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Dietary patterns, untargeted 
metabolite profiles and their 
association with colorectal cancer 
risk
Stina Bodén 1,2*, Rui Zheng 3, Anton Ribbenstedt 4, Rikard Landberg 4, Sophia Harlid 1,  
Linda Vidman 1, Marc J. Gunter 5,6, Anna Winkvist 7,8, Ingegerd Johansson 9, 
Bethany Van Guelpen 1,10 & Carl Brunius 4*

We investigated data-driven and hypothesis-driven dietary patterns and their association to plasma 
metabolite profiles and subsequent colorectal cancer (CRC) risk in 680 CRC cases and individually 
matched controls. Dietary patterns were identified from combined exploratory/confirmatory factor 
analysis. We assessed association to LC–MS metabolic profiles by random forest regression and to 
CRC risk by multivariable conditional logistic regression. Principal component analysis was used 
on metabolite features selected to reflect dietary exposures. Component scores were associated 
to CRC risk and dietary exposures using partial Spearman correlation. We identified 12 data-driven 
dietary patterns, of which a breakfast food pattern showed an inverse association with CRC risk (OR 
per standard deviation increase 0.89, 95% CI 0.80–1.00, p = 0.04). This pattern was also inversely 
associated with risk of distal colon cancer (0.75, 0.61–0.96, p = 0.01) and was more pronounced in 
women (0.69, 0.49–0.96, p = 0.03). Associations between meat, fast-food, fruit soup/rice patterns and 
CRC risk were modified by tumor location in women. Alcohol as well as fruit and vegetables associated 
with metabolite profiles  (Q2 0.22 and 0.26, respectively). One metabolite reflecting alcohol intake 
associated with increased CRC risk, whereas three metabolites reflecting fiber, wholegrain, and fruit 
and vegetables associated with decreased CRC risk.

Diet is considered to play a major role in colorectal cancer (CRC) development, demonstrated mainly in observa-
tional studies but also in randomized control  trials1. Red and processed  meat2 and  alcohol2,3 have been convinc-
ingly associated with increased risk of CRC 4. For dietary  fiber5, whole  grains2, dairy  foods2,6, and calcium intake 
(supplementary and dietary in the form of dairy products)7, a probable decreased risk has been  suggested2,4,8. 
However, even for some of the best-established dietary risk- and protective factors, results have not been entirely 
 consistent9,10 and non-linear relationships have been  suggested11. The difficulty in identifying dietary components 
with a clear impact on CRC risk has led to novel approaches acknowledging the complexity of diet. One such 
approach is dietary pattern analysis, which may provide more accurate measurements of dietary exposure by 
taking complex interactions into  account12,13.

Dietary pattern analyses have predominantly been based on a priori hypotheses for the role of individual 
dietary components in health and disease, such as the Mediterranean diet  score14, which we have previously 
investigated together with the Dietary Inflammatory  Index15 but with no found associations to CRC risk in a 
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large longitudinal cohort study with repeated  measures16. Hypothesis-driven dietary patterns applied to CRC, 
including putative risk and protective factors, have shown associations with risk in some  studies17–20, but not 
 all8,20. However, most patterns used have not been designed specifically for CRC, and components of particular 
interest for CRC, such as dairy products and alcohol, are scored beneficial in some patterns and detrimental in 
 others14,16,21. These discrepancies, which likely stem from differences in the populations, food cultures, possible 
biological mechanisms and disease outcomes on which they are  based12, illustrate the need for clear defini-
tions but also additional methods to address the complex role of diet in CRC development. Another dietary 
pattern-based approach which may contribute with additional information is to derive data-driven patterns, 
based directly on intake frequency data from the population under study. Principal component analysis (PCA) 
and factor analysis are methods that can be used to reduce the dimensionality of multiple dietary predictors 
into underlying latent variables, corresponding to a posteriori (data-driven) dietary  patterns12,22. For CRC risk, 
findings from the few studies conducted to date have been  inconclusive23–26. To distinguish between the two 
approaches, we consistently refer to hypothesis-driven dietary components and data-driven dietary patterns 
throughout the paper.

The comprehensive assessment of metabolites in blood samples, i.e. metabolomics, presents opportunities 
to study metabolic perturbations in relation to phenotype, which can contribute to a better understanding of 
the etiology of diet-related diseases like CRC 27. When exposed to diet, individuals are also exposed to the food 
metabolome, which entails thousands of bioactive food  constituents28. All of these may affect metabolism and, 
subsequently, the endogenous metabolome. The food metabolome may therefore represent a potential source 
of biomarkers for the diet, unencumbered by the bias and noise of self-reported dietary data typically used in 
epidemiological  studies29,30.

Here, we investigated data-driven dietary patterns and other dietary components, selected a priori based on 
putative effects on CRC risk, in relation to subsequent CRC risk in 776 prospective CRC cases and 776 control 
participants from the population-based Northern Sweden Health and Disease Study. Using prospectively col-
lected pre-diagnostic plasma samples from 680 of these matched case–control pairs, we also explored associa-
tions of dietary patterns and a priori dietary components with the plasma metabolome measured by untargeted 
reverse phase liquid chromatography–mass spectrometry (LC–MS).

Methods
Study population
We used data and plasma samples from the population-based cohorts of the Northern Sweden Health and Dis-
ease Study (NSHDS). Participants in this study were recruited between 1991 and 2014 to either the Västerbotten 
Intervention Programme (VIP) (91.3%) or the Northern Sweden MONICA (Multinational Monitoring of Trends 
and Determinants in Cardiovascular Disease) study (8.7%), which have been described in detail  previously31,32. In 
brief, the VIP is an ongoing screening and intervention program for cardiometabolic health. It has been running 
in the county of Västerbotten in northern Sweden since 1986. People turning 40, 50, and 60 years are invited, 
with a full population intent, to a voluntary health examination at their local healthcare center, at which fasting 
blood samples are taken, an oral glucose tolerance test is administered, and extensive questionnaires, including 
FFQs, are collected. Anthropometric measurements are taken, as well as blood pressure and cholesterol levels. 
Participation rates have generally been high, roughly 50–70% of the target population in Västerbotten33. In the 
MONICA cohort, participants aged 25–74 years are randomly recruited from the counties of Västerbotten and 
Norrbotten approximately every 5  years31. Sampling for the MONICA cohort follows nearly identical protocols 
as the  VIP32.

Study design
The present study had a nested case–control study design. Cases of first primary CRC were identified by linkage 
to the essentially complete Cancer Registry of Northern Sweden. Previous cancer other than non-melanoma 
skin cancer was an exclusion criterion. Information about histology (only adenocarcinomas were included) and 
anatomical tumor location was retrieved from the Swedish Colorectal Cancer Registry, supplemented by patient 
pathology records when necessary. Using ICD-10 codes, tumor site was defined as the proximal colon (C.18.0 
and C 18.2–18.4), distal colon (C18.5–18.9), or rectum (C19.9 and C20.9). End of follow-up for identification 
of cases was May 31, 2016.

