UMEA UNIVERSITY

INCREMENTAL RE-TOKENIZATION
IN'BPE-TRAINED SENTENCEPIECE
MODELS

)

g

// > 4
Simon Hellsten

Bachelor Thesis, 15 credits
BACHELOR OF SCIENCE IN COMPUTING SCIENCE

2024

Abstract

This bachelor’s thesis in Computer Science explores the efficiency of an incre-
mental re-tokenization algorithm in the context of BPE-trained SentencePiece
models used in natural language processing. The thesis begins by underscoring
the critical role of tokenization in NLP, particularly highlighting the complexities
introduced by modifications in tokenized text. It then presents an incremental
re-tokenization algorithm, detailing its development and evaluating its perfor-
mance against a full text re-tokenization. Experimental results demonstrate that
this incremental approach is more time-efficient than full re-tokenization, es-
pecially evident in large text datasets. This efficiency is attributed to the algo-
rithm’s localized re-tokenization strategy, which limits processing to text areas
around modifications. The research concludes by suggesting that incremental
re-tokenization could significantly enhance the responsiveness and resource ef-
ficiency of text-based applications, such as chatbots and virtual assistants. Future
work may focus on predictive models to anticipate the impact of text changes on
token stability and optimizing the algorithm for different text contexts.

Acknowledgements

I would like to express my special thanks to my supervisor Martin Berglund for his guid-
ance and thoughtful feedback. I am also deeply grateful to my parents for their unwavering
support.

And to my partner, Frida, thank you for your patience and love. I could not have done
this without you.

Contents

1 Introduction
2 Related Work

3 Background
3.1 Byte Pair Encoding
3.2 SentencePiece

3.2.1 Tokenization example

4 Incremental algorithm for re-tokenization
4.1 Correctness of the algorithm

4.2 Incremental re-tokenization example
5 Experimental Setup
6 Results

7 Discussion

7.1 Impact and Future Work
References
A Tokenizer Implementation (in Python)

B Incremental Re-Tokenization Implementation

0 NN g G

11
12
13

15

17

19
19

21

23

25

1 Introduction

In the field of natural language processing (NLP), tokenization plays a fundamental role. It
involves breaking down text into smaller units, known as tokens, which are used as the ba-
sis for various computational tasks. For instance, consider the string “ab-c”, a tokenization
method might break this into the three tokens: “ab” “~”, and “c”. One of the popular tok-
enization methods is Byte Pair Encoding (BPE) [1], which has been widely used in various
NLP models, including the large language model GPT-3 [2]. In addition to BPE, this thesis also
examines SentencePiece [3] which is a text tokenizer and detokenizer, that implements BPE
and a unigram language model (the latter is not be covered by this thesis). The SentencePiece
library has in turn been used to train new BPE tokenizers [4], such as the tokenizer used by
the GPT-SW3 model [4, 5].

When changes occur in a tokenized text, the process of updating the tokens, referred to
as re-tokenization, can introduce complexity. Consider a situation where the hyphen from
our original string “ab—c” is removed, resulting in the string “abc”. One might expect that
simply removing the “~” token would suffice, leaving us with the two tokens “ab” and “c”.
But depending on the tokenization scheme, the correct way to tokenize the updated string
could just as well be the tokens “a” and “bc”, or even just a single token “abc”. This example
demonstrates that even a minor modification can affect neighboring tokens. Based on this ob-
servation, it can be further inferred that these changes may also influence subsequent tokens

in both directions, potentially leading to a situation where no token remains unchanged.

In cases where re-tokenization is needed, the straightforward approach is to perform the
tokenization process again for the entire text. This guarantees the consistency of the new
tokens with the established tokenization scheme. However, re-tokenizing the whole text can
be computationally demanding and time-consuming, especially for large volumes of text data.
This highlights the necessity for more efficient methods for re-tokenization.

Expanding on the significance of this research, a more efficient re-tokenization method
could provide various benefits in the field of NLP. For instance, in the context of machine
translation [6], where documents are often updated or corrected, using an algorithm that can
incrementally adjust the tokenization of revised sections instead of reprocessing the entire
document could result in considerable time and computational savings. The same holds true
in sentiment analysis [7], where things such as social media posts or customer reviews are
continually updated. Furthermore, in applications such as simple text editing and grammar
checking, where text is frequently modified, efficient re-tokenization can enhance the re-
sponsiveness and accuracy of these tools, allowing for real-time corrections and suggestions
without the need to reprocess the entire text from scratch.

