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Abstract
The United Nations launched sustainable development goals in 2015 that include goals for sustainable energy. From global 
energy consumption, households consume 20–30% of energy in Europe, North America and Asia; furthermore, the overall 
global energy consumption has steadily increased in the recent decades. Consequently, to meet the increased energy demand 
and to promote efficient energy consumption, there is a persistent need to develop applications enhancing utilization of energy 
in buildings. However, despite the potential significance of AI in this area, few surveys have systematically categorized 
these applications. Therefore, this paper presents a systematic review of the literature, and then creates a novel taxonomy for 
applications of smart building energy utilization. The contributions of this paper are (a) a systematic review of applications 
and machine learning methods for smart building energy utilization, (b) a novel taxonomy for the applications, (c) detailed 
analysis of these solutions and techniques used for the applications (electric grid, smart building energy management and 
control, maintenance and security, and personalization), and, finally, (d) a discussion on open issues and developments in 
the field.

1 Introduction

Overall, households account for 20–30% of energy con-
sumption in Europe, North America and Asia. Heating and 
cooling, lighting, and electric appliances are the three major 
contributors of this consumption [1, 2]. Moreover, the recent 
regulation in the EU and China has required buildings to 
utilize less energy and, at the same time, utilize more renew-
able energy [3, 4]. To promote efficient and comfortable 
energy consumption in smart buildings, there is a need to 
develop and deploy machine learning (ML) applications, 
neural network (NN) applications and other AI applications 
coupled with systematic data. However, despite the potential 
significance of AI in this area, few surveys or reviews have 

systematically categorized machine learning applications for 
energy utilization in smart buildings.

The purpose of this study is to review the application 
segments of the smart energy of buildings since 2009 using 
a mapping study to scope the topic, and, then, to concentrate 
on the review of the applications and techniques within that 
scope. We present our method in Sect. 2. We present our 
mapping study results and answer the related research ques-
tions in Sect. 3. In Sect. 4 we present our literature review 
results and in Sect. 5 answer the related research questions. 
We present the open issues and future work in Sect. 6 and 
our conclusions in Sect. 7.

2  Method

This study has been undertaken as a mixed study starting 
with a mapping study to scope the study topic and continu-
ing with a related systematic literature review [5, 6]. The 
first goal of this study is to assess the status of application 
segments for the smart energy of buildings. This part of 
the study can be categorized as a mapping study. Then, the 
second goal of this study is to review the applications and 
the machine learning techniques identified through the map-
ping study. This part of the study can be categorized as a 
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systematic literature review. The steps of the mapping and 
systematic literature review are presented below.

2.1  Research Questions

The research questions addressed by this study are:

• RQ1: How much smart building energy activity utilizing 
machine learning has there been in 2009-2021?

• RQ2: Who leads smart building energy research?
• RQ3: What research topics are addressed?
• RQ4: What are the open questions and limitations of the 

current research?

With respect to the research question concerning the amount 
(RQ1) of the research, the mapping study addresses this. We 
limited the search to the period 2009–2021. We recognize 
that the number of review papers prior to 2009 was scarce. 
However, there were relevant studies also prior to 2009, 
and we looked in few of them to have an idea of the prior 
research [7, 8]. To answer the RQ1, we identified the number 
of papers on smart building energy and the journals that 
published them. With respect to the research questions 
concerning the origins (RQ2) of the research, the mapping 
study addresses this. We considered the fields of science, to 
which researchers were affiliated, and the country, in which 
the organization was situated.

With respect to the research topics (RQ3), they were 
addressed both in the mapping study and the literature 
review. In the mapping study we identified the candidates 
for the taxonomy. The taxonomy was then proposed based on 
the mapping study and the literature review results. This was 
an iterative process. Furthermore, in the literature review 
we considered the scope of each article (i.e., whether it 
addressed taxonomy, whether it considered applications, and 
whether it looked at a machine learning centered research 
question). Consequently, we considered several issues:

• RQ3.1: What are the discussed topics for smart building 
energy utilization?- This research question is answered 
in the mapping study.

• RQ3.2: What are the existing taxonomies utilized for 
smart building energy utilization and what are their 
characteristics?- This research question is answered in 
the literature review.

• RQ3.3: What is the taxonomy proposed for the 
applications for smart building energy utilization?- This 
research question is answered in the literature review.

• RQ3.4: What are the characteristics of the applications 
and the parameters to compare the application areas?- 
This research question is answered in the literature 
review.

• RQ3.5: Which are the techniques utilized for the 
applications of smart energy for buildings?- This 
research question is answered in the literature review.

• RQ3.6: How are the techniques manifested in electric 
grid, building control, maintenance and security, and 
personalization? What are the issues?- This research 
question is answered in the literature review.

With respect to the limitations of this study and future 
directions of the research (RQ4), the Sect.  6 addresses 
this question. We considered both the applications and the 
machine learning techniques.

2.2  Search Process

The search process was initiated by comparing Web of 
Science and Scopus databases. We selected Scopus as it 
yielded more results when we proceeded with the first steps 
of the search process.

With respect to the mapping study, the search process was 
an automated search of reviews in 2009–2021 with broadly 
defined search keyword from 34 publications in Scopus 
including Renewable And Sustainable Energy Reviews, 
Energy And Buildings, Energies, IEEE Access, Building 
And Environment, IEEE Internet Of Things Journal, 
Sustainable Cities And Society, ACM Computing Surveys, 
and Journal Of Network And Computer Applications. The 
journals were selected because they were known to include 
either empirical studies or literature surveys, and to contain 
machine learning topics. Furthermore, three bibliographic 
analysis programs were compared (Bibliometrix, CiteSpace, 
and VOSviewer). We selected VOSviewer as it was the 
most stable one and had relevant references for the methods 
utilized [9].

With respect to the literature review, to extract any 
details about the taxonomies proposed so far, the search 
was a manual search of specific survey and review papers. 
The journals selected were the same as above. Each review 
publication was reviewed by the main author and the papers 
that addressed taxonomies for smart energy of buildings of 
any type were identified as potentially relevant. Then, the 
main author applied the detailed inclusion and exclusion 
criteria to the relevant papers (refer to Sect. 2.3), and another 
round of reading the paper abstracts, conclusions, problem 
statements and taxonomies was done.

With respect to the literature review, to extract more 
details about the applications and machine learning 
techniques, the search was a manual search of specific 
conference proceedings, journal papers, and research papers. 
The journals selected were the same as above. Each review 
publication was reviewed by the main author and the papers 
that addressed applications for smart energy of buildings of 
any type were identified as potentially relevant. Then, the 
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main author applied the detailed inclusion and exclusion 
criteria to the relevant papers (refer to Sect.  2.3), and 
another round of reading the paper abstracts, conclusions 
and problem statements was done.

