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– Terry Pratchett, Ian Stewart & Jack Cohen 

The Science of Discworld III – Darwin’s watch 

 

 

Evolution happens.  

What remains open to dispute, especially among scientists, is how 
evolution happens. Scientific theories themselves evolve, adapting 
to fit new observations, new discoveries and new interpretations of 
old discoveries. Theories are not carved in tablets of stone. The 
greatest strength of science is that when faced with sufficient 
evidence scientists change their minds. Not all of them, for scientists 
are human and have the same failings as the rest of us, but enough  
    of them to allow science to improve. 
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Abstract 
The distribution of fitness effects (DFE) describes the likelihood that a new mutation has a 

specific effect on the fitness of an individual in a given population. The shape of the DFE is 

a result of several factors such as population size, mating system and selective environment, 

and can in turn influence the evolutionary potential of a species. The DFE has long been a 

field of intense research, but particularly since molecular methods enabled us to study of 

genetic variation in organisms empirically. This research has led to the development of 

several statistical methods that use population-level frequencies of single nucleotide 

polymorphisms (SNPs) to infer the DFE. However, these methods rely on assumptions about 

the data and the organism itself, which could potentially affect the accuracy of the 

inferences. In this thesis, I describe how two major factors – data quality and inbreeding – 

can affect the accuracy of DFE inferences. I also show how and when to (and when not to) 

use DFE inference methods based on SNP frequencies. 

All genomic datasets contain inaccuracies and some level of uncertainty. The data sets are 

therefore often treated to remove the gaps or less reliable information, such as genotypes 

with low coverage. Some data sets need heavy filtering, which could reduce the amount of 

data available for analysis. We show that the choice of filter method affects the size of the 

final data set and the accuracy of the estimated DFE. 

Many DFE estimation software assumes random mating within the study population. 

Unfortunately, this assumption induces some error when trying to estimate the DFE in 

inbred or selfing species. Some have assumed that this is a result of high rates of 

homozygosity in the data, and should only be a problem in populations with very high rates 

of selfing (>99%). We show that accuracy of the estimated DFE decreases already at 

relatively low rates of selfing (70%) and that removing homozygosity does not improve the 

accuracy, implying that another mechanism could be causing the error. 
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Sammanfattning på svenska 
Nya mutationer kan ha olika effekt på fitness hos en individ; en mutation kan vara negativ, 

neutral eller positiv för överlevnad och/eller reproduktion. Sannolikheten att en mutation 

har en specifik påverkan på fitness kan beskrivas av fördelningen av fitnesseffekter, i 

vetenskaplig litteratur kallad "the distribution of fitness effects” eller DFE. Formen på DFEn 

hos en art eller population påverkas av faktorer såsom effektiv populationsstorlek, 

parningssystem och miljö, och kan i sin tur påverka artens/populationens 

evolutionspotential. Hur DFEn ser ut hos olika arter har länge varit ett aktivt forskningsfält, 

och fick ytterligare ett uppsving efter att molekylära metoder gjorde det möjligt att studera 

genetisk variation empiriskt. Denna utveckling ledde även till att en uppsjö av statistiska 

metoder utvecklades för att uppskatta DFEn från allelfrekvenser hos punktmutationer i en 

population. Dessa modeller bygger emellertid på ett antal antaganden om populationen 

och datan, där osanna antaganden kan orsaka feluppskattningar av DFEn. I denna 

avhandling undersöker jag hur två faktorer – datakvalitet och inavel – kan påverka hur väl 

dessa metoder uppskattar den korrekta DFEn. Jag beskriver även hur och när man bör (och 

inte bör) använda allelefrekvensbaserade metoder för att uppskatta DFE hos en art. 

Alla genomiska dataset innehåller en viss grad av osäkerhet och kan sakna information för 

vissa individer och/eller platser i genomet. Denna sortens data brukar därför förbehandlas 

för att exkludera obefintliga, osäkra och eventuellt felaktiga data. Vissa behandlingsmetoder 

kan exkludera stora delar data, beroende på hur mönstret av osäker data ser ut. Jag visar 

att mängden och magnituden hos feluppskattningar av DFEn beror på både valet av 

filtreringsmetod och storleken på det slutgiltiga datasetet. 

  Många metoder för DFE-uppskattning utgår ifrån teoretiska modeller som antar 

slumpmässig parning inom studiepopulationen. Detta antagande kan dock introducera 

feluppskattningar när de används på inavlade och/eller självbefruktande arter. Vissa tidigare 

studier har påstått att denna effekt beror på inavlade arters höga homozygositet, och bara 

borde vara ett problem vid stark inavel eller nästan uteslutande (>99%) självbefruktning. 

Jag beskriver här att feluppskattningar av DFEn blir vanligare redan vid lägre förekomst av 

självbefruktning (70-80%), samt att homozygositet i sig inte verkar vara den ledande 

orsaken till feluppskattningar av DFEn. Detta tyder därmed på att någon annan mekanism 

orsakar de större felmarginaler vi ser vid DFE-analys av inavlade arter. 
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On the origin of theses 
There are many ways of doing a PhD. Some projects start off with a detailed 

project description, a timetable, and a list of expected research outcomes. My PhD 

began with a blank slate and a promise of tackling some interesting, but mostly 

undecided, questions in plant speciation. More specifically, the project description 

included studying “the genomics of ecological selection and adaptation, and how 

genetic factors interact with ecology to facilitate speciation”. 

The prospects were vague but exciting. I was encouraged to explore any idea, 

concept or method that may lead to a greater understanding of how species adapt 

and diverge, converge or persist. But how do you, when you have a whole field to 

choose from, decide on one question to focus on? I could study the process of 

ecological niche differentiation, hybridization and introgression, the genomic 

structure of plants and/or questions related to the origins of genetic 

incompatibility, or just about any aspect of how species adapt to new 

environments. Wherever I started reading, the question I had in mind kept folding 

out into more and more complex systems of sub-questions. Each conclusion or 

knowledge gap I found came with lists of caveats and assumptions about the 

applicability of each method used to identify them, all building upon each other. 

And I kept coming back to the same underlying question, which always seemed 

too simplistic to be entertained: How can we ever say anything about speciation 

or adaptation without knowing what each gene and allele is doing to the fitness 

of the individual and, by extension, the population? Of course, knowing that is 

impossible without extensive research into the functions of each allele and 

selection experiments in every possible environment, in every type of species, 

population and genetic context. Right? 
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Enter the Distribution of Fitness Effects 

If we want to describe the genetic basis of the evolutionary history of some natural 

species, we may think that we need to know how each and every relevant gene 

and allele behaves over time. But how do we even quantify the total fitness effect 

of a mutation? Of course, the fitness effect is dependent on what the mutation 

does, meaning which amino acid it produces and its function, but also when it is 

activated, its interaction with other alleles, and, finally, how it affects the individual’s 

performance in the environment compared to other alleles. We can either choose 

to take the difficult path and try to survey all mutations, estimate their selective 

effects in the relevant environment(s) and calculate the total fitness of any 

individual with a given genome. Alternatively, we could try to find a way to 

measure the total distribution of alleles with specific effects on fitness. As it turns 

out, the concept of estimating the so-called distribution of fitness effects (DFE) 

instead of the fitness effects of individuals alleles is not new, and today it is 

apparently possible using only allele frequencies! For example, we can estimate 

the likelihood that a mutation will have a given selective effect by leveraging the 

fact that the species has already been subject to selection in the past, which should 

have affected the frequencies of genetic variants in the population. That way, we 

do not need to know exactly what each allele does in order to say something 

about how evolution has affected its genetic diversity. This is a step towards 

understanding how a species has evolved in the past, as well as a way to 

understand its future evolutionary potential. Why not start there? 
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History of the DFE 
When a new mutation occurs, it may or may not affect the fitness of the individual 

in which it occurs. If it does not, it is considered selectively neutral. If it does, it can 

have a net advantageous (fitness increasing) or deleterious (fitness decreasing) 

effect. The probability distribution that describes how likely it is for a mutation to 

have a specific effect on fitness is, fittingly, known as the distribution of fitness 

effects, or DFE for short (Eyre-Walker & Keightley 2007). If the DFE has the highest 

density around deleterious fitness effects, it means that most mutations that occur 

are detrimental to the survival and/or reproductive output of the organism. Thus, 

the DFE of new mutations describes what “raw material” will be available for future 

selection and evolution in a given species or population. If we knew the shape of 

the DFE of that species or population, we should be able to predict some aspects 

of how and how quickly it could evolve. As such, the DFE has been a focus in 

evolutionary biology research practically since its inception… 

Darwinism 

Even with no knowledge of genetics, Darwin recognized that inherited differences 

among individuals is what enables evolution by natural selection (Darwin 1859). 

