
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in . This paper has been peer-reviewed but
does not include the final publisher proof-corrections or journal pagination.

Citation for the original published paper (version of record):

Bökman, G., Flinth, A., Kahl, F. (2023)
In search of projectively equivariant networks
Transactions of Machine Learning Research

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-218753

Published in Transactions on Machine Learning Research (12/2023)

In search of projectively equivariant networks

Georg Bökman∗ bokman@chalmers.se
Department of Electrical Engineering
Chalmers University of Technology

Axel Flinth∗ axel.flinth@umu.se
Department of Mathematics and Mathematical Statistics
Umeå University

Fredrik Kahl fredrik.kahl@chalmers.se
Department of Electrical Engineering
Chalmers University of Technology

Reviewed on OpenReview: https: // openreview. net/ forum? id= Ls1E16bTj8

Abstract

Equivariance of linear neural network layers is well studied. In this work, we relax the
equivariance condition to only be true in a projective sense. Hereby, we introduce the
topic of projective equivariance to the machine learning audience. We theoretically study
the relation of projectively and linearly equivariant linear layers. We find that in some
important cases, surprisingly, the two types of layers coincide. We also propose a way
to construct a projectively equivariant neural network, which boils down to building a
standard equivariant network where the linear group representations acting on each in-
termediate feature space are lifts of projective group representations. Projective equivari-
ance is showcased in two simple experiments. Code for the experiments is provided at
github.com/usinedepain/projectively_equivariant_deep_nets

1 Introduction

Deep neural networks have been successfully applied across a large number of areas, including but not limited
to computer vision (Krizhevsky et al., 2012), natural language processing (Devlin et al., 2019), game play
(Silver et al., 2018) and biology (Jumper et al., 2021). In many of these areas, the data has geometric
properties or contains symmetries that can be exploited when designing neural networks. For instance,
AlphaFold (Jumper et al., 2021) models proteins in 3D-space while respecting translational and rotational
symmetries. Much of the work on neural networks respecting geometry and symmetry of the data can be
boiled down to formulating the symmetries in terms of group equivariance. Group equivariance of neural
networks is a currently very active area of research starting with (Wood & Shawe-Taylor, 1996) and brought
into the deep networks era by Cohen & Welling (2016). Group equivariant neural networks are part of the
broader framework of geometric deep learning. Recent surveys include (Bronstein et al., 2021; Gerken et al.,
2021). Our interests in equivariance are driven by applications in computer vision, (Bökman et al., 2022;
Bökman & Kahl, 2022; 2023), but in this paper, we will give application examples in several different research
fields, targeting a more general machine learning audience.

Given a set of transformations T acting on two sets X, Y , a function f : X → Y is called equivariant if
applying f commutes with the transformations t ∈ T , i.e.,

t[f(x)] = f(t[x]). (1)
*Equal contribution

1

https://openreview.net/forum?id=Ls1E16bTj8
https://github.com/usinedepain/projectively_equivariant_deep_nets

Published in Transactions on Machine Learning Research (12/2023)

Concretely, consider rotations acting on point clouds and f mapping point clouds to point clouds. If applying
f and then rotating the output yields the same thing as first rotating the input and then applying f , we call
f rotation equivariant. In the most general scenario, t ∈ T could act differently on X and Y ; For instance, if
the action on Y is trivial, we can model invariance of f in this way.

If the transformations T form a group, results from abstract algebra can be used to design equivariant
networks. A typical way of formulating an equivariance condition in deep learning is to consider the neural
network as a mapping from a vector space V to another vector space W and requiring application of the
network to commute with group actions on V and W . As V,W are vector spaces the setting is nicely framed
in terms of representation theory (we will provide a brief introduction in Section 2). What happens however
when V and/or W are not vector spaces? This work covers the case when V and W are projective spaces, i.e.,
vector spaces modulo multiplication by scalars. This generalization is motivated, for instance, by computer
vision applications. In computer vision it is common to work with homogeneous coordinates of 2D points,
which are elements of the projective space P(R3). In Section 2, we will describe more examples.

In the vector space case, any multilayer perceptron can be made equivariant by choosing the linear layers as
well as non-linearities equivariant. This is one of the core principles of geometric deep learning. In this paper,
we will theoretically investigate the consequences of applying the same strategy for building a projectively
equivariant (to be defined below) multilayer perceptron, i.e. one that fulfills (1) only up to a scalar (which
may depend on x). More concretely, we will completely describe the sets of projectively invariant linear layers
in a very general setting (Theorem 2.15).

The most interesting consequence of Theorem 2.15 is a negative one: In two important cases, including
the SO(3)-action in the pinhole camera model and permutations acting on tensors of not extremely high
order, the linear layers that are equivariant in the standard sense (linearly equivariant) are exactly the same
as the projectively equivariant ones. This is surprising, since projective equivariance is a weaker condition
and hence should allow more expressive architectures. Consequently, any projectively equivariant multilayer
perceptron must in these cases either also be linearly equivariant, or employ non-trivial projectively equivariant
non-linearities.

Theorem 2.15 also suggests a natural way of constructing a projectively equivariant network that for certain
groups is different from the linearly equivariant one. These networks are introduced in Section 3. We then
describe a potential application for them: Classification problems with class-varying symmetries. In Section
3.2, we describe this application, and perform some proof-of-concept experiments on modified MNIST data.
In Section 4 we generalize Tensor Field Networks (Thomas et al., 2018) to spinor valued data, whereby we
obtain a network that is equivariant to projective actions of SO(3).

It should be stressed that the main purpose of this article is not to construct new architectures that can beat
the state of the art on concrete learning tasks, but rather to theoretically invest what projectively equivariant
networks can (and more importantly, cannot) be constructed using the geometric deep learning framework.
The boundaries that we establish will guide any practitioner trying to exploit projective equivariance.

We have for convenience collected important notation used in this article in Table 1. Appendix A also contains
definitions of the mathematical objects we use in the article.

2 Projective equivariance

In this work, we are concerned with networks that are projectively equivariant. Towards giving a formal
definition, let us first discuss how equivariance can be formulated using the notion of a representation of a
group.

A representation ρ̂ of a group G on a vector space V over a field F is a map which associates each group
element g with an isomorphism ρ̂(g) : V → V in a manner that respects the structure of the group, i.e.,

ρ̂(g)ρ̂(h) = ρ̂(gh) for all g, h ∈ G. (2)

A more compact way of stating this is that ρ̂ is a group homomorphism from the group G to the group of
isomorphisms (general linear group) GL(V) on V .

2

Published in Transactions on Machine Learning Research (12/2023)

P(V) Projective space of V , i.e., V/(F \ {0}) ΠV Projection map from V to P(V)
Hom(V,W) Space of linear maps from V to W GL(V) General linear group of V
PGL(V) Projective general linear group of V ϕ Group covering map
ρ Projective representation ρ̂ Linear representation
[n] {0, 1, . . . , n− 1} Zn Additive group of integers modulo n
Sn Permutation group of n elements An Permutations of signature 1
SO(3) Rotation group in 3D SU(2) Unitary matrices in C2,2 with determinant 1
id The identity matrix sgn The signum function on Sn.

Table 1: Symbol glossary

Figure 1: The pinhole camera model. The black dot is the center
of projection, i.e. the camera center. The red and yellow planes
represent two different image planes corresponding to two different
viewing directions of a camera at the black dot. 3D points are
projected to the image planes via their viewing rays — the straight
lines connecting them to the center of projection. 3D rotations act
on points in (say) the yellow plane in a projective manner — when
we rotate the camera from the yellow plane to the red plane, points
on the yellow plane do usually not lie on the red plane but can be
identified with points on the red plane by projection in the camera
center. E.g. the green point on the yellow plane transforms to a
point on the red plane under rotation of the camera by identifying
the point with the green line and then projecting this line to
the red plane. When working with homogeneous coordinates
in computer vision, we identify points in the image plane with
their viewing rays. Rotations act on homogeneous coordinates
through a projective representation. See also Example 2.1 and
Example 2.5.

We also assume that G is equipped with a topology, with respect to which the multiplication and the inverse
operation are continuous (that is, G is a topological group). The representations are assumed to be continuous
with respect to that topology. As we will also consider projective representations in this paper, we will refer
to ‘ordinary’ representations (2) as linear representations. Given linear representations ρ̂0 and ρ̂1 on spaces
V and W , respectively, we say that a map Φ : V →W is equivariant with respect to ρ̂0 and ρ̂1 if

ρ̂1(g)Φ(v) = Φ(ρ̂0(g)v) for all g ∈ G, v ∈ V. (3)

If in (3), ρ̂1(g) is the identity transformation for every g ∈ G, we say that ρ̂1 acts trivially and then Φ is called
invariant. Many symmetry conditions can be phrased in terms of (3), and ways to design neural networks Φ
satisfying (3) have been extensively studied for e.g. rigid motions in 2D/3D/nD (Cohen & Welling, 2016;
Weiler & Cesa, 2019; Bökman et al., 2022; Bekkers et al., 2018; Thomas et al., 2018; Cesa et al., 2021),
permutations of graph nodes (Maron et al., 2019; Zaheer et al., 2017; Qi et al., 2017) and for more general
groups G (Wood & Shawe-Taylor, 1996; Kondor & Trivedi, 2018; Cohen et al., 2020; Aronsson, 2022; Finzi
et al., 2021). The most famous example is probably the translation equivariance of CNNs (Fukushima &
Miyake, 1982; LeCun et al., 1998).

In this work, we want to study networks that are projectively in- and equivariant. To explain this notion,
let us first introduce the notation P(V) for the projective space associated to a vector space V over
a field F. That is, P(V) is the space of equivalence classes of V \ {0} under the equivalence relation
v ∼ w ⇐⇒ ∃λ ∈ F \ {0} s.t. v = λw. Furthermore, we will write ΠV for the projection that maps v ∈ V to
its equivalence class ΠV (v) ∈ P(V).
Example 2.1. The pinhole camera model is well-known and popular in computer vision (Hartley & Zisserman,
2003). We illustrate it in Figure 1. In essence, the idea is to identify a point y ∈ R2 in an image with the line
in R3 that projects to y through the pinhole camera. Mathematically, this amounts to embedding y ∈ R2

3

Published in Transactions on Machine Learning Research (12/2023)

to the 3D point x = [y, 1] ∈ R3, and then considering it as a point in P(R3). A 2D point cloud can in the
same way be identified with a set of points in homogeneous coordinates, say xi = [yi, 1] ∈ R3, i ∈ [m]. In this
manner, we can think of point-clouds X as elements of V = (R3)m. Of course, multiplying all points in X
with a scalar λ does not change the image of the points, we can regard X as only being defined modulo R,
i.e., as an element of P(V).
Example 2.2. In quantum mechanics, the state of a particle is determined via a C-valued wave-function, that
is an element ψ of some Hilbert space H, with 〈ψ,ψ〉 = 1 (Hall, 2013). Any measurable property A (modeled
through self-adjoint operators on H) of the particle is however determined through sesquilinear products
(brackets) of the form 〈ψ|Aψ〉 which is not changed when ψ is multiplied with a normalized scalar θ ∈ C.
Physical observations can hence only reveal ψ modulo such a scalar, and it should therefore be interpreted as
an element of the projective space P(H).

The benefit of projective equivariance is eminent when trying to infer a projective feature transforming in a
certain manner from projective data — think for example of inferring the center of mass of a point cloud
(which is equivariant to rigid motions) from a photo of the cloud. Motivated by these examples, we are
interested in maps that fulfil the equivariance relation (3) up to a multiplicative scalar. To formalise this
notion, let us begin by introducing some notation. PGL(V) is the projective general linear group, i.e., the set
of equivalence classes of maps A ∈ GL(V) modulo a multiplicative scalar. Note that an element M ∈ PGL(V)
defines a projective-linear map P(V)→ P(V).
Definition 2.3. A projective representation of a group G on a projective space P(V) is a group homomorphism
ρ : G→ PGL(V).