Considering these potential benefits, this thesis addresses the research question: “Can an
incremental algorithm efficiently re-tokenize text after minor changes in BPE-trained Sentence-
Piece models without reprocessing the entire text?” The objectives of this research are: (1) to de-
velop an incremental algorithm for re-tokenization in BPE-trained SentencePiece models, (2)
to reason for the correctness of the developed algorithm, and (3) to evaluate the performance
of the developed algorithm against fully tokenizing the altered text using SentencePiece. In
essence, this research aims to pave the way for more efficient approaches to tokenization,

contributing meaningfully to the advancement of NLP.

This thesis employs a combination of literature review, algorithm development, and ex-
perimental evaluation. The literature review provides an overview of existing tokenization
methods, the state-of-the-art in BPE-trained SentencePiece models, as well as some further
necessary background and context for BPE and SentencePiece [8][9]. The central contribu-
tion is the development of an incremental re-tokenization algorithm for BPE-trained Senten-
cePiece models, aimed at efficiently updating tokenized text following minor modifications.
The development of this algorithm is detailed, and its performance is compared with the naive
approach of a full re-tokenization. Results from these experiments show that the incremental
algorithm consistently outperforms full re-tokenization in terms of processing time.

This research focuses on the development of an incremental algorithm for re-tokenization
within the context of BPE-trained SentencePiece models. While the findings of this study
may be applicable to other tokenization methods and NLP models, the scope of this research
is limited to BPE and SentencePiece.

The thesis is organized as follows: Section 1 provides an overview of the study’s context
and its importance in the field of NLP, specifically focusing on the challenges and significance
of tokenization and re-tokenization. Section 2 delves into various tokenization methods and
their applications in advanced NLP models, highlighting the importance of efficient text pro-
cessing. Section 3 lays the foundational knowledge about BPE and SentencePiece, which
is crucial for understanding the subsequent development of the incremental re-tokenization
algorithm. Section 4 introduces the incremental re-tokenization algorithm and provides rea-
soning for its correctness. Section 5 describes the methodology and conditions under which
the algorithm’s performance is empirically evaluated. Section 6 presents and interprets the
findings from the experimental evaluation. Finally, Section 7 reviews the research findings,
discusses their implications, and suggests directions for future research in the domain of ef-
ficient re-tokenization.

2 Related Work

Various tokenization methods have been proposed and employed in the field of NLP. Wu et
al. [10] introduced Google’s Neural Machine Translation system, which uses a WordPiece
tokenization method to address the open vocabulary problem and improve the handling of
rare words. The WordPiece method recursively splits words into subwords based on their fre-
quency in a large corpus. This approach strikes a balance between character-delimited models
and word-delimited models, offering both flexibility and efficiency. Schuster and Nakajima
[11] initially applied WordPiece tokenization to Japanese and Korean voice search, demon-
strating its effectiveness in handling multiple script languages and addressing the challenges
of infinite vocabulary and ambiguities in scoring results.

Taku Kudo’s work [3] focuses on improving neural machine translation (NMT) through
subword regularization, which utilizes “multiple subword segmentations probabilistically sam-
pled during training” to enhance model robustness. Additionally, Kudo introduces tokeniza-
tion based on a unigram language model, a probabilistic model that predicts the likelihood
of a sequence of subword units based on the frequencies of their occurrence in a corpus, of-
fering a method to generate subword units with associated probabilities [3]. SentencePiece
implements Kudo’s unigram language model, providing an alternative to BPE for token seg-
mentation [12].

The Transformer model, introduced by Vaswani et al. [13], has been influential in the
development of state-of-the-art NLP models. The authors proposed a novel network archi-
tecture based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. This approach led to superior results in quality while being more parallelizable and
requiring significantly less time to train [13]. The adoption of tokenization methods, such
as WordPiece, in Transformer-based models has contributed to their high performance in
various NLP tasks.

Following the advancements of Transformer models, the BERT model introduced by De-
vlin et al. [14] represents a significant leap in NLP by employing the WordPiece tokenization.
This method allows BERT to efficiently handle a wide vocabulary, including rare words, by
breaking them into smaller, manageable subwords. Crucially, BERT enhances understanding
by analyzing text from both left and right contexts simultaneously, leveraging bidirectional
training unlike previous models. This approach enables BERT to achieve superior perfor-
mance in tasks such as question answering and language inference with minimal architec-
tural adjustments [14]. The key takeaway here is BERT’s demonstration of how advanced to-
kenization techniques, integrated within a Transformer-based framework, can substantially
improve NLP applications, underscoring the importance of context-aware processing and ef-
ficient tokenization in pushing the boundaries of what’s possible in language understanding.