Thus, the DFE is built into the four tenets of Darwinian evolution. Briefly, for 

evolution to occur it is required that:  

1. more individuals are produced than can survive each generation,  

2. heritable phenotypic variation exists among individuals,  

3. individuals with heritable phenotypic traits that are better suited to the 

environment have a higher rate of survival, and that 

4. new species will form when reproductive isolation occurs (Darwin 1859). 
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If we assume that mutations create the heritable variation in 2), the difference in 

“suitability” to the environment mentioned in 3) is the difference in the net fitness 

effects of those mutations. In order to calculate the total fitness of an individual, 

we can define the fitness effect wm of a mutation m, by comparing the survival rate 

and total reproductive output of individuals with the m mutation to the maximum 

survival rate and reproductive output of the “fittest” mutation as: 

𝑤𝑤𝑚𝑚 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚 × 𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
 

A mutation that does not affect survival but only produces 6 offspring where the 

most prolific phenotype produces 10 will thus have a fitness effect of 0.6, while the 

most prolific phenotype always has a fitness of 1. By multiplying the fitness effects 

(w) of all traits, or mutations, we can calculate the total fitness of an individual 

(Gillespie 1998). If we want to compare the fitness effects of two mutations in a 

diploid species, where each individual has two alleles at each site, we can also do 

that: If we set the fitness effect of one mutation to 1, we can write the relative 

fitness of each genotype (AA, BB and AB) as: 

𝑤𝑤𝐴𝐴𝐴𝐴 = 1, 𝑤𝑤𝐴𝐴𝐴𝐴 = 1 + ℎ𝑠𝑠, 𝑤𝑤𝐴𝐴𝐴𝐴 = 1 + 𝑠𝑠           (−1 ≤ 𝑠𝑠 ≤ 1) 

 

In this context, s signifies the selection coefficient, describing the fitness of 

genotype BB compared to genotype AA; if s is negative, B is a deleterious mutation 

that selection will act against and if it is positive, it is an advantageous mutation 

that selection will favour. h is the heterozygous effect. Values of 0 < h < 1 indicate 

incomplete dominance, where an AB individual will experience part of the fitness 

effect of BB. If h is 1 or 0, B is either fully dominant or recessive (Gillespie 1998). 

What is most relevant to us, however, is that the distribution of fitness effects 

describes the probability that a new mutation will have a specific selection 

coefficient s (Eyre-Walker & Keightley 2007). 
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The Modern Synthesis 

While mendelian inheritance was largely integrated into evolutionary theory by 

the 1920s and 30s (Dobzhansky 1937, Fisher 1919, 1923, Punnett 1930), it was not 

until the 1960s that the development of molecular methods would enable 

quantitative analysis of genetic variation (Lewontin & Hubby 1966). In the 

meantime, there was considerable debate around whether genetic variation was 

common or rare in natural populations. The field was generally divided into 

supporters of one of two hypotheses; The classical hypothesis argued that 

advantageous mutations were expected to quickly reach fixation, while deleterious 

mutations would be purged, leading to relatively low levels of polymorphism and 

heterozygosity; The balance hypothesis, on the other hand, predicted that genetic 

variation would be common, and that multiple alleles were being maintained at 

intermediate frequencies by processes such as heterozygote advantage  or 

frequency dependent selection (Casillas & Barbadilla 2017, Fisher 1923, Hey 1999, 

Kimura 1979).  

At this time, the most common approach to calculate the expected level of genetic 

diversity in a population was with deterministic mathematical models, where 

population sizes are infinite (Casillas & Barbadilla 2017). Infinitely large populations 

will not experience random genetic drift, and the frequency of a mutation in the 

next generation will only depend on its current frequency and selection coefficient. 

However, both hypotheses could be supported under these conditions, and 

without data on empirical levels of genetic diversity the debate stalled (Casillas & 

Barbadilla 2017, Charlesworth 1992). Only one thing was clear to both sides – 

mutations are either deleterious or advantageous to some extent (Fig. 1), and 

natural selection is the main force governing the amount of genetic variation in 

populations (Ford 1965). 
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The Neutral Theory 

In 1966, it was shown that genetic variation in proteins (allozymes) among 

individuals could be quantified with electrophoresis, which opened the door to put 

the predictions of the classical and balance hypotheses to the test (Lewontin & 

Hubby 1966). To the surprise of many, including supporters of the balance 

hypothesis, it was revealed that most species harboured vast amounts of genetic 

variation, and that more alleles segregated at intermediate frequencies than 

previously anticipated.  To some, this was the ultimate evidence for the validity of 

the balance theory and that balancing selection was maintaining genetic variation 

in natural populations. For others, however, the amount of variation seemed too 

large to possibly be maintained by active selection on all alleles simultaneously 

(Kimura 1979, Kimura et al. 1963).  

In the wake of this discovery, a new theory took hold; Kimura (1968), and not much 

later Jack Lester King and Thomas H. Jukes (King & Jukes 1969), argued that instead 

of all variation being actively maintained by selection, the vast majority of 

segregating mutations are selectively neutral (Fig. 1). Under Kimura’s neutral 

theory of molecular evolution, alleles could occur at intermediate frequencies in 

the population, not as a result of balancing selection, but simply because of 

random, non-selective processes such as genetic drift (Kimura 1968). Accumulating 

vast amounts of neutral variation would not come with any selective constraint or 

benefit, and alleles could segregate freely. In fact, they argued, selected mutations 

were probably rare, most likely almost exclusively deleterious and would be 

purged or fixed in the population so quickly that most models of molecular 

evolution could assume neutrality of mutations (Kimura 1968, King & Jukes 1969). 

Perhaps unsurprisingly, this position faced considerable backlash from the outset 

(Casillas & Barbadilla 2017, Gillespie 1994, Kimura 1979, Kreitman 1996). The 
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neutralist arguments were in complete contrast to the earlier consensus that, 

although the field was divided on exactly how, natural selection was the primary 

force maintaining variation within natural systems. And while neutral mutations 

were not unknown, it was assumed that only (or at least mostly) synonymous 

mutations were neutral (Ford 1965).  

The “neutralist-selectionist debate” of the 1970s and 80s centred around these two 

opposing ideas of the shape of the DFE (Casillas & Barbadilla 2017, Kimura 1979). 

However, one critical difference in the neutral theory set it apart from most 

previous models – the assumption of finite population sizes. Unlike deterministic 

selectionist models, the stochastic neutral model assumed finite populations, 

where the frequency of a mutation can increase or decrease because of random 

sampling effects (Casillas & Barbadilla 2017, Kimura 1968, Kimura 1979, Kimura et 

al. 1963). Until this point, the effects of genetic drift had been mostly ignored as a 

nuisance parameter, with few exceptions (Dobzhansky & Pavlovsky 1957), but the 

neutral model exposed genetic drift as a critical process in molecular evolution. 

Using diffusion equations, normally used to describe the random movements of 

particles in gasses, Kimura even devised a way to predict the average time to 

fixation of neutral alleles (Casillas & Barbadilla 2017, Kimura 1968, Kimura et al. 