Put more concretely, a projective representation is a map associating each g ∈ G to an equivalence class ρ(g)
of invertible linear maps. ρ respects the group structure in the sense of (2) — however, only in the sense of
elements in PGL(V), i.e., up to a multiplicative scalar.
Example 2.4. The simplest form of a projective representation is a projected linear one. That is, given a linear
representation ρ̂ : G→ GL(V), we immediately obtain a projective representation through ρ = ΠGL(V) ◦ ρ̂.
Example 2.5. SO(3) acts linearly on points in R3 by multiplication with the ordinary 3×3 rotation matrices R.
The projection of this representation gives a projective representation on P(R3). This projective representation
acts on pinhole projected points x ∈ P(R3) by multiplying any vector v ∈ R3 in the equivalence class x by
the ordinary 3× 3 matrices R and interpreting the result as lying in P(R3).

Not all projective representations are projections of linear ones, as shown by the next example.
Example 2.6. (Hall, 2013) For every ` = 0, 1/2, 1, 3/2, . . . , there is a complex vector space V` of dimension
2`+ 1 on which the group SU(2) is acting by a linear representation. Together with the fact that SU(2) is
a global double cover of SO(3), this can be used to define a map ρ from SO(3) to GL(Vn`) up to a scalar,
i.e., a projective representation. For integer `, this is a projection of a linear representation of SO(3), but
for half-integers 1/2, 3/2, . . . , it is not. The parameter ` is known as the ‘spin’ of a particle in quantum
mechanics.

Given projective representations ρ0, ρ1 on P(V) and P(W), respectively, we can now state equivariance of a
map Φ : P(V)→ P(W) exactly as before in (3):

ρ1(g)Φ(v) = Φ(ρ0(g)v) for all g ∈ G, v ∈ P (V). (4)

Note that we only demand that the equality holds in P(W) and not necessarily in W , which was the case in
(3). We refer to Φ satisfying (4) as being projectively equivariant with respect to ρ0 and ρ1.

2.1 Projectively equivariant linear maps

A canonical way to construct (linearly) equivariant neural networks is to alternate equivariant activation
functions and equivariant linear layers. More concretely, if we let V0 denote the input-space, Vi, i = 1, . . . ,K−1
the intermediate spaces and VK the output space, a multilayer perceptron is a function of the form

Φ(v) = vK(v), vk+1 = σk(Akvk), k = 0, . . . ,K − 1.

4

Published in Transactions on Machine Learning Research (12/2023)

It is now clear that if Ak and σk all are equivariant, Φ will also be. This method easily generalizes to
projective equivariance: one simply needs to restrict the equivariance condition to a projective equivariance
one. In the following, we will refer to such nets as canonical.

This construction motivates the question: Which linear maps A : V → W define projectively equivariant
transformations P(V) → P(W)? If the projective representations ρ0 and ρ1 are projections of linear
representations ρ̂0 and ρ̂1 respectively, we immediately see that every equivariant A defines a projectively
equivariant transformation. These are however not the only ones—an A satisfying

Aρ̂0(g) = ε(g)ρ̂1(g)A, g ∈ G (5)

for some function ε : G → F will also suffice. For such a relation to hold for non-zero A, ε needs to be a
(continuous) group homomorphism. The set of these ε, equipped with pointwise multiplication, form the
so-called character group.
Definition 2.7. Let G be a topological group. The set of continuous group homomorphisms ε : G→ F is
called the character group of G, and is denoted G∗.
Remark 2.8. Given an ε ∈ G∗ and a linear representation ρ̂ of G, we may define a new representation ρ̂ε
through ρ̂ε(g) = ε(g)ρ̂(g). Hence, (5) means that A is linearly equivariant w.r.t. representations ρ̂0 and ρ̂ε1.

The condition (5) is surely sufficient for the map A defining a projectively equivariant linear map. In the
following, we will prove that in many important cases, it in fact also is necessary. To make our considerations
general enough to include examples like Example 2.6, we will not assume that ρ is a projection of a ρ̂, but
only that we can ‘lift’ ρ to a linear representation of a so-called covering group of G. We need the following
two definitions.
Definition 2.9. (Hall, 2015, Def. 5.36) Let G be a topological group. A group H is called a covering group
of G if there exists a group covering ϕ : H → G, i.e. a surjective continuous group homomorphism which
maps some neighbourhood of the unit element eH ∈ H to a neighbourhood of the unit element eG ∈ G
homeomorphically.
Definition 2.10. Let ρ : G→ PGL(V) be a projective representation, and H a covering group of G, with
group covering ϕ. A lift of ρ is a linear representation ρ̂ : H → GL(V) with ρ ◦ ϕ = ΠGL(V) ◦ ρ̂.
Example 2.11. If ρ : G→ PGL(V) is a projection of a linear representation ρ̂ : G→ GL(V) as in Example 2.4,
then ρ̂ is a lift of ρ (the covering group is simply G itself).
Example 2.12. The linear representations related to spin discussed in Example 2.6 are defined on SU(2),
which is a covering group of SO(3). The linear representations are lifts of the projective representations of
SO(3) discussed there.
Remark 2.13. Given a projective representation ρ of a group G, there is a canonical way of constructing
a covering group H (dependent on ρ) and linear representation ρ̂ of H which lifts ρ. This construction is
however mainly of theoretical interest, and our subsequent results will not give us much insight when this lift
is used. We discuss this further in Appendix B.7.

Let us first reformulate the equivariance problem slightly as is routinely done in the linear case (Weiler &
Cesa, 2019; Finzi et al., 2021). Given projective representations ρ0 and ρ1 on P(V) and P(W), we may define
a projective representation ρ : G→ PGL(Hom(V,W)) on the space Hom(V,W) of linear maps between V
and W , through

ρ(g)A = ρ1(g)Aρ−1
0 (g).

On the left hand side we use ρ(g) to transform A ∈ P(Hom(V,W)) to obtain a new element in P(Hom(V,W)).
On the right hand side we write this new element out explicitly—it is a composition of the three maps ρ−1

0 (g),
A and ρ1(g). Just as in the linear case, we can reformulate projective equivariance of an A ∈ Hom(V,W) as
an invariance equation under ρ.
Lemma 2.14. A linear map A : V → W is projectively equivariant if and only if A is invariant under ρ,
that is ρ(g)A = A for all g ∈ G. These equations are understood in P(Hom(V,W)).

5

Published in Transactions on Machine Learning Research (12/2023)

The proof, which in contrast to the nonlinear case necessitates a non-trivial technical effort, can be found
in the appendix. The key is that the equivariance condition for A means that any x solves the ‘eigenvalue
problem’ ρ1(g)Ax = λx,gAρ0(g)x, from which ρ(g)A = A in P(Hom(V,W)) can be deduced. The lemma
implies that we can concentrate on invariance equations

ρ(g)v = v for all g ∈ G (ProjG)

which, importantly, are understood in P(V) for some general vector space V (which covers the case V =
Hom(V,W)). With this knowledge, the main result of this section is relatively easy to show. It says that
given a lift ρ̂ of ρ, the solutions of projective invariance equations (ProjG) of ρ are exactly the ones of the
ε-linear invariance equations of ρ̂ w.r.t. the covering group H,

ρ̂(h)v = ε(h)v for all h ∈ H, (LinεH)

where ε ranges the whole of H∗. Note in particular that (Lin1
H) is nothing but the standard linear invariance

problem for ρ̂. For a given ε ∈ H∗, we denote the space of solutions to (LinεH) by Uε.
Theorem 2.15. Let G be a group and H a covering group of G with covering map ϕ. Further, let
ρ : G→ PGL(V) be a projective representation of G and ρ̂ : H → GL(V) a lift of ρ. Then, the following are
equivalent

(i) v solves (ProjG). (ii) v is the equivalence class of some x ∈ Uε, ε ∈ H∗.

Proof. To prove that (ii) ⇒ (i), note that ΠV(Mv) = ΠGL(V)(M)ΠV(v) for M ∈ GL(V) and v ∈ V. Let x
solve (LinεH). For any g ∈ G, there is a h such that ϕ(h) = g and hence

ρ(g)ΠV(x) = ρ(ϕ(h))ΠV(x) = ΠGL(V)(ρ̂(h))ΠV(x) = ΠV(ρ̂(h)x) = ΠV(ε(x)x) = ΠV(x),

meaning that the equivalence class of x solves (ProjG).

To prove that (i)⇒ (ii), let ΠV(x) be a solution of (ProjG) for some x 6= 0. ρ̂(h)x must then for all h lie in
the subspace spanned by x—in other words, there must exist a map λ : H → F with ρ̂(h)x = λ(h)x. Since
λ(h)λ(k)x = ρ̂(h)ρ̂(k)x = ρ̂(hk)x = λ(hk)x, λ must be a group homomorphism. Also, since ρ̂ is continuous,
λ must also be. That is, λ ∈ H∗, and x ∈ Uλ.

2.2 The structure of the spaces Uε

Let us study the spaces Uε. Before looking at important special cases, which will reveal the important
consequences of Theorem 2.15 discussed in the introduction, let us begin by stating two properties that hold
in general.
Proposition 2.16. (i) If V is finite dimensional and H is compact, Uε is only non-trivial if ε maps into the
unit circle.

(ii) The Uε are contained in the space UHH of solutions of the linear invariance problem

ρ̂(h)v = v for all h ∈ {H,H}, (Lin1
{H,H})

of the commutator subgroup {H,H}, i.e. the subgroup generated by commutators {h, k} = hkh−1k−1, h, k ∈ H.
If F = C, V is finite dimensional and H is compact, UHH is even the direct sum of the Uε, ε ∈ H∗.

The proofs require slightly more involved mathematical machinery than above. The idea for (i) is that the
ρ̂ in this case can be assumed unitary. The “⊆” part of (ii) is a simple calculation, whereas we for the
“direct sum” part need to utilize the simultaneous diagonalization theorem for commuting families of unitary
operators. The details are given in Appendix B.4.

We move on to discuss the structure of the spaces Uε for three relevant cases. We will make use of a few
well-known group theory results — for convenience, we give proofs of them in B.8.

The rotation group. SO(3) is a perfect group, meaning that SO(3) is equal to its commutator subgroup
{SO(3),SO(3)}. This has the consequence that SO(3)∗ only contains the trivial character 1, which trivially
shows that (ProjSO(3)) is equal to the space U1. In other words, we have the following corollary.

6

Published in Transactions on Machine Learning Research (12/2023)

Corollary 2.17. For projections of linear representations ρ̂ : SO(3)→ GL(V), (ProjSO(3)) is equivalent to
the linear equivariance problem (Lin1

SO(3))

This means that if one wants to construct a canonical projectively equivariant neural net (Example 2.1), one
either has to settle with the already available linearly equivariant ones, or construct a non-linearity that is
projectively, but not linearly equivariant. To construct such non-linearities is interesting future work, but
unrelated to the linear equivariance questions we tackle here, and hence out of the scope of this work.

The pinhole camera representation is a projection of a linear representation of SO(3). Not all projective
representations are, though —they can also be linear projections of representations of SU(2). Since SU(2)
also is perfect, there is again an equivalence, but only on the SU(2)-level. Hence, in general the projective
invariance problem for the SO(3)-representation is not necessarily equivalent to a linear equivariance problem
(Lin1

SO(3)), but always to one of the form (Lin1
SU(2)).

The permutation group. The behaviour of SO(3) is in some sense very special. More specifically, it can
be proven that if G is compact, G∗ = {1} only when G is perfect (see Section B.8). However, equivalence of
(ProjSO(3)) and(LinεH) can still occur when G∗ is not trivial.