Efficiency is not only an important consideration in tokenization but also in other text
processing tasks, such as regular expression evaluation. In their work, Bjorklund, Martens,
and Timm [15] specifically focus on the efficient incremental evaluation of regular expres-
sions. This area is pivotal due to the widespread presence of the counting operator in regular
expressions, a popular extension used in multiple programming languages and database ap-
plications. The authors proposed a new algorithm that significantly accelerates this process.

They demonstrated that exploiting counting operators can result in substantial speed-ups in
different scenarios, such as both normal and incremental evaluation, and on both synthetic
and real expressions. This research highlights the broader relevance of incremental algorithms
in improving the efficiency of text processing tasks.

Concurrently with the development of this thesis, Berglund and van der Merwe’s article
“Formalizing BPE Tokenization” [16] has contributed to our understanding of BPE tokeniza-
tion, a key focus of this thesis. Their work provides a comprehensive formalization of BPE
tokenization, as implemented in frameworks like SentencePiece and HuggingFace, offering
insight into the construction of tokenization rules and their implications. Moreover, they pro-
pose an algorithm for incremental evaluation of tokenizations, although they acknowledge
that this may not always be practical due to computational constraints. This aligns closely
with the research presented in this thesis, as their theoretical groundwork lays the foun-
dation for practical exploration. While their work abstains from experimental studies, this
thesis aims to fill this gap by conducting experiments to validate the intuitive understanding
and efficiency of their incremental algorithm in real-world scenarios. My thesis thus extends
their theoretical contributions with an empirical perspective, shedding light on the practical
applications and limitations of the incremental update algorithm in BPE tokenization.

3 Background

This section provides the necessary foundation for understanding the core concepts and tech-
niques related to the development of the proposed incremental algorithm for re-tokenization
in BPE-trained SentencePiece models. This section is organized into two subsections, each
addressing a critical aspect of the problem.

Section 3.1 delves into BPE [1], a widely-used tokenization method known for its effec-
tiveness in handling rare words within natural language processing tasks. This part of the
section discusses the principles of the BPE algorithm, its applications, and presents a pseu-
docode representation to illustrate its structure.

Section 3.2 explores SentencePiece, which is “a language-independent subword tokenizer
and detokenizer designed for Neural-based text processing” [3]. This subsection offers an
overview of the SentencePiece model, with an emphasis on BPE-trained models. In addition,
it examines the C++ implementation of the encoder for BPE-trained models from Google’s
GitHub repository [12], providing the corresponding pseudocode to facilitate understanding.
Additionally, Subsection 3.2.1 provides an example to practically and visually demonstrate
how the tokens of a tokenization are constructed.

3.1 Byte Pair Encoding

The BPE algorithm, initially developed for data compression [17], uniquely adapts to the com-
plexities of language processing in NLP. It begins by tokenizing input text and then progres-
sively builds its vocabulary. This is achieved by repeatedly combining the most common
pairs of characters or symbols in the text, simplifying large vocabularies by creating these
new, efficient subword units [1].

In the context of NLP, the BPE algorithm is applied by first tokenizing the input text
and appending an end-of-word symbol to each word [1]. The algorithm then initializes the
vocabulary with unique characters from the input text, including the end-of-word symbol.
The main part of the BPE algorithm, as presented in Algorithm 1, involves iteratively counting
bigram frequencies and merging the most frequent character pairs to form new subword units.
This process is repeated for a predefined number of merge operations (or until no further
merges are possible), and the resulting subword units are added to the vocabulary. The list
of these merge operations, referred to as a merge list, is crucial for the application of the BPE
algorithm on new words [1].

Definition 3.1.1 (Merge list). A merge list, in the context of the BPE algorithm, is an ordered
sequence of the most frequent bigram pairs (x, y) identified in the input text corpus for merg-
ing. Each entry in the list represents a specific operation of merging a bigram pair into a new
subword unit z, where x and y are individual characters or subwords, and z is the resulting
subword from their merge. The order of the list encodes the priority of merge operations,
with pairs positioned earlier in the list being prioritized for merging over those that appear
later. This prioritization reflects the relative frequency or importance of the bigram pairs in
the training data. The merge list encapsulates the subword units learned from the training
data and is utilized for segmenting new words.

To apply the learned BPE merge operations to new words, the words are first broken down
into individual characters, followed by the end-of-word symbol. The operations in the merge
list are then applied iteratively in the same order as they were learned from the training data
[1]. This approach allows the BPE algorithm to segment new words into known subword
units from the merge list, thereby helping handle large vocabularies and out-of-vocabulary
words.