Control participants were individually matched to cases by cohort (VIP/MONICA), sex, age at baseline 
(± 1 year), year of blood sampling and data collection (± 1 year), fasting duration at sample collection (above or 
below 8 h), and number of freeze–thaw cycles of the plasma samples. Controls had to have no previous cancer 
diagnosis (other than non-melanoma skin cancer) at the time of the CRC diagnosis of their corresponding case.

The research in this study was approved by the Research Ethics Committee at Umeå University, Umeå, Sweden 
(Dnr 2015/243-32 and Dnr 2017-172-32). At recruitment, informed consent was collected from all participants. 
All data handling complies with the European Union General Data Protection Regulation. The study conforms 
with The Code of Ethics of the World Medical Association (Declaration of Helsinki), printed in the British 
Medical Journal (18 July 1964).

Dietary data
Dietary data were retrieved from the Northern Sweden Diet Database, which comprises harmonized dietary 
data from the validated FFQs collected from participants in the Northern Sweden Health and Disease Study 
(https:// www. umu. se/ en/ bioba nk- resea rch- unit/)34,35. Participants reported intake frequencies for the previous 
year covering food consumption for all seasons, weekdays, and weekends, on a 9-level scale from “never” to “≥ 4 
times per day”. The frequency data and portion-size estimations of vegetables, typical carbohydrate, and protein 

https://www.umu.se/en/biobank-research-unit/
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sources, based on photographs of four standard portion sizes, were used to calculate amounts using the national 
food composition  database36.

Data-driven (a posteriori) dietary patterns were identified using a combination of exploratory and confirma-
tory factor analysis. Dietary data were represented by the reported frequencies for all items in the FFQ. We 
considered using amounts, but preliminary analyses yielded very similar results and based on the exploratory 
nature of this investigation, and for simplicity, we chose frequencies. First, dietary data from all individuals 
were randomly split into halves. One half was used to identify potential dietary patterns from exploratory factor 
analysis using maximum likelihood factorization and oblimin rotation (the fa function from the R package psych 
v 1.9.12.31). The other half was used for confirmatory factor analysis, in which factors were constructed from 
those dietary variables that had loading > 0.3 (the cfa function from the R package lavaan v 0.6-6). The explora-
tory/confirmatory factor analysis random split procedure was repeated 5 times and factors that appeared repro-
ducibly between the repeated half-splits were selected to represent potential constructs and examined further. 
The repeated exploratory/confirmatory factor analysis procedure was performed for 2–18 factors. A combined 
assessment of averaged fitness measures from the confirmatory factor analysis indicated similar modelling fit-
ness between 9 and 18 factors. Extracted factors from these solutions were inspected to identify constructs that 
occurred reproducibly between different numbers of factors, resulting in the identification of 12 data-driven 
dietary patterns (Table 1). A final confirmatory factor analysis was constructed for these 12 dietary patterns 
and participant scores were extracted and used for metabolomics analyses and CRC risk assessment. From the 
exploratory and confirmatory factor analyses, dietary variable loadings were extracted to show direction of intake 
in relation to the factor scores.

We also assessed a priori hypothesis-driven dietary components: alcohol, red meat, processed meat, who-
legrain, fiber, fruit and vegetables, dairy products, and dietary calcium, based on the state of the art with respect to 
evidence for an etiological role in CRC, summarized in the World Cancer Research Fund’s Global Cancer Update 
 Programme4. All dietary patterns and food components were energy adjusted using the energy–density  method37.

Table 1.  Foods included in data-driven dietary patterns produced using exploratory and confirmatory 
factor analysis, and in hypothesis-driven dietary components based on putative etiological roles in colorectal 
cancer. a All patterns were produced using food frequency data (e.g., frequency/day) with no information 
about amounts of intake. b Based on global scientific research on diet, nutrition, physical activity and the risk 
of colorectal cancer and reported by the World Cancer Research Fund Global Cancer Update  Programme4. 
c All components were composed by amount data, recalculated into g/day or mg/day using frequency data and 
information about portion sizes.

Included foods

Dietary patterns (a posteriori), based on food frequency dataa

 Breakfast food Fermented milk products: Low- and 3%-fat Swedish “filmjölk” and 
yoghurt, fiber-rich breakfast cereals, berries (fresh and frozen)

 Spreads Butter and margarine on bread

 Bread with low-fat spreads Low-fat margarine and cheese on bread, whole-grain crisp bread, 
buns,

 Full fat products Butter on bread, butter for cooking, milk with 3% fat

 Vegetables Root vegetables, carrots, tomato, cucumber

 Fruit soup and rice Rosehip syrup/soup, rice

 Fish Lean fish, fatty fish, salty fish

 Meat Minced-meat dishes, meat stew, steak/chops

 Smoked Smoked fish and smoked meat

 Fast food Pizza, hamburger, bacon, sausage

 Snacks and sweets Potato chips, salty nuts, popcorn, buns, sweets, cookies/pastry

 Alcohol Medium strong beer (2.8–3.5%), strong beer (≥ 4.5%), wine, spirit/
liquor

Dietary components (a priori)b, based on food intake in amounts/dayc

 Dairy products
Crème fraiche, cheese, low- and 3%-fat Swedish “filmjölk” and 
yoghurt, milk 0,5%, milk, milk 1,5%, Swedish “filmjölk” 1,5%, milk 
3%

 Dietary calcium Total intake of dietary calcium from various sources

 Wholegrain Total wholegrain intake from various sources

 Fiber Total fiber intake from various sources

 Fruit and vegetables
Berries, fresh or frozen, apple, pear, peach, orange, mandarin, grape-
fruit, banana, white cabbage, root vegetables & carrots, tomatoes & 
cucumber, lettuce, lettuce cabbage, spinach, broccoli

 Red meat Minced meat dishes, meat stew, steak chop

 Processed meat Bacon and sausage as main dish, sausage, meat, and liver paté on 
bread

 Red and processed meat Minced meat dishes, meat stew, steak chop, hamburger, bacon and 
sausage as main dish, sausage, meat, and liver paté on bread

 Total alcohol Alcohol from light beer (2.1%), medium strong beer (2.8–3.5%), 
strong beer (4.5%), wine, spirit/liquor
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Baseline covariates
All lifestyle variables were self-reported. Smoking status was defined as either non-smoker, ex-smoker, or current 
smoker. Recreational physical activity was defined on a scale from 1 to 4 (no, low, medium, high frequency of 
physical activity). Total alcohol intake was assessed from the FFQ and, when included as a potential confounder 
in multivariable analyses, defined at three levels: zero intake and intake below or above the sex-specific non-zero 
median. This categorization took into consideration the potentially mixed group of non-consumers, including 
both alcohol abstainers and former over-consumers. Education was classified into three levels: elementary school, 
secondary school, or post-secondary education. Body mass index (BMI, kg/m2), was calculated from height and 
weight data, recorded by medical staff at recruitment and used on the continuous scale.