An example of this is the permutation group Sn acting on spaces of tensors. The character group S∗n of the
permutation group contains two elements: 1 and the sign function sgn. This means that the solutions to
(ProjSn

) form two subspaces U1 and U sgn. However, in the important case of ρ being a projection of the
canonical representation ρ̂ of Sn on the tensor space (Fn)⊗k defined by (ρ̂(π)x)I = xπ−1(I) for any multi-index
I ∈ [n]k , something interesting happens: U sgn is empty for n ≥ k + 2. We prove this in Section B.5. In
particular, we can draw another interesting corollary.
Corollary 2.18. For the canonical action of Sn on V = (Fn)k for n ≥ k + 2, (ProjSn

) is equivalent to the
linear equivariance problem (Lin1

Sn
).

In more practical terms, this means that unless tensors of very high order (k ≤ n− 2) are used, we cannot
construct canonical architectures operating on tensors that are projectively, but not linearly, equivariant to
permutations without designing non-standard equivariant non-linearites.

The translation group. Z∗n is isomorphic to the set of n:th roots of unity: every root of unity ω defines a
character through εω(k) = ωk, k ∈ Zn. Furthermore, for the standard linear representation on Fn, each of
the spaces Uεω is non trivial—it contains the element defined through vk = ω−k: (ρ(`)v)k = vk−` = ω`−k =
εω(`)vk. In the case F = C, this leaves us with n linear spaces of protectively invariant elements—which are
not hard to identify as the components of the Fourier transform of v. If F = R, the number of roots of unity
depend on n — if n is odd, there are two roots {+1,−1}, but if n is even, the only root is +1. In the latter
case, we thus again have an equivalence between (ProjZn

) and (Lin1
Zn

).

3 A projectively equivariant architecture

Theorem 2.15 is mainly a result which restricts the construction of equivariant networks. Still, we can use its
message to construct a new, projectively equivariant architecture as follows. We describe the architecture as
a series of maps Vk → Vk+1 between finite-dimensional spaces Vk. Theorem 2.15 states that all projectively
equivariant linear maps V0 → V1 lie in some space Uε. Hence, for each ε ∈ H∗, we may first multiply the
input features v ∈ V0 with maps Aε0 ∈ Uε, to form new, projectively equivariant features. By subsequently
applying an equivariant non-linearity σ0 : V1 → V1, we obtain the V1-valued features

vε1 = σ0(Aε0v), Aε0 ∈W ε
0 , ε ∈ H∗. (6)

It is not hard to see that as soon as the non-linearity σ0 commutes with the elements ε(h), h ∈ H, the
features vε1 will be projectively equivariant. Note that by Proposition 2.16, since the Vi are finite dimensional
and H is compact, the values ε(g) will always lie on the unit circle. Hence, we can use tanh-nonlinearity in
the real case, or the modReLU (Arjovsky et al., 2016) in the complex-valued one.

Also note that we here get one feature for each ε ∈ H∗, so we map from V0 to a |H∗|-tuple of V1’s. Uε is however
nontrivial only for finitely many ε – this is a consequence of Proposition 2.16 and the finite-dimensionality of

7

Published in Transactions on Machine Learning Research (12/2023)

Figure 2: The structure of a three-layer projectively equivariant net for H = Z3. Z∗3 consists of three elements
of the form ε(k) = θk, where θ = 1, α, α2, α = e2πi/3—we write Z∗3 = {1, α, α2}. The features vδ are combined
with linear operators in Uγ to produce new features vε, with γ, δ, ε ∈ Z∗3. In a final step, the features of the
ε-indexed tuples are linearly combined with a ’selector’ p to yield one single output. Best viewed in color.

the Vk. Said proposition also shows that the sum of their dimensions does not exceed dim(UHH). Hence,
each tuple (Aεk)ε∈H∗ can be represented with no more than dim(UHH) ≤ dim(Vk) · dim(Vk+1) scalars.

The features vε1 can be combined with new linear maps Aγ1 , γ ∈ H∗ to form new features as follows:

vε2 = σ1

(∑
γ,δ∈H∗,γδ=ε

Aγ1v
δ
1

)
. (7)

This process can continue for k = 3, 4, . . . ,K−1 until we arrive at projectively equivariant VK -valued features.
We record that as a theorem, which we formally prove in Appendix B.

Theorem 3.1. If the σi commute with the elements ε(g), ε ∈ H∗, h ∈ H, the features vεk are projectively
equivariant.

Also, the above construction inherently produces |H∗| output features vεK ∈ VK . If we want a single output
feature, we propose to learn a ‘selection-vector’ p ∈ F|H∗|, that linearly decides which feature(s) to ‘attend’ to:

w =
∑
ε∈H∗

pεv
ε
K .

Technically, this does not yield an exactly equivariant function unless all but one entry in p is equal to zero.
Still, we believe it is a reasonable heuristic. In particular, we cannot a priori pick one of the vεK as output,
since that fixes the linear transformation behaviour of the network. For instance, choosing v1

K leads to a
linearly equivariant network, not able to capture non-trivial projective equivariance. Note also that we may
employ sparse regularization techniques to encourage sparse p, e.g. to add an `1-term to the loss. We provide
a graphical depiction of our approach for the (simple but non-trivial) case of H = Z3 in Figure 2.

3.1 Relation to earlier work

As described above, once we fix ε, (5) is a linear equivariance condition on the linear map A. Hence the
construction proposed here is equivalent to the following linear equivariance approach. For each feature
space Vk, k > 0, duplicate it |H∗| times to form a new feature space Ṽk =

⊕
ε∈H∗ Vk and select the linear

representation
⊕

ε∈H∗ ρ̂
ε to act on Ṽk. Then parametrize the neural network by linearly equivariant maps

Ṽk → Ṽk+1. Depending on the group H and the spaces Ṽk this can be done by various methods found in the
literature (Cohen & Welling, 2016; Finzi et al., 2021; Cesa et al., 2021; Weiler & Cesa, 2019). In particular,
if Uε is empty for ε 6= 1, or if there are no non-trivial ε, this construction will be exactly the same as the
standard linearly equivariant one. This is for instance always the case for H = SO(3) as explained leading up
to Corollary 2.17.

8

Published in Transactions on Machine Learning Research (12/2023)

Figure 3: Left: The group action of the example in Section 3.2. Right: Training (left) and test (right)
accuracy for the MNIST experiments. The lines report the median performance for each epoch, wheras the
errorbars depict confidence intervals of 80%.

3.2 A possible application: Class-dependent symmetries

Let us sketch a somewhat surprising setting where our projectively equivariant network can be applied:
Classification problems which exhibit class-dependent symmetries.

For clarity, let us consider a very concrete example: The problem of detecting ‘T’-shapes in natural images.
We may phrase this as learning a function pT : Rn,n → [0, 1] giving the probability that the image v ∈ Rn,n
contains a ‘T’. This probability is not changed when the image is translated, or when it is horizontally flipped.
The same is not true when flipping the image vertically—an image containing a ‘T’ will instead contain a ‘⊥’
symbol. In other words, pT(v) ≈ 1⇒ pT(vver. flip) ≈ 0. The action of the two flips, which commute, can be
modelled with the help of Klein’s Vierergroup1 Z2

2—(1, 0) corresponds to the vertical flip, and (0, 1) to the
horizontal one.

Let us write pT = p0e
qT , where p0 is some small number. If v is an image neither containing a ‘T’ or a

‘⊥’, pT(v) should be small — letting qT(v) = 0 suffices in this case. If v instead is an image containing
a ‘T’, qT(v) should be large, and qT (vver. flip) should be very small. This is satisfied by functions q with
q(vver. flip) = −q(v). Hence, qT should modulo a multiplication with −1 not change by any flip — that is,
qT should be projectively invariant. Note that ‘projectively invariant’ here a priori is too unrestrictive —
it formally means qT (vver. flip) = λqT (v) for arbitrary λ 6= 0, which any function that is non-zero for both
vver. flip and v satisfies. As we have seen, in our architecture, the scalar λ can however only be equal to ±1,
which is the behaviour we search for.

The exact same reasoning can be applied to the probability pH of an image containing a ‘H’. In this case,
however, pH — or equivalently, qH — is linearly, and therefore projectively, invariant of either flip. Put
differently, qH and qT are linearly equivariant with respect to different representations ρε, and therefore both
projectively equivariant w.r.t. the same projective representation ρ. See also Figure 3.

Now imagine training both qH and qT on a dataset containing both ‘T’:s and ‘H’:s. If we were to use
a canononical linearly equivariant architecture (with respect to a single ρε), we could not expect a good
performance. Indeed, one of the functions would necessarily not have the proper transformation behaviour.
In contrast, our architecture has the chance — through learning class-dependent selection vectors — to adapt
to the correct symmetry for the different classes.
Remark 3.2. In this particular example, since we know the symmetries of each class a-priori, we could of
course choose two different linearly equivariant architectures to learn each function. Our architecture does
however not need this assumption – it can be applied also when the symmetries of the individual classes are
not known a-priori.

As a proof of concept, we perform a toy experiment in a similar setting to the above. We will define an image
classification problem which is linearly invariant to translations, and projectively invariant to flips along the

1‘Vier’ is German for ‘four’, referring to the number of elements in the group.

9

Published in Transactions on Machine Learning Research (12/2023)

horizontal and vertical axes, i.e., the Vierergroup Z2
2. Its character group also contains four elements—the

values in (1, 0) and (0, 1) can both be either +1 or −1.

Data. We modify the MNIST dataset (LeCun et al., 1998), by adding an additional class, which we will refer
to as ‘NaN’. When an image v ∈ Rn,n is loaded, we randomly (with equal probability) either use the image as
is, flip it horizontally or flip it vertically. When flipped, the labels are changed, but differently depending
on the label: if it is either 0, 1 or 2, it stays the same. If it is 3, 4 or 5, we change the label to NaN if the
image is flipped horizontally, but else not. If it is 6 or 7, we instead change the label if the image is flipped
vertically, but else not. The labels of 8 and 9 are changed regardless which flip is applied. Note that these
rules for class assignments are completely arbitrarily chosen, and we do not use the knowledge of them when
building our model.

Models. Since we operate on images, we build a linearly translation-equivariant architecture by choosing
layers in the space of 3× 3-convolutional layers. We create ViererNet—a four-layer projectively equivariant
network according to the procedure described in this section—and a four-layer baseline CNN with comparable
number of parameters. Details about the models can be found in Appendix D.

Results. We train 30 models of each type. The evolution of the test and training accuracy is depicted in
Figure 3, along with confidence intervals containing 80% of the runs. We clearly see that the ViererNet is both
better at fitting the data, and is more stable and requires shorter training to generalize to the test-data. To
give a quantitative comparison, we for each model determine which epoch gives the best median performance
on the test data. The ViererNet then achieves a median accuracy of 92.8%, whereas the baseline only achieves
90.2%. We subsequently use those epochs to test the hypothesis that the ViererNet outperforms the baseline.
Indeed, the performance difference is significant (p < 0.025).

In Appendix D, similar modifications of the CIFAR10 dataset are considered. This dataset is less suited for
this experiment (since one of the flips often leads to a plausible CIFAR10-image), and the results are less
clear: The baseline outperforms the ViererNet slightly, but not significantly so. To some extent, the trend
that the ViererNet requires less training to generalize persists.

4 Generalizing Tensor Field Networks to projective representations of SO(3)

In this section we consider a regression task on point clouds. The task is equivariant under a projective
representation of SO(3) corresponding to a linear representation of SU(2) as was briefly described in
Example 2.6. We give an introduction to the representation theory of SU(2) in Appendix C. In short, SU(2)
has a 2`+ 1 dimensional irreducible representation for each ` = 0, 1/2, 1, 3/2, The vector spaces these
representations act on are isomorphic to C2`+1 and we denote them by V`.

Our main result (Theorem 2.15) and the discussion in Section 2.2 show that we for projective SO(3)
equivariance could build a net using linearly SU(2) equivariant layers. We will here use linear layers of the
tensor product type used in Tensor Field Networks (TFNs) (Thomas et al., 2018) and many subsequent
works (Geiger & Smidt, 2022; Brandstetter et al., 2021). The filters and features are then functions on R3,
and the resulting construction hence deviates slightly from our theoretical results – see Appendix C – but we
think that generalizing this canonical approach for point cloud processing networks to projective equivariance
is of high relevance to the paper.