Algorithm 1: Byte Pair Encoding (BPE) for Word Segmentation

Input : Text corpus T, number of merge operations N

Output: Merge list M

Preprocess the input text corpus T;

Initialize the vocabulary V with unique characters from T;

Initialize an empty merge list M;

fori < 1to N do

Calculate bigram frequencies in the tokenized text T;

Find the most frequent bigram pair (x, y);

Add the merge operation (x,y) — z to the end of M;

Update the vocabulary V with the new subword unit z;

Update the text representation T by merging the bigram pair (x, y) to form the
new subword unit z;

O 0 NG R W N

10 end
11 return M

The use of BPE for word segmentation has been shown to improve the performance of
NLP models, especially when dealing with rare and out-of-vocabulary words [10]. However,
BPE has some limitations. The choice of the number of merge operations and the size of the
training data can significantly impact the quality of the learned subword units [18]. Moreover,
BPE may not always capture semantically meaningful subword units, as it is primarily based
on frequency counts [19].

Several variants and extensions of the BPE algorithm have been proposed to address its
limitations and improve its performance. Notable examples include WordPiece, which is em-
ployed in Google’s BERT model [14], and SentencePiece, which unifies the tokenization of
words and subwords [3].

In conclusion, BPE is an essential technique for word segmentation in NLP tasks, offering
a practical approach to handle large vocabularies and out-of-vocabulary words. Despite its
limitations, BPE has found widespread adoption in various NLP applications and inspired the
development of related segmentation algorithms. Its impact on the field of NLP is expected
to continue as researchers explore new techniques and improvements.

3.2 SentencePiece

SentencePiece is “a language-independent subword tokenizer and detokenizer designed for
Neural-based text processing, including [NMT]”. Unlike traditional subword segmentation
tools, SentencePiece can directly train subword models from raw sentences without the need
for pre-tokenization into word sequences. This ability enhances the end-to-end and language-
independent nature of the system, making it a pivotal tool in NLP tasks across various lan-
guages [3].

SentencePiece incorporates the BPE model, a tokenization method which (as stated in
Section 3.1) was originally developed for data compression and later adapted for NLP. The
BPE model in SentencePiece is distinctive as it operates directly on raw text, in contrast to
traditional BPE approaches that require pre-tokenized text. This integration of BPE within
SentencePiece enhances its efficiency and application scope in NLP tasks, particularly in the
processing of languages without clear word boundaries [16][3]. SentencePiece’s BPE model
manages the vocabulary to ID mapping, allowing for direct conversion of text into ID se-
quences, differing from the standalone BPE which focuses more on the frequency of bigrams
for creating subword units [3].

The SentencePiece tokenization of a string is performed by starting from an initial tok-
enization state and sequentially applying the merge rules from the merge list. The rules are
chosen based on their priority, and the process continues until no further rules can be applied.
This method ensures that the highest-priority rule applicable at each step is used, leading to a
unique and, using the terminology of Berglund & van der Merwe, “correct” tokenization for
each input string [16].

The pseudocode representation of the SentencePiece BPE tokenization process, as out-
lined in Algorithm 2, provides a step-by-step breakdown of this procedure. It begins with
initializing a priority queue and a list of symbols from the input string (lines 1-3). Symbol
pairs are then created and added to the priority queue based primarily on their score (prior-
ity) and secondly their position in the string, simulating the application of merge rules from
the merge list (lines 16-18). The core of the tokenization process involves iterating over this
priority queue and merging symbols, ensuring that the highest-priority rule is applied at each
step (lines 19-30). The final stage involves constructing the output list of tokens by travers-
ing through the linked list of symbols, thereby achieving the final tokenization of the input
string (lines 31-37). This interpretation of SentencePiece’s tokenization with the BPE model
is primarily informed by an analysis of the C++ source code from the SentencePiece GitHub
repository [12]. Further insight from the paper by Berglund & van der Merwe has been help-
ful in understanding the nuances of the tokenization process [16]. A Python implementation,
imitating the SentencePiece tokenizer for pure BPE models, can be found in Appendix A.

Understanding the tokenization process of SentencePiece with BPE is fundamental to this
thesis, especially concerning the development of an incremental algorithm for re-tokenization.
The ability to perform incremental updates [16], as suggested by existing research, is vital for
efficient NLP processing, especially in scenarios where minor modifications in a string neces-
sitate tokenization adjustments.