2.3  Inclusion and Exclusion Criteria

For the mapping study, all peer-reviewed surveys and 
literature reviews from 2009–2021 were included using 
the search string ("smart building" AND ("energy" OR 
"energy-efficiency" OR "comfort" OR "anomaly detection")) 
AND ("machine learning" OR "supervised learning" 
OR "unsupervised learning" OR "neural networks" OR 
"reinforcement learning"). Primary research articles were 
excluded. For the related bibliometric analysis, a term 
was included if it had a minimum of 25 occurrences and a 
membership in the 100 most relevant terms. The relevancy 
was based on the full counting method of the bibliometric 
tool. Too generic terms (problem, condition), repetitive 
terms (IoT, IoT system), and irrelevant terms (review, study) 
were excluded.

For the literature review, the above mentioned studies as 
well as research articles from 2009–2021 were included. 
We included some articles that were cited in the surveys or 
literature reviews if the topic had only few search results. 
Furthermore, a paper had to have over 8 citations and it had 
to have some reference to the data utilized. For the inclusion 
criteria, the emphasis was on energy applications for existing 
buildings and their dwellers. We excluded healthcare, IoT, 
and smart city articles, articles concerning the initial design 
and construction of buildings as well as articles concerning 
the final reuse of building materials. We also excluded smart 
energy articles that exceed the topic identified. Finally we 
excluded repetitive articles with only a minor difference 
from the perspective of this study if there were several 
articles concerning similar application or methodology.

2.4  Data Collection and Analysis

With respect to the mapping study, the data extracted from 
each review was:

• The source journal
• The author(s), their institution and the country where it 

is situated
• Titles, abstracts and citations
• The number of co-occurrence of terms in reviews

A co-occurrence is the number of publications in which 
two terms occur together [9]. The data was summarized in 
graphs and tables to show:

• The number of reviews published per year (addressing 
RQ1).

• Countries of the authors and the fields of the surveys 
(addressing RQ2).

• The clusters of terms in the data, i.e., candidates for 
application areas in the taxonomy (addressing RQ3.1).

• The proposed taxonomy (addressing RQ3.2).

With respect to the literature review, the data extracted from 
each article was the same as above as well as:

• Conclusions of the articles
• Problem and issue statements concerning the topic in the 

text body
• Taxonomy proposed (surveys and reviews only)

The data was summarized in graphs, tables, and analyzed in 
text format to address the remaining questions:

• The existing taxonomies for the applications and their 
characteristics (addressing RQ3.3).

• The characteristics of the application areas and their 
parameters (addressing RQ3.4).

• Methods utilized in applications for the smart energy of 
buildings (addressing RQ3.5).

• Applications reporting the most issues and issues related 
to them (addressing RQ3.6).

3  Results and Discussion for the Mapping 
Search

This section summarizes the results and answers the research 
questions related to the mapping search.

Figure  1 presents the number of articles that were 
identified in the search process. This answers the research 
question: How much smart building energy activity utilizing 
machine learning has there been in 2009–2021? In total 483 
surveys or literature review articles were identified. The 
trend for the number of articles is rising, especially in the 
years since 2018.

Table 1 shows the 12 top countries of origin for the 
authors of these articles with the respective number of docu-
ments and citations. Furthermore, Fig. 2 shows the fields of 
the surveys according to Scopus. These answer the research 
question: Who leads smart building energy research? In 
respect to the countries, the United States, China and the 
United Kingdom are the three leading origins of the arti-
cles. There are clear differences between the countries in 
the number of citations. In average, an article from Denmark 
gets more citations than an article from Spain, for example. 
For the fields of surveys, engineering, computer science and 
energy are the top three fields.
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The results of the bibliographic analysis applied on the 
mapping are presented in Fig. 3. This answers the research 
question: What are the discussed topics for smart building 
energy utilization? There are three major topics or clusters 
of terms. Moreover, with respect to the applications, many 
terms specific to an application emerge, such as ’micro-
grid’, and ’smart grid’. With respect to the machine learn-
ing techniques utilized for the applications, three terms 
emerge: machine learning, deep learning, and blockchains. 
However, any other terms related to supervised, unsuper-
vised and reinforcement learning (RL) methods, that were 
part of the search string, are missing.

For the articles identifying the clusters, we limited 
the search only to the reviews which still resulted in a 
large number of papers. This means that machine learning 
techniques, that are often described in more detail in 
research articles, may have been missed with this search 
process. However, this gives some balance to the results 
on the scoping of the application areas.

For the bibliographical study, there are some logical 
overlaps as the bibliographic analysis program does not 
combine related terms, such as heating and ventilation 
vs. HVAC (heating, ventilation and air conditioning) or 
energy system vs. energy management.

For the machine learning techniques, analysis of the 
techniques is not feasible based on the results of the 
mapping study, and, therefore, is left to the literature 
review.

4  Results for the Literature Review

This section summarizes the results for the literature 
review.

Fig. 1  Publishing trend in the 
domain of Machine learning 
and neural network applica-
tions for smart building energy 
utilization (source: Scopus)

Fig. 2  Fields of the articles (Source: Scopus)

Table 1  The rank (id) of the country, countries of origin for the 
authors, number of documents, and number of citations

Id Country Documents Citations

1 United States 78 5260
2 China 86 3317
3 United Kingdom 53 2671
4 Australia 31 2207
5 Pakistan 28 2120
6 Malaysia 22 2022
7 Canada 31 1945
8 India 47 1464
9 Italy 29 1256
10 Spain 33 1200
11 Denmark 15 1136
12 Iran 20 904
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4.1  Results for the Taxonomy

Table 2 summarizes the search results of the previous 
studies. Figure 4 shows the taxonomy proposed here. It 
is based on results of the mapping search and literature 
review (taxonomy) search. It was iterated during the con-
sequent steps of the search process.

For the articles investigated for the taxonomy, we 
systematically went from the highest cited surveys to 
lowest cited surveys. However, for the emerging studies 
(e.g., personalization), we had to select articles with fewer 
citations, or had fewer articles in our disposal, than for 
well-established areas (e.g. smart grid).

Fig. 3  Publishing trend in the 
domain of Machine learning 
and neural network applica-
tions for smart building energy 
utilization. (Source: Scopus, 
VOSviewer)

Fig. 4  Taxonomy for smart 
energy applications for the built 
environment
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4.2  Results for the Applications

Table 3 summarizes the search results for applications. The 
columns Application domain, Application area, Objectives, 
and Related articles are the relevant ones for this section.