Plasma samples
Blood samples were collected at the same time point as the baseline covariate data. The vast majority of the 
baseline plasma samples, 1238 (91.0%) of the participants in this study, were taken after an overnight fast (> 8 h), 
82 samples (6.1%) were taken after 4–8 h fasting, and 40 samples (2.9%) after less than 4 h fasting. The blood 
samples were collected in EDTA tubes and separated immediately into plasma, buffy coat and erythrocyte frac-
tions. Within 1 h after collection, samples were stored at − 20 °C for a maximum of 1 week before transfer for 
central storage at – 80 °C at Biobank North in Umeå, Sweden.

Metabolomics analysis
Metabolomics procedures are described in detail  elsewhere38. In brief, aliquoted plasma samples ordered to 
preserve case–control pairs (with random sorting within pairs) were cold-shipped at − 80 °C to the Chalmers 
Mass Spectrometry Infrastructure at Chalmers University of Technology, Gothenburg, Sweden. Proteins were 
precipitated using cold acetonitrile in 96-deep well microplates, mixed on an orbital shaker for 3 min at 1000 rpm, 
centrifuged and filtered. The filtrate was collected in 96-well microplates, centrifuged, and kept at 4 °C until 
instrumental analysis. Study-specific quality control samples (sQCs) were obtained by pooling sample aliquots 
from the first two batches and were systematically and repeatedly injected throughout the batch sequence. To 
correct for batch effects and to monitor the performance of the instrument, independent long-term quality 
control plasma samples (ltQCs) were  used39.

The Liquid-Chromatography Mass-spectrometry (LS-MS) analysis was performed on an Agilent UHPLC-
qTOF-MS system (1290 UHPLC with a 6550 qTOF). Analytes were separated by reverse phase chromatography 
on a Waters Acquity UPLC HSS T3 column (100 × 2.1 mm, 1.8 µm). The Agilent MassHunter workstation was 
used to operate and monitor the instrument and acquire data. The mobile phase included (A) water and (B) 
methanol, both containing 0.04% formic acid. The linear gradient elution was: 0–6 min, 5–100% B, 6–10.5 min, 
100% B, delivered at 0.4 mL/min. Metabolites were ionized by Jetstream electrospray ionization (ESI). The mass 
spectrometer was operated in both positive and negative modes, with 2 and 4 µL injected for positive and nega-
tive modes, respectively. Data were acquired within m/z 50–1600 in centroid mode at 1.67 spectra/s. Iterative 
MS/MS data acquisition was performed on sQC samples in both modes with 10, 20 and 40 eV collision energies 
and with the same chromatographic conditions as for the MS analysis.

Data pre-processing
Vendor raw data files were converted into mzML format, processed separately for reverse phase positive (RP) 
and negative (RN) modes (Proteo Wizard, version 3.0) and processed using the R package “XCMS”40, with key 
parameters optimized with the aid of the R package “IPO”41. A total of 8236 metabolite features were obtained 
for RP and 6599 features for RN. Imputation for missing values in the metabolomics data was conducted using an 
in-house random forest (RF) based algorithm (https:// gitlab. com/ CarlB runius/ StatT ools). Within- and between-
batch normalization were performed using R package “BatchCorr”39. Finally, features presumably derived from 
the same metabolite were grouped with the R package “RAMClustR”42 using manually optimized parameters, 
which resulted in 2644 features for RP and 2391 features for RN with coefficient of variation (CV) ≤ 30% among 
sQCs. Parameters used are presented in Suppl. Table  1.

Metabolite identification
Metabolite identification was carried out using an in-house native standard library and the Massbank of North 
 America43, as well as the in-silico fragmentation tools  MetFrag44 and  Sirius45. All files containing MS2 spectra 
were converted to mgf format prior to analysis. Identification was carried out according to the Schymanski 
scale, determining the confidence level (CL) on a scale from 1 to  546. For library comparisons, a modified cosine 
score above 0.9 was determined as a CL 1 match. Any feature which obtained an exact spectral similarity score 
above 0.9 in MetFrag was determined as a CL 2 match. For features of which most spectra were predicted to be 
the same compound by both MetFrag and Sirius, a CL 3 was assigned. When most of the spectra of a feature 
were predicted to be the same compound in either MetFrag or Sirius, but not by both, a CL 3–4 was assigned, 
depending on manual assessment of spectral similarity. When most of the spectra were predicted to have the 
same chemical formula in Sirius, a CL 4 was assigned and when no MS2 was obtained for a feature, or when 
there was no majority of spectral predictions, the feature was assigned a CL 5. Parameters for Sirius, MetFrag, 
HMDB, and in-house library matching are found in Suppl Table 1.

Statistical analysis
For all data- and hypothesis-driven dietary patterns and components, we investigated the association with CRC 
risk by multivariable conditional logistic regression, adjusted for BMI, smoking, physical activity, education, 

https://gitlab.com/CarlBrunius/StatTools
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total energy intake, and alcohol. Association between diet and CRC risk were evaluated by estimating odds ratios 
(ORs) per 1 standard deviation (SD) increase in frequency/day or gram/day in dietary pattern or dietary com-
ponent, respectively. When alcohol was the main exposure (used as a continuous variable), alcohol (categorized) 
was not included as a covariate. The analyses were considered exploratory, and the significance threshold was 
consequently set at nominal P < 0.05. The few participants with missing values for some covariates (presented in 
Table 2) were omitted in the statistical analyses. In addition, stratified analyses were performed by sex (women 
and men), and by tumor location (proximal colon, distal colon, and rectum).

Associations between dietary exposures factors and metabolome were investigated using random forest 
regression. Metabolomics data were entered as explanatory variables and each of the energy-adjusted data-driven 
patterns, underlying dietary variables, as well as a priori components were entered as response variables. The 

Table 2.  Baseline characteristics of 680 prospective colorectal cancer cases and 680 matched controls with 
complete dietary and metabolomics data. IQR interquartile range, BMI body mass index, VIP Västerbotten 
Intervention Programme, MONICA Multinational Monitoring of Trends and Determinants in Cardiovascular 
Disease.