1963). Importantly, it also provided many predictions about diversity in populations 

that were easily testable using new types of molecular data that were becoming 

available. Thus, the value of Kimura’s neutral model was recognized even among 

many selectionists and soon gained widespread approval because it also provided 

a null model for testing the effects of selection under finite population sizes 

(Casillas & Barbadilla 2017, Gillespie 1994, Kern & Hahn 2018, Kimura 1968, Kimura 

1979, Kreitman 1996). 
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The Nearly Neutral Theory 

As data on genetic variation 

accumulated, it soon became clear that 

the neutral model provided a rather 

simplified explanation of how alleles 

behaved. For example, Kimura’s infinite 

site model had shown that under 

complete neutrality, heterozygosity in 

populations should be directly 

correlated with effective population 

size (see Box 1) and mutation rate. 

However, heterozygosity surveys from very large populations, which under this 

model should be nearly 100% heterozygous, revealed this not to be the case; a 

study of the fruit fly Drosophila willistoni, with an effective population size in the 

order of 108 individuals and an assumed mutation rate around 10-7, demonstrated 

heterozygosity in only 18% of the sampled loci (Ayala et al. 1972). Soon thereafter, 

Tomoko Ohta, who had been working as a PhD student for Kimura during the 

development of the neutral model, developed a crucial extension of the neutral 

model. In her research, she had found a correlation between the fitness effects of 

mutations and effective population size beyond what was applied under the 

neutral theory. The neutral theory assumed that most mutations had a selection 

coefficient far below −1
𝑁𝑁𝑒𝑒

 and behaved neutrally, and that the remainder of the 

mutations were strongly deleterious mutations and would be purged 

instantaneously (Casillas & Barbadilla 2017, Kimura 1968, Kimura 1979). Ohta 

proposed that instead of mutations being either neutral or strongly deleterious, 

there was also a class of nearly neutral mutations, whose selection coefficients 

were in the order of −1
𝑁𝑁𝑒𝑒

 (or 1
𝑁𝑁𝑒𝑒

 for beneficial mutations) (Fig. 1). Focusing mainly on 

deleterious mutations, she predicted that these mutations would act almost 

BOX 1 
The effective population size,  
Ne, is the size of an idealized 
population, meaning a pop-
ulation experiencing constant 
size, random mating and non-
overlapping generations) that 
would contain the same amount 
of genetic variation as the target 
population.  
Ne is generally smaller than the 
census population size, for 
example because of inbreeding 
or loss of genetic variation 
through population size 
changes. 
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neutrally in that they could increase in frequency by genetic drift effects but would 

still have a lower chance of becoming fixed in the population due to selection 

against them. This would mean that slightly deleterious mutations could comprise 

a relatively large proportion of the segregating variation in the population.  

Importantly, she noted that the relationship to effective population size meant that 

more mutations would fall within the range of −1
𝑁𝑁𝑒𝑒

 – 1
𝑁𝑁𝑒𝑒

  in small populations. This 

meant that deleterious mutations would more readily become fixed, while they 

would be more likely to be purged in large populations where selection would 

have a stronger relative effect. This would also mean that the observed levels of 

genetic variation within populations could be explained, while still explaining why 

the numbers of substitutions (fixed mutations) did not seem to increase with 

population size (Ohta 1973). At first, Ohta’s model only included the effects of 

slightly deleterious mutations, as they were thought to be the most common and 

have the largest effect on population level genetic variation. This version of the 

model was known as the slightly deleterious theory (Ohta 1973). Later, however, 

slightly advantageous mutations were also included under the model, which then 

became the highly impactful nearly neutral theory (Ohta 1992), which is still the 

basis of most models of molecular evolution (Casillas & Barbadilla 2017, Chen et 

al. 2020, Kreitman 1996, Nei 2005, Ohta 1996). Today, most research assumes that 

the DFE is skewed towards effectively and nearly neutral mutations, mostly with 

deleterious effects, which closely aligns with Ohta’s predictions (Bataillon & Bailey 

2014, Chen et al. 2021, Kousathanas & Keightley 2013). 
Figure 1 

Assumed DFE of the 
a) classical VS  
balance hypothesis 
(orange VS green),  
b) neutral theory 
(grey), and  
c) nearly neutral  
theory (yellow). 
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Factors that affect the shape of the DFE 
Of course, fitness is relative. A mutation that occurs in one individual may have a 

different effect in another due to genetic context (interaction between alleles), 

dominance pattern, physical environment, ecological niche, behaviour, etc.  

The classic example of the effect of environment and genetic context on the 

selective effect of mutations is that of sickle cell disease. Sickle cell disease is 

caused by a single nucleotide polymorphism (SNP) exchanging one A with a T in 

position 11p15.5 on chromosome 11 (Pauling et al. 1949, Stamatoyannopoulos 

1972). The mutation creates a modified form of haemoglobin A, called 

haemoglobin S, which causes red blood cells to become thin and spiky in low 

oxygen conditions, rendering them more prone to breaking (Gordeuk et al. 2016, 

Herrick 1910, Pauling et al. 1949, Stamatoyannopoulos 1972, Zhang et al. 2016). In 

heterozygote individuals, symptoms are relatively mild since the default (A) allele 

can produce haemoglobin A to form regular blood cells, but being homozygous 

for the mutation often causes grave health problems: chronic pain, regular 

infections, ulcers, pulmonary hypertension and stroke are among the common 

symptoms (Gordeuk et al. 2016, Pauling et al. 1949, Zhang et al. 2016). However, 

the fragile cells have one very specific advantage – it disrupts the reproductive 

cycle of the Plasmodium parasite that causes malaria. The parasite invades the red 

blood cells as part of its life cycle, but the sickle-shaped cells break before the 

parasites have matured enough to be able to infect new cells, effectively stopping 

their reproduction (Allison 1954). Thus, in a context where malaria is prevalent, the 

sickle cell mutation can be adaptive. While homozygous individuals generally have 

low fitness, individuals carrying only one copy of the mutation show a 50-90% 

reduction in the parasite load compared to individuals without the sickle cell 

mutation while also having few symptoms of the disease (Allison 1954). Outside 

this environment, however, even heterozygotes are less fit as they derive no 
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benefit from malaria resistance, and the remaining symptoms are still detrimental 

to survival and reproduction (Haldane 1990). Thus, the fitness effects of alleles are 

contingent on the environment in which they are being evaluated. 

The real-life effects of the fitness of an individual can, of course, only be construed 

in relation to the other individuals with which it competes. An individual without 

the sickle cell mutation would not have a relative selective disadvantage against 

other individuals even in a malaria-rich environment if no other individual had it 

either. The absolute fitness reduction that comes with susceptibility to malaria 

would affect the entire population equally, and the non-sickle cell allele would 

simply be selectively neutral. Only when the sickle-cell mutation is present is the 

other allele even under selection, and the direction of selection depends on the 

incidence of malaria. This goes to show that aspects of the genetic variation, or 

processes that affect it, within the population where selection is taking place are 

as relevant to consider as the mutations themselves when we want to understand 

the DFE. So, what are some of these aspects or processes we must consider? 

Effective population size and the efficacy of selection 

Consider a population of 100,000 individuals, where half of the population are 

homozygous for an allele A, and the other half homozygous for an allele B. A and 

B have no effect on fitness; they are selectively neutral against each other. If all 

individuals mate randomly, how many generations can we expect it to take before 

one allele, either A or B, has outcompeted the other, and all individuals in the 

population are homozygous for that allele? Each generation, each individual 

instance of each allele has a 50% chance – a coin flip – of being passed on to the 

next generation, and this happens each time the 100,000 individuals mate. For all 

individuals to become homozygous, one allele must win all coin flips. 
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Undoubtedly, in most cases, it would take a very long time before either allele was 

lost. 