In respect to energy management systems, a further result 
was that 49% of the EMS applications are related to a whole 
building’s energy load, while the rest 51% to its other loads, 
such as heating or cooling. Adjacently, the time horizon is 
less than 24 h for 41%, one day for 35%, and longer for 24% 
of the applications [31].

For the research articles and conference papers inves-
tigated for the applications, we started from 5120 articles 

and systematically went from the highest cited articles 
to lowest cited surveys. However, for the emerging areas 
(e.g., blockchain contracts), we had to select articles with 
fewer citations, or had fewer articles in our disposal, than 
for well-established areas (e.g. microgrids). This is a bit 
disappointing and resulted in missing some possibilities 
to quantitative analysis for some application areas, but a 
quantitative analysis is difficult to do for emerging top-
ics. The applications are discussed in more detail in the 
Sect. 5.2.

Table 2  Identified keysurveys for building applications with a taxonomy

No. Yr. Key phrase(s) Application domain Issues, challenges Taxonomy

[10] 2009 Efficiency; comfort Building energy management 11 issues related to building and ML Classification to 17 control methods
[11] 2014 Efficiency; comfort Building energy management Energy unaware activities 5-class control system classification
[12] 2015 Efficiency; comfort Building energy management Six issues of model development Histogram of home appliances vs. 

surveys
[13] 2015 Efficiency Microgrids Eight issues of microgrids 8-class issue based classification
[14] 2015 Comfort Building energy management Scheduling charging of electric 

vehicles
Flowchart of EV scheduling objectives 

and methods
[15] 2016 Efficiency Microgrids Energy sharing, management Classification
[16] 2017 Efficiency Smart grid Heterogeneous buildings; varying 

occupancy characteristics
Flowcharts of smart meter models

[17] 2018 Efficiency; comfort Smart grid Volatility of renewable energy; 
occupant behavior

Classification to demand and supply 
side

[18] 2018 Anomaly Maintenance ML model generalization; limited 
reproducibility

2-layer daisy-chart categorization of 
applications

[19] 2018 Efficiency; comfort Personalization Triggering relevant control action 3-class classification of building 
controls

[20] 2018 Efficiency Smart grid Multiple domains; conflicting 
objectives

Flow-charts for energy modeling

[21] 2019 Anomaly Security Proper operation of grid and data 
security

Data security, classification of 
applications and data, mapping to 
ML methods

[22] 2019 Efficiency; comfort Personalization Energy-efficiency and user comfort 
balance

5-layer hierarchical taxonomy

[23] 2019 Efficiency; comfort Data Data storing, interpreting black-box 
models

Flowchart for a energy control system

[24] 2020 Efficiency; anomaly Smart grid; Building energy Complex sequential decision-making Frameworks for systems; flowchart for 
algorithms

[25] 2020 Efficiency Smart grid Incentives, usage patterns, scheduling 2-category incentive classification of 
energy markets

[26] 2020 Anomaly; efficiency Data, building load Data including both aggregated and 
appliance level for models

3-layer taxonomy

[27] 2020 Comfort Maintenance Energy-efficiency and data, costs 6-phase lifecycle
[28] 2021 Efficiency; anomaly Building energy management Selecting database, consumption 

profiles of buildings
4-layer daisy chart taxonomy

[29] 2021 Anomaly; comfort Maintenance Changes in building configuration 4 energy management strategies; 
classifications

[30] 2021 Efficiency Security; building energy Data quality, security, lack of ML 
tools

3-classes of machine learning 
modeling
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4.3  Results for the Machine Learning Techniques

This section summarizes the results for the machine learning 
techniques.

Table 3 presents the results of the search for the tech-
niques utilized for the applications. We identified 85 arti-
cles by the search process. Potentially relevant studies were 
excluded according to the inclusion and exclusion criteria. 
Furthermore, from these articles, we identified the follow-
ing techniques: Artificial Neural Network (ANN), Autore-
gressive Moving Average (ARMA), Bayes, Bee Colony, 
Blockchains, Classification and Regression trees (CART), 
Clustering, Convolutional Neural Networks (CNN), data 
analysis, Deep Belief Network (DBN), Deep Neural Net-
work (DNN), hybrid models (e.g., Deep Neural Network and 
Long-Short-Term Memory (DNN-LSTM)), Deep Reinforce-
ment Learning (DRL), ensemble methods (e.g., severals 
ANNs), Extreme Gradient Boosting (XGB), Firefly, Fuzzy 
Logic, Generative Adversarial Networks (GAN), Genetic 

Algorithm (GA), Gradient Boosting (GB), K-Nearest Neigh-
bors (kNN), Nash Equilibrium, Particle Swarm Optimization 
(PSO), Random Forest (RF), Recurrent Neural Networks 
(RNN), Reinforcement Learning (RL), Support Vector 
Machines (SVM), and Support Vector Machines with Drag-
onfly. Noteworthy, several algorithms have been applied to 
energy management systems and microgrids. Undoubtedly, 
this reflects the bigger amount of research done in these 
areas.

For the application domains, we tried to identify a rela-
tionship with the machine learning techniques utilized. 
Overall, out of all 85 applications, 33% utilize RL or DRL, 
22% other neural networks and 45% other methods. Appli-
cations concerning both load and money objectives utilize 
prominently reinforcement learning method in both smart 
grid and energy management domains. Out of the 27 related 
solutions, 48% utilize RL or DRL, 22% other neural net-
works and 30% other machine learning or analytical meth-
ods. Applications concerning personal comfort utilize to a 

Table 3  Overview on applications and the methods utilized

EMS is energy management system, M & S is maintenance and security

Application domain Application area Objective(s) ML techniques Related articles

EMS Microgrids Electric vehicle charging schedule ANN SVM with Dragonfly RNN [32–34]
EMS Microgrids Load control Cost optimization Bee Colony and Markov chain [35]
EMS Microgrids Load and generation ANN and GA [36]
EMS Microgrids Storage RL [37]
EMS Microgrids Renewables Generation pattern ANN DNN DRL RNN-LSTM 

SVM
[38–46]

EMS Other control Cooling DBN DNN and XGB PSO RL [47–50]
EMS Other control Heating ANN LSTM and CNN RL [51–55]
EMS Other control Load control Cost optimization ANN Clustering DNN DNN-

LSTM DRL Ensemble ANN 
GAN RL SVM

[56–59] [60–62] [63–66]

EMS Other control Occupancy Air quality Data analysis [67, 68]
EMS Other control Occupancy Number of people ANN CART RF [69–71]
Personalization Energy market Blockchain contracts Blockchains [72–74]
Personalization Energy market Other tools Nash Equilibrium RL [75, 76]
Personalization Personal comfort Thermal comfort Comfort proxies 

or direct comfort input
Bayes Data analysis Data mining 

Firefly DRL
[55, 77–79] [80–82]