Algorithm 2: SentencePiece BPE Tokenization Process

Input : Normalized string s
Output: List of tokens L

1 Initialize an empty priority queue Q;

2 Initialize a list of symbols S from characters of s;

3 Link each symbol in S with its previous and next symbol;

4 Function maybe_add_new_symbol_pair (left, right):

5

if either left or right is -1 (invalid) then

6 ‘ return
7 end
8 Concatenate pieces from symbols at left and right to form new_piece;
9 Get the ID of new_piece from the model;
10 if piece ID is unknown then
11 ‘ return
12 end
13 Get score for the piece ID from the model;
14 Create a new symbol pair with left, right, score, and size of new_piece;
15 Add the symbol pair to Q;
16 for i « 1 to length of S— 1 do
17 ‘ maybe_add_new_symbol_pair (i—1,1i)
18 end
19 while Q is not empty do
20 Pop the top element from Q as top;
21 if either left or right piece of top is missing or size mismatch then
22 ‘ Continue to the next iteration
23 end
24 Merge left and right pieces of top into left;
25 Update next pointer of left to point to the next of right;
26 If next of left is valid, update its previous pointer to left;
27 Set right piece as empty (fully merged);
28 maybe_add_new_symbol_pair (previous of left, left) ;
29 maybe_add_new_symbol_pair (left, next of left) ;
30 end
31 Initialize an empty list L;
32 Set current_index to the index of the first symbol in S;
33 while current_index is not -1do
34 Add the piece at current_index to L;
35 Update current_index to the symbol’s next index;
36 end

37 return L

3.2.1 Tokenization example

treats whitespace [

This section provides a demonstration of the tokenization process for the text “ragged
edge”. Ahead of the tokenization process, each new word is marked with a special meta sym-
bol “_” (U+2581), replacing any space character as well, this according to how SentencePiece
], subsequently creating a token for every character in the text. Note that
the use of this meta character eliminates the need for the end-of-word characters mentioned

in Section 3.1.

The tokenization process is initialized by finding the first occurrence of a merge rule with
a corresponding bigram pair in “__ragged__edge”, which in this case is “_ e, as seen in
Table 1b. The said pair appears before any of the other possible merges in the merge list
(implying that the pair “°__ e” appears most frequently in the training data, assuming the
merge list was created using BPE), thus the pair “_ e” have the highest priority to be applied.
In consequence, the tokens “__” and “e” are merged, shown as the first step (1) in Table 1a.

Further, this procedure is repeated for the tokens that remain. Hence, the tokens “e” and
“d” are merged next according to the merge list in Table 1b, since the bigram pair “e d” now
has the highest priority as the first occurring merge rule. Eventually, no more merges are
possible and the tokenization process concludes, resulting in the tokens: “_ra”, “gg”, “ed”,

«

__ed”, and “ge”.

Table 1 Tokenization of the text “ragged edge”.

(a) Tokenization steps, applying the (b) Excerpt of the merge list, show-
merge rule with the highest priority ing only the relevant merge rules and
in each step. their priority.

Priority | Merge rule

Step Tokens 42 e
0| _|r|lalg|lgle|ld|_|e|d|g]|e 57 z d
1| _|r|la|g|lg|e|d _e d|g|e 68 r a
2| _|rlalgl|g ed _e d|g]|e 74 a g
31 ra gl g ed _e d|g]|e 108 _ T
4 _ra gl|g ed _e d|g]|e 677 _ ra
5 _ra glg ed _e d ge 765 g e
6 _ra gl|g ed _ed ge 1517 | _e d
7 _ra gg ed _ed ge 5139 ra g
9596 g g
25546 | _ra g
27817 g ed

10

4 Incremental algorithm for re-tokenization

The incremental re-tokenization process, shown in Algorithm 3, is designed to update the
tokenized representation of text after modifications. This algorithm operates on three distinct
segments: the prefix, the affected text, and the suffix. The prefix consists of all tokens that
precede the modified text, similarly the suffix consists of the tokens after the modified text,
and the affected text is the part directly impacted by the modification.

In the context of this thesis, the notation 2’ is used to denote the boundaries between

tokens in a tokenized text. For example, if a string “abc” is tokenized into two tokens “a
and “bc”, it is represented as a ¢ bc.

The core of the process is an iterative approach that gradually extends the affected text
into the prefix and suffix regions, ensuring that the tokenization boundaries are accurately
identified (lines 3-15). In each iteration, the algorithm extends the affected text one token
from the prefix and suffix, if available, and then re-tokenizes this updated segment. The pro-
cess continues until the newly tokenized segment seamlessly aligns with the tokens at the
immediate boundaries of the affected text.