Now consider a population of two individuals, one homozygous for A and the 

other for B. Now, how many generations do we expect it to take before either 

allele is lost through chance? In the first generation we get two offspring, each 

with AB alleles; in the next, each offspring has a 50% chance of being AB, 25% of 

being AA and 25% of being BB. Thus, the chance of both offspring being either 

AA or BB already in the second generation is 2 * 0.25 * 0.25 = 0.125 or 12.5%. This 

illustrates the effect of population size on random genetic drift. When developing 

the neutral model, Kimura showed through diffusion models that the average time 

to fixation for a neutral allele was approximately 4Ne, meaning that neutral alleles 

would go to fixation more quickly when effective population size is low. With few 

individuals available, a random death of an individual or the random inheritance 

of alleles will shift allele frequencies more than if the population was larger.  

This is a simplified example, but it is the basis of the argument for the nearly neutral 

model described by Ohta (Kimura & Ohta 1971, 1973 1992). In smaller populations, 

natural selection will have a weaker effect relative to genetic drift. Thus, stronger 

selection effects are required to overcome the effects of random chance. This 

means that in a population with smaller effective population size, more mutations 

will behave like neutral mutations, and strongly selected mutations will behave as 

though they were under weaker selection. It also means that the population will 

accumulate deleterious mutations which could have a negative effect on absolute 

fitness. 

Inbreeding 

Inbreeding is when individuals in a population are more likely to breed with 

relatives than expected under random mating (Gillespie 1998). Just like small 
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population sizes, inbreeding can affect the efficacy of selection, which can in turn 

affect the DFE. One result of inbreeding is a reduction in effective population size 

(Charlesworth et al. 1993, Muller 1932), but not as a direct result of low census 

population sizes (meaning the actual number of individuals. Inbreeding decreases 

the effects of recombination, meaning that specific alleles at different sites will be 

inherited together more often. Imagine that, for example, two advantageous 

mutations arise in two unrelated individuals. If the two mutations occur in the same 

individual and they give an increased fitness than if an individual has only one 

mutation. However, if the offspring of the two individuals never inter-breed 

because of inbreeding, the two mutations will be in constant competition, 

stopping each other from going to fixation. This is called Hill-Robertson 

interference and is another example of how efficacy of selection is reduced in 

inbred populations (Hill & Robertson 1966). Similarly, deleterious mutations that 

are genetically linked to advantageous mutations can also “hitchhike” to fixation 

as the advantageous mutation is selected for (Haigh & Smith 1974).  

Another effect of inbreeding is an increase in homozygosity, since rarer alleles 

become more likely to occur in the same individual. Thus, dominance effects are 

also more likely to affect inbred populations than outcrossing populations. For 

example, it can be argued that highly inbred or self-fertilizing species should be 

able to purge deleterious recessive alleles at a higher rate than an outcrossing 

population with the same effective population size due to the higher rate of 

homozygosity (Arunkumar et al. 2014, Mochales-Riaño et al. 2023). Some empirical 

evidence seems to support higher purging rates of deleterious alleles in 

inbreeding populations (though it may not be enough to reduce the genetic load 

induced by lower Ne) (Mochales-Riaño et al. 2023, Zeitler et al. 2023). Self-

fertilization is the most extreme version of inbreeding, as an individual is mating 

with itself to create offspring. In this case, every site for which the parent is 
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homozygous will be homozygous in the offspring, and every site for which the 

parent is heterozygous has a 50% chance of being homozygous for either allele. 

Thus, selfing species will have high rates of homozygosity and be strongly affected 

by reduced recombination effects (Arunkumar et al. 2014, Heller & Smith 1978). It 

is currently unknown exactly how much each of these factors affect the survival of 

inbred species and populations. Estimating the DFE of inbred and selfing species 

could therefore be of considerable interest, for example in species threatened by 

extinction (Mochales-Riaño et al. 2023, Zhang et al. 2023). 

Estimating the DFE from genomic data 
There are several methods that can be used to estimate the DFE, but the most 

widely used are based on collecting genomic data from a target population and 

measuring and comparing the frequencies of neutral and selected mutations 

(Bataillon & Bailey 2014, Boyko et al. 2008, Johri et al. 2020, Keightley & Eyre-

Walker 2007, Piganeau & Eyre-Walker 2003, Tataru & Bataillon 2019, Tataru et al. 

2017). By collecting genomic data from natural populations, we are gathering data 

that contains information about the evolutionary history of that population, 

representing how mutations have behaved in response to selection pressures 

specific to that species, area, timepoint, etc. Importantly for us, if we can extract 

the information therein, we do not need to know the specific mechanisms of 

selection for each allele. Instead, we can look at patterns of variation to draw 

conclusions about the DFE among them.  

Ultimately only two types of processes can affect the frequency of a genetic variant 

such as a single nucleotide polymorphism (SNP): selectively neutral processes such 

as random genetic drift, population size change, founder effects etc., or selective 

processes where the allele has a positive or negative effect on survival or 

reproduction. Neutral processes, by definition, affect the frequency of all alleles, 
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regardless of whether they have any effect on individual fitness, while selective 

processes act directly on mutations that alter fitness (Dobzhansky & Pavlovsky 

1957). Thus, the combined effects of neutral processes and selection are what 

shapes which mutations are currently segregating (or have been fixed or lost) in 

the population. In theory, if neutral mutations are only affected by neutral forces 

such as genetic drift and population size changes, we should be able to use them 

as a control for demographic history in our model. By comparing them to the class 

of selected mutations, we could extract the patterns unique to the selected 

mutations to draw conclusions about the DFE. While the concept is simple, the 

underlying assumptions that must be made affect the accuracy of the estimates. 

The different methods of DFE estimation are described in more detail below, but 

the general procedure is the same across most of them, that is, collecting allele 

frequencies from a sample of individuals, dividing the mutations into neutral and 

selected mutations, and comparing their respective frequency patterns.  

The site frequency spectrum (SFS) 

The most widely used methods of DFE estimation are based on the frequencies of 

single nucleotide polymorphisms (SNPs) in a population (Bataillon & Bailey 2014, 

Boyko et al. 2008, Gutenkunst et al. 2009, Johri et al. 2020, Keightley & Eyre-Walker 

2007, Tataru & Bataillon 2019). More specifically, these methods use the 

frequencies of allele frequencies, called the site frequency spectrum (SFS), of 

neutral and selected mutations to estimate the DFE. Briefly, most methods use the 

following steps to calculate the SFS from SNP data: 

SNPs are first classified as neutral or selected. Exactly which mutations are truly 

“neutral” and “selected” is, of course, not known in most cases, so instead it is 

assumed that those that are synonymous, meaning that they do not affect which 

amino acid is being produced, are selectively neutral, while those that are non-
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synonymous, i.e. change which amino acid is produced, can be affected by 

selection. However, there are cases where some mutations change the amino acid 

but not others (say a change from an A to a C, but not from an A to a T. For 

computational efficiency, only sites where all variants are synonymous are counted 

as putatively neutral. These are called fourfold degenerate sites – all four 

nucleotides that can occur at this site will produce the same amino acid. Similarly, 

only sites where none of the possible nucleotides produce the same amino acid 

are counted as putatively selected – these are called zerofold degenerate sites.  

Secondly, allele frequencies are recorded for all fourfold (neutral) and zerofold 

(selected) degenerate sites. In a sample of 100 diploid individuals (N=100), the 

maximum frequency of any allele would be 200 (=2N), meaning that all individuals 

carry 2 copies of the allele. However, since polymorphic sites will contain more 

than one allele, only the frequency of one allele is recorded. Ideally, we wish to 

use the newer (“derived”) alleles, while the frequencies of the older (“ancestral”) 

alleles are excluded, to represent the frequency distribution of new mutations. This 

categorization of derived/ancestral mutations is generally done by comparisons 

with a reference genome (often from a species that shares a relatively recent 

common ancestor) where the allele that occurs in the reference genome is 

deemed ancestral and the alleles unique to the sample population are classified 

as derived. In more complicated cases, several reference genomes may be 

required to classify all alleles. If no suitable reference genome is available, however, 

the minor allele, i.e. the allele with the lowest frequency, is recorded.  