Personalization Personal comfort Visual comfort Predictive lighting Data analysis RL RNN [83–86]
Personalization Personal comfort Recommendations Appliance 

scheduling
Fuzzy Logic [87]

M & S Maintenance Fault identification CNN Data analysis Ensemble [88–91]
M & S Maintenance Preventive maintenance Fuzzy Logic GB (comparison) [92–94]
M & S Security Intrusion detection Other security Clustering CNN GAN Genetic 

Algorithm
[95–98]

Smart grid Incentive schemes Learning user behavior Cost 
optimization

DNN RL [99, 100]

Smart grid Incentive schemes Sharing monetary benefits fairly RL [101]
Smart grid Pricing schemes Reallocate peak loads Cost 

optimization
ARMA DNN DRL Genetic 

Algorithm PDF and RL RL
[102–106] [107–111] [46, 

112–114]
Smart grid Smart meters Load behavior RL RL and kNN [115, 116]
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noticeable extent reinforcement learning method. Out of the 
12 related solutions, 33% utilize RL or DRL, 8% other neu-
ral networks and 58% other machine learning or analytical 
methods.

Table 4 presents the results for the issues identified for 
the applications and techniques. We identified 19 topic types 
that were divided into 34 topic areas based on an analysis 
of the search results. We tried to identify a relationship with 

the issues and either the applications or the techniques. The 
reported issues for the techniques and related models were 
predominant in comparison to the issues for the application 
(design) as such.

In respect to energy management systems, a further result 
is that the selected time-horizon affects the yielded results. 
For example, [129] compares deep reinforcement learning 
and common supervised models with a shorter or longer 

Table 4  Identified issues in the applications and techniques

Topic type Topic area Article

Application design Meager participation in energy saving schemes [117, 118]
Incomplete privacy measures [26, 119, 120]
Integrating data from heterogeneous sources of data 

(sensors, market prices)
[26, 119, 120]

Data Lack of applicable (labeled) data on buildings [24, 26, 27, 65, 89, 97]
Lack of applicable (labeled) data on people [24, 26, 27, 69]
Lack of large scale data [24, 27]
Poor quality of data [46, 82, 121]

Hybrid model Complex model [108]
Model comparison Lack of common metrics [27]
Model creation Missing justification for machine learning related costs [24, 27]
Model utilization Limited applicability of models as they may not generalize 

well due to method related issues
[24, 27, 122, 123]

Lack of model transferability, which limits a model trained 
to a building with abundant data to be used in another 
building with limited data

[24, 27]

Unproven but even though claimed transferability [52]
Models for anomaly detection Low level of result reproducibility [29]

Terminology confusion (e.g. fault vs. anomaly in the fields 
of energy and data mining)

[29]

Models for cost-aware scheduling of appliances (applying 
RL)

Limited integration of user comfort in modeling [111–113]

Models for electric vehicle charging Volatile energy prices and renewables; Dynamic arrival 
time to charging

[124]

Models for energy management Meeting the objectives set; Huge amount of data; Privacy [23, 125]
Models for lighting and personal appliances Limited suitability to schedule lightning [126]
Models for long-term load forecasts Comfort and cost factors are not prominently present [53]
Models for occupancy Volatile behavior of persons [127]
Models for personal comfort Limited use of personal feedback (15% of models) [128]

Large amount of sensors needed; integration [11, 86]
Models for monetized schemes (load monitoring) Misaligned objective setting and implementation (weak 

monetized angle)
[35, 57, 58, 105]

A large number of load patterns needs to be learned 
(multiclass or multilables)

[56, 109]

Models for cost-aware scheduling of appliances (applying 
DRL)

Difficulty to find an optimal policy for a large space [59]

Limited view on smart building appliances [51, 54]
Models for renewable energy generation Difficulty of integration due to volatility [20]
Distributed techniques How to incorporate different entities into a distributed ML 

model?
[33]

Reinforcement Learning technique Inadequate control security and robustness [122]
Training process requires relatively lot of time and data [122]
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time-horizon concluding that there was a trend of rising 
model error with multi-step forecasts and with longer time-
horizons. Finally, to make more data, [63] proposes a way 
of synthesizing rule-based controllers with simple rules and 
with simulated data utilizing support vector machines and 
AdaBoost; however, the practical applicability of this was 
not proven at that point of time (2014).

5  Discussion on the Literature Review

5.1  Discussion on the Taxonomy

In this section, we discuss the answers to our research 
questions related to the taxonomy.

5.1.1  What are the Existing Taxonomies Utilized for Smart 
Building Energy Utilization and What Are Their 
Characteristics?

Overall, we identified 21 relevant sources during the search 
(Table 2). The applications constitute various application 
domains, such as smart grid, several types of building 
energy controls and managements, personalization, and 
maintenance and security. The issues and challenges faced 
are heterogeneous. We have analyzed them in more detail 
in the context of the techniques in Sect. 4.3 as many of them 
turned out to be technique related. The applications were 
arranged into taxonomies, classifications or frameworks.

Finally, at this step of our survey, we identified a research 
gap: we did not discover a taxonomy that covers the domain 
of energy utilization (electric grid, smart building energy 
management and control, personalization, and maintenance 
and security) for smart buildings.

5.1.2  What is the Taxonomy Proposed for the Applications 
for Smart Building Energy Utilization?

Figure 4 shows the proposed taxonomy that was based 
on the analysis of the mapping study and the literature 
survey. It consists of the electric grid, the smart building 
energy management and control, the personalization, and 
maintenance, the security, and the data application domains 
with several applications types for each of them. The 
taxonomy was iterated during the literature review to show 
more details.

Notice that the taxonomy uses terms as they appear in the 
articles, albeit often in abbreviated form. The exception is 
the term ’cost-aware scheduling’ that this study adopted. As 
the energy load prediction as such has evolved to scheduling 
of devices and to taking into account the cost factors, there 
is a need for defining terminology. Even though some of the 

identified articles propose applications to these current aims, 
they mostly do not articulate this in precise terms.

This taxonomy is different from the existing ones, as 
the taxonomy of some surveys concentrate on a type of 
machine learning, for instance, neural networks [24], or on 
an application area of a smart building, for instance building 
load [30]. Moreover, [27] considers operation, control and 
retrofit; however, it does not include the human-in-the-loop 
as such in its taxonomy. Even though, for example, [130] 
presents solutions that incorporate building occupants 
in sensing and control frameworks, it does not include 
other smart building components. [2] concentrates on 
energy management systems, but not on the related energy 
components.

5.2  Discussion on the Applications

In this section, we discuss the answers to our research 
questions related to the applications.