The algorithm initializes two index variables, i and j, which point to the end of the prefix
and the beginning of the suffix, respectively. In each iteration, it tokenizes a concatenation of
the latter part of the prefix (starting from i), the affected text, and the initial part of the suffix
(up to))

The termination condition of the loop is based on the alignment of the newly tokenized
segment with the boundaries of the affected text. Specifically, the process concludes when
the first token of this segment aligns with the token at the current prefix index or the prefix

Algorithm 3: Incremental Re-Tokenization Process

Input : The prefix tokens P, the affected text A, the suffix tokens S.
Output: Updated tokenization U.

1 LetP=pil---tppand S =510 Lspy;

2 Initialize i to n and j to 1;

3 Loop

4 Let w be the concatenation p; - - - ppAsy - - - s;;

5 Tokenize w into vy -« 2 Vs

6 if (i =pijori<1)and (vi =sjorj > m)then
7 SetUtopr - 0pi 1 2vp - LV lSjpg U= USy;
8 return U;

9 end

10 if vi # p; and i > 1 then

11 ‘ i—i—-1;

12 end

13 if vi # sj and j < m then

14 ‘ je—j+1

15 end

11

is fully included, and similarly, when the last token aligns with the token at the current suffix
index or the suffix is fully included (line 6).

If the first token of the newly tokenized segment does not align with the corresponding
prefix token, the algorithm decrements the prefix index i, effectively expanding the tokeniza-
tion boundary backwards (lines 10-12). Conversely, if the last token of N does not align with
the corresponding suffix token, the algorithm increments the suffix index j, expanding the
boundary forwards (lines 13-15).

Upon successful alignment, the algorithm constructs the updated list of tokens (U) by
merging the relevant segments: the unchanged prefix up to the adjusted index i, the newly
tokenized text, and the unchanged suffix starting just after the adjusted index j. The algorithm
aims to minimize the computational overhead by localizing re-tokenization to the areas of text
directly affected by changes. For a code implementation of Algorithm 3, see Appendix B.

4.1 Correctness of the algorithm

This subsection aims to establish the correctness of the incremental re-tokenization algorithm
proposed in Section 4, i.e. Algorithm 3. We address the fundamental question: When a change
occurs in a text segment, under what conditions can we confidently re-tokenize only a part of
the text, while ensuring that the result is consistent with the “correct” tokenization obtained
by fully re-tokenizing the entire text?

BPE processes text in a sequential manner, iteratively merging the most frequent adjacent
pairs of symbols (i.e. characters or tokens). This process is deterministic and local; each merge
decision depends solely on the immediate neighboring characters or tokens. Consequently,
a token’s formation is influenced only by its adjacent context. Once a token is formed, its
structure remains unchanged unless the characters within it are directly modified.

When a change (such as an insertion, deletion, or substitution) occurs in the text, it im-
mediately affects the tokens encompassing and adjacent to the change. This localized impact
is due to the alteration of the character sequences in the vicinity of the change. The ‘ripple
effect’ of this alteration can propagate to nearby tokens, but it is often limited to the area close
to where the character sequences are affected. Nonetheless, it is important to recognize that
in certain text structures and contexts, even minor changes can extend this effect, potentially
influencing the tokenization across a larger portion of the text or even the entire text.

The incremental algorithm exploits the localized nature of BPE’s token dependencies.
When the algorithm encounters an unchanged token during re-tokenization, it signifies that
the local context leading to this token has remained unaltered by the change. This unchanged
token thus acts as a reliable indicator, marking a point beyond which the original tokeniza-
tion structure is preserved. It implies that the character sequences beyond this token, subject
to subsequent merge operations, remain the same as in the original text.

Given the unchanged token as a boundary marker, the algorithm can limit re-tokenization
to the segment of text up to this token. Since the unchanged token confirms that the preceding
merge operations leading to it have occurred identically to the original tokenization process,
it follows that the tokenization pattern beyond this token will also proceed as in the origi-
nal. Thus, by re-tokenizing only up to the unchanged token, the algorithm ensures that the
resulting tokens are consistent with what a full re-tokenization would produce.

In summary, the correctness of the incremental re-tokenization algorithm is founded on
the principles of BPE’s local dependencies and deterministic token formation. The algorithm
leverages these principles in the hopes of efficiently updating the tokenization of text seg-

12

ments affected by changes, while ensuring consistency with the overall tokenization pattern
of the complete text.

4.2 Incremental re-tokenization example

Table 2 Incremental re-tokenization steps when removing “un” from “An unexcep-
tional sentence.”.

