0:7� b2X2;iX4;iþ

0:5� b3X3;iX5;i þ 0:7� b4X4;iX6;i þ 0:5� b5X5;iX7;iþ

0:5� b1X1;iX6;i þ 0:7� b2X2;iX3;i þ 0:5� b3X3;iX4;iþ

0:5� b4X4;iX5;i þ 0:5� b5X5;iX6;i:

(G). Moderate nonadditivity and nonlinearity (three quadratic terms and ten interaction

terms):

logitðPrðZi ¼ 1jXiÞÞ ¼ b0 þ b1X1;i þ b2X2;i þ b3X3;i þ b4X4;i þ b5X5;iþ

b6X6;i þ b7X7;i þ 0:5� b1X1;iX3;i þ 0:7� b2X2;iX4;iþ

0:5� b3X3;iX5;i þ 0:7� b4X4;iX6;i þ 0:5� b5X5;iX7;iþ

0:5� b1X1;iX6;i þ 0:7� b2X2;iX3;i þ 0:5� b3X3;iX4;iþ

0:5� b4X4;iX5;i þ 0:5� b5X5;iX6;i þ b2X2
2;i þ b4X2

4;i þ b7X2
7;i:
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With βT = k(0.00, 0.80, −0.25, 0.60, −0.40, −0.80, −0.50, 0.70), k was used to control the

overlap between the treated and untreated groups. k = 1 represented strong overlap between

the two groups, and weakened as k increased. For each subject, Zi was then drawn from a Ber-

noulli distribution. The time-to-event outcome was generated as

Yi ¼
� logðuiÞ

l expðLPiÞ

� � 1=Z

where ui* U(0, 1), λ = 0.00002, η = 2 (as in [8]) and the linear predictor LPi = αZZi + α1X1,i +

α2X2,i + α3X3,i + α4X4,i + α5X8,i + α6X9,i + α7X10,i, with α = (αZ, 0.30, −0.36, −0.73, −0.20, 0.71,

−0.19, 0.26). This DGP resulted in data with CHRATT = exp(αZ). In order to generate data with

a predetermined MHRATT, an iterative bisection method was used to determine the value of

CHRATT that resulted in the desired MHRATT [14]. Data with independent censoring was gen-

erated as in Wan [45], see the S1 File for details.

Statistical analyses in generated datasets. Weights were calculated using the methods

described previously and MHRATT was estimated by fitting a Cox model to the weighted sam-

ple, including the Z as the only explanatory variable. For comparison, the same model was fit

to the initial unweighted sample, and we refer to this strategy as NAIVE. Confidence intervals

were based on standard errors, estimated using a robust sandwich-type variance estimator,

taking the weighted nature of the data into account. Although no theoretical justification has

been provided, simulation results have indicated that this estimator slightly overestimates the

variance, and results in somewhat conservative confidence intervals when estimating MHRATE

and MHRATT with IPTW [46]. However, more recently the possibility of anti-conservative

inference when estimating ATT with IPTW was shown [47]. The R packages glmnet [48],

CBPS [49], ATE [50], sbw [33], and survival [51] were used for LASSO, npCBPS,

CAL-ET, SBW, and Cox modeling, respectively. For npCBPS and CAL-ET, the default options

for the respective functions were used. For SBW, Gurobi [52] was used as solver and Algo-

rithm 1 (implemented in sbw) was used to select δ; otherwise, the default options were used.

Experiments. To study how particular features of data and covariate sets affected the per-

formance of the weighting methods, three different experiments, summarized in Table 1 were

conducted. In all of the experiments, MHRATT = 0.8, n = 1500. As several of the methods were

nonparametric, the focus was evaluating the performance of the weighting methods in data

generation scenarios, which often demand flexibility as regards weight estimation. Therefore,

scenarios with varying degrees of misspecification mixed with overlap and censoring were

used, as these are important considerations for time-to-event data. In addition, a case in which

there was no misspecification, analogous to one in which a researcher might have overspeci-

fied the model by adding unnecessary interactions and quadratic terms while trying to avoid

misspecification, was investigated. Experiment 1 investigated how misspecification of PS mod-

els/balance constraints affected the estimation of MHRATT. Only the main effects of Xsmall =

(X1, X2, X3, X4, X5, X6, X7)T were included in the PS models, and constraints were set only on

Xsmall for the balancing approach methods. In addition, the degree of overlap (k = 1, 2, 3) was

Table 1. The conducted experiments. k is the degree of overlap, π is the censoring proportion, Xsmall = (X1, . . ., X7)T

while Xlarge consists of Xsmall as well as all quadratic and two-way interaction terms computed from Xsmall.