5.2.1  What are the Characteristics of the Applications 
and the Parameters to Compare the Application 
Areas?

Overall, for the four main application domains of the 
taxonomy, each of them contains many applications 
(Table 3). In the following we present the applications for the 
smart grid, the building energy control and management, the 
personalization, and the maintenance and security domains.

The first strand of literature presents smart grid (electric 
grid) related solutions in smart buildings. In contrast 
to traditional grids, the smart grids with demand side 
management can deploy tasks to manage electricity load 
or improve energy efficiency [131]. According to the 
surveys [132–134] the main components of a smart grid 
are advanced control to utilize data, integrated appliances, 
integrated renewable energy sources, integrated energy 
storages, optimization of the grid use, and safety measures. 
The main objectives for the applications of the smart grid are 
to flatten the load peaks either by reduction of consumption 
during high demand or by shifting of load to low demand 
periods [25, 135]. The broader objectives include also lower 
greenhouse gas emissions and design of adequate interfaces 
to AI applications, for instance.

Reducing peak load demand that increases the grid 
capacity and reliability is called demand side management 
[102]. The smart building owners are involved in 
participating in the demand side management through 
different demand-response (DR) programs of a smart grid. 
As stated by the United States Department of Energy, DR 
refers to “a tariff or program [...] to induce lower electricity 
usage at times of high market prices or when grid reliability 
is jeopardized” [136]. The demand-response programs are 
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broadly divided into incentive-based schemes and price-
based schemes. The incentive-based schemes are further 
divided to direct control and indirect control schemes where 
the former refers to a mechanism, by which a utility remotely 
adjusts or disrupts energy consumption of controllable 
appliances in a short notice (1 s–1 min). The indirect control 
refers to a mechanism, by which a utility notifies end-users 
and asks them voluntarily to reduce the peak load with prior 
notification (up to some hours). Both of these incentive-
based schemes offer monetized rewards for the end-users 
and can include different kinds of bidding mechanisms or 
commitments [137].

In turn, the pricing schemes are further divided into 
time-of-use, real-time pricing, and critical peak pricing 
schemes. Time-of-use pricing scheme settles a group 
of prices in advance and then applies them to different 
predefined intervals of a calendar day [138, 139]. Critical 
peak pricing is according to the United States Federal 
Energy Commission a scheme that “encourages reduced 
consumption during periods of high wholesale market prices 
or system contingencies by imposing a pre-specified high 
rate or price for a limited number of days or hours” [140]. 
For instance, critical peak pricing can be used together 
with pre-set prices, but the trigger to change the price is 
dynamic, such as a change in wind-power generation [104]. 
Real-time pricing responds continually to the energy spot 
market, because of which it changes constantly. The utility 
may reveal the price a day ahead or an hour ahead so the 
end-users can adjust their energy consumption accordingly 
[133, 141]. An overview of the demand-response framework 
is in Fig. 5.

Other techniques to enable load reallocation can include, 
for example, smart meters that can be utilized, on the other 
hand, by the grid operator for clustering the energy con-
sumption pattern, and on the other, by the local producer-
consumer (also known as prosumer) for trading the energy 
based on the current state of the renewables, market prices 
and energy consumption [16, 142]. That is, a smart meter is 
a component that enables communications between the grid 
and a smart building which is utilized for forecasting, clus-
tering, classification and optimization [16, 143]. However, 
there were relatively few papers concerning smart meters in 
the smart building area; the focus was more on the utility 
price-setting.

For pricing and incentive schemes, to address the lack 
of motivation of the end-users, the grid operators have 
run demand-response trials with customers, such as in 
New Zealand in 2007-2020, which concluded that raising 
awareness of the system was one of the main goals [144]. 
However, if the personal monetary incentives are small, 
sacrificing the comfort level in exchange for financial 
incentives is not accepted by the majority of the residential 
dwellers [117, 118]. (See also Table 4 for more issues).

A second prominent strand of literature presents energy 
management systems (EMS) and other control systems 
for smart buildings. An energy management system 
consists of hardware (sensors, actuators, information 
technology components) as well as software for operating 
logic (controls and alarms). These systems are called with 
several resembling terms (building energy management, 
home energy management, building automation and control 
systems); however, these terms are broadly considered to 
be close synonyms to each other [134]. From a functional 
perspective, energy management systems are tools to shift, 
and constrain energy consumption and production profiles 
automatically in a smart building at defined times. An EMS 
usually creates an optimal consumption and production 
schedule by considering multiple objectives such as 
energy costs, environmental concerns, load profiles, and 
consumer comfort [12]. That is, the objectives of an EMS 
of a smart building include typically energy cost reduction, 
user-comfort maximization, energy load (and generation) 
profiling, and emissions cut [12]. However, depending on 
the EMS, the system can utilize a different set of objectives, 
such as user-comfort, energy savings, or indoor air quality 
omitting, for instance, emissions [10, 11].

In turn, occupancy is a significant aspect that is related 
to a considerable amount of applications for energy 
management and personal comfort [31, 122, 145]. Some 
stand-alone aspects of a building’s energy control, such as 
energy load as such, or lighting, can also be a focus of an 
application.

In turn, microgrids are a prominent topic in the literature 
of energy management [13, 146]. Microgrids are defined by 
the US Department of Energy as: “A group of interconnected 

Fig. 5  Demand-response framework overview. Source [137] Fig. 6  Overview of a microgrid in a smart building. Source [24]
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loads and distributed energy resources (DERs) with clearly 
defined electrical boundaries that acts as a single control-
lable entity with respect to the grid and can connect and 
disconnect from the grid to enable it to operate in both grid-
connected or island modes” [147]. In other words, micro-
grids for smart buildings consist of electric appliances, 
local (renewable) energy sources, utility energy sources, 
and energy storage systems as well as advanced controls 
(Fig. 6). Moreover, scheduling the charging-discharging 
of electric vehicles (EVs) can be part of building energy 
management [14]. The main objectives of a microgrid are 
energy-efficiency and cost-efficiency for a smart building 
and its owner. Moreover, the utilization of microgrids con-
tributes to the smart grid stability and reliability [15, 133]. 
The concept is close to the energy management systems, but 
with a more focused definition than the definitions of various 
energy management systems.

A third strand of literature presents the personalization in 
smart buildings which relates to comfortable utilization of 
buildings, or, some other personal aspects, such as (personal) 
energy market participation that the smart grid concept has 
enabled recently.