Lastly, we calculate a site frequency spectrum, or SFS, for the fourfold (neutral) and 

zerofold degenerate sites, respectively. The SFS is the vector describing the 

number of sites that have an allele frequency of 0, 1, 2, […], 2N. If the included 

alleles are classified as derived or ancestral using a reference genome, alleles may 

occur in frequencies all the way up to 2N. This is called an unfolded SFS. If we use 
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the simpler method of only including the minor alleles, the highest frequency any 

allele can take is N (representing 50% of all alleles at that site), and the rest of the 

SFS will consist of zeroes. This will create a folded SFS – any derived allele that 

occurs at a frequency f>N will be represented in the SFS as a frequency 2N-f 

instead, effectively folding the second half of the SFS onto the first. While this 

method may seem simplistic in comparison with the unfolded SFS, many DFE 

estimation software currently use the folded SFS with seemingly good results. 

The empirical SFS of neutral and selected mutations are then compared to the 

expected SFS under different demographic scenarios, as well as under different 

DFEs of selected mutations. In general, we can use the assumption that mutations 

that are more deleterious will occur at lower frequencies than less deleterious 

alleles to estimate the number of mutations in the sample that can be assumed to 

have different fitness effects. The exact models used for calculating the expected 

SFS differ among software, but most use Fisher-Wright transition matrices 

(Keightley & Eyre-Walker 2007) or Poisson Random Field models (Boyko et al. 

2008, Kim et al. 2017, Tataru & Bataillon 2019, Tataru et al. 2017) that incorporate 

some level of possible population size change together with the estimated DFE.  

Shapes of the estimated DFE 

The exact shape of the DFE is arguably unique to each species, population and 

evolutionary context. Yet, some assumptions about the possible or most common 

DFE shapes are required for statistical inference from genomic data. Software for 

DFE estimation will therefore produce different possible distributions depending 

on the underlying model assumptions. For example, many software will assume 

that the DFE follows a gamma distribution (Boyko et al. 2008, Keightley & Eyre-

Walker 2007, Kim et al. 2017, Piganeau & Eyre-Walker 2003, Tataru & Bataillon 

2019). The gamma distribution is described by two parameters, commonly the 
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shape and scale parameters, or possibly reparametrized as the shape and mean 

(scale-1) parameters. Depending on the value of these parameters, the gamma 

distribution can take many different forms – from nearly exponential, to unimodal, 

to almost flat – which makes it versatile for describing the DFE. For example, the 

Nearly Neutral Theory suggests that most mutations are selectively nearly neutral 

or weakly deleterious, with a decreasing frequency of mutations with stronger and 

stronger deleterious effects. This could easily be described as a gamma 

distribution with mean and shape parameter values near 0. However, there is no 

theoretical guarantee that the DFE cannot take other shapes, with bi- or 

multimodal distributions. In these cases, assuming a gamma distribution would 

impede the accuracy of the estimated DFE (Kousathanas & Keightley 2013). Some 

models use discretized distributions that can take any shape, but these models 

must often make other concessions, such as not being able to control for 

population size changes due to computational complexity (Wilson et al. 2011).  

Most software currently only estimate the neutral-to-deleterious part of the DFE, 

and opt to estimate any effects of positive selection by other means (Bataillon & 

Bailey 2014, Eyre-Walker & Keightley 2009, Kim et al. 2017, Tataru & Bataillon 2019, 

Tataru et al. 2017). This, again, is due to the assumption that advantageous alleles 

are rare, especially among segregating alleles as they are more likely to fix more 

rapidly than neutral or deleterious alleles. By focusing only on the deleterious half 

of the DFE, we can use a gamma distribution to describe it, and avoid the problem 

of having to distinguish between mutations that are positively and negatively 

selected among the non-synonymous sites. Instead, the proportion of 

advantageous substitutions (mutations that have become fixed), α, is often 

estimated by calculating the expected number of deleterious substitutions under 

the estimated DFE and population size, and comparing it to the number of fixed 

sites in the neutral and selected SFS (Eyre-Walker & Keightley 2009). 
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Our studies 
As a first step, I was to apply the method of DFE estimation from site frequency 

spectra on a real data set where the DFE would give valuable insights into the 

process of speciation. The Tibetan pine, Pinus densata, represented an excellent 

candidate; P. densata is a hybrid species that shows strong signs of having 

undergone recent selective adaptation to the harsh environment atop the Tibetan 

plateau (Mao & Wang 2011). It is also, as mentioned, a hybrid species with ancestry 

from both P. yunnanensis, and P. tabuliformis (Wang & Szmidt 1994, Wang et al. 

2001). The data set was derived using exome capture methods, thus not including 

intronic regions (regions outside of genes. Although the data would not be 

suitable to analyses requiring very long gene regions, we assumed that a SNP 

frequency-based approach would be appropriate. We selected the software DFE-

alpha (Eyre-Walker & Keightley 2009), a well-used software which uses the 

frequencies of the least common alleles at each site to estimate the DFE and got 

to work.  

Problem 1: Data quality 

One issue presented itself when my colleague Wei Zhao and I had both performed 

the DFE analysis on five populations of P. densata. His data sets included a few 

more individuals than mine, but preparation was otherwise identical. My results 

showed that the DFE seemed to include mostly mutations with relatively weakly 

deleterious effects, and only ~3% of mutations were classified as strongly 

deleterious. Wei’s results, however, indicated that over 30% of all mutations were 

strongly deleterious in some of the same populations. This was worrying. If the 

inclusion of just a couple of extra individuals in a population could change the 

estimated DFE to such an extent, how would we possibly know which – if any – 

results to trust? We could only assume that this was a result of some shortcomings 

of the data or the method. Either the data sets were flawed (biased, too small, etc) 
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and one or both of our samples did not represent the true variation in the 

population, or the method was misinterpreting some pattern within it. Trial tests 

with different sample sizes and pre-processing methods further confirmed that 

the variations we could get with the same starting data set were – regrettably – 

rather large. Maybe more worryingly, our data set (while not massive or the most 

advanced) did not seem to be of obviously worse quality than many others where 

DFE-alpha or similar methods had been applied, implying that other studies may 

unknowingly have encountered this effect (see for example Kutschera et al. (2020). 

I could find no guidelines or recommendations about either the number of SNPs 

or the number of individuals needed to obtain reliable results from DFE-alpha. 

Instead, we designed an experiment to make them.  

Our hypotheses were that either: 1) The data set contained too little information 

(too few individuals or sites) for DFE-alpha to be able to draw any conclusions, or 

that 2) including or excluding some individuals or sites affected the pattern of SNP 

frequencies in final data set after filtering. By downloading a larger data set and 

creating smaller sub-data sets by sampling from it, we should be able to show 

which factors could affect the DFE estimates from DFE-alpha. Using data from 

Arabidopsis thaliana, we created data sets of different sizes, using different filtering 

methods and settings, and estimated the DFE from each of them. A year after the 

first discovery, the results came in: estimates of the DFE from the same populations 

were wildly different depending on sample sizes, and even the method used to 

filter the data prior to analysis had a large effect. But the feeling of retribution did 

not last long… 

Problem 2: Inbreeding 

Unfortunately, we had glossed over an important biological factor – inbreeding 

also violates an assumption of DFE-alpha, and Arabidopsis thaliana is an almost 
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exclusively self-fertilizing species (Abbott & Gomes 1989, Alonso-Blanco et al. 2016, 

Bechsgaard et al. 2006). The few studies that have attempted to estimate the error 

in high selfing populations show steep drop-offs in accuracy (Gilbert et al. 2021). 

We also identified an interesting pattern; in the A. thaliana data set, almost all 

alleles occurred in an even number of copies in our data set. This, in itself, is not 

necessarily surprising because inbred species will have a high rate of homozygosity 

(individuals carrying two copies of the same allele instead of two different alleles), 

but it could cause problems since DFE-alpha uses allele frequencies for estimating 

the DFE. A diploid species where all individuals are homozygous for an allele will 

contain no sites with an odd allele frequency, meaning that the SFS will have a 

frequency of 0 for all odd frequencies. So instead of solving a problem, we had 

swiftly found another! 