Variable Total, n = 1360 Cases, n = 680 Controls, n = 680

Age at baseline, years, median (IQR) 59.7 (50.0–60.0) 59.7 (49.9–60.0) 59.7 (50.0–60.0)

Follow-up time, years, median (IQR) 11.3 (6.4–15.6) 11.3 (6.4–15.5) 11.3 (6.5–15.7)

Sex, n (%)

 Men 688 (50.6) 344 (50.6) 344 (50.6)

 Women 672 (49.4) 336 (49.4) 336 (49.4)

Cohort, n (%)

 VIP 1242 (91.3) 621 (91.3) 621 (91.3)

 MONICA 118 (8.7) 59 (8.7) 59 (8.7)

BMI kg/m2, n (%)

 < 25 normal weight 527 (38.8) 248 (36.5) 279 (41.0)

 25–30 overweight 606 (44.6) 311 (45.7) 295 (43.4)

 > 30 obese 219 (16.1) 117 (17.2) 102 (15.0)

 Missing 8 (0.4) 4 (0.4) 4 (0.74)

BMI kg/m2, mean (sd) 26.4 (4.0) 26.6 (4.1) 26.2 (3.8)

Smoking status, n (%)

 Never smoker 572 (42.1) 272 (40.0) 300 (44.1)

 Ex-smoker 476 (35.0) 248 (36.5) 228 (33.5)

 Current smoker 298 (21.9) 151 (22.2) 147 (21.6)

 Missing 14 (1.0) 9 (1.3) 5 (0.7)

Recreational physical activity level, n (%)

 None 575 (42.4) 298 (43.9) 277 (40.9)

 Low (occasionally) 347 (25.6) 172 (25.3) 175 (25.8)

 Medium (1–3 times/w) 356 (26.2) 175 (25.8) 181 (26.7)

 High (> 3 times/w with higher intensity) 65 (4.8) 29 (4.3) 36 (5.3)

 Missing 17 (1.3) 6 (0.9) 11 (1.6)

Educational level, n (%)

 Elementary school 511 (37.6) 245 (36.0) 266 (39.1)

 Secondary school 600 (44.1) 315 (46.3) 285 (41.9)

 Post-secondary school 240 (17.6) 115 (16.9) 125 (18.4)

 Missing 9 (0.7) 5 (0.7) 4 (0.6)

Civil status, n (%)

 Unmarried 101 (7.4) 44 (6.5) 57 (8.4)

 Married or cohabitant 1091 (80.2) 546 (80.3) 545 (80.1)

 Separated 98 (7.2) 46 (6.8) 52 (7.6)

 Widow/widower 53 (3.9) 37 (5.4) 16 (2.4)

 Missing 17 (1.3) 7 (1.0) 10 (1.5)

Alcohol intake, g/day, n (%)

 Zero intake 121 (8.9) 57 (8.4) 64 (9.4)

 Below median (sex-specific) 559 (41.1) 295 (43.4) 264 (38.8)

 Above median (sex-specific) 680 (50.0) 328 (48.2) 352 (51.8)

Alcohol intake, g/day, mean (sd) 4.0 (4.8) 4.1 (5.1) 3.9 (4.4)

Energy intake, kcal/day, mean (sd) 1704 (637) 1683 (644) 1724 (29)
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data were processed using the R MUVR package v 0.0.973, which employs a repeated double cross-validation 
framework incorporated with unbiased variable  selection47. In addition, samples used for predictions in such 
nested cross-validation are never used for either parameter tuning, or model training and predictions are there-
fore not subject to overfitting. Models considered potentially informative at predictive performance  (Q2) > 0.15 
were further assessed by permutation analysis (n = 50) to assess modelling  performance48. Metabolite features 
selected from MUVR models with  Q2 > 0.15 and  Ppermutation < 0.05, were further validated using partial Spearman 
correlation with their corresponding dietary exposure at the baseline measurement while adjusting for the same 
covariates as in the conditional logistic regression models.

Associations of individual metabolite features selected to reflect dietary exposures (n = 36) with CRC risk was 
performed as above. In addition, associations between dietary metabolite profile, exposures and CRC risk were 
investigated using our in-house R-based ‘triPlot’ algorithm (https:// gitlab. com/ CarlB runius/ tripl ot)49. In brief, 
a principal component analysis (PCA) was performed on the set of metabolite features selected to reflect dietary 
exposures (n = 36) for all case–control pairs at baseline that had complete data, including metabolite features 
(n = 680). Component scores were associated to CRC risk as above and to dietary exposures using partial Spear-
man correlation, adjusted for the same potential confounders. Associations were visualized in a triplot with the 
metabolite loadings from the PCA, superimposed with exposure correlations and ORs for risk of developing CRC.

All statistical analyses were conducted in the statistical software R v 4.0.2 (Foundation for Statistical Comput-
ing, Vienna, Austria). Baseline descriptions were performed in IBM SPSS statistics, version 28.

Results
Study participants
In total, 2550 samples, including baseline (BL) and repeated (Rep) samples from 1010 case–control pairs, were 
originally obtained (Fig. 1). All samples were collected prior to the CRC diagnosis of the case in each case–control 
pair. After exclusions for incomplete FFQ data, 2250 samples from 890 pairs were used to produce dietary pat-
terns and 776 pairs were analyzed for diet-CRC association. After further exclusions for insufficient metabolomics 
data, 680 incident CRC cases and 680 matched controls, recruited 1991–2014 were available for all analyses. Of 
the 680 matched pairs, 621 (91.3%) were from the VIP cohort, and 59 (8.7%) were from the MONICA cohort. 
Three CRC cases had unknown tumor site and were thus removed from the site-specific analyses. For participants 
with more than one health examination or blood sample available in the final data set, the first occasion was 
used in the analyses. Characteristics of the participants from the baseline measurement are presented in Table 2. 
Median follow-up time from baseline to CRC diagnosis was 11.3 years. Compared to participants excluded from 
the study, included participants were older (more often recruited at 60 than 50 years of age), had somewhat 
shorter follow-up times and had a higher proportion of women. (Suppl. Table 2).

Figure 1.  Flow chart. Inclusion and exclusion of study participants from the Northern Sweden Health and 
Disease Study with baseline sampling of plasma and dietary data from March 1991 to April 2014 and a median 
follow-up time from baseline to the CRC diagnosis cases of 11.3 years.

https://gitlab.com/CarlBrunius/triplot
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Data-driven dietary patterns and risk of colorectal cancer
From the combination of exploratory and confirmatory factor analysis, we identified 12 robust dietary patterns 
named: breakfast food, low-fat, smoked, fruit soup and rice, snacks and sweets, spreads, vegetables, meat, full fat, 
fish, fast food, and alcohol pattern. The constituents of each pattern are presented in Table 1, together with a list 
of the dietary components selected a priori, based on their putative role in CRC risk. Dietary variable loadings 
showing the direction of intake in relation to the factor scores produced by the exploratory and confirmatory 
factor analyses can be found in Suppl. Table 3.