Figure 7 presents the main components to manage per-
sonal comfort indoors. The models have evolved in the last 
ten years from classification of human activity, to construct 
more explicit models utilizing human signals and activity to 
predict the comfort experienced [148]. These personal com-
fort applications save energy with the reasoning that they 
increase the utilization rates of the buildings. That is, people 
tend to prefer comfortable environments [149]. Furthermore, 
in practice the control models seldom interact directly with 
building users. However, there are ideas on buildings that 
’talks to me’, or takes into account the personalities of the 
users [126, 150].

Being the most studied domain of comfort, the human 
thermal comfort comprises several factors impacting it as 
depicted in Fig. 8 [77]. Moreover, balancing between the 
thermal comfort and energy costs is a common dual tar-
get for comfort modeling [128]. Noteworthy, use-comfort 
evaluation is predominantly based on a majority opinion as 
defined in standards. For example, ASHRAE or ISO15251 

standards specify the combinations of indoor thermal and 
personal parameter values that will produce thermal envi-
ronmental conditions acceptable to a majority of the occu-
pants within the space [151, 152].

As for the benefits, [22] yielded a result based 
on field-studies that occupant voting and preference 
profiling in comfort-aware HVAC operations illustrated 
a median of 20% of energy savings. However, in practice, 
personalization is often limited to lighting. An exapmle 
of this is, at least according to the information available, 
a so-called smart building in Amsterdam opened in 2014 
[153].

In turn, smart building measurements can be utilized 
for formulating recommendations. For instance, [28, 
142] present applications for anomaly detection of 
energy consumption in buildings. Some solutions can 
detect anomalies in specific hours in the day, or specific 
days on building level; hence they can provide end-users 
with a personalized feedback to reduce wasted energy. 
Furthermore, [19, 22] present anomaly detection to identify 
occupancy and comfort, which can be utilized for user-
centric operations of HVAC systems.

This kind of information can be extracted from energy 
control and management systems to evaluate personal 
thermal comfort as well. For example, occupancy behavior 
and possible recommendations can be gained from the 
system that [17] presents. This application for energy 
demand flexibility has a range of information on subjects, 
such as photovoltaic cells and wind, as well as heating, 
ventilation, air conditioning (HVAC) systems, energy 
storage, building thermal mass, appliances, and mechanisms 
to learn occupant behaviors. Buildings can become more 
flexible in terms of power demand from the power grid if 
all of these measures are considered from the beginning in 
modeling.

Fig. 7  Challenges of machine learning application to achieve user-
comfort for building users

Fig. 8  A graph with environmental and human factors impacting 
thermal comfort for making a model and predicting the thermal pref-
erence. Source: [77]
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In turn, energy market participation can be regarded as 
part of the personalization of smart building energy utiliza-
tion. For instance, blockchains that can be utilized for decen-
tralized energy trading and that fulfill privacy, security and 
trust objectives [154] (See Fig. 9). Also machine learning 
based solutions may be utilized for energy market participa-
tion [17].

A fourth major strand of literature concerns instabilities, 
faults and intrusion of building energy systems, that is, 
maintenance and security. For instance, [156] presents 
solutions for integration of power systems that include 
instabilities and security concerns that machine learning 
solutions can solve. Recently, blockchains have been 
introduced to ensure together data security and privacy for 
smart building applications [157]. Moreover, at building 
level, [18] presents several unsupervised learning methods 
for analysis of performance that benefits maintenance, such 
as clustering, novelty detection, motif and discord detection, 
rule extraction, and visual analysis. Information retrieved 
can be used for both maintenance and security applications.

Preventive maintenance includes several applications. A 
maintenance solution can combine several domains, so that 
anomaly detection can be utilized not only in cases of power 
transmission failures but also in cases of intrusion[21, 156].

A fifth strand of the literature presents big data (issues) 
for smart building energy utilization [26, 119, 120]. All 
solutions based on machine models require applicable data. 
Hence, an underlying data model for buildings and people is 
necessary. Moreover, the topic of data models is a pervasive 
theme in the smart energy application papers surveyed 
here; therefore, it is discussed. The big data includes data 
on monitoring, control, maintenance, automation, and 
personalization of energy utilization in smart buildings. 
[26] classifies data to the following seven classes including, 
but not restricted to, energy savings, appliance recognition, 
occupancy detection, user preference detection, anomaly 
detection, energy disaggregation and energy demand 
prediction. Moreover, typically, the system components 

communicate over a centralized hub via a common interface 
[158]. For instance, a typical interface in the European 
Union is the REST API [159] that specifies the data transfer 
between an appliance and a machine learning algorithm.

For human related data, [160] summarizes a disparity in 
human modeling studies: some focus on occupant behavior 
in order to model that, while, on the other hand, some focus 
on occupants’ interaction with given buildings and devices in 
order to develop interfaces. This disparity raises the question 
how to adequately combine these human data models for 
applications developed. One noteworthy development is 
that mobile and portable technologies have made it possible 
to provide personal recommendations. The present smart 
building equipment controls can be connected to interactive 
(mobile) applications, such as thermostats [161].

Even though not included in this study, we recognize that 
Internet of Things and multi-agent systems provide data and 
tools to management systems, for example, by providing 
data from sensors [162, 163]. Moreover, there are several 
ways to achieve the objectives, not necessarily related to 
an application utilizing machine learning. For example, 
for personalization of the immediate environment can be 
achieved with personal gadgets, such as personal fan or 
heating device. [164] proposes using a heated and cooled 
chair to increase comfort. However, while providing the 
answer to the personalizing, in a strict sense, this proposal 
does not belong to the domain of learning models for 
buildings that we scrutinize here. At the same time; in spite 
of the above, these kinds of gadgets could be integrated as 
part of a recommendation (model) for personal comfort.

Finally, as a generic summary for building operations, the 
United Nations has defined some broad goals for sustainable 
cities and communities [165, 166].

5.2.2  Juxtaposing the Definitions of Some Terms

As the mapping study suggested, the number of topics for 
articles has grown, especially since 2018. The literature 
study indicated that the solutions have become more 
specialized, and perhaps even more overlapped. To make 
an analysis on ‘smart building’, we need to scrutinize this 
concept. We noted that it is close to ‘smart energy, ‘smart 
grid’, and ’smart city’ according to the literature review; 
therefore, we juxtapose all of them. The definition of smart 
building covers energy conservation, safety, comfort, 
lighting, heating, and appliances. Machine learning is part 
of smart building concept as models used to control smart 
buildings learn from data gathered from sensors and smart 
devices in contrast to buildings relying on a pre-programmed 
models [167–169]. More recent definitions of smart 
buildings consist of heterogeneous artificial intelligence 
(AI) models to solve problems related not only to buildings 
directly but also to personalization, electric grid, and data 

Fig. 9  Overview of blockchain technology in energy peer-to-peer 
trading. Source: [155]
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security according to [134, 170]. Utilizing these models 
requires that the building has advanced control mechanisms 
that can ensure the reliability and operating points for the 
models. This control system is often referred to as (building) 
energy management systems, but some other system, such as 
average voltage control, can be deployed as well [133, 133]. 
In this paper, we have discussed energy applications for 
smart buildings having the advanced controls in the broad 
definition of the term.