Experiment Data generation Estimation Covariates

k π
1: Misspecification and overlap 1, 2, 3 0.0 Xsmall

2: Misspecification and censoring 1 0.1, . . ., 0.5 Xsmall

3: Overspecification 1 0.0 Xlarge

https://doi.org/10.1371/journal.pone.0289316.t001
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varied. For Scenario (A) the PS models/balance constraints are correctly specified, and can be

used to compare the effect of just changing the overlap specifically. In Experiment 2, the rate

of censoring (π = 0.1, 0.2, 0.3, 0.4, 0.5) was varied rather than the degree of overlap. The same

type of data was generated as in Experiment 1, albeit only for the overlap setting k = 1.

Researchers conducting data analysis generally try to avoid misspecification of the type exem-

plified here by including covariate transformations. If more terms are used for estimation than

are necessary the model is overspecified, which may affect its performance. In Experiment 3

the effect of overspecification of PS models/balance constraints on estimation of MHRATT was

investigated by including both the main effects and quadratic and two-way interaction terms

between covariates in Xsmall, i.e., Xlarge, when estimating weights. Data similar to the other

experiments was generated, albeit only for k = 1 and π = 0.0.

Results

The degree of overlap and average balance in the different scenarios are visualized in S1 and S2

Figs. In Fig 1 the results for the settings common to Experiments 1, 2 and 3, i.e., n = 1500,

MHRATT = 0.8, no censoring, and good overlap (k = 1), are shown. In Scenario (A), all meth-

ods except the NAIVE strategy (no weighting) had low biases and similar variances. By

increasing the amount of misspecification, the performance of the balancing approach meth-

ods CAL-ET and SBW clearly became worse. This was also true for npCBPS, albeit to a lesser

extent. Both LASSO and GLM performed well and were quite stable across all scenarios. As

can be seen in S1 Table in S1 File, all methods (except NAIVE) in all scenarios resulted in

empirical confidence interval coverage very close to or above the nominal 0.95.

Settings with weaker overlap were then considered; in Fig 2 it is clear that variance increases

for all weighting methods, as generally does bias. There are, however, considerable differences

in the deterioration, with LASSO being the least impacted method. It is noteworthy that, in

contrast to Fig 1, GLM did not perform well in the misspecification scenarios, where there was

Fig 1. Relative bias of the MHRATT estimation methods for different DGPs. No censoring (π = 0) and good overlap (k = 1).

https://doi.org/10.1371/journal.pone.0289316.g001
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poorer overlap. Of the balancing approach methods, SBW resulted in similar or slightly higher

bias than CAL-ET, while CAL-ET resulted in higher variance than SBW. npCBPS generally

resulted in lower bias than the other balancing approach methods but often higher variance

than SBW (k = 2, 3) and CAL-ET (k = 2). As the overlap became weaker, several methods

resulted in poor empirical coverage (S2 and S3 Tables in S1 File). When k = 3, LASSO was the

only method that resulted in coverage above nominal level in every scenario.

With good overlap but censored data (Fig 3 and S4 Fig; S4-S8 Tables in S1 File) variance

increased more than for the uncensored setting, but we also see there was also a tendency for

increasing bias as the rate of censoring rose; this started to become notable, while still being

low, for higher censoring proportions. The deterioration, however, was not as severe as was

seen for the poor overlap uncensored setting. Under the DGPs in this experiment all methods

were biased downwards, as can be seen when comparing the low and moderate censoring

results. When the censoring rate was 0.4 or higher, GLM and LASSO resulted in empirical cov-

erage of below 0.95 in several scenarios.

The overspecification results show that both CAL-ET and SBW had much lower bias in Sce-

narios (B)—(G) when constraints were set on Xlarge (Fig 4; S9 Table in S1 File) instead of

Xsmall. This effect was not seen for GLM and LASSO, which already exhibited relatively low

bias with Xsmall. All four methods resulted in higher RMSE when using Xlarge. Overall, SBW

resulted in the lowest RMSE, closely followed by LASSO. GLM had markedly higher variance

Fig 2. Experiment 1: Misspecification and overlap. Relative bias of the MHRATT estimation methods for varying

degrees of overlap and different DGPs. No censoring (π = 0). Outliers above 0.5 were left out to facilitate visual

comparison between the experiments; a complete visualization can be seen in S3 Fig.

https://doi.org/10.1371/journal.pone.0289316.g002
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than the other methods in Scenarios (C) and (G). No results are reported for npCBPS since

this method was not able to find weights when balance constraints were set on Xlarge.