Tokens
Before modification | _An | _une | x | cep | tional | _sent | ence
After modification | _An | _e | x| cep | tional | _sent | ence
Step | Action
) EXTEND _e
TOKENIZE _e
) EXTEND _An| _e |x
TOKENIZE _An _ex
3 EXTEND _An _ex cep
TOKENIZE _An _excep
4 EXTEND _An _excep tional
TOKENIZE _An _excep tional
After re-tokenization ‘ _An ‘ _excep tional | _sent \ ence \ . ‘

To demonstrate the incremental re-tokenization process, the effect of text modification
within a text segment is examined through a practical example. Specifically, the focus lies
on the modification that changes “unexceptional” to “exceptional” in the sentence “An unex-
ceptional sentence.”. This section uses the incremental re-tokenization algorithm to adjust the
tokenization of the modified text segment, starting from the affected token and extending out-
ward as necessary. The detailed steps of this process are presented in Table 2, which visually
represents the progression from initial tokenization to the final re-tokenized result.

Upon modification, the word “unexceptional”, previously tokenized into “_une ! x ! cep
!tional’, is altered to “exceptional”, affecting the initial tokenization. The iterative process
of extending and re-tokenizing the example sentence can be summarized as follows: (1) The
re-tokenization process initiates at the token directly impacted by the change, which is “_e”
in this case. Further, the first re-tokenization of the current segment results in “_e”, the
newly tokenized segment does not align with the pre-modification tokens and the process
then continues to the next step. (2) The segment is extended to include adjacent tokens (“_An”

«_ %

and “x”), and then re-tokenized.

The process continues extending and re-tokenizing until the newly tokenized segment
aligns with the unchanged tokens from the original tokenization. This happens when we re-
tokenize the text segment “An exceptional” into “_An!_excepltional”, where the bound-
ary tokens ”_An” and "t ional” now matches the original tokenization. Consequently, the
re-tokenization results in the “correct” tokenization “_An ! _excep!tional ! _sent
ence ¢ .”, which can be verified by tokenizing the modified sentence in full.

Through the incremental re-tokenization process, it is possible to perform a re-tokenization
which is localized to the text segment directly influenced by the change with minimal impact
on the surrounding text, as shown in Table 2.

13

14

5 Experimental Setup

This section details the experimental setup designed to evaluate the performance of the pro-
posed incremental re-tokenization algorithm compared to full text re-tokenization. The focus
is on assessing the time efficiency of the algorithm under conditions that simulate real-world
text editing scenarios.

The experiments are conducted on a PC running Windows 10, equipped with an AMD
Ryzen 3900X 12-Core Processor and 16GB of RAM. For tokenization, a purely BPE-trained
SentencePiece model is used: the m2m100_1.2B model from Meta’s Hugging Face reposi-
tory (specifically their sentencepiece.bpe.model file) [20].

Two text sources are utilized for the experiments: (1) The first 500 bytes of Section 1 (i.e.
the introduction of the thesis) is used as a sample of a basic text-snippet. (2) A sequence of
500 randomly generated lowercase characters, without spaces, was created to represent un-
structured text scenarios. Each text source starts as a one-byte string, incrementally growing
by one byte in each iteration, up to 500 bytes.

For each iteration, a random token in the string is modified by removing a character and
shuffling the remaining characters. Three re-tokenization methods are compared: Firstly, (1)
a full tokenization using SentencePiece. Secondly, (2) an incremental re-tokenization using
SentencePiece with Algorithm 3. And lastly, (3) another incremental re-tokenization but with
a custom Python implementation of SentencePiece’s tokenizer, included partly to validate
Algorithm 2. In addition, the third method (3) represents a worst case scenario in terms of
performance, as opposed to the second method (2) which exemplifies something closer to an
ideal implementation.

Each method executes 100 times for every modified string, and the fastest run out of
the 100 is recorded. (As per the documentation: “In a typical case, the lowest value gives
a lower bound for how fast your machine can run the given code snippet; higher values
in the result vector are typically not caused by variability in Python’s speed, but by other
processes interfering with your timing accuracy” [21]) The whole process is repeated with
1000 randomly selected tokens, and the average time across these iterations is calculated for
each method and string length. This approach aims to minimize variability due to random
factors and provide a robust comparison of the methods.

The average times for each method are compared to assess their relative efficiency. The
focus is on determining whether the incremental re-tokenization algorithm can offer a sig-
nificant performance advantage over a full tokenization.

15

16

6 Results

This section presents the experimental results of the re-tokenization methods compared in
this study. The results are divided into two separate experiments, each using different text
material for the evaluation.