Problem 3: The truth? 

To test the effects of sample size and filtering without the confounding effect of 

inbreeding in A. thaliana, we instead downloaded a similar data set from a related 

outbreeding species, A. lyrata, and performed the same analyses again. This time, 

we could see the effects of sample size clearly, as well as how different filter 

methods could alter the estimated DFE. Yet, there was a nagging question that 

we, and soon enough a couple of reviewers, had identified. When we analyse the 

different DFE estimates, we can see that they vary – but how do we know which 

estimate is better? Unless we know what the real DFE is, we can never truly know 

which of two estimated DFE’s are more accurate. At best, we could see which result 

is most common, and perhaps assume that the true DFE is somewhere around 

there, or an average of several different trials. However, there is no guarantee that 

that would be the case, as DFE-alpha’s interpretation of data sets with certain 

characteristics could be biased in one direction instead of spreading equally 

around the true value. We needed a data set where we knew what the true DFE 
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was, so that we could measure the accuracy of the estimates, and not just the 

variance between them… 

Solution: Simulation 

So, what do you do if the perfect data set does not exist? You create it. By 

simulating populations where mutations were drawn from a known DFE, and being 

able to modify aspects such as mutation and recombination rate, demographic 

history and the rate of selfing, we could simulate populations that followed all of 

the assumptions of DFE-alpha save for the exact variable we wanted to study. 

Further, we were able to create data sets that mimicked an empirical data set. This 

made it possible to estimate a baseline accuracy estimate for DFE alpha. In this 

way, we could show the effects of both sample sizes, filtering missing data, 

population structure and level of inbreeding. Together with the results from the 

empirical data sets, we could finally quantify the effects of each factor and show 

which methods should be used in the most common scenarios. 

Finishing at the start (spoiler warning) 

While I aimed to study the speciation process more directly, the problems we 

found along the way turned out to be both interesting and very valuable. The 

conclusion drawn from our explorations of the accuracy of DFE-alpha in different 

contexts informed our choices in future studies. Firstly, one conclusion we could 

draw from our results was that, since DFE-alpha does not use information such as 

linkage disequilibrium or relatedness among individuals, it requires very large 

numbers of alleles to draw conclusions from allele frequencies. Thus, we deemed 

that the data set from Pinus densata, a study which had been put on ice during 

this exploration phase, was probably best suited for other types of analyses. In its 

stead, Jing-Fang Guo and others (2023) were able to describe extensive population 

structure, identify potentially introgressed alleles involved in adaptation to 
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elevation and reproductive isolation using methods that leveraged information 

such as associations between ancestry information, environmental variables and 

the relationship between genetic variation in the exome and intergenic regions. 

Secondly, we showed that if we can identify the general pattern of low 

quality/missing genotypes in a data set, this can inform our choice of filtering 

method for pre-processing. Thus, in the latest study on adaptive radiation in the 

Pinus complex, we chose to change the filter method used from subsampling to 

downsampling, and made sure that all samples included >8 individuals and >1 

million sites (in this case ≥12 individuals and >5 million sites) to ensure that the 

results were reliable. We will also continue to explore methods of estimating the 

DFE in inbred species.  

Aims & objectives 
This thesis aims to explain and explore one of the most common methods of 

quantifying the distribution of fitness effects from whole genome data sets. The 

main part of the thesis will focus on assessing the accuracy and robustness to 

deviation from core assumptions of the underlying models of one specific method 

of estimating the deleterious DFE (DFE-alpha. The second part will show how DFE-

alpha and/or other methods can be used in context with other analyses for 

assessing fitness effects of mutations to inform conclusions about species history. 

Specifically, I focused on the following questions: 

1. How does variation in data quality and/or quantity affect the accuracy of DFE 

estimation? (Paper I) 

2. How does variation in life-history traits, specifically inbreeding, affect the 

accuracy of DFE estimation? (Paper II) 

3. When and how can the estimation of the deleterious DFE be used to draw 

conclusions about evolution in natural populations? (Paper I-IV) 
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Data and methods 

Simulated data sets     (Papers I, II) 

To test the accuracy of DFE-alpha, we created artificial genomic data sets with a 

known DFE using SLiM 4.0.1. SLiM produces genomic data sets by simulating 

populations of individuals with separate genomes for which mutations and 

recombination occur at given rates. In what I will hereby refer to as our default 

model, we simulated uniform populations of 10,000 individuals with 50Mb 

genomes and recombination rates of 4×10-8. The DFE of selected mutations was a 

gamma distribution including only deleterious mutations, which follows the 

assumption made by DFE-alpha. Generally, selected mutations are generated 

within the simulation, while neutral mutations are added later by tracking the 

ancestry of the individuals at the point of sampling, since neutral mutations do not 

alter the likelihood of survival or reproduction. We used a ratio of 4:1 of selected 

to neutral mutations (based on the ratio of non-synonymous to synonymous sites 

in Arabidopsis lyrata), giving a mutation rate of 7×10-8. Running this type of 

simulation with an outcrossing population should produce close to ideal data sets 

for DFE-alpha with minimal error, save for the assumption of complete 

recombination (no linkage.  

To best replicate the procedure used in analysis of empirical data, we created VCF 

files based on VCF files from 100 randomly sampled individuals from each 

simulated population. This method preserves diploid genotypes unlike the built in 

SFS function in SLiM which generates SFS from random haploid genomes in the 

population. This becomes relevant where homozygosity can influence the results 

(Paper II. 
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Missing data filtering     (Papers I, IV) 

Empirical genomic data sets invariably contain genotype reads of lower quality 

and/or those that are completely missing. These reads are often removed to 

ensure accuracy of the data. Calculating an SFS from SNP data, however, requires 

the number of available genotypes to be the same for all sites. Since DFE-alpha 

uses SFS for its analyses, the missing genotypes must then be either filtered out or 

somehow reintroduced before we can estimate the DFE from our data sets.  

Three popular methods of handling missing genotype data are downsampling, 

imputation and subsampling (Note: that the names down- and subsampling are 

not consistent across studies but are used here to enable discussion about them 

without confusion) (Fig. 2). Downsampling and subsampling both work by 

removing a portion of the data to match the sites with fewer available genotypes, 

while imputation “fills in” missing genotypes based on the allele frequencies in 

other genotypes. For each method, we also tried several different settings to get 

an overview of the variability in outcomes within each method. 

Paper I: We simulated one population of 10K individuals with a strongly 

deleterious gamma DFE (mean selection coefficient Es of -100, shape b of 

0.1. We sampled 10×100 individuals for which we created VCFs and SFS, for 

4 of which we also randomly masked 20% of the genotypes DFE estimate 

accuracy after filtering.  

Paper II: We simulated 16 separate populations of 10K individuals with self-

fertilization rates of either 0%, 50%; 60%, 70%, 80%, 90%, 95%, 99%, or 

99,9%, and either a weakly deleterious (mean -0.001, shape 0.1) or slightly 

stronger deleterious (mean -0.01, shape 0.1) DFE. We sampled 100 

individuals per population to make the SFS. 
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Downsampling creates a data set by sampling a set number, say n, of genotypes 

for all sites. Sites for which there are not enough genotypes available to sample 

are removed. In this way, downsampling creates n genomes with no missing data, 

comprised of genotypes from different individuals, but excluding sites where the 

data quality was low. As such, just like in imputation, a threshold of 90% in 

downsampling will remove all sites for which more than 10% of the genotypes are 

 
Figure 2 

Three methods 
for treating mis-
sing data were 
examined in 
paper 1:  
Downsampling, 
Imputation and 
Subsampling. 
The figure pre-
sents an exam-
ple of the res-
ulting sizes and 
characteristics 
of the filtered 
datasets under 
each method.  
For example, 
downsampling 
does not pres-
erve individual 
identities, and 
the dark brown 
squares in the 
imputed data 
set indicate 
genotypes that 
have been 
added by 
imputation. 
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missing, but it will also mean that the number of genotypes sampled in the 

remaining sites will be 90% of the total number of individuals sequenced.  