In S10 Table in S1 File, computational times for the different methods when n = 1500 are

reported. It took about 11 seconds for LASSO and SBW to find weights using Xsmall, npCBPS

Fig 3. Experiment 2: Misspecification and censoring. Relative bias of the MHRATT estimation methods for varying

censoring rates and different DGPs. Good overlap (k = 1).

https://doi.org/10.1371/journal.pone.0289316.g003

Fig 4. Experiment 3: Overspecification. Relative bias of the MHRATT estimation methods for different DGPs when all

models were overspecified. No censoring (π = 0) and good overlap (k = 1). Outliers above 0.5 have been left out to

facilitate visual comparison between the experiments; a complete visualization can be seen in S5 Fig.

https://doi.org/10.1371/journal.pone.0289316.g004
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took around double that time, and GLM and CAL-ET less than 1 second. Finding weights

using Xlarge doubled the time for LASSO and more than tripled the time for SBW.

Case study

The sample consisted of data from 3400 patients with atrial fibrillation who suffered their first

(registered) ischemic stroke in the year 2009, were born in Sweden, and were discharged alive.

Of these, 3091 had no missing data and so were used for the analysis. Record linkage register

data from the Swedish Stroke Register (Riksstroke), the Swedish Longitudinal Integrated Data-

base for Health Insurance and Labour Market Studies (LISA; managed by Statistics Sweden)

and the National Patient Register (NPR; managed by the National Board of Health and Wel-

fare) was used to retrieve information related to the strokes, income, education, and comorbid

conditions.

The object of study was the effect of prescribing Warfarin, an oral anti-coagulant, at hospi-

tal discharge on the time to either a second ischemic stroke or death within two years of dis-

charge. Thus, patients who survived or had no second stroke within two years after of their

hospital discharge had their survival times treated as censored observations. The parameter of

interest was the average treatment effect in the population that actually was prescribed Warfa-

rin, hence we estimated MHRATT.

Overall, 1223 (39.57%) patients received a prescription for an anti-coagulant at discharge,

while 1868 (60.43%) did not. 1909 of the individuals did not experience an event in the two

years after discharge, i.e., 61.76% of the patients were censored. In the analysis, demographic

and socioeconomic characteristics, as well as data on risk factors, comorbidities and vital signs

on admission were included as plausible confounders (see Table 2 for descriptives and balance

(d) in the unweighted sample).

As in the simulation study, two different covariate sets were considered for the weighting

methods: the untransformed baseline covariates, i.e., Xsmall (23 terms), and the set which also

included quadratic transformations of continuous covariates as well as all two-way interac-

tions, i.e., Xlarge (187 terms). For combinations of categorical covariates, a minimum sparsity

threshold of at least 50 individuals was set.

As can be seen in Table 3, the maximum imbalance when using Xsmall ranges from 0.37

(LASSO) to 0.78 (NAIVE), clearly exceeding even the not so strict threshold of 0.25. Adequate

balance was achieved when both the baseline covariates and transformations of these were

included; using Xlarge resulted in a maximum imbalance of 0.05. Only GLM, LASSO, and SBW

were able to deal with the large covariate set, while npCBPS and CAL-ET did not admit solu-

tions to the optimization problem.

For all methods, the Kaplan-Meier survival curves shown in Fig 5 differed significantly

between treated and untreated (Log-rank test p- value < 0.0001). Using the survival curves,

the absolute reduction in the probability of stroke recurrence or death within two years given

the anti-coagulant treatment (absolute risk reduction; ARR) was calculated.

Overlap when estimating the propensity score using Xlarge was relatively good (S6 Fig). In

addition, the proportional hazards assumptions of the Cox models, which were fitted to esti-

mate MHRATT, were tested using scaled Schoenfeld residuals, and all were shown to meet the

proportional hazards assumption, except for GLM using Xsmall. As can be seen in Table 4, when

adequate balance is achieved, i.e., Xlarge setting, SBW resulted in point estimates of MHRATT

and ARR that suggest a slightly larger effect of anti-coagulant prescription on time to stroke or

death than GLM and LASSO. However, the confidence intervals of all three largely overlapped.