From the multivariable conditional logistic regression model, the breakfast food pattern showed lower overall 
CRC risk (OR per 1 standard deviation increase 0.89, 95% CI 0.80–0.997 P = 0.04) (Table 3). The breakfast food 
pattern was inversely associated with the risk of distal colon cancer (OR 0.75, 95% CI 0.61–0.96, P = 0.01), but 
not proximal colon cancer (OR 1.04, 95% CI 0.84–1.29, P = 0.69) or rectal cancer (OR 0.88, 95% CI 0.73–1.07, 
P = 0.20) (Table 4). Furthermore, the association between the breakfast food pattern and distal colon cancer risk 
was more pronounced in women (OR 0.69, 95% CI 0.49–0.96, P = 0.03) than in men (OR 0.79, 95% CI 0.58–1.08, 
P = 0.13) (Table 4). A pattern with connection to breakfast food, containing fruit soup and rice meals, was also 
inversely associated with distal colon cancer in women (OR 0.64, 95% CI 0.43–0.95, P = 0.03). Of the dietary 
components selected a priori, several were represented in the breakfast food pattern, i.e., dairy products and 
fiber-rich breakfast cereals contains dietary calcium, wholegrain, and fiber. There was an inverse association for 
total dietary calcium intake (OR 0.88, 95% CI 0.79–0.97, P = 0.01) and dairy foods (OR 0.90, 95% CI 0.81–1.00, 
P = 0.05) and a non-significant inverse association for wholegrain (OR 0.93 95% CI 0.83–1.04, P = 0.22) in rela-
tion to CRC risk (Table 3), whereas for dietary fiber the association was null (OR 1.00, 95% CI 0.89–1.11, P 0.95).

The alcohol pattern consisted of beer with a moderate alcohol content (2.8–3.5%), strong beer (≥ 4.5% alco-
hol), wine and liquor, and was not significantly associated to overall CRC risk (OR 1.09, 95% CI 0.97–1.21, 
P = 0.13) (Table 3).

The meat pattern, consisting of minced meat dishes, meat stew, steak, and chops, did not associate with overall 
CRC risk in men or women. However, when stratifying for sex and tumor site, the meat pattern associated with 
increased risk of rectal cancer in women (OR 1.38, 95% CI 1.00–1.92, P = 0.05), (Table 4). The pattern dubbed 
fast food, including pizza, hamburger, bacon, and sausage, was not associated with overall CRC risk but was, like 
the meat pattern, associated with a higher risk of rectal cancer in women (OR 1.49, 95% CI 1.04–2.12, P = 0.03), 
whereas no such association was found in men (Table 4). Red and/or processed meat intake in g/day did not 
associate with either overall, sex-, or site-specific CRC risk (Tables 3 and 4).

None of the other eight data-driven dietary patterns were associated with the risk of CRC, either overall 
(Table 3), or in subgroups stratified by sex (Table 3), or sex and tumor location (Suppl. Table 4).

Dietary patterns and association to plasma metabolites
Of the analyzed dietary data, including both hypothesis- and data-driven dietary components and patterns, 
five associated to the metabolome (Table 3). After adjustment for potential confounders (the same potential 
confounders included in the conditional logistic regression: BMI, smoking, physical activity, education, total 
energy intake, and alcohol, between 5 and 15 metabolite features correlated with respective dietary exposure 
variables (Suppl. Table 5).

There was substantial overlap in selected features for the alcohol pattern and total alcohol intake as well as 
between total intake of wholegrain and dietary fiber, resulting in 36 unique features associated with dietary expo-
sures. Among those, 3 metabolite features measured in negative polarity reflected alcohol intake and associated 
with increased CRC risk. Two of these features (m/z 224.0623 and 224.5639) co-eluted at 311 s and differed in 
molecular weight by 0.5 Da, indicating isotopes of a doubly charged, albeit unidentified, metabolite. Interestingly, 
the third feature had the same m/z ratio and isotope pattern (not shown), but eluted approx. 30 s earlier, partly 
overlapping with the distinct peak at 310 s, suggesting it to be a structural isomer. This notion was strengthened 
by high correlations (r ≥ 0.77) and similar associations to alcohol exposure and CRC risk (Suppl. Table  5).

In addition, 3 features associated with decreased CRC risk: One of these features (negative polarity, 91.63 s, 
m/z 188.0024) reflected both wholegrain and fiber (OR = 0.82 (0.72–0.93), p = 0.0017) and was tentatively anno-
tates as aminophenol sulphate (Level 3). Another feature (unidentified) also reflected fiber intake (positive polar-
ity, 268.53 s, m/z 130.0650 with additional fragments at 131.0685 (isotope), 189.0785 and 190.0859; OR = 0.88 
(0.78–1.00), p = 0.042). The third feature (negative polarity, 52.53 s, m/z 129.0206) reflected total intake of fruit 
and vegetables and was annotated by molecular formula as [C5H6O4-H]− (Level 4).

From the PCA including all 36 diet-related features, the metabolite pattern in the first component correlated 
with alcohol consumption  (ralcoholpattern = 0.45;  ralcoholamount = 0.44) but attenuated after adjustment for confound-
ers  (ralcoholpattern, partial = 0.31;  ralcoholamount, partial = 0.31) and did not associate with CRC risk (OR = 1.00 (0.88–1.13), 
p = 0.99). The second component reflected fruit and vegetables  (rFruitvegetables, partial = 0.23), fiber  (rFiber, partial = 0.21) 
and wholegrain  (rWholegrain, partial = 0.09), and associated with decreased CRC risk (OR = 0.83 (0.73–0.95), p = 0.007), 
more pronounced in women (OR = 0.79 (0.65–0.95), p = 0.014) than men (OR = 0.85 (0.70–1.03), p = 0.105). The 
association reflected predominantly rectal cancer (OR = 0.74 (0.59–0.92), p = 0.008), again more pronounced in 
women (OR = 0.56 (0.37–0.84), p = 0.005). The third component also reflected wholegrain  (rwholegrain, partial = 0.15) 
and associated with decreased CRC risk (OR = 0.89 (0.79–1.00), p = 0.046), but with no distinct association to 
cancer site or sex in subgroup analyses. A triplot of the second and third components and their associations to 
dietary exposures and CRC risk (overall and per site), adjusted for confounders, is shown for all participants in 
Fig. 2 and stratified for men and women in Suppl Fig. 1.
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Discussion
In this population-based, nested case–control study, we explored data-driven (a posteriori) dietary patterns and 
hypothesis-driven (a priori) dietary components in relation to the untargeted plasma metabolome and future 
CRC risk. Overall, associations between dietary patterns and components to either the metabolome or CRC risk 
were modest and mostly consistent with known associations.