Imputation works by comparing our set of genomes with a reference genome and 

identifying IBD (isolation by distance) blocks that have been inherited more or less 

identically from a common ancestor, together with a hidden Markov model that 

accounts for the uncertainty of the inferences (Browning et al. 2018). This gives rise 

to a data set where missing genotypes are filled in with the most likely allele for 

each individual and site. The threshold in imputation is simply a limit of the lowest 

required data quality for sites to be included in the analysis, or reversely, how high 

the proportion of missing data can be at site before we consider the possibility of 

incorrect imputation to be too high and so choose to remove the sites from the 

analysis. Thus, a threshold of 90% will remove all sites for which more than 10% of 

the genotypes are missing and impute the genotypes for all other sites.  

Subsampling is the simplest method of removing missing genotype data, but it 

also removes the largest amount of data in the process. In subsampling, the order 

of filtering is reversed, by first filtering out individuals with a high missing rate. 

Thus, a threshold of 10% would mean removing all individuals with a missing 

genotype frequency above 10%. As a next step, all sites where at least one of the 

remaining individuals have a missing genotype are removed.  

 

Paper I: Empirical datasets from two populations of Arabidopsis lyrata were filtered 

with imputation at thresholds 90%, 80% and 70%, downsampling at thresholds 75%, 

66% and 50%, and subsampling at thresholds 10%, 15%, 20% and 25%. 

Paper IV: Missing data was filtered using downsampling at an 80% threshold. 
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DFE estimation with DFE-alpha     (Papers I, II, IV) 

The DFE was estimated with the software DFE-alpha (Keightley & Eyre-Walker 

2007). DFE-alpha uses the SFS of putatively neutral sites to estimate a 

demographic model, and the SFS of putatively selected sites to estimate a gamma 

distribution that describes the distribution of selection coefficients of new 

mutations. The demographic model assumes one population size change from a 

size N1 to N2 individuals at a time t2. The population sizes are relative; N1 always 

starts at 100 individuals, and N2 can take any value between 0 to 1,000, where 1,000 

thus indicates a 10x population size increase. Together, these are used to create a 

distribution where the proportions of mutations with selective effects scaled by the 

effective population size, Nes, are estimated. Mutations are categorised as either 

effectively neutral (0 ≤ -Nes < 1), slightly deleterious (1 ≤ -Nes < 10), moderately 

deleterious (10 ≤ -Nes < 100) or strongly deleterious (-Nes ≥ 100. Under this 

categorisation, mutations with an absolute Nes value below 1 will behave neutrally 

since the effect of random genetic drift is stronger than that of selection. Yet, the 

information derived from this distribution is contingent on the accuracy of both 

the estimated gamma distribution and the assumed demography. 

 

Paper I & II: DFE-alpha was run with default parameters under the two-epoch 

demographic model. For simulated datasets the accuracy of the estimated gamma 

distribution (describing the distribution of selection coefficients) were evaluated 

using Earth Mover’s Distance, comparing the overlap of the different estimated 

DFEs in each dataset with the true DFE given in SLiM. In all datasets, 95% 

confidence intervals were calculated using bootstrapping (99 iterations), and the 

Nes-scaled DFEs (mutations divided into four categories, see above) were plotted 

for comparison.  

Paper IV: DFE-alpha was run separately on each population, and 95% confidence 

intervals (999 iterations) were calculated and plotted.  
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Our results and their implications 

Data quality 

In any empirical science, the quality of your data unavoidably influences the quality 

of the results of any analysis you perform on it. Larger sample sizes are better – 

but often considerably more expensive – and avoiding bias is an implicit struggle 

in population genomics where data sets are so large that patterns may not emerge 

until after several rounds of processing. Better yet, genomic data sets need several 

steps of pruning, filtering and interpretation before it is ready for most statistical 

analyses. How then do we ensure that these steps themselves do not induce bias, 

or even reduce the quality of our data? Among the myriad statistical methods, 

independently developed software packages and filtering pipelines being made, 

we aimed to quantify the effects of one step in the processing of genomic data, 

specifically needed before DFE analysis with SFS-based methods: filtering of 

missing data.  

Since the SFS describes the population-level frequencies of mutations across a 

number of genomic sites, it requires that all individuals in the sample contain 

complete genotype information for all included sites. Say, for example, that a 

mutation A that is, in reality, present in 10 copies in the population and allele B in 

12, but that the genotype of one individual homozygous for allele A had a low 

coverage (its genotype uncertain) in the sequencing step and was excluded from 

the final data set. In an unfolded SFS, this site would count towards the mutation 

with a frequency of 8 instead of 10, while the other allele B at the site would retain 

its true frequency of 12. Any missing information would thus shift the allele 

frequencies downwards in sites with missing genotypes, inducing an artificial bias 

towards low-frequency alleles. 
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To avoid this, SFS must include only sites for which we have data for an equal 

number of genotypes. How to arrive at which sites and which genotypes to 

preserve from the whole data set can, however, be difficult. In our study, we chose 

to highlight three methods which we called subsampling, downsampling and 

imputation. In essence, subsampling removes individuals with high missing rates 

first, and then removes all sites with missing data; downsampling samples a set 

number of (random) genotypes at each site, removing sites for which there is not 

enough data; imputation removes sites with high rates of missing data first, and 

then infers the most likely genotype for each missing genotype at the remaining 

sites using linkage information. In order to show which filtering method effects 

were due to the reduced size of the data set, we also performed several tests on 

data sets with different numbers of individuals and sites in simulated data sets 

where there was no missing data to start. The filter methods were performed both 

on simulated data sets with random genotypes removed to simulate missing data, 

and on an empirical data set (Arabidopsis lyrata.  

In our experiments, the accuracy of the DFE estimate was correlated with the size 

of the data matrix, quantified as the total number of SNPs included in the 0-fold 

and 4-fold SFS, both in complete data sets and after filtering. While the general 

result of “more data gives better results” may be intuitive, the extent of these 

effects and the relative importance of the different dimensions of sample sizes 

have not been quantified before. The SFS is made up of a vector of frequencies, 

where the length of the vector represents the number of haploid genomes in the 

population (= the maximum frequency), and the frequencies listed in the vector 

depend on the number of sites included in the analysis. Both factors (number of 

individuals and sites included in the analysis) are important but seem to affect the 

accuracy of the results in subtly different ways.  
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Firstly, our results indicate that while DFE estimates generally become more 

accurate in samples with more individuals, the accuracy is disproportionately low 

in data sets with 8 or fewer individuals. This effect is strongest – and clearly visible 

in the difference between the estimated proportions of fitness effect and the size 

of the 95% confidence intervals – in samples with only 4 simulated individuals (Fig. 

3a-c), and is suggested by the deviation in estimated DFE in the empirical sample 

(Fig. 3e. However, the variation in the estimated mean of the DFE for data sets with 

8 simulated individuals (from -4 to -6.36×106, expected -100; Table S2, Paper I) 

indicate that these estimates may also be more sensitive to the choice of 

individuals than larger samples. It should be noted that the error induced by the 

small sample size is not always accompanied by an increase in the 95% CI’s in our 

study. Instead, we may get a result indicating relatively high confidence in the 

estimate.  Keightley and Eyre-Walker (2007)  note in their original test of DFE-

alpha’s accuracy that the estimates of the distribution mean are more variable than 

estimates of the shape parameter. 

Secondly, data sets with few sites show a clear increase in the size of 95% CI’s (Fig. 