We also estimated CHRATT by fitting unweighted Cox models which resulted in 0.510 (95%

CI: 0.439—0.593) and 0.486 (95% CI: 0.414—0.571) for Xsmall and Xlarge, respectively.
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Table 2. Characteristics of treated and untreated subjects in the original sample as well as balance between the two groups for each covariate.

Covariate No anti-coagulant

(n = 1868)

Anti-coagulant

(n = 1223)

Balance

Demographic and background characteristics
Age 82.5±8.8 76.1±8.8 0.73

Female 1049 (56.2%) 539 (44.1%) 0.12

Living alone 1148 (61.5%) 517 (42.3%) 0.19

Living in an institution 228 (12.2%) 31 (2.5%) 0.10

ADL dependency 253 (13.5%) 47 (3.8%) 0.10

Socioeconomic and educational level
Income 1680±2012 1933±1211 0.21

Primary 1125 (60.2%) 606 (49.6%) 0.11

Secondary 532 (28.5%) 420 (34.3%) 0.06

University 211 (11.3%) 197 (16.1%) 0.05

Level of consciousness at admission
Alert 1550 (83.0%) 1139 (93.1%) 0.10

Drowsy 273 (14.6%) 71 (5.8%) 0.09

Unconscious 45 (2.4%) 13 (1.1%) 0.01

Comorbid conditions
Diabetes 347 (18.6%) 243 (19.9%) 0.01

Smoking 140 (7.5%) 135 (11.0%) 0.04

Hypertension medication 1282 (68.6%) 835 (68.3%) 0.00

Heart failure 583 (31.2%) 296 (24.2%) 0.07

Ischemic heart disease 588 (31.5%) 326 (26.7%) 0.05

Dementia 124 (6.6%) 16 (1.3%) 0.05

Cancer in last three years 204 (10.9%) 116 (9.5%) 0.01

Valvular disease 150 (8.0%) 130 (10.6%) 0.03

Peripheral arterial disease 127 (6.8%) 95 (7.8%) 0.01

Venous thromboembolism 68 (3.6%) 64 (5.2%) 0.02

Intracerebral hemorrhage (I61) 31 (1.7%) 8 (0.7%) 0.01

Transient ischemic attack (TIA) 128 (6.9%) 90 (7.4%) 0.01

Other major bleeding 172 (9.2%) 76 (6.2%) 0.03

Note: Continuous covariates reported as mean ± standard deviation. Categorical covariates reported as n (%). Covariates with a balance value higher or equal to 0.10 in

bold.

https://doi.org/10.1371/journal.pone.0289316.t002

Table 3. Balance distributions, after weighting with GLM, LASSO, npCBPS, CAL-ET, and SBW, as well as the unweighted dataset (NAIVE), when considering bal-

ance on all untransformed covariates (Xsmall) and all covariates including quadratic terms and interactions (187 terms in total; Xlarge).

Covariates Method Min 25th Perc. Median Mean 75th Perc. Max

Xsmall GLM 0.00 0.00 0.01 0.02 0.02 0.51

LASSO 0.00 0.00 0.01 0.02 0.02 0.37

npCBPS 0.00 0.01 0.01 0.03 0.03 0.42

CAL-ET 0.00 0.01 0.03 0.08 0.08 0.82

SBW 0.00 0.00 0.00 0.01 0.01 0.48

NAIVE 0.00 0.01 0.05 0.09 0.10 0.73

Xlarge GLM 0.00 0.00 0.00 0.01 0.01 0.05

LASSO 0.00 0.00 0.00 0.01 0.01 0.05

SBW 0.00 0.00 0.00 0.00 0.00 0.05

https://doi.org/10.1371/journal.pone.0289316.t003
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Fig 5. Kaplan-Meier survival curves for the original sample and the samples weighted by SBW, LASSO, and GLM,

respectively. In this case, survival implies absence of an event (death or ischemic stroke).

https://doi.org/10.1371/journal.pone.0289316.g005

Table 4. Marginal hazard ratio (MHRATT) and absolute risk reduction (ARR) estimates of the anti-coagulant effect on the time to either a second ischemic stroke or

death. CIL and CIU are the lower and upper limits of 95% confidence intervals for MHRATT.