The first experiment utilizes the first 500 bytes of Section 1 as the dataset for re-tokenization.
Figure 1 illustrates the time taken for re-tokenization as a function of the length of the text,
ranging from 0 to 500 bytes.

The graph shown in Figure 1 indicates that the full re-tokenization method’s time in-
creases linearly with the text length. In contrast, both incremental methods exhibit a rel-

1074 Experiment 1: Text from the Introduction
2 T T T T
—— Full Re-tokenization (SentencePiece)
1.8 —m— Incremental Re-tokenization (SentencePiece) |
—eo— Incremental Re-tokenization (Custom Python)

1.6 2
= 14} :
g £X
S
B 1.2} 1
3
2
4
8 0-8 [) -
= .
£
= 06 .

0.4 i

0.2 5 i

[
0 / | x | |
0 100 200 300 400 500

Length of Text (Bytes)

Figure 1: Performance comparison of three re-tokenization methods — full re-tokenization,
incremental re-tokenization using SentencePiece, and incremental re-tokenization
using a custom Python implementation — applied to the first 500 bytes of the thesis
introduction. The graph illustrates the average time taken for re-tokenization as
the length of the text increases.

17

atively constant time across various text lengths, with the custom Python implementation
showing slightly fluctuating times.

In the second experiment, a string of 500 random lowercase characters was used to simu-
late a scenario with unstructured text. The results, as depicted in Figure 2, compare the time
efficiency of the same three re-tokenization methods.

Similar to the first experiment, the time required for full re-tokenization using Sentence-
Piece grows in proportion to the text length. The incremental re-tokenization methods, both
the custom Python version and the one utilizing SentencePiece, show consistent times across
different text lengths, with the custom Python implementation exhibiting minor variability.

Both these experiments show a clear distinction in time performance between the full re-
tokenization approach and the incremental methods. The incremental re-tokenization meth-
ods demonstrate a significant reduction in the time variability across different text lengths
when compared to the full re-tokenization method.

1074 Experiment 2: Randomized Text
2 T T T T
—a— Full Re-tokenization (SentencePiece)

1.8 |- | —=— Incremental Re-tokenization (SentencePiece) -
—e— Incremental Re-tokenization (Custom Python)

Time to re-tokenize (Seconds)

| | | |
0 100 200 300 400 500
Length of Text (Bytes)

Figure 2: This graph shows the average time taken for re-tokenization of a string of up to 500
random lowercase characters using three different methods: full re-tokenization,
incremental re-tokenization with SentencePiece’s tokenizer, and incremental re-
tokenization with a custom Python implementation. The x-axis represents the
length of the text in bytes, highlighting the time efficiency of each method as the
text length increases.

18

7 Discussion

The primary goal of this thesis was to explore the efficiency of an incremental re-tokenization
algorithm in updating tokenized text data, especially in the context of BPE-trained Sentence-
Piece models. We wanted to find out whether this algorithm could offer a more efficient alter-
native to full re-tokenization when a minor change had been made in the text. The research
involved developing the algorithm, proving its correctness, analyzing its time complexity, and
empirically comparing its performance with that of full re-tokenizations.

The research question was: Can an incremental algorithm efficiently re-tokenize text after
minor changes in BPE trained SentencePiece models without reprocessing the entire text? The
results from the experiments indicate a positive answer. Both implementations of the incre-
mental re-tokenization algorithm consistently showed better time efficiency compared to full
re-tokenization. Although, on short texts, i.e. less than about 400-500 bytes, the overhead
and repeated tokenizations of some of the tokens may lead to slower execution times for the
incremental re-tokenization process compared to a single tokenization on the whole text.

The experimental results validate the hypothesis that incremental re-tokenization can be
more time-efficient than full re-tokenization. The full re-tokenization method exhibited a lin-
ear increase in time with text length, which is consistent with the expectation that the com-
putational complexity should scale with the size of the dataset. However, it is worth noting
that one might expect the time it takes to fully tokenize a string to grow with the complex-
ity O(nlog n) as the number of bytes (n) increases since SentencePiece’s tokenizer utilizes a
priority queue. But the effect of this appears to be negligible based on the results presented
in Section 6. On the other hand, the incremental methods maintained a comparatively con-
stant time, confirming that these methods localize the re-tokenization process to the parts of
the text close to the modified parts. This local approach avoids unnecessary computation on
unchanged parts of the text, which explains the observed efficiency.

7.1 Impact and Future Work

The incremental re-tokenization method explored in this thesis could enhance the way we
interact with text-based technologies. By implementing