In turn, the basis for present-day energy systems in 
most countries is a simple scheme, where energy resources 
are converged to meet the demand; moreover, increased 
demand is met with increased utilization of resources 
[171]. Notwithstanding this simple scheme, ‘smart 
energy’, ‘smart energy systems’, or sometimes ‘intelligent 
energy’, is defined as sustainable energy scheme within 
the electricity, gas, building, and industrial sectors where 
a few of these solutions utilize renewable energy sources, 
energy storages, and national or local energy systems that 
are energy-efficient in a flexible manner [24, 171, 172]. 
In turn, smart grid refers to advanced electric power grid 
infrastructure for improved efficiency, enhanced reliability 
and safety involving the electricity generation and utilization 
[133, 134]. Finally, ’smart city’ can be defined as networked 
infrastructure coupled with high technologies, creative social 
and environmental industries, that focuses on achieving 
sustainability. ’smart city’ incorporates a wide range of 
intelligent systems from education to waste management 
[133, 134].

In this study, we have concentrated on the ’smart 
building’ and the ’smart grid’ concepts.

5.3  Discussion on the Literature Survey 
for the Machine Learning Techniques

In this section, we discuss the answers to our research 
questions related to the machine learning techniques.

5.3.1  Which are the Techniques Utilized 
for the Applications of Smart Energy for Buildings?

According to the search results in Table 3, the application 
to solve problems related to the smart building energy 
utilization consisted of machine learning and neural 
network applications, and to a lesser extent, pure data 
analysis based solutions. The machine learning and 
neural networks are utilized to develop classification and 
regression models where classification refers to a method 
that predicts a discrete class label output for the given task, 
while regression predicts a continuous quantity output for 
the given task. Both of these two common methods are part 
of supervised learning [173]. However, other methods were 
also applied. For example, unsupervised learning methods 

were utilized for some problems, mostly to discover more 
about the task in hand. Unsupervised learning refers to a 
method that uses machine learning algorithms to analyze 
unlabeled data and cluster it to smaller sets. Moreover, 
unsupervised learning can extract associations between the 
pieces of data [174]. In turn, a combination of supervised 
and unsupervised methods, so-called semi-supervised 
learning, was also utilized by algorithms that, for example, 
actively querying users for labels, such as personal comfort 
experience [175]. Finally, reinforcement learning methods 
were applied to some problems, such as complex real-time 
learning tasks with rewards and punishments that try to find 
an optimal policy for the model.

Choosing a machine learning technique matters as 
a method has some inherent issues associated with it. 
Overall, a desired outcome is that a model created in one 
environment (building) can be used in another environment 
without significant degradation in its results. This is called 
model generalization capability.

For design criteria, the following article raises application 
design criteria unlike many other articles [64]. These six 
major design criteria for a smart energy application are 
implementation feasibility, usability, computational time, 
accuracy, randomization, and adaptability. An example of 
a definition for one of these criteria is the implementation 
feasibility that is defined as the level of ease to implement 
the technique in the restricted amount of time and resources.

In respect to the energy management systems, the current 
heating, ventilation and air conditioning (HVAC) systems 
are still operated by simple feedback controls, such as on-off 
control or proportional-integral-derivative (PID) controls to 
a large extent. These simple control strategies are proven; 
however they do not consider predictive information, which 
affects their energy performance. Optimal control strategies 
such as Model Predictive Control (MPC) address these 
drawbacks by iterative optimization of an objective function 
over a receding time horizon. However, the MPC models 
do not adapt well to different buildings. Recently, several 
reinforcement learning models to predict the load combined 
with cost function models to predict the costs have been 
introduced for energy management systems to enhance the 
energy and cost efficiency of smart buildings [103, 176].

In respect to renewable energy generation, the sun 
related phenomena (solar radiation, wind) supply energy 
intermittently due to changes of weather. Therefore, 
renewable energy sources need to be integrated by a suitable 
solution design. Time-series forecasting is typically applied 
to energy management [121] but other machine learning 
methods are applied as well [30].

In respect to occupancy applications, implementation and 
utilization of applications vary; hence, doing a comparison 
for the models derived is arduous as concluded in the 
comparison of 19 papers for forecasting occupancy [177].
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In respect to personalization applications, there are 
mixed results on their use. The results of [82] indicate, only 
around 30% of the occupants’ thermal comfort improved, 
and it decreased in 70% cases, when the user-driven control 
strategy was implemented in a disheveled manner. The 
problem identified was that performance of the demand-
driven control strategy was mainly influenced by insufficient 
and poorly distributed data, as well as the effect of thermal 
expectations on occupants’ thermal responses.

In respect to maintenance and security, blockchains have 
been introduced to ensure together data security and privacy 
for smart building applications [157].

5.3.2  How are the Techniques Manifested in Electric 
Grid, Building Control, Maintenance and Security, 
and Personalization? What are the Issues?

Overall, machine learning applications are suitable for non-
linear modeling and are often more accurate and faster than 
traditional deterministic models in the domain of energy 
utilization; hence there will be more of them in the field in 
the future [121].

According to the results in Table 4, there are several 
issues related to the techniques ranging from generic ones 
to more method related ones. Here we raise prominent topics 
to further discussion.

In respect to the generic issues identified, there is a 
tendency for machine learning research to claim to deliver 
better performance compared with previous studies as 
a survey of 144 recent research papers states [27]. The 
results of this literature survey agree with this piece of 
findings. This is partly due to the lack of common metrics. 
Moreover, evaluation of the quality of the results or the 
applicability of the results are often limited or missing. 
This is due to deficient reporting of the issues; moreover, 
for a proportionally large number of studies, these aspects 
were absent in the abstract part so that a systematic literature 
review utilizing database tools was not able to retrieve 
them. However, there are some exceptions, such as [59] that 
explicitly evaluate the applicability of the model in a critical 
manner.