Among the 12 data-driven patterns identified, only the breakfast food pattern, characterized by fermented 
milk products (low fat and 3% fat Swedish “filmjölk” and yoghurt), fiber-rich breakfast cereals, and berries 
(fresh and frozen) associated with a lower risk of CRC (Table 3), potentially summarizing an effect of the earlier 
established or probable protective dietary exposures factors, namely calcium and dietary  fiber4. Our finding of 
an inverse association for dairy products and calcium intake supports that interpretation. Surprisingly, total 
fiber intake alone was not associated with CRC risk in this study. Since cereal fibre in specific has been shown to 
potentially drive the association to CRC 50, the use of total fiber in our study may have masked a true association 
due to misclassification. In subgroup analysis, association to the breakfast food was pronounced especially for 
distal colon cancer and particularly in women (Table 4). Another pattern possibly describing breakfast foods 
(i.e., the fruit soup and rice pattern) showed similar reduced risk for distal colon cancer in women although it 
did not associate to overall CRC risk.

Given the strong scientific evidence for an increased risk of CRC with larger intakes of red and processed 
 meat2, it was surprising that we did not see statistically significant associations for this in our study population, 
nor for women or for men separately. However, subgroup analysis further showed that the meat and fast-food 
patterns associated with rectal cancer risk in women, in line with other findings for association between red and 
processed meat and cancer in the distal colon and rectum, but not in the proximal  colon51–53. Risk estimates for 
the hypothesis-driven dietary components dairy products and calcium intake also demonstrated more of the 
expected associations in  women51, with largely null results in men. Although alcohol consumption has been 
convincingly associated with increased CRC  risk2, we observed no such association for either men or women. The 
discrepancy in associations for men and women in this study could be due to differences in eating  behaviour54, 

Table 3.  Associations for data-driven dietary patterns and hypothesis-driven dietary components in relation 
to colorectal cancer (CRC) risk and untargeted plasma metabolite profiles in all study participants, women 
and men in matched case–control pairs. CRC  colorectal cancer, OR odds ratio, CI confidence interval, NC: 
not calculated. a After exclusion of matched pairs due to missing values in covariates  (npairs = 10). b All dietary 
patterns and components were energy adjusted using the energy–density method. c Adjusted for potential 
confounders; BMI kg/m2, smoking (never-/ex-/current smoker), physical activity (no/low/medium/high), 
education (elementary school/secondary school /post-secondary school), total energy intake, kcal/day, and 
alcohol (non-consumers/below sex-specific median/above sex-specific median intake). d Adjusted for the same 
potential confounders as for all other dietary exposures, except alcohol. e  Not calculated (NC) if predictive 
performance  (Q2) < 0.15.

CRC risk association all, 
n =  1532a

Metabolite profile 
association n = 1360

CRC risk association in 
women, n = 754

CRC risk association in 
men, n = 778

OR (95% CI) P Q2 Ppermutation
e OR (95% CI) P OR (95% CI) P

Data-driven dietary patterns, produced by frequency datab,c

 Breakfast food 0.89 (0.80–0.997) 0.04 0.00 NC 0.89 (0.75–1.04) 0.14 0.89 (0.76–1.05) 0.16

 Smoked 0.96 (0.85–1.09) 0.55 -0.03 NC 0.98 (0.82–1.17) 0.81 0.94 (0.78–1.13) 0.51

 Bread with low-fat spreads 0.97 (0.86–1.10) 0.63 0.06 NC 0.91 (0.76–1.09) 0.31 1.03 (0.87–1.22) 0.76

 Fruit soup and rice 0.98 (0.88–1.10) 0.77 -0.03 NC 0.93 (0.79–1.09) 0.36 1.05 (0.88–1.25) 0.58

 Vegetables 1.00 (0.89–1.12) 0.96 0.08 NC 1.02 (0.87–1.20) 0.81 0.98 (0.82–1.17) 0.83

 Snacks and sweets 1.00 (0.88–1.13) 0.99 0.02 NC 1.12 (0.93–1.34) 0.23 0.90 (0.75–1.08) 0.27

 Spreads 1.01 (0.90–1.12) 0.93 0.11 NC 1.10 (0.94–1.28) 0.25 0.93 (0.79–1.09) 0.35

 Full fat 1.03 (0.92–1.15) 0.64 0.07 NC 1.11 (0.94–1.31) 0.22 0.93 (0.80–1.09) 0.40

 Meat 1.04 (0.92–1.17) 0.55 -0.02 NC 0.97 (0.82–1.15) 0.74 1.08 (0.930–1.28) 0.41

 Fast food 1.06 (0.93–1.20) 0.38 0.10 NC 1.16 (0.96–1.39) 0.12 0.96 (0.80–1.14) 0.61

 Fish 1.08 (0.96–1.21) 0.21 0.06 NC 1.04 (0.88–1.22) 0.67 1.11 (0.95–1.31) 0.19

  Alcohold 1.09 (0.97–1.21) 0.13 0.22  < 2.2 *  10–16 1.05 (0.89–1.23) 0.59 1.13 (0.97–1.32) 0.12

Hypothesis-driven dietary components, by amount data (mg or g/day)b,c

 Dietary calcium 0.88 (0.79–0.97) 0.01 0.12 NC 0.83 (0.71–0.97) 0.02 0.93 (0.80–1.08) 0.34

 Dairy foods 0.90 (0.81–0.997) 0.050 0.11 NC 0.87 (0.75–1.01) 0.08 0.93 (0.81–1.08) 0.37

 Wholegrain 0.93 (0.83–1.04) 0.22 0.18  < 2.2 *  10–16 0.82 (0.69–0.97) 0.02 1.03 (0.89–1.21) 0.68

 Fiber 1.00 (0.89–1.11) 0.95 0.19  < 2.2 *  10–16 0.96 (0.81–1.13) 0.61 1.04 (0.89–1.22) 0.61

 Fruit and vegetables 1.02 (0.92–1.14) 0.69 0.26  < 2.2 *  10–16 1.07 (0.91–1.25) 0.40 1.01 (0.86–1.18) 0.88

 Red meat 1.03 (0.92–1.14) 0.64 0.03 NC 0.99 (0.85–1.16) 0.93 1.04 (0.89–1.21) 0.61

 Processed meat 1.04 (0.94–1.16) 0.43 0.03 NC 1.10 (0.94–1.28) 0.22 1.01 (0.87–1.18) 0.86

 Red and processed meat 1.04 (0.93–1.15) 0.49 0.06 NC 1.03 (0.88–1.20) 0.69 1.04 (0.89–1.21) 0.61

 Total  alcohold 1.04 (0.94–1.16) 0.43 0.23  < 2.2 *  10–16 0.97 (0.83–1.13) 0.68 1.13 (0.97–1.32) 0.11
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self-reporting of dietary  data55, or have biological  meaning56. Although we cannot distinguish which of these 
is the main explanatory factor for the observed differences, or if they are chance findings, sex stratification is 
important to conduct to gain more knowledge of sex and gender disparities in CRC  risk56.