Covariates Method MHRATT CIL CIU ARR

Xsmall GLM 0.605 0.504 0.725 0.108

LASSO 0.545 0.461 0.644 0.135

npCBPS 0.608 0.472 0.784 0.144

CAL-ET 0.505 0.431 0.590 0.144

SBW 0.513 0.438 0.599 0.152

NAIVE 0.326 0.284 0.374 0.294

Xlarge GLM 0.568 0.479 0.674 0.123

LASSO 0.561 0.476 0.661 0.127

SBW 0.533 0.453 0.627 0.139

https://doi.org/10.1371/journal.pone.0289316.t004
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Discussion

The results of the simulations revealed that the npCBPS, CAL-ET, and SBW balancing

approach methods performed similarly to GLM and LASSO in good overlap scenarios where

was no, or low, model misspecification. In bad overlap scenarios with model misspecifica-

tion, LASSO outperformed the other methods. When models were overspecified, SBW was

comparable to LASSO, while CAL-ET and GLM exhibited relatively high variability. npCBPS

was unable to deal with the high dimensional dataset resulting from the overspecification.

When data was censored, all methods had a downward shift in bias, which in the simulations

resulted in poor coverage for the modeling approach methods in scenarios with censoring

rates of 40–50%. Due to this downward shift, CAL-ET and SBW performed better than the

other methods (in terms of bias and RMSE) in the moderate censoring setting. If a DGP had

caused an upward shift in bias this would not have been the case. Recently, Wyss [53] noted

that, with censored data, PS estimators of MHR tend to be biased toward CHR, even when

censoring is independent, and this is the mechanism behind the results presented in this

paper.

The results of the empirical study suggested that anti-coagulant prescription after discharge

from hospital following a stroke event has an effect on preventing a second stroke event and

increasing the survival of the patient. This is in line with previous results in the literature in

which anti-coagulant prescription has been shown to be effective [54–56]. However, since this

data falls into the ‘good overlap’ with ‘relatively high censoring’ (61.76%) category we suspect

that the MHR results are slightly biased.

As shown in this paper, when estimating MHRs with weighting it is important to use meth-

ods that target covariate balance, but this does not in itself guarantee good performance in situ-

ations with, e.g., poor overlap, high censoring, or misspecified models/balance constraints.

However, based on the simulation results we feel confident in recommending LASSO in most

settings and the results also support the idea that SBW will often give results similar to LASSO

as long as the balance constraints are set on a large enough set of covariates. We also recom-

mend, as in other observational settings, that researchers estimate weights using multiple

methods and select the optimal weighting method according to a variety of balancing metrics

[57]. It is also worth noting that if, in a poor overlap situation, one is willing to redefine the tar-

get population to a subpopulation with good overlap an alternative approach is to use overlap

weights [58], which yield exact balance if estimated by logistic regression.

A limitation of the current study is that the results are based on simulations and only reflect

the scenarios included in the paper. Although a wide range of scenarios were considered, there

are many more that could be of interest, such as scenarios with higher proportion of censoring

or more complex variable selection. For the scenarios with higher censoring proportions,

weighting related to censoring is a possible inclusion, and there is a need for further investiga-

tion regarding how to best estimate MHR under these circumstances. In addition, a sensitivity

analysis framework for balancing approach methods has recently been developed [59], but has

yet to be explored in the time-to-event setting.

Supporting information

S1 Fig. Propensity score overlap based on one replication of simulated data (n = 1500) for

each scenario and degree of overlap.

(TIF)

S2 Fig. Covariate balance averaged over 1000 replicates of simulated data (n = 1500) for

each scenario and degree of overlap. The blue and red dashed lines represents average
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balance (ASMD or AUD) equal to 0.10 and 0.25, respectively.

(TIF)

S3 Fig. Experiment 1: Misspecification and overlap. Relative bias of the MHRATT estimation

methods for varying degrees of overlap and different DGPs. Sample size is n = 1500, true

MHRATT = 0.8 and no censoring (π = 0). In Scenario (A) there is no model misspecification.

All outliers are included.

(TIF)

S4 Fig. Experiment 2: Misspecification and censoring. Relative bias of the MHRATT estima-

tion methods for varying censoring rates and different DGPs. Sample size is n = 1500, true

MHRATT = 0.8 and good overlap (k = 1). In Scenario (A) there is no model misspecification.

(TIF)

S5 Fig. Experiment 4: Overspecification. Relative bias of the MHRATT estimation methods

when all models are overspecified. Sample size is n = 1500, true MHRATT = 0.8, no censoring

(π = 0) and good overlap (k = 1). All outliers are included.

(TIF)

S6 Fig. Estimated overlap in the case study data. The propensity score is estimated using

GLM with Xlarge.

(TIF)

S1 File.
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