In respect to techniques, reinforcement learning has 
recently been applied to a proportionally large number 
of the advanced building control solutions. It is probably 
utilized because it provides a way to avoid the tedious work 
of developing and calibrating a detailed model, as yielded 
by, for example, traditional Model Predictive Control 
(MPC) of buildings that has been in use since the 1970 s 
[122, 128, 176]. There have been some claimed problems 
with the reinforcement model generalizability (Table 4). 
However, at the same time some other literature states the 
opposite is true as some aspects of the modeled applications 
are general. An adequate policy gradient (a mapping from 

state to action) generalizes well; for example, turning on 
the heating when the indoor temperature is low remains 
the same for almost every building regardless of the other 
possible goals. Therefore, a rising trend is to study using 
policy gradient [103] or some other technique claimed to 
generalize well, such as actor-critic [178] technique and 
apply them to so-called transfer learning [179]. Moreover, 
an additional benefit here is programming efficiency. Rather 
than training a RL controller for every individual building, 
it can be more efficient to train RL controllers on a small 
number of buildings and then apply them to a stock of 
buildings.

In respect to the time-series, they are long-proven and still 
utilized for volatile phenomena, such as natural phenomena 
(e.g., wind, sun radiation) and human behavior (e.g., electric 
vehicle charging patterns, lighting, occupancy).

In respect to data analysis, a prominent application field 
for these is the human thermal comfort approximation. There 
is a comprehensive effort to collect enough statistical data to 
form credible analytical or machine learning models to this 
end (more about the databases in question further below).

In respect to blockchains, the results indicated a new 
trend: recently blockchains have been utilized for safe 
contracts and their applicability to the other application 
fields is also being scrutinized.

In respect to many other machine learning techniques 
utilized, they are more or less evenly distributed among the 
applications.

Finally, in respect to the data, the quality of data has 
an impact on the model results. [121] yielded a result that 
models utilizing field-collected data and taking the time-
aspect into account achieve more accurate predictions than 
simulation-based models. Many surveys emphasize the 
importance of relevant (recent) data; furthermore, some 
emphasize model explainability, for example, through 
so-called grey box models, where machine learning 
models are combined with the physics-based equations and 
exogenous data for the model. However, to form a common 
ground and ameliorate the research preconditions, some 
preliminary efforts exist to provide more open data. These 
include, for instance, the ASHRAE Global Thermal Comfort 
Database [180] on personal behavior and comfort data, and 
the Building Data Genome Project [181] on building data.

5.4  Limitations

The procedures used in this study have deviated from the 
advice presented in Kitchenham’s guidelines in several 
ways:

• The search related to the literature review was organized 
as a manual search process of a specific set of journals 
and conference proceedings and not as an automated 
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search process. This was consistent with the other 
research aiming at identifying research trends and wider 
topics as opposed to a pure quantitative technology 
evaluation.

• A single researcher was responsible for selecting the 
candidate studies.

The adapted process implies that we may have missed some 
relevant studies, and thus underestimate the extent of the 
related application areas or technologies. However, in this 
study, there was a systematic tertiary survey part on literature 
surveys, as there were relatively few primary studies for 
certain application areas (personalization and blockchain 
contracts), and the data extracted from the selected survey 
articles are considered to be relatively objective, so we do 
not expect several data extraction errors.

6  Open Questions

We discovered several unsolved issues and challenges while 
conducting this study. Several issues are common for the 
majority of solutions while each method or application may 
have specific problems of its own. This section answers 
the research question: What are the open questions and 
limitations of the current research? 

1. Smart energy solutions for buildings are based on data 
from several sources, including building variables 
(energy load, for example). Even though there are some 
databases that have this data, the lack of applicable data 
is perhaps the primary issue when making applications. 
What properties of buildings to report? How many 
buildings to include? What kind of appliance and energy 
load model to utilize? What parameters of energy are 
needed (voltages, currents, phase shifts)? What is 
an applicable measurement frequency? How long 
measurement periods are adequate?

2. Moreover, the models include data on occupancy 
information and consumer preferences. How to define 
the control system for occupants (what is controlled 
and how is it controlled?)? What comprises a full 
predictive control? How to define and measure consumer 
preferences? Are preferences pre-set, or is there human-
in-the-loop directly or indirectly?

3. Applications for smart energy for buildings utilize 
models created to solve tasks related to not only to 
energy utilization directly, but also to building users and 
possible anomalies that may affect the energy utilization. 
How to apply the collected data to train and validate 
models? How to adequately label data for different 
uses? For example, how to create a model, which 
allows a model trained with a data-rich building to be 

used in another building with limited data (and is this 
even feasible)? How to develop a robust model for one 
building or buildings that can be generalized to others 
(assuming the same level of data richness)?

4. Each new piece of machine learning research tends 
to claim to deliver better performance compared with 
previous studies. How to define a common metric to 
compare the created models?

5. The applications connect the buildings into the 
communications networks. How to detect and resolve 
intrusions? How to integrate fault detection and 
preventive maintenance into building operations?

6. Energy management solutions may require quick 
response due to rapid changes in the energy needs. How 
to adapt to real-time data to enable quick response?

7. The decentralized database of blockchains has consensus 
mechanisms that can be applied to data security, 
for example when making contracts. How to apply 
blockchains to solutions so that they are safe and keep 
privacy? How do they work in smart grids? Is there a 
need for more standards?

These open issues also turn into summary of future 
challenges to be researched in the field. One current 
challenge includes short-term energy savings by controlling 
the building energy usage to mitigate the peak loads in the 
grid as the energy shortages have affected, especially, the 
European Union. This challenge is related to the above open 
issue 6. Finally, this section has answered the last research 
question: what open questions remain?

7  Conclusions

This paper has presented a comprehensive study about 
prevailing machine learning applications for smart 
building energy utilization. As the application areas are 
heterogeneous, various methods and techniques have been 
proposed to solve the questions on smart grid, smart building 
energy management and control, personalization and 
maintenance and security solutions. Furthermore, this paper 
has proposed a taxonomy for machine learning applications 
for smart buildings covering the application domains 
identified. The predominant application domain includes 
energy management systems and microgrids. This study has 
highlighted some energy management systems with different 
architectures; noteworthy, one that includes building energy 
load, local renewable energy sources, local energy storage 
system, and electric vehicles. Satisfying the two major 
and, to some extent, conflicting objectives for an energy 
management system, that are user-comfort and energy-
costs, has resulted in models that are sometimes complex. 
Moreover, intrusion, faults, and personal involvement are 
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apparent challenges and require smart building applications 
of their own as smart buildings are required, by definition, 
to interact with their environment. In turn, a comparative 
analysis on machine learning approaches and pros and cons 
in each application domain has been presented. Although 
solutions are frequently developed using machine learning 
methods, sometimes pure data analysis approaches are 
applied at least as a part of a solution. The overall open 
issues for the smart building energy utilization have also 
been presented toward the end of this survey, as similar 
challenges occurred in many of the papers. They are often 
related to lack of labeled data or other data quality. However, 
the open issues also relate to the overall objectives, data 
privacy, model generalization, and some issues of local vs. 
distributed applications. These open issues also turn into 
summary of future challenges to be researched in the field.
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