3b in paper I. We tested the effect of extracting 1,000, 10,000, 100,000, 1 million, 10 

million and using all 55 million sites in the data set. Of course, most of the 

information in the SFS comes from the number of segregating sites, and in these 

data sets the number of SNPs corresponded to roughly 1.1% of the number of sites 

included. Although the magnitudes of differences between the levels in this trial 

are much larger than when comparing the number of individuals in the sample, 

this range of data set sizes is represented in the literature (Eyre-Walker & Keightley 

2007, Hämälä & Tiffin 2020, Keightley & Eyre-Walker 2007). Thus, knowing that 

comparing data sets with 15,000 SNPs to those with 5,000 SNPs showed the 

highest measured error increasing threefold should be of some value when 

reading and designing studies on the DFE. Data sets with fewer than a total of 
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Figure 3 Results from paper I demonstrate the variability (a-d) and 
accuracy of estimated DFE (e) as a result of number of individuals in data 
sets without missing data, as well as in data sets with missing data filtered 
in three different ways. The correlation between accuracy in DFE 
estimates and number of SNPs in each data set is also presented, with 
regression lines shown separately for the group of complete data sets 
(black line) and filtered data sets (brown line) (f). 
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1,000 SNPs increased the inaccuracy and uncertainty of the results. Further, the 

resulting size of a data set filtered with subsampling could be up to 90% smaller 

per individual/loci. 

Taken together, these results show that choosing the appropriate filter method for 

your data set is important when performing SFS-based DFE analysis. The size of 

the resulting data matrix after filtration may differ significantly depending on the 

method you use, and different methods are sensitive to different kinds of missing 

data patterns. For example, subsampling will remove a higher percentage of the 

data if the missing data is evenly dispersed across individuals and loci, because all 

sites and individuals with missing data will be removed in one of the two steps, 

while downsampling retains the same amount of data as long as the missing rate 

per locus is lower than the threshold. If, however, the missing data is concentrated 

to specific loci or individuals, subsampling can remove those individuals or loci 

and continue to use all available data for the remaining individuals and sites. In 

this case, subsampling can retain more data than downsampling, which will only 

use a fraction of the available data even for sites where all individuals have 

complete data. Thus, mapping the pattern of missing data could potentially help 

in choosing an appropriate filtering method and threshold. 

Inbreeding/selfing 

While low data quality or small sample sizes can cause reduced accuracy in many 

empirical analyses, these issues are potentially remediable. Additional data 

collection and/or using newer or other methods of sequencing (such as combining 

methods of short and long-read sequencing) can complement the existing data 

and improve the quality of the data set for more accurate conclusions. It is another 

matter when the source of the inaccuracy in analyses is part of the life-history of 

your study species. Inbreeding and self-fertilization mating strategies have long 
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been seen as evolutionary dead-ends. Inbred species, by definition, should have 

lower genetic diversity than their outcrossing counterparts leading to lower 

evolutionary potential in changing environments and lower effective population 

sizes, meaning lower efficacy of selection for both purging deleterious variants 

and selecting for beneficial mutations (Charlesworth et al. 1993, Heller & Smith 

1978, Muller 1932). According to Muller’s ratchet, high rates of inbreeding should 

thus lead to accumulation of deleterious variation, reducing overall fitness until 

extinction (Muller 1932). Yet, many species of highly prolific organisms such as 

protists, fungi, nematodes and plants use self-fertilization as their main mode of 

reproduction (Abu Awad & Roze 2020, Alonso-Blanco et al. 2016, Gilbert et al. 

2021, Gossmann et al. 2010). As we are entering times of great climatic change, 

the viability of selfing species is again a hot topic in molecular biology research. 

With today’s molecular method and analysis tools, we can finally study genetic 

variation at scale, and the results are intriguing, if somewhat contradictory. Some 

studies suggest that purging of deleterious mutations might be higher in inbred 

species, in some cases, reducing their genetic load (Abu Awad & Roze 2020, Leon-

Apodaca et al. 2023, Mochales-Riaño et al. 2023) – for example, the increased 

rates of homozygosity in inbred species might be exposing recessive deleterious 

alleles to selection (Mochales-Riaño et al. 2023). However, others estimate that this 

effect is negligible (Zeitler et al. 2023). Some studies suggest that the levels of 

genetic diversity necessary for population persistence might be lower than 

previously expected, while yet others suggest that genetic variability is more 

important for population survival than the accumulation of deleterious variation. 

To top it off, even basic assumptions about recombination or mutation rates might 

be affecting how we interpret the risk of extinction due to inbreeding (Sianta et al. 

2022). 
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With these unique challenges faced by inbred species, it seems only logical to want 

to quantify the distribution of fitness effects to understand their evolutionary 

strategies and, potentially, their futures. Unfortunately, high rates (≥99%) of self-

fertilization have already been shown to severely reduce the accuracy of DFE 

estimates (Gilbert et al. 2021). In our data sets, selfing increases homozygosity in 

the population, which in turn increases the relative proportions of alleles that occur 

at even-numbered frequencies in the SFS (Fig. 4). If high homozygosity affects the 

accuracy of the estimated DFE, sampling only one allele per site as if only one 

haplotype per individual was sampled could mitigate this effect. Indeed, this is a 

method that has been used in selfing species (see e.g. Hämälä & Tiffin (2020). 

Whether this adjustment actually makes the estimate more accurate has, however, 

not yet been confirmed.  

 

Figure 4 Site frequency spectra  for an (a) outcrossing and (b) 99.9% self-
fertilizing population with DFE -0.01 and shape 0.1. The blue bars mark the 
frequency of alleles that are found in an even number of copies within the 
sample, while the red bars show the frequency of mutations that occur at 
each of the odd frequencies. Y-axis cut off at 15,000 and 1,500 for visibility. 

  
             Allele frequency 
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Our results suggest that while populations with rates of >99% selfing do indeed 

show a low accuracy in DFE estimates as predicted by Gilbert et al. (2021), the 

effect seems to start at rates around 70% and gradually increase until around 90% 

selfing (Fig. 5). At 90% selfing and above, the accuracies of the DFE estimates are 

almost equally low. Thus, even relatively low rates of selfing affect the accuracy of 

DFE estimates with DFE-alpha. What is more, using the “haploidized” data set 

(using one allele per site per individual instead of diploid genotypes) did not 

necessarily improve the accuracy of the DFE estimate, and the average reduction 

in the error was generally small. This suggests that some factor other than 

homozygosity affects the accuracy of DFE estimates in inbred populations, such as 

the effects of reduced recombination (Sianta et al. 2022, Soni et al. 2023). It is 

possible that another underlying model of calculating the expected SFS is needed 

if the assumption of random mating is violated, where the rate of inbreeding 

should be incorporated explicitly before the DFE is estimated (Blischak et al. 2020). 

 

Figure 5 DFE estimation error (EMD) in simulated populations with different 
selfing rates when using a haploid (orange) VS diploid SFS (green), estimated 
in two different DFEs (shape 0.1, mean -0.001 or -0.01. 
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Concluding remarks 
In my quest for understanding the DFE, I ended up studying how we 

misunderstand it in various ways. This may sound like a failure but to know the 

pitfalls and difficulties of any topic or procedure is, in my opinion, a vital part of 

learning how to do it correctly. We have shown that the effects of low sample size 

and filtering methods, as well as inbreeding, can “trick” DFE-alpha into giving us 

estimates that deviate from the real DFE, by a small or large margin. However, this 

discovery is ultimately a step towards increased understanding. At this stage, we 

know more about the required sample sizes (≥12 individuals and >5 million sites) 

of DFE-alpha (Andersson et al. 2023). We also know when effects of selfing start 

to decrease the accuracy of estimates (detectable above 50% selfing, but strongest 

effects above 80%), and that it tends to skew results towards overestimation of 

slightly deleterious effects. We were also able to use these guidelines in our own 

research – both by adjusting the method we use for filtering and in the choice of 

sample sizes to ensure the best quality results (Zhao et al. Unpublished), and in 

knowing when not to apply DFE-alpha at all (Guo et al. 2023).  

Today, the technology is rapidly evolving and the quality of both data and 

statistical methods are likely to improve. As such, I do not expect our results to be 

applicable to all research in the future. However, its relevance to current and past 

research is enough to justify its value. The guidelines we have developed, and that 

I hope to continue to develop going forward, I hope will help others obtain more 

reliable DFE estimates, as well as provide a way of judging the reliability of such 

analyses.  
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