Stratification by anatomical tumor location also revealed some possible site-specific risk relationships. There 
are several known differences between proximal and distal tumors regarding epidemiology, clinical manifesta-
tion, pathology, and  prognosis57. Patients with proximal tumors are more often older, women, have more co-
morbidities, different molecular tumor characteristics, and poorer prognosis than patients with distal  tumors57. In 
contrast, distal tumors more often show chromosomal  instability53. With regards to food digestion, the proximal 
and distal parts of the colon have different exposures to bowel content and hence also different  microbiota58. 
For site-specific dietary associations, results to date are largely inconclusive, including results for dietary fibre 
and  wholegrain9,51, dairy  products51,59 and dietary  patterns60, although a western diet has been suggested to be 
associated especially with increased risk of distal colon cancer and rectal  cancer61. Similarly, anatomical tumor 
site does seem to potentially modify associations between meat and CRC risk. A large study including pooled 
data on > 400,000 participants found a significant right-to-left trend for intake of unprocessed red meat, with 
risk estimates lowest for proximal colon cancer and highest for rectal  cancer53. Subgrouping by tumor location 
should be a general priority in future studies of diet and CRC risk.

Among the data-driven dietary patterns, only alcohol associated with the untargeted plasma metabolome, 
while four of the hypothesis-driven dietary components (wholegrains, total fiber, fruits and vegetables, and total 
alcohol) associated with metabolite profiles (Table 3). These results highlight that although data-driven dietary 
patterns can describe eating habits in the study population, such patterns may be constituted of food items with 
vastly different underlying molecular profiles, not easily described using molecular techniques. Conversely, the 
hypothesis-driven dietary components seem to better capture specific exposures quantitatively and may be more 
homogenous than the data-driven patterns in terms of chemical constitutes. The associations observed between 
food components and metabolite profiles in our study were all foods with previously reported food-metabolites 
in the literature (fruit and vegetables, fibre, wholegrain, and alcohol)62. Similar to the breakfast food pattern in 
our study, a healthy dietary pattern characterized by higher intakes of breakfast cereal and porridge, low fat and 
skimmed milks, as well as potatoes, fruit and fish, was identified from a previous cluster analysis of semi-weighed 
food  diaries63. However, unlike the present study, the healthy dietary pattern in that report also correlated with 
metabolomics profiles, based on urine samples. Although only the breakfast food pattern associated significantly 
to CRC risk in this study, the included components and direction of risk estimates for the other 11 patterns were 
generally in line with present dietary guidelines; for example, to eat more fruit and fiber and to limit intake of 
meat, saturated fat, fast food, and alcohol, while non-significant risk estimates above 1.0 for vegetables and fish 
patterns were somewhat conflicting against dietary  guidelines64.

Metabolite features reflecting intakes of wholegrain and dietary fiber were inversely associated with CRC 
risk, which contrasts the unexpected null result for dietary intake of wholegrain and  fiber4. In addition, both 
the alcohol pattern and total calculated intake of alcohol were associated with metabolite profiles but not with 

Table 4.  Associations for data-driven dietary patterns showing sex- and tumor-site-specific associations 
with colorectal cancer risk in all participants, women and men in matched case–control pairs. OR: odds ratio; 
CI: confidence interval. Estimates for the other eight data-driven patterns are presented in Supplementary 
Table 2. a Energy adjusted using the energy–density method. b Adjusted for potential confounders; BMI kg/m2, 
smoking (never-/ex-/current smoker), physical activity (no/low/medium/high), education (elementary school/
secondary school /post-secondary school), total energy intake, kcal/day, and alcohol (non-consumers/below 
sex-specific median/above sex-specific median intake).

Dietary  patternsa,b

All Women Men

n OR (95% CI) P n OR (95% CI) P n OR (95% CI) P

Breakfast food

 Proximal colon 454 1.04 (0.84–1.29) 0.69 272 0.97 (0.73–1.29) 0.82 182 1.25 (0.86–1.81) 0.24

 Distal colon 460 0.75 (0.61–0.96) 0.01 210 0.69 (0.49–0.96) 0.03 250 0.79 (0.58–1.08) 0.13

 Rectum 612 0.88 (0.73–1.07) 0.20 270 0.93 (0.68–1.25) 0.61 342 0.84 (0.65–1.09) 0.19

Fruit soup and rice

 Proximal colon 454 0.91 (0.74–1.13) 0.39 272 0.99 (0.77–1.28) 0.95 182 0.77 (0.47–1.25) 0.29

 Distal colon 460 0.90 (0.72–1.12) 0.36 210 0.64 (0.43–0.95) 0.03 250 1.24 (0.88–1.74) 0.22

 Rectum 612 1.10 (0.91–1.32) 0.32 270 1.10 (0.83–1.44) 0.51 342 1.13 (0.86–1.49) 0.37

Meat

 Proximal colon 454 1.00 (0.78–1.29) 0.99 272 0.73 (0.51–1.06) 0.10 182 1.60 (0.98–2.60) 0.06

 Distal colon 460 0.90 (0.73–1.12) 0.36 210 0.85 (0.62–1.16) 0.31 250 0.91 (0.65–1.28) 0.60

 Rectum 612 1.15 (0.95–1.39) 0.15 270 1.38 (1.00–1.92) 0.05 342 1.06 (0.83–1.36) 0.64

Fast food

 Proximal colon 454 1.03 (0.81–1.32) 0.80 272 0.95 (0.68–1.34) 0.78 182 1.25 (0.86–1.81) 0.24

 Distal colon 460 1.02 (0.81–1.28) 0.86 210 1.13 (0.81–1.59) 0.47 250 0.89 (0.63–1.26) 0.52

 Rectum 612 1.08 (0.88–1.32) 0.45 270 1.49 (1.04–2.12) 0.03 342 0.92 (0.71–1.20) 0.54
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CRC risk, which was  surprising2,3. Interestingly, a single alcohol-related metabolite (2 isotopes and an isomer) 
was associated with CRC risk, whereas most alcohol-related metabolites were not. While this could be a false 
discovery, it could also indicate subgroup dependencies in the effects of alcohol on CRC risk. Unfortunately, the 
metabolite of interest could not be identified, and biological interpretation is therefore not possible. In a previ-
ous study with large overlap of the same population in this study, we reported associations between metabolites 
and incident CRC, both novel associations and replication of previous  observations38. Though insufficient for 
potential clinical implementation, such as risk stratification or precision screening, the results, together with the 
present findings, add to the body of evidence supporting the value of the circulating metabolome for understand-
ing CRC risk factors and  etiology65.