Data. The data in the experiment consists of point clouds equipped with spinor features and regression
targets that are spinors. By spinors we mean elements of V1/2. That is, one data sample is given by
({(xi, si)}ni=1, t) where xi ∈ R3 are the 3D positions of the points, si ∈ V1/2 ∼ C2 are the attached spinor
features and t ∈ V1/2 is the regression target. We define an action of SO(3) on these samples by

R · ({(xi, si)}ni=1, t) := ({(Rxi, U(R)si)}ni=1, U(R)t) . (8)

Here U(R) is an element of SU(2) that corresponds to R. We note that since SU(2) double covers SO(3),
U(R) is only defined up to sign. Hence, si and t can be thought of as R-projective, and the action of SO(3)
on them as a projective representation.

10

Published in Transactions on Machine Learning Research (12/2023)

Figure 4: Data used for the regression task with SO(3)-equivariance. We define four classes, each class being
a point cloud with three points in 3D. To each 3D point we attach a spinor feature s ∈ C2. These spinor
features are plotted inside the frames next to each 3D point, the frames and points are color coded. Re(s) is
plotted in red and Im(s) in blue. For every class a different spinor should be regressed, which is shown in the
black frame. Top: The four classes. They are defined such that if one looks only at the spatial locations
of the points, the first and third classes are equivalent as are the second and fourth. If one instead looks
only at the spinor features, the first and second classes are equivalent as are the third and fourth. A network
that regresses the output spinor correctly for all classes must take into account both the locations and the
spinor features of each point. Bottom: The regression should be equivariant under rotations of the point
clouds. When a point cloud is rotated by R ∈ SO(3), the spinor features and labels are transformed by a
corresponding matrix U(R) ∈ SU(2). A random rotation of the leftmost point cloud is shown in the center
column. Given a rotation R, the corresponding U(R) is however only defined up to sign. E.g., the identity
rotation corresponds to both the identity matrix I ∈ SU(2) and −I. The rightmost column illustrates a
correct regression even though all spinor input features have been multiplied by −I, while the output spinor
has not.

The task is to regress the target in a way that is equivariant to (8) and invariant to translations of the point
clouds. The data is defined by four prototype samples that are shown in Figure 4. To make the task more
difficult we also add Gaussian noise to the spatial coordinates xi, varying the noise level (i.e., std.) from
0 to 2/5. During training, a network sees only the four prototypes + noise, while evaluation is done on
rotated prototypes + noise. According to Theorem 2.15, and the discussion regarding the rotation group in
Section 2.2, the projectively SO(3)-equivariant network architectures are in this case exactly the standard
linearly SU(2)-equivariant networks. We illustrate the data and how it transforms under SO(3) in Figure 4.

Models. We will tackle the problem by building an equivariant net in the spirit of Tensor Field Networks
(TFNs) (Thomas et al., 2018). Let us first recall how TFNs work. Our data are point clouds {xi}ni=1 in R3

with features fi in some vector space V attached to each point, on which SO(3) is acting through ρ̂V . We
map the inputs to point clouds with features f ′i in some vector space W (on which SO(3) acts through ρ̂W)
via convolution with a filter function Ψ : R3 → Hom(W,V) through

f ′i =
∑
j 6=i

Ψ(xj − xi)fj . (9)

Provided the filter Ψ satisfies the invariance condition Ψ(Rx) = ρ̂W (R)Ψ(x)ρ̂V (R)−1, R ∈ SO(3), this
defines a layer invariant to translations and rotations of R3, and the SO(3)-action on V and W . We could
make an ansatz of Ψ as a member of some finite-dimensional space of functions R3 → Hom(V,W), and
then resolve this invariance condition directly using our theory. However, the resulting arcitecture would be
numerically heavy to implement. We have therefore instead used the idea of TFNs.

The idea of a TFN is to define Ψ using a tensor product, Ψ(x)v = ψ(x)⊗ v, v ∈ V . Here, ψ(x) lives in some
third vector space U , and satisfies the condition ψ(Rx) = ρU (R)ψ(x), R ∈ SO(3). Ψ maps equivariantly into
the space W = U ⊗ V , which can be decomposed into spaces isomorphic to the irreps V0,V1,V2, . . . of the

11

Published in Transactions on Machine Learning Research (12/2023)

Figure 5: Results of the spinor regression experiments for varying
architectures and spatial noise levels. We plot the mean over 30
runs, showing the standard deviation with errorbars.

action of SO(3). In this manner, we may transform features in different irreps into new ones living in other
irreps. For instance, if we combine features and filters living in the space V1 ∼ R3 (i.e., vectors), we end up
with one scalar component V0, one vector component in V1 and a traceless symmetric 3× 3-matrix component
in V2. The higher order component V2 can be discarded to keep the feature dimensions low. Another type of
layer are self-interaction layers where features of the same irrep at each point are linearly combined using
learnt weight matrices.

The idea of our approach is now to let U and V be spaces on which SU(2) is acting, i.e., also consider features
and vectors of half-integer spin. We limit ourselves to ` = 0, 1/2 and 1, i.e., scalars, spinors and vectors,
and call the resulting nets Spinor Field Networks. The hyperparameter choices for a Spinor Field Network
in our implementation are the number of scalar, spinor and vector features output by each layer. We use
sigmoid-gated nonlinearities (Weiler et al., 2018) for non-scalar features and GeLU for scalar features.

We consider in total five different models. (i) Spinors as scalars. A non-equivariant baseline TFN that treats
input and output spinors as four real scalars. It has the correct equivariance for the 3D structure of the
locations but not for the spinors. (ii) Spinors as features. An SU(2)-equivariant net as described above, with
intermediate scalar,vector and spinor features. (iii) Spinors squared as vector features. Prior to the first layer,
we tensor square the spinor features si 7→ si ⊗ si and extract a vector feature at each point, which we then
process SO(3)-equivariantly. This allows the network to only use real valued (scalar and vector) features in
the intermediate layers, which is likely an advantage in most modern machine learning frameworks (including
PyTorch which we use). In the last layer, the scalar and vector features are tensored with the input spinors
to produce an output spinor.

The last network types have filters that consist of not only V` valued functions, but also the input spinors
themselves. That is, we define layers f ′i =

∑
j 6=i(ψ(xj − xi)⊕ sj)⊗ fj . This could be generalized to tensor

spherical harmonics valued filters which we explain in C.1. We consider two such types: (vi) Spinors as
filters works as just described. (v) Spinors squared as vector filters analogously defines vector valued filters
by tensor squaring the input spinors as in the Spinors squared as vector features case. This again allows for a
mostly real valued network.

Each network consists of three layers and the hyperparameters are chosen to make the number of parameters
approximately equal between all networks. In all networks the input feature at a location xi consists of the
average of the vectors xi − xj for j 6= i and for all except the two last networks also the spinor feature si
(interpreted as either 4 scalars, a spinor or a vector after squaring). The final output is the mean of the
features at each input location, meaning that the last layer maps to a single spinor feature—except in the
non-equivariant variant in which the last layer maps to 4 scalar features. We describe the training setup and
further details in Appendix C.2.

Results. All networks are trained on just the four point clouds shown in the left part of Figure 4 (plus
added spatial noise), except one version of the non-equivariant net which is trained on randomly rotated
versions of these four point clouds as data augmentation. The evaluation is always on randomly rotated
versions of the data. We present results in Figure 5. Notably, the networks that tensor square the spinors
before the first layer to then work on real-valued data until the last layer perform the best. At low noise
levels, the networks that work directly on complex-valued spinors also perform well, but their performance

12

Published in Transactions on Machine Learning Research (12/2023)

degrades quickly with added noise. The network without correct equivariance unsurprisingly performs quite
poorly with, and extremely poorly without, data augmentation. The networks with filters defined using the
input spinors outperform the networks where the inputs are only fed in once at the start of the network. This
is likely due to the fact that inserting the inputs in each layer makes the learning easier for the network.

5 Conclusion

In this paper, we theoretically studied the relation between projective and linear equivariance for neural
network linear layers revealed that our proposed approach is the most general one. We in particular found
examples (including SO(3), or rather SU(2)) for which the two problems are, somewhat surprisingly, equivalent.
Building on the knowledge of the structure of the set of projectively equivariant layers our main result gave us,
we proposed a neural network model for capturing projective equivariance, and tested it on a toy task with
class-dependent symmetries. Finally, we experimentally evaluated the merit of using projective equivariance
for tasks involving spinor-valued features.

Acknowledgement

All authors were supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation. The computations were enabled by resources provided
by the National Academic Infrastructure for Supercomputing in Sweden (NAISS) and the Swedish National
Infrastructure for Computing (SNIC) at C3Se Chalmers, partially funded by the Swedish Research Council
through grant agreements no. 2022-06725 and no. 2018-05973.

References
Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International conference on machine learning, pp. 1120–1128. PMLR, 2016.

Jimmy Aronsson. Homogeneous vector bundles and g-equivariant convolutional neural networks. Sampling
Theory, Signal Processing, and Data Analysis, 20(2):10, 2022.

Erik J. Bekkers, Maxime W. Lafarge, Mitko Veta, Koen AJ Eppenhof, Josien PW Pluim, and Remco Duits.
Roto-Translation Covariant Convolutional Networks for Medical Image Analysis. arXiv:1804.03393 [cs,
math], June 2018. URL http://arxiv.org/abs/1804.03393. arXiv: 1804.03393.

L. C. Biedenharn and James D. Louck. Angular Momentum in Quantum Physics: Theory and Application.
Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1984. ISBN
978-0-521-30228-9. doi: 10.1017/CBO9780511759888.

Georg Bökman and Fredrik Kahl. A case for using rotation invariant features in state of the art feature
matchers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5110–5119, 2022.

Georg Bökman and Fredrik Kahl. Investigating how ReLU-networks encode symmetries. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
8lbFwpebeu.

Georg Bökman, Fredrik Kahl, and Axel Flinth. Zz-net: A universal rotation equivariant architecture for 2d
point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10976–10985, 2022.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Geometric and
physical quantities improve e (3) equivariant message passing. arXiv preprint arXiv:2110.02905, 2021.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep Learning: Grids,
Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478 [cs, stat], May 2021. URL http://arxiv.org/
abs/2104.13478. arXiv: 2104.13478.

13

http://arxiv.org/abs/1804.03393
https://openreview.net/forum?id=8lbFwpebeu
https://openreview.net/forum?id=8lbFwpebeu
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478

Published in Transactions on Machine Learning Research (12/2023)

Gabriele Cesa, Leon Lang, and Maurice Weiler. A Program to Build E(N)-Equivariant Steerable CNNs.
ICLR, September 2021. URL https://openreview.net/forum?id=WE4qe9xlnQw.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference on
machine learning, pp. 2990–2999. PMLR, 2016.

Taco Cohen, Mario Geiger, and Maurice Weiler. A General Theory of Equivariant CNNs on Homogeneous
Spaces. arXiv:1811.02017 [cs, stat], January 2020. URL http://arxiv.org/abs/1811.02017. arXiv:
1811.02017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

Marc Finzi, Max Welling, and Andrew Gordon Wilson. A practical method for constructing equivariant
multilayer perceptrons for arbitrary matrix groups. In Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 3318–3328. PMLR, 2021. URL https://proceedings.mlr.press/v139/finzi21a.html.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model for a mechanism
of visual pattern recognition. In Competition and cooperation in neural nets, pp. 267–285. Springer, 1982.

Mario Geiger and Tess Smidt. e3nn: Euclidean neural networks. arXiv preprint arXiv:2207.09453, 2022.

Jan E. Gerken, Jimmy Aronsson, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson, Christoffer Petersson,
and Daniel Persson. Geometric Deep Learning and Equivariant Neural Networks. arXiv:2105.13926 [hep-th],
May 2021. URL http://arxiv.org/abs/2105.13926. arXiv: 2105.13926.

Brian C. Hall. Quantum Theory for Mathematicians. Graduate Texts in Mathematics. Springer, 2013.

Brian C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, pp. 49–76.
Springer International Publishing, Cham, 2015. ISBN 978-3-319-13467-3. URL https://arxiv.org/pdf/
math-ph/0005032.pdf.

Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cambridge University
Press, Cambridge, UK ; New York, 2nd ed edition, 2003. ISBN 978-0-521-54051-3.

Takeshi Hirai, Akihito Hora, and Etsuko Hirai. Introductory expositions on projective representations of
groups. In Projective Representations and Spin Characters of Complex Reflection Groups G(m, p, n) and
G(m, p,∞), volume 29, pp. 1–48. Mathematical Society of Japan, 2013.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon
A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,
Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger,
Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W.
Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure
prediction with AlphaFold. Nature, July 2021. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-021-03819-2.
URL http://www.nature.com/articles/s41586-021-03819-2.

Aleksandr A Kirillov. Elements of the Theory of Representations, volume 220. Springer Science & Business
Media, 2012.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural networks
to the action of compact groups. In International Conference on Machine Learning, pp. 2747–2755. PMLR,
2018.

14

https://openreview.net/forum?id=WE4qe9xlnQw
http://arxiv.org/abs/1811.02017
https://aclanthology.org/N19-1423
https://proceedings.mlr.press/v139/finzi21a.html
http://arxiv.org/abs/2105.13926
https://arxiv.org/pdf/math-ph/0005032.pdf
https://arxiv.org/pdf/math-ph/0005032.pdf
http://www.nature.com/articles/s41586-021-03819-2

Published in Transactions on Machine Learning Research (12/2023)

Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch–gordan nets: a fully fourier space spherical
convolutional neural network. Advances in Neural Information Processing Systems, 31, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Gregory T. Lee. Abstract Algebra - a first course. Springer Undergraduate Mathematics Series. Springer,
2018.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph networks.
In International Conference on Learning Representations, 2019.

Oystein Ore. Some remarks on commutators. Proceedings of the American Mathematical Society, 2(2):
307–314, 1951.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 652–660, 2017.

Walter Rudin. Fourier Analysis on Groups. Interscience publishers, 1962.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley. Tensor
field networks: Rotation- and translation-equivariant neural networks for 3D point clouds. arXiv:1802.08219
[cs], May 2018. URL http://arxiv.org/abs/1802.08219. arXiv: 1802.08219.

Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/
2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen. 3D Steerable CNNs:
Learning Rotationally Equivariant Features in Volumetric Data. Advances in Neural Information Processing
Systems, 31, 2018.

Jeffrey Wood and John Shawe-Taylor. Representation theory and invariant neural networks. Discrete
Applied Mathematics, 69(1-2):33–60, August 1996. ISSN 0166218X. doi: 10/c3qmr6. URL https:
//linkinghub.elsevier.com/retrieve/pii/0166218X95000753.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep Sets. Advances in neural information processing systems, 30, 2017.

A. Zee. Group Theory in a Nutshell for Physicists. In a Nutshell. Princeton University Press, 2016. ISBN
978-0-691-16269-0.

15

http://arxiv.org/abs/1802.08219
https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/45d6637b718d0f24a237069fe41b0db4-Paper.pdf
https://linkinghub.elsevier.com/retrieve/pii/0166218X95000753
https://linkinghub.elsevier.com/retrieve/pii/0166218X95000753

Published in Transactions on Machine Learning Research (12/2023)

A Technical definitions

Table 1 contains a symbol glossary for various symbols used in this work. The remainder of this section
contains definitions used in the text, in particular a few that did not have room in the main text, compiled
for the convenience of the reader.
Definition A.1 (Group homomorphism). Given two groups G,H, a group homomorphism from G to H is
a map a : G→ H that respects the group structure, i.e., such that a(g1g2) = a(g1)a(g2) for all g1, g2 in G.
Definition A.2. Given a vector space V over a field F, P(V) is the corresponding projective space consisting
of equivalence classes under the relation

v ∼ w ⇐⇒ v = λw for some λ 6= 0 (10)

Definition A.3 (General linear group, Projective linear group). The general linear group GL(V) of a vector
space V is the group of all invertible linear maps from V to itself. The set of equivalence classes of GL(V)
under the equivalence relation A ∼ B ⇐⇒ A = λ ·B for a λ ∈ F\{0} is the projective linear group PGL(V).
Definition A.4 (Linear representation). A linear representation of a group G on a vector space V is a group
homomorphism ρ̂ : G→ GL(V).
Definition A.5 (Projective representation). A projective representation of a group G on a projective space
space P(V) is a group homomorphism ρ : G→ PGL(V).
Definition A.6 (Linear (projective) equivariance). Let V and W be vector spaces equipped with linear
(projective) representations %V and %W . A linear map A ∈ Hom(V,W) is then linearly (projectively)
equivariant if

A%V (g)v = %W (g)Av, g ∈ G, v ∈ V

as elements in W (in P(W)).
Definition A.7 (Topological group). A topological group is a set G that is simultaneously a topological
space and a group such that

1. The group operation is continuous w.r.t. the topology.

2. The inversion map g 7→ g−1 is continuous w.r.t. the topology.

Definition A.8 (Homeomorphism). A homeomorphism is an invertible, continuous map between two
topological spaces whose inverse is also continuous. A function maps a set homeomorphically if the restriction
of the function to that set is a homeomorphism.
Definition A.9 (Character group). Let G be a topological group. The set of continuous group homomor-
phisms ε : G→ F is called the character group of G, and is denoted G∗.
Definition A.10 (Covering group). Let G be a topological group. A group H is called a covering group
of G if there exists a group covering ϕ : H → G, i.e. a surjective continuous group homomorphism which
maps some neighbourhood of the unit element eH ∈ H to a neighborhood of the unit element eG ∈ G
homeomorphically.
Definition A.11 (Lift of a projective representation). Let ρ : G→ PGL(V) be a projective representation,
and H a covering group of G, with group covering ϕ. A lift of ρ is a linear representation ρ̂ : H → GL(V)
with ρ ◦ ϕ = ΠGL(V) ◦ ρ̂.
Definition A.12 (Tensor product of finite dimensional vector spaces). Given two vector spaces U with basis
{ui}ni=1 and V with basis {vi}mi=1, their tensor product U ⊗ V is a vector space with one basis vector for each
pair (ui, vj) of one basis vector from U and one from V . The basis vectors of U ⊗ V are typically denoted
{ui ⊗ vj}n,mi=1,j=1.
Definition A.13 (Tensor product of vectors). The tensor product of an element u =

∑
i αiui in U and an

element v =
∑
j βjvj in V is the element u ⊗ v =

∑
i,j αiβjui ⊗ vj of U ⊗ V . This defines a bilinear map

(u, v) 7→ u⊗ v.

16

Published in Transactions on Machine Learning Research (12/2023)

Definition A.14 (Tensor power). The tensor power U⊗k is simply the tensor product of U with itself k
times.
Definition A.15 (Irreducability). A linear representation ρ̂ : G→ GL(V) is called irreducible if there is no
subspace U /∈ {{0}, V } which is invariant under all ρ̂(g), g ∈ G.

B Omitted proofs

In this section, we collect some further proofs we left out in the main text.

B.1 Induced projected representations

We begin, for completeness, by remarking and proving a small statement that we use implicitly throughout
the entire article.
Proposition B.1. Let G be a group, V and W vector spaces, ρ̂V and ρ̂W linear representations of G on
V and W , respectively, and ρV and ρW their corresponding projected representations. Then, the induced
projective representation ρ on Hom(V,W)

ρ(g)A = ρW (g) ◦A ◦ ρV (g)−1

is the projection of the corresponding induced linear projection

ρ̂(g)A = ρ̂W (g) ◦A ◦ ρ̂V (g)−1.

Proof. What we need to prove is that if M is equivalent to ρ̂W (g) and N is equivalent to ρ̂V (g), the linear
map

RMN : Hom(V,W)→ Hom(V,W), A 7→MAN−1

is equivalent to ρ̂(g). However, the stated equivalences mean that M = λρ̂W (g) and N = µρ̂V (g) for some
non-zero µ, λ. This in turn shows that

RMN (A) = λρ̂W (g)A(µρ̂V (g))−1 = λµ−1ρ̂(g)A,

i.e., that RMN is equivalent to ρ̂(g). The claim has been proven.

B.2 Theorem 3.1

Proof of Theorem 3.1. We will prove that

vεk(ρ̂0(g)) = ε(g)ρ̂k(g)vεk(v)

for g ∈ G, v ∈ V for all k. This in particular means vεk(ρ̂0(g)) = ρ̂k(g)vεk(v) as elements in P(Vk), which is to
be proven.

We proceed with induction starting with k = 1. We have for g ∈ G and ε ∈ G∗ arbitrary

vε1(ρ̂0(g)v) = σ0(ρ̂1(g)ρ̂1(g)−1Aε0ρ̂0(g)v) (5)= ρ̂1(h)σ0(ε(g)Aε0v) = ε(g)ρ̂1(g)vε1(v),

where we in the final step used our assumption on σ0.

To prove the induction step k → k + 1, let us first concentrate on each expression Aγkvδk in (7). Due to the
induction assumption, we have vδk(ρ̂0(g)v) = δ(g)ρ̂k(g)vδ1(g) for g ∈ G, δ ∈ G∗. Consequently

Aγkv
δ
k(ρ̂0(g)v) = δ(g)Aγk ρ̂k(g)vδ1(v) = δ1(t)ρ̂k+1(g)ρ̂k+1(g)−1Aγk ρ̂k(h)vδ1(v)

(5)= δ(g)γ(g)ρ̂k+1(g)Aγkv
δ
1(v)

Summing over all γ, δ ∈ G∗ with γ · δ = ε yields a feature that transforms the claimed way. This is not
changed through an application of the equivariant σk – since it by assumption commutes with ε(g). The
claim has been proven.

17

Published in Transactions on Machine Learning Research (12/2023)

B.3 Lemma 2.14

Proof of Lemma 2.14. Equivariance of the map A means that for all g ∈ G and v ∈ P(V), we have ρ1(g)Av =
Aρ0(g)v. Since all ρ0(g) are invertible, this is equivalent to

ρ1(g)Aρ0(g)−1v = Av for all v ∈ V .

Now, the above equality is not an equality of elements in W , but rather of elements in P(W). That is, it says
that all vectors v ∈ V are solutions of the generalized eigenvalue problem ρ1(g)Aρ0(g)−1v = λAv. The aim is
to show that this implies that ρ1(g)Aρ0(g)−1 = λA for some λ ∈ F. To show this, we proceed in two steps.

Claim Let M ∈ GL(V). If every vector v ∈ V is an eigenvector of M , M is a multiple of the identity.

Proof Suppose not. Then, since all vectors are eigenvectors, there exists v 6= w 6= 0 and λ 6= µ with
Mv = λv, Mw = µv. Now, again since all vectors are eigenvectors of M , there must exist a third scalar σ
with M(v + w) = σ(v + w). Now,

σ(v + w) = M(v + w) = Mv +Mw = λv + µw ⇐⇒ (σ − µ)w = (µ− σ)v.

Now, the final equation can only be true if λ− µ = µ− σ = 0, i.e., λ = σ = µ, which is a contradiction.

Claim Let E,F ∈ Hom(V,W). If every v ∈ V is a solution of the generalized eigenvalue problem Ev = λFv,
E is a multiple of F .

Proof First, E restricted to kerF must be the zero map, since for all v ∈ kerF , Ev = λFv = λ · 0 = 0.
Secondly, F ◦ : kerF⊥ → ranF is an isomorphism, so that the generalized eigenvalue problem of Ev = λFv
on kerF⊥ is equivalent to the eigenvalue problem of E(F ◦)−1 : ranF → ranF . By the previous claim,
E(F ◦)−1 = λ id for some λ ∈ F , i.e., E = λF ◦ on kerF⊥. Since both E and F additionally are equal to the
zero map on kerF , the relation E = λF remains true also there. The claim has been proven.

B.4 Proposition 2.16

Proof of Proposition 2.16. Ad (i) : If V is finite-dimensional and H is compact, it is well known that we
(by modifying the inner product on V) may assume that ρ̂ is unitary—for convenience, a proof is given
in Section B.8. This means that |v| = |ρ̂(g)v| for all h ∈ H. If now v ∈ Uε is non trivial, we have
0 6= |v| = |ρ̂(h)v| = |ε(h)v|, i.e., |ε(h)| = 1 for all h ∈ H.

Ad (ii): Let ε ∈ H∗, x ∈ Uε k, h ∈ H be arbitrary. Then

ρ̂({k, h})x = ρ̂(k)ρ̂(h)ρ̂(k)−1ρ̂(h)−1x = ε(k)ε(h)ε(k)−1ε(h)−1x = x.

Since ρ̂ is a group isomorphism, this relation extends to ρ̂(`)x = x for all ` ∈ {H,H}. This proves the first
part.

To prove the second claim, we will show that the operators ρ̂(h), h ∈ H restricted to UHH are commuting
operators UHH → UHH . Since we are in the case F = C, and we WLOG can assume that they are unitary,
this means that they are simultaneously diagonalizable, i.e.,

ρ̂(h)xi = λi(h)xi,

for some basis xi of UHH and ’eigenvalue functions’ λi : H → C. With the exact same argument as in the
proof of the main theorem, we show that λi ∈ H∗. Hence, the xi are elements of subspaces Uε, which shows
that UHH ⊆ span(Uε, ε ∈ H∗). Since the other inclusion holds in general by what we just proved, the claim
follows.

So let us prove that the ρ̂(h) are commuting operators UHH → UHH . Both of this follows from the following
equality:

ρ̂(k)ρ̂(h) = ρ̂(kh) = ρ̂(khk−1h−1hk) = ρ̂(h)ρ̂(k)ρ̂({k−1, h−1}).

18

Published in Transactions on Machine Learning Research (12/2023)

To show that ρ̂(h) are operators UHH → UHH , we may now argue that x ∈ UHH , and k ∈ {H,H} and h ∈ H
are arbitrary, it follows

ρ̂(k)ρ̂(h)x = ρ̂(h)ρ̂(k)ρ̂({k−1, h−1})x x∈UHH= ρ̂(h)x

which means that ρ̂(h)x ∈ UHH . To prove that the maps commute on UHH is even easier: for x ∈ UHH and
k, h ∈ H arbitrary, we immediately deduce

ρ̂(k)ρ̂(h)x = ρ̂(h)ρ̂(k)ρ̂({k−1, h−1})x = ρ̂(h)ρ̂(k)x.

The proof is finished.

B.5 U sgn for the standard action on (Fn)⊗k

Proposition B.2. Let ρ̂ be the standard representation of Sn on (Fn)⊗k. For n ≥ k + 2, Uε is nontrivial
only for ε = 1. The bound is tight.

Proof. Let T ∈ (Fn)⊗k be an element of U sgn, and let I = (i0, . . . , ik−1) be an arbitrary k-index. Since
n ≥ k + 2, there are at least two elements (i, j) /∈ {(i0, . . . , ik−1)}. Consider the transposition τ of i and j.
Then, τ(i`) = i`, ` ∈ [k], and sgn(τ) = −1. Consequently,

TI = Tτ(I) = (ρ̂(τ)T)I = sgn(τ)TI = −TI ,

since T was in U sgn. Consequently, TI = 0. Since I was arbitrary, T must be trivial, and first part of the
claim follows.

To show that the bound is tight, it is enough to construct a non-zero element in (Fk+1)⊗k ∩ U sgn. Let
I0 = (0, 1, 2, . . . , k) ∈ [k + 1]k. For each multi-index I, there are either multiple indices in I, or there exists
a unique permutation πI ∈ Sn+1 so that I = π−1

I (I0). Due to the uniqueness, it is not hard to show that
πσ−1(I) = πI ◦ σ, σ ∈ Sn. Let us now define a tensor S through

SI =
{

0 if I contains multiple indices
sgn(πI) else.

We claim that S is the sought element. To show this, let I ∈ [k + 1]k and σ ∈ Sn be arbitrary. We have

(ρ̂(σ)S)I = Sσ−1(I)

Now, if I contains multiple indices, σ−1(I) must also, so Sσ−1(I) = 0, and (ρ̂(σ)S)I = 0 for such indices. If I
does not contain multiple indices, we deduce

Sσ−1(I) = sgn(πσ−1(I)) = sgn(πI ◦ σ) = sgn(πI)sgn(σ) = sgn(σ)SI .

Since I was arbitrary, we have shown that ρ̂(σ)S = sgn(σ)S, which was the claim.

Remark B.3. In an earlier version of the manuscript, we proved the above proposition in a different, arguably
more clumsy, manner. Since it provides a nice connection to the results in (Maron et al., 2019), we include a
sketch of that argument also here.

First, we realise that U sgn being trivial is the same as to say that (ProjSn
) is equivalent to the linear invariance

problem (Lin1
Sn

). The solutions of the latter are surely included in the former (by e.g. Theorem 2.15)
However, Proposition 2.16(ii) also tells us that the solutions of (ProjSn

) are included in the solution space of
(Lin1

{Sn,Sn}). The commutator {Sn, Sn} is the alternating group An, i.e., the group of permutations of sign 1
(see Section B.8). Now, the linear invariance problem (Lin1

An
) was treated in (Maron et al., 2019)—it was

shown that for n ≥ k + 2, the set of solutions of (Lin1
An

) is exactly equal to the one of (Lin1
Sn

) (in fact, the
proof of that builds on the same idea as our proof of Proposition B.2). Hence, we conclude

Sol. of (Lin1
Sn

) ⊆ Sol. of (ProjSn
) ⊆ Sol. of (Lin1

{Sn,Sn}) = Sol. of (Lin1
An

) = Sol. of (Lin1
Sn

).

19

Published in Transactions on Machine Learning Research (12/2023)

Figure 6: The bases for the spaces Uε for the action of Z2
2 on the space C of 3× 3 filters.

B.6 The Vierergroup

Let us begin by describing the character group of Z2
2. Z2 is an abelian group generated by two elements, (1, 0)

and (0, 1). Any group homomorphism ε is hence uniquely determined by its values ε((1, 0)) and ε((0, 1)).
Since (1, 0) + (1, 0) = 0 = (0, 1) + (0, 1), the values must be square roots of one, i.e., either +1 or −1. Hence,
Z∗n contains four elements ε++, ε+−, ε−+, ε−−, defined through the following table:

(Z2
2)∗ \ Z2

2 (0, 0) (1, 0) (0, 1) (1, 1)
ε++ 1 1 1 1
ε+− 1 1 −1 −1
ε−+ 1 −1 1 −1
ε−− 1 −1 −1 1

The appearance of the spaces Uε will depend on ρ̂. They are however simple to compute—given a vector
v ∈ V and an ε ∈ (Z2

2)∗, the element

vε =
∑
h∈Z2

2

ε(h)−1ρ̂(h)v

is in Uε2

ρ̂(k)vε =
∑
h∈Z2

2

ε(h)−1ρ̂(kh)v = dkh = `e =
∑
`∈Z2

2

ε(k−1`)−1ρ̂(`)v = ε(k)vε.

Consequently, given any basis of V , we may construct a spanning set of Uε via calculating the above vector for
each basis vector, and subsequently extract a basis. Applying this strategy to the example of the Vierergroup
acting through flipping on the spaces of 3× 3 convolutional filters yields the bases depicted in Figure 6.

B.7 A (not very useful) canonical lifting procedure

A natural question is whether every projective representation ρ can be lifted to a linear one. In fact, this can
be done, if one allows the group H to depend on ρ.
Definition B.4. Let ρ : G→ PGL(V) be a projective representation. We define

Hρ = {(g,A) |A ∈ ρ(g)} ⊆ G×GL(V).
2This strategy is generally applicable. It will be quite inefficient if the group has many elements, though.

20

Published in Transactions on Machine Learning Research (12/2023)

Proposition B.5. Hρ is a subgroup of G×GL(V), and a covering group of G. The covering map is given by

ϕ(g,A) = g.

Proof. The subgroup property follows from the fact that ρ is a projective representation – if (g,A), (h,B) is
in Hρ, it per definition means that A ∈ ρ(g) and B ∈ ρ(h). However, then

AB ∈ ρ(g)ρ(h) = ρ(gh),

i.e. (g,A) · (h,B) = (gh,AB) ∈ Hρ.

That ϕ is continuous, surjective and maps a neighbourhood of the identity (e, id) ∈ Hρ homeomorphically to
a neighbourhood of e in G is clear. Likewise clear is that ϕ is a group homomorphism:

ϕ((g,A) · (h,B)) = ϕ((gh,AB)) = gh = ϕ(g,A)ϕ(g,B).

We can now lift ρ to a representation ρ̂ on Hρ as follows:

ρ̂ : Hρ → GL(V), (g,A)→ A.

Indeed,

ρ̂(g,A) = A ∈ ρ(g) = ρ(ϕ(g,A)),

which is the same as saying that ρ ◦ ϕ = ΠGL(V) ◦ ρ̂

It is now however important to note that although this construction is theoretically pleasing, using it in
conjunction with Proposition 2.15 does not give much additional insight. Said proposition states that v solves
(ProjG) if and only if it is the equivalence class of some x ∈ Uε for some ε ∈ H∗ρ . However, x being in Uε
means that

Ax = ρ̂((g,A))x = ε(g,A)x (11)

for every g ∈ G and A ∈ ρ(g) – that is, for every A in the equivalence class of g, Ax is equal to x times some
constant that may depend on both A and g, which is just a reformulation of (ProjG).

For more information about this canonical lift we refer to the textbook (Kirillov, 2012) and the historical
exposition (Hirai et al., 2013). The cases where it becomes useful is when Hρ is a known group with known
representations and in particular when Hρ = H is independent of ρ. This is the case for instance for the lift
of representations of SO(n) to SU(n).

B.8 Group theoretic facts

Here we, out of convenience for the reader, present proofs of some well-known group theoretical facts.
Lemma B.6. Let H be a compact group and ρ̂ a representation of H on a finite-dimensional space V . Then
there exist an scalar product on V with respect to which all ρ̂(h), h ∈ H, are unitary.

Proof. Since H is compact, there exists a unique normalized Haar measure µ on H. That is, µ is a measure
with the property that µ(h−1A) = µ(A) for all h ∈ H and Borel measureable A ⊆ H. Given any scalar
product 〈 · , · 〉 on V , we may now define

〈v, w〉H =
∫
H

〈ρ̂(h)v, ρ̂(h)w〉dµ(h).

This is a well-defined expression due to V being finite-dimensional and H compact (and hence, h 7→
〈ρ̂(h)v, ρ̂(h)w〉 is a continuous, bounded function). It is easy to show that it is sesqui-linear. To show that it

21

Published in Transactions on Machine Learning Research (12/2023)

is definite, note that if 0 = 〈v, v〉H , 〈ρ̂(h)v, ρ̂(h)v〉 is a continuous function in h zero almost everywhere, i.e.,
zero. This means that 〈ρ̂(h)v, ρ̂(h)v〉 = 0 for all h, which immediately implies that v is zero.

We now claim that any ρ̂(k) is unitary with respect to this inner product. We have

〈ρ̂(k)v, ρ̂(k)w〉H =
∫
H

〈ρ̂(h)ρ̂(k)v, ρ̂(h)ρ̂(k)w〉dµ(h) =
∫
H

〈ρ̂(hk)v, ρ̂(hk)w〉dµ(h)

= dh′ = hke
∫
H

〈ρ̂(h′)v, ρ̂(h′)w〉dµ(h′) = 〈v, w〉H ,

where we used the invariance of the Haar measure in the substitution step.

Lemma B.7. S∗n = {1, sgn}.

Proof. Let ε ∈ S∗n be arbitrary. Since Sn is generated by transpositions τ = (ij), ε is uniquely determined by
its values of them. Since τ2 = 1, we must have ε(τ)2 = 1, meaning that each value ε(τ) is either +1 or −1. If
we can prove that they must all have the same value, we are done: if ε maps the transpositions to +1, ε is
the character 1, and if it maps them to −1, it is sgn.

So let τ and τ ′ be to transpositions. We distinguish two cases.

Case 1: τ and τ ′ share an element, i.e., τ = (ij) and τ ′ = (ik). Since (ik) = (ij)(jk)(ij), we must however
have ε(τ) = ε(τ ′) · ε(ij)2 = ε(τ ′).

Case 2: τ and τ ′ do not share an element, i.e., τ = (ij) and τ ′ = (k`). Since (k`) = (ik)(j`)(ij)(ik)(j`), we
have ε(τ ′) = ε(τ)ε(ik)2ε(j`)2 = ε(τ).

Lemma B.8. {Sn, Sn} = An.

Proof. This proof can be found in e.g. (Ore, 1951).

That {Sn, Sn} ⊆ An follows from the fact that all commutators have signature 1:

σ(τ ◦ π ◦ τ−1 ◦ π−1) = σ(τ)σ(π)σ(τ)−1σ(π−1) = 1.

To prove the converse, let us first note that the cases n = 1, 2 are trivial—in both those cases, An = {id}, but
Sn is also abelian, so that {Sn, Sn} = {id}. For n ≥ 3, we use the well-known fact that An is generated by
3-cycles (Lee, 2018, Cor. 6.3) (ijk). If we show that they are commutators, we are hence done. But

(ijk) = (jk)(ij)(jk)(ij),

so that the claim follows.

Lemma B.9. SU(2) is perfect.

Proof. For this proof, we are going to use that elements in SU(2) can be thought of as unit quaternions
q = (α, v), where α ∈ R is the real part of the quaternion, and v ∈ R3 its vector part. q being of unit norm
means that α2 + |v|2 = 1 The group action is given by the quaternion multiplication, i.e.,

(α, v) · (β,w) = (αβ − v · w,αv + βw + v × w),

where · and × are the standard dot and cross products of R3. We need to show that all unit quaternions can
be generated by commutators. We will do this in three steps.

Step 1. Each unit norm quaternion q has a square root r, i.e., an r with r2 = q. This can be seen through
direct calculation: Each unit norm quaternion can be written as (cos(2θ), sin(2θ)u) for a θ ∈ [0, π] and a unit
norm u. If we then define r = (cos(θ), sin(θ)u), we have

r2 = (cos2(θ)− sin2(θ), cos(θ) sin(θ)u+ cos(θ) sin(θ)u+ sin2(θ)u× u)
= (cos(2θ), sin(2θ)u) = q.

22

Published in Transactions on Machine Learning Research (12/2023)

Step 2. Write r = (α, βu), let v be a unit norm ector orthogonal to u and w = u× v. If we define s = (0, v),
we have

sr−1s−1 = (0, v)(α,−βu)(0,−v) = (0 + βv · u, αv − βv × u)(0,−v) = (0, αv + βw)(0,−v)
= (α|v|2 − βw · v,−αv × v − βw × v) = (α, βu) = r,

i.e., r = sr−1s−1

Step 3. We now combine the above steps

q = r2 = rsr−1s−1 = {r, s}.

Hence, q is a commutator, and the claim has been proven.

Corollary B.10. SO(3) is perfect.

Proof. The perfectness follows from the perfectness of its cover SU(2). If ϕ : SU(2)→ SO(3) is a covering
map, write any R ∈ SO(3) as ϕ(r) for an r ∈ SU(2). We just proved that there exists s, t ∈ SU(2) with
r = {s, t}. But this implies

R = ϕ(r) = ϕ({s, t}) = {ϕ(s), ϕ(t)}.

Lemma B.11. Z∗n is isomorphic to the set of n-th roots of unity.

Proof. Zn is an abelian group, generated by the element 1. Consequently, any group homomorphism is
uniquely determined by the value ε(1). Since 1 = ε(0) = ε(1 + · · ·+ 1︸ ︷︷ ︸

n times

) = ε(1)n, ε(1) must be a root of unity.

Hence, all elements of Z∗n is of the form εω(k) = ωk with ω a root of unity. Since that surely defines a group
homomorphism, Z∗n = {εω, ωn = 1}. As for the isomorphy, we simply need to remark that εωεω′ = εωω′ by
direct calculation.

Lemma B.12. If G is perfect, G∗ only contains the trivial character 1.

Proof. Let k = {h, `} be a commutator and ε ∈ G∗. Then

ε(k) = ε(h`h−1`−1) = ε(h)ε(`)ε(h)−1ε(`)−1 = 1

Since ε is a group homomorphism, this shows that ε is equal to 1 on the entire commutator subgroup {G,G},
and thus, since G is perfect, on the entirety of G.

In fact, to some extent, the converse statement of the last lemma holds. We include the proof for completeness.
Lemma B.13. Let F = C. If G is a compact group with G∗ = {1}, G is perfect.

Proof. {G,G} is a normal subgroup of G, meaning that if h ∈ G and g ∈ {G,G}, the conjugation hgh−1

is also ({h, g} = hgh−1g−1 is surely in {G,G}, and therefore also hgh−1 = {h, g}g). This implies that we
can define the quotient group A = G/{G,G}, which is defined via identifying elements h, k ∈ G for which
hk−1 ∈ {G,G}. The group operation is inherited from G: For two equivalence classes [h] and [k], its product
is defined as [h][k] = [hk]. Also, an ε ∈ G∗ defines an element of A∗. Indeed, any ε ∈ G∗ must by the proof
of Lemma B.12 be identically equal to 1 on {G,G}. This has the consequence that if h,k are in the same
equivalence class,

ε(h) = ε(hk−1k) = ε(hk−1)ε(k) = ε(k),

so that ε is well-defined on A.

23

Published in Transactions on Machine Learning Research (12/2023)

The group A is called the Abelianization of G. The naming stems from the fact that it is an abelian group—for
any elements [h], [k] of A, {[h], [k]} = [{h, k}] = [e], due to the definition of A. Since G is compact, A surely
also is.

Since G∗ only contains the trivial element, A∗ also does. Since A is an abelian compact group, we may now
apply the Pontryagin duality theorem (Rudin, 1962, p.28), which states that A is isomorphic to the bidual
A∗∗ = {1}∗ = {e}. Hence, A only contains the unity element, which in turn means that k = ke−1 ∈ {G,G}
for every k ∈ G. That is, G is perfect.

C Details of the Spinor Field Networks experiments

As advertised, we begin with a review of spinors and the representation theory of SU(2). The reader is
referred to e.g. (Biedenharn & Louck, 1984; Hall, 2013; Zee, 2016) for in depth treatments. SU(2) has one
so-called irreducible representation (irrep) for each dimension n > 0. Rather than labelling them by n, they
are typically labelled by ` = 0, 1/2, 1, 3/2, . . ., where the `’th irrep (or rather the space it is acting on) has
dimension 2`+ 1. ` = 0 corresponds to scalar values that don’t transform under SU(2) (i.e., SU(2) acts as
the identity on them), ` = 1 corresponds to vector values on which SU(2) acts as 3D rotation matrices and
` = 1/2 corresponds to spinor values on which SU(2) acts as the ordinary 2× 2 complex matrix representation
of SU(2). For integer `, the SU(2)-irrep can be taken to consist of only real valued matrices and hence can be
interpreted as acting on R2`+1. These irreps are also irreps of SO(3). For non-integer ` on the other hand,
it is not possible to let the representation consist of only real valued matrices. Thus these irreps act on
C2`+1. Furthermore, these irreps do not correspond to linear representations of SO(3), but only to projective
representations of SO(3).

Let us denote the irreps of SU(2) by ρ̃`, ` = 0, 1/2, 1, 3/2, . . . and the spaces that they act on by V` ∼ C2`+1

(or ∼ R2`+1 for integer `). All other finite dimensional representations of SU(2) can be decomposed into these
irreps, meaning that if SU(2) acts linearly on Cm, we can decompose the space as

Cm ∼
⊕
`∈L

V`

for some specific multiset L of indices such that
∑
`∈L(2` + 1) = m. One particular decomposition is the

decomposition of the tensor product of two V`’s. Given ` ≥ `′ we have that

V` ⊗ V`′ ∼ V`−`′ ⊕ V`−`′+1 ⊕ · · · ⊕ V`+`′−1 ⊕ V`+`′ . (12)

In particular, there exists a change of basis matrix that transforms canonical coordinates on V` ⊗ V`′ into
coordinates which can be split into blocks, each representing coordinates for one Vj . We denote this matrix
from the left hand side of (12) to the right hand side by C. C consists of so-called Clebsch-Gordan coefficients,
which are known and hence it is feasible to perform this decomposition.

The basic idea for our SU(2)-equivariant neural network architecture is now to have layers that combine
features and filters using the tensor product. This is a standard approach to constructing SO(3)-equivariant
neural networks (Thomas et al., 2018; Geiger & Smidt, 2022; Kondor et al., 2018) which we here generalize
slightly to SU(2). Say that we have a feature f that transforms according to ρ̃` and a filter ψ that transforms
according to ρ̃`′ . Their tensor product will transform according to ρ̃` ⊗ ρ̃`′ . Note that (12) means that
C(f ⊗ ψ) transforms according to

C(f ⊗ ψ) SU(2)7−−−−→ C(ρ̃` ⊗ ρ̃`′)(f ⊗ ψ) = (ρ̃`−`′ ⊕ ρ̃`−`′+1 ⊕ · · · ⊕ ρ̃`+`′−1 ⊕ ρ̃`+`′)C(f ⊗ ψ).

This means that C(f ⊗ ψ) is a concatenation of quantities that transform according to known irreps. Since
the tensor product is the most general bilinear map, a good way to look at it is that C defines all possible
multiplications of f and ψ that are SU(2) equivariant. If we are only interested in a particular output
type, say the part of C(f ⊗ ψ) that transforms according to ρ̃`−`′ , then we can simply let C̃ consist of the
corresponding rows of C, i.e., the first 2(`− `′) + 1 rows, and the quantity C̃(f ⊗ ψ) will be the output with
correct behaviour. C typically contains many zeros and so we don’t actually have to compute the complete

24

Published in Transactions on Machine Learning Research (12/2023)

f ⊗ ψ if we are only interested in some particular output irreps, but can instead only compute those values
that will be multiplied by non-zero values of C. If our network layers consist of tensor products like this, it
is easy to keep track of how the features in the network transform under SU(2), and hence ensure that the
output of the network transforms correctly. In our experiments we have outputs that transform according to
ρ̃1/2 and so build networks that guarantee such output.
Example C.1. Let us walk through the example of tensoring a vector feature f by a vector filter ψ. Both the
feature and filter transform according to ρ̃1 which we can take to consist of real-valued 3D rotation matrices.
This means that according to (12), the output should be decomposable into V0 ⊕ V1 ⊕ V2, i.e., a scalar, a
vector and a “higher order” 5-dim. feature. The reader already knows how to combine two vectors to form a
scalar and a vector, we use the scalar product and the cross product! Indeed, the tensor product has the
following form:

(f1, f2, f3)T ⊗ (ψ1, ψ2, ψ3)T = (f1ψ1, f1ψ2, f1ψ3, f2ψ1, f2ψ2, f2ψ3, f3ψ1, f3ψ2, f3ψ3)T .

The first row of C selects those values that yield the scalar product of f and ψ:

C1 =
(
1 0 0 0 1 0 0 0 1

)
, C1(f ⊗ ψ) = f · ψ.

The second to fourth rows of C select those values that yield the cross product of f and ψ:

C2:4 =

0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 1 0 −1 0 0 0 0 0

 , C2:4(f ⊗ ψ) = f × ψ.

The last rows of C select values that yield a 5-dim. product of f and ψ transforming according to the irrep
ρ̃2, we don’t write it out here as it is not too illuminating.

C.1 Tensor spherical harmonics filters

We defined the layers in our Spinor Field Networks like

f ′i =
∑
j 6=i

(ψ(xj − xi)⊕ sj)⊗ fj . (13)

A tensor spherical harmonic (see (Biedenharn & Louck, 1984)) is the tensor product of a spherical harmonic
and some other quantity that transforms under SU(2) according to some representation ρ̂. Then (13) could
become for instance

f ′i =
∑
j 6=i

(ψ(xj − xi)⊗ sj)⊗ fj . (14)

Technically our filters in (13) are tensor spherical harmonics where the spherical harmonic tensored by sj is
the trivial Y 0.

C.2 Training/implementation details

The implementation is inspired by the e3nn package (Geiger & Smidt, 2022), but differs in some crucial
aspects (apart from the obvious fact of using spinors).

A tensor product layer in our framework works as follows. We define the number of input, filter and output
scalars, spinors and vectors. For each output requested, certain input types can be used. For instance, to
produce an output scalar, we can multiply

(i) an input scalar and a filter scalar, or

(ii) an input spinor and a filter spinor, or

(iii) an input vector and a filter vector.

25

Published in Transactions on Machine Learning Research (12/2023)

Layer 1
Input Filter

Scalars Spinors Vectors Scalars Spinors Vectors
Spinors as scalars 4 0 1 1 0 1
Spinors as features 0 1 1 1 0 1
Spinors as filters 0 0 1 1 1 1
Spinors squared as vector features 0 0 3 1 0 1
Spinors squared as vector filters 0 0 1 1 0 3

Layer 2
Input Filter

Scalars Spinors Vectors Scalars Spinors Vectors
Spinors as scalars 32 0 8 1 0 1
Spinors as features 32 12 12 1 0 1
Spinors as filters 32 4 4 1 1 1
Spinors squared as vector features 32 0 8 1 0 1
Spinors squared as vector filters 32 0 8 1 0 3

Layer 3
Input Filter

Scalars Spinors Vectors Scalars Spinors Vectors
Spinors as scalars 32 0 8 1 0 1
Spinors as features 0 12 0 1 0 1
Spinors as filters 32 4 4 1 1 1
Spinors squared as vector features 32 0 8 0 1 0
Spinors squared as vector filters 32 0 8 0 1 0

Table 2: Number of scalars, spinors and vectors in each layer of the five network types. The number of
outputs of each type is the same as the number of inputs to the next layer. The final layer always outputs
one spinor, except for the Spinors as scalars net which outputs four scalars.

So for each output scalar requested, we compute a weighted sum of all input scalars and multiply it by a
weighted sum of all filter scalars, and similarly for spinors and vectors. These weighted sums contain the
learnable parameters in the net. We do not use learnt radial functions as in Tensor Field Networks, as that
did not seem to be necessary for our data.

When mapping from spinors to scalars/vectors, we get complex valued scalars and vectors. These are split
into real and imaginary parts, hence if 10 output scalars are requested we only compute 5 complex output
scalars yielding 10 real output scalars. Note that the operation of taking real and imaginary parts of a vector
is rotation equivariant as we work in the basis where rotation matrices are real valued.

The loss used is L2-loss on the regressed spinor, but accounting for arbitrary sign due to projective ambiguity,
i.e.

loss(spred, s) = min(‖spred − s‖, ‖spred + s‖).

The networks contain between 2500 and 3000 parameters and are small enough to train on CPU in tens
of seconds per net. All nets were trained using the Adam optimiser with default PyTorch settings, for 300
epochs with learning rate 10−2.

The number of features of each type in the layers and filters of the Spinor Field Networks is summarised in
Table 2.

D Details and further results for ViererNet experiments

We begin by providing some details about the model used in the experiments in the main paper.

The layers of the projectively equivariant ViererNet used in the main paper has, in succession, 32, 32, 32 and
11 intermediate Rn,n-valued feature tuples, each of size 4 = (Z2

2)∗. These are subsequently average-pooled to

26

Published in Transactions on Machine Learning Research (12/2023)

Figure 7: The ViererNet architechtures. V is the input space. For the MNIST experiment, M = 32, and for
CIFAR, M = 64. Best viewed in color.

11 4-tuples. To transform these to scalars, we use 11 selector vectors, and send it through first a batch-norm
and then a softmax layer to end up with a final output distribution p ∈ R11. Before sending the data to the
first layer, we normalize it to have zero mean. The base-line model is a three-layer standard CNN, with 32,
32, 32 and 11 Rn,n-valued intermediate features, which after average pooling simply feeds their 11 output
features through first a batch-norm and then a softmax layer. Both models use tanh non-linearities. The two
models have different memory footprints, due to the ViererNet having to handle 4 features in each layer, but
each input-output channel pair can be described the same number of parameters (due to Proposition 2.16(ii)).
The selector vectors do result in 44 additional ViererNet parameters, but this is miniscule compared to the
about 30K in total. The architecture is schematically presented in Figure 7

We train for 100 epochs using the Adam algorithm, with the learning rate parameter set to 10−4 .

D.1 Additional experiments on CIFAR10

To complement the MNIST experiments in the paper, we tested ViererNet to classify a similarly modified
version of the CIFAR10 dataset.

Data We modify the CIFAR10 dataset in two ways. First, we modify the dataset exactly the way MNIST is
modified in the main paper: I.e., we add a class ’not an image’ which we put (or not, depending on the class)
images after they are flipped horizontally or vertically: The images in the classes ’airplane’, ’automobile’ and
’bird’ are never put in the ’not an image’-class, the ’cat’ and ’deer’ and ’dog’ images are put there after a
horizontal flip, ’frog’ and ’horse’ after a vertical flip and ’ship’ and ’truck’ after both types of flip. We refer to
this version of the dataset as the ’both flip’ dataset.

The above modification has a problem, and that is that since flipping a CIFAR10-image vertically, in contrast
to the MNIST images, most often results in a plausible image. The horizontal flips however results in objects
that are upside down, and hence are different from the ’normal’ CIFAR images. For this reason, we also
consider a different type of modification of the dataset. In this version, we still perform flips with the same
probabilities as before, but choose to not change the labels after vertical axis flips at all. We refer to this
version of the data set as the ’single flip’ datasets.

Models We use the same ViererNet and baseline architectures as in the main paper, with the only difference
that the number of intermediate features are 64, 64, 64, 11, instead of 32, 32, 32, 11.

Results Using the same training algorithm and learning rate (e.g. Adam with lr = 10−4) as for the
MNIST experiments, we train each model on each dataset for 100 epochs. The experiments are repeated 30
times. In Figure 8, the evolutions of the median training and test losses are depicted, along with errorbars
encapsulating 80% of the experiments. In comparison to the experiments in the main paper, the models are
performing more similar. When comparing the models at the epochs with best median performance, the
baseline outperforms the ViererNet slightly on both datasets—51.0% vs. 49.9% on the both flip dataset and
59.0% vs. 57.0% on the single flip dataset. The performance difference is however not as significant as in the
main paper—the p-values for the baseline outperforming ViererNet is only 0.26 for the both flip dataset, and
.11 for the single flip dataset.

27

Published in Transactions on Machine Learning Research (12/2023)

Figure 8: Results for the CIFAR10 datasets. Top left: training accuracy on the ’double flip’ version. Top
right: test accuracy for the ’double flip’ version. Bottom left: training accuracy on the ’single flip’ version.
Bottom right: test accuracy on the ’single flip’ version. The errorbars depict confidence intervals of 80%.
Generally, the baseline performs slightly better at the end of the training, but well within the margin of error.
The ViererNet is quicker to generalize than the baseline.

Dataset MNIST CIFAR (double flip) CIFAR10 (single flip)
Max it. 25 50 75 100 25 50 75 100 25 50 75 100

Baseline 80.3% 86.6% 89.4% 90.2% 43.2% 48% 49.4% 51.0% 47.3% 53.7% 57.2% 59.0%
ViererNet 89.6% 91.7% 92.5% 92.8% 45.1% 48.1% 49.4% 49.9% 52.1% 55.2% 56.5% 57.0%

Table 3: Median accuracies (over 30 runs) in all experiments for different upper iterations bounds. Statistically
significantly (p < .05) better performing models for each dataset and upper iteration limits are marked in
bold font. (In fact, using the higher p-value 0.1 would not change the appearance of the table).

Performance vs. number of iterations Figures 8 and 3 both suggest that the ViererNet can generalize
to the test data faster, since it outperforms the baseline in early iterations. To test this quantitatively, we
perform the same statistical tests as above, but choose the best performing epoch among the 25, 50 and
75 first iterations instead out of all 100 iterations. We report the median accuracies for all experiments in
Table 3. Statistically better figures are highlighted in bold. We see that the ViererNet outperforms the
baseline in the MNIST experiments by wider margins, and with high statistical confidence, earlier in the
training. Looking at the median values in Table 3, the trend that the ViererNet is quicker to train apparently
persists to some extent for the CIFAR experiments. However, a closer looks reveals that we can only with
high statistical confidence say that the ViererNet is better than the baseline after 25 iterations on the single
flip dataset.

Discussion Although the CIFAR experiments are in general not statistically conclusive, we can conclude
that the ViererNet in comparison to the MNIST experiments in the main paper perform worse on the CIFAR
set. We believe the main reason behind this is simply that the property of projective Z2

2-equivariance is less
well suited for these tasks. For the both flips version of the dataset, as we discussed above, flipping vertically

28

Published in Transactions on Machine Learning Research (12/2023)

will most often lead to a new image which is plausible to come from the same CIFAR-class, and it will be less
helpful to apply the strategy of either changing or maintaining the class when flipping the images of the class.
As for the single flip version of the dataset, the same argument does not apply. However, in this case, it is
ultimately only a subgroup of the Vierergroup that is changing the images in the dataset. Hence, a ViererNet
is not the best suited architecture—a Z2-equivariant would instead be.

A more thorough empirical comparison of the effectiveness of projectively equivariant architectures for
classification tasks would be very interesting, but out of scope for this article. We leave it for future work.

D.2 Training details

We used cross-entropy-loss in our experiments, to account for the different sizes of the classes: the weight
vector vectors were chosen as

wMNIST = [1, 1, 1, 1.5, 1.5, 1.5, 1.5, 1.5, 3, 3, 1], wCIFAR = [1, 1, 1, 1.5, 1.5, 1.5, 1, 1, 1.5, 1.5, 1]

for the MNIST and CIFAR10 experiments, respectively. A batch size of 32 was used for all experiments.
The models were trained, on single A40 GPUs, in parallell on a high performance computing cluster.
The MNIST experiments presented in the main paper used in total about 110 GPU hours, whereas the
CIFAR10-experiments presented in the appendix used about 170 GPU hours each.

D.3 Implementational details

Since all of the basis elements, as depicted in Figure 6 are sparse, we implement the ViererNet layers i
PyTorch by saving nine parameters per in-layer-out-layer pair, which we turn into four 3× 3 filters through
multiplying the R9 vector with a sparse matrix. These are then used in padded standard PyTorch convolution
layers, and combined in the manner described in Section 3.

29

	Introduction
	Projective equivariance
	Projectively equivariant linear maps
	The structure of the spaces U-epsilon

	A projectively equivariant architecture
	Relation to earlier work
	A possible application: Class-dependent symmetries

	Generalizing Tensor Field Networks to projective representations of SO(3)
	Conclusion
	Technical definitions
	Omitted proofs
	Induced projected representations
	Theorem 3.1
	Lemma 2.14
	Proposition 2.16
	Usgn for the standard action on Fn tensorpower k
	The Vierergroup
	A (not very useful) canonical lifting procedure
	Group theoretic facts

	Details of the Spinor Field Networks experiments
	Tensor spherical harmonics filters
	Training/implementation details

	Details and further results for ViererNet experiments
	Additional experiments on CIFAR10
	Training details
	Implementational details