When aggregating diet-associated metabolite features in a PCA, the metabolite pattern in the first component 
reflected alcohol intake, captured both in the alcohol pattern and as total calculated intake. Similar to the CRC 
association calculated directly from the alcohol intake, the association of the alcohol-related metabolite profile 
with CRC risk was also null. The second and third components reflected metabolite patterns related to intakes of 
dietary fiber, fruit and vegetables, as well as wholegrain. These components indicated an association with lower 
CRC risk consistent with established reduced CRC risk for wholegrain and dietary  fiber2,9. Also in this subgroup 
analysis, the association was more pronounced in women, but for rectal cancer, rather than distal colon cancer 
(Fig. 2, Suppl Fig. 1B). Interestingly, the metabolite profile reflecting dietary fiber, fruit and vegetables, and 
wholegrain provided CRC associations in stronger accordance with literature compared to estimates derived 
from self-reported dietary intake. Hence, biomarkers may have the potential to reflect dietary intake better than 
self-reporting, but it could also indicate that biomarkers are sensitive to many physiological processes and thus 
indicative of CRC risk beyond their sole reflection of specific dietary intakes. Nevertheless, self-reported and 

Figure 2.  TriPlot displaying metabolite loadings (black arrows) from principal component analysis (PCA) 
of metabolite features selected to reflect dietary exposures (n = 36). Metabolite feature names are reported as 
unique identifier (characteristics reported in Suppl Table 3; most metabolite identities are unknown) followed 
by the dietary pattern they reflect (in parentheses). Component scores were associated to colorectal cancer risk 
estimated by odds ratios (in red and orange, with whiskers denoting standard error) and to dietary exposures 
using partial Spearman correlation (in blue), adjusted for body mass index, smoking status, recreational physical 
activity, educational level, total energy intake, and alcohol intake (for association to alcohol pattern/total, alcohol 
was not included as a confounder).
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objective measures of dietary intake might have unrelated sources of bias and thus be combined to strengthen 
the interpretation of observational studies.

Our study had several limitations. Using self-reported dietary exposures from FFQs can introduce both ran-
dom and systematic measurement errors, in particular for self-reported alcohol  intake66. However, several valida-
tion studies, including use of biomarkers, suggested validity similar to FFQs used in other large-scale  studies34,35. 
We adjusted for energy intake using the density  method67. Several other methods  exist68 although none are likely 
to sufficiently account for all measurement bias. The exclusion of participants due to insufficient self-reported 
data was a limitation but based on minor differences in baseline characteristics between included and excluded 
participants (Suppl Table 2), we consider the risk of substantial selection bias to be low. Furthermore, selection 
bias in the cohort has been reported to be  minor69,70, which also supports generalizability. Sampling weights, a 
method sometimes used to potentially enhance representativeness in population-based studies, could be argued 
for but is not without its limitation and needs to be properly incorporated not to increase  bias71. Including in the 
models, as we did, the variables that might account for disproportionate representation in the sample design as 
independent variables should at least mitigate bias in this investigation.

Another limitation was the possibility of residual confounding by covariates that we could not adjust for, such 
as family history of CRC and nonsteroidal anti-inflammatory drug use. Although the sample size was relatively 
large for the combination of pre-diagnostic dietary data and untargeted plasma metabolomics data, the statistical 
power for subgroup analyses was limited. In addition, most metabolite features remained unidentified, due to a 
combination of low intensity signals not capable of generating MS2 level data for annotation, as well as an absence 
of hits in reference data bases, likely reflecting that the food metabolome and exposome are still understudied. 
As our study was exploratory in nature, we did not account for multiple testing. Our intent in including the 
metabolomics analyses was to explore the circulating metabolome as a potential source of metabolic markers 
or marker patterns reflective of diet, not to identify possible carcinogenic metabolites stemming from the diet. 
Thus, we did not conduct formal mediation analyses. Such an approach might be considered in future studies 
but was not warranted as a post hoc analysis our investigation given the modest results.

The main strengths of this study were the population-based design, prospectively collected samples and 
dietary data for a recall period of one year for the participants, and high-quality sample collection and handling 
procedures enabling metabolomics analysis. The long follow-up from the data collection including the plasma 
samples to the CRC diagnosis of cases (median 11.3 years) was also advantageous, given the long carcinogenic 
process in CRC development. We consider the exploratory approach to be a strength of the investigation. The 
difficulty in establishing dietary risk factors for CRC, despite decades of epidemiological research, makes it clear 
that novel approaches are useful and may have promise for improving the depth of understanding of the link 
between diet and CRC, or as in this study confirming some of the earlier known dietary risk factors.

Despite strong agreement both on the importance of diet in CRC development and on the value of dietary 
pattern analysis in assessing the relation between diet and disease, the evidence to date is still insufficient to 
form convincing conclusions and guidelines for CRC risk  prevention4. In this context, our study demonstrates 
the potential of incorporating both innovative data-driven techniques, comparisons of methods producing 
dietary patterns, as well as biomarker identification of potential diet-disease features, toward improving the 
understanding of CRC etiology. The use of data-driven dietary pattern analyses has been suggested as a comple-
ment to more traditional, hypothesis-driven pattern analyses, to help capture the complexity of  diet13,72. In the 
present study, we used a robust validation approach combining exploratory and confirmatory factor analysis 
in a repeated random half split procedure, which identified 12 data-driven food patterns, that were considered 
relevant. Previous investigations have tended to present fewer latent  variables19,73, arguably corresponding to 
overarching dietary patterns. Here, the higher-resolution factorization had both a better reproducibility of the 
diet variable composition and a better fit to the data than factorization with a lower number of latent variables.

In conclusion, in this population-based nested case–control study, we identified 12 robust data-driven dietary 
patterns, of which the breakfast food pattern associated with overall CRC risk. Observed inverse associations for 
the a priori known components dietary calcium and dairy foods strengthened the results from the exploratory 
analysis producing dietary patterns. Some possible site-specific relations were found; the breakfast food pattern 
was associated with reduced risk of distal colon cancer, particularly in women, as was the fruit soup and rice 
pattern, and the meat and fast-food patterns were associated with rectal cancer in women. Associations with 
metabolite profiles were observed for a priori components wholegrain, fiber, alcohol, and fruits and vegetables, 
and for data driven patterns only for the alcohol pattern. In accordance with earlier reported diet-CRC asso-
ciation, three metabolites, reflecting fiber and wholegrain, and fruit and vegetable intake, showed nominally 
significant associations to decreased CRC risk, whereas one alcohol-related metabolite showed a nominally 
signification association to increased CRC risk. When aggregated, the diet-related metabolite profiles indicated 
inverse CRC associations for dietary fiber, fruit and vegetables, and wholegrain, especially for female rectal cancer.

Data availability
The data generated in this study are not publicly available due to Swedish Authority for Privacy Protection regula-
tions (the national supervisory authority under the European General Data Protection Regulation, GDPR). Data 
may be available upon reasonable request to the corresponding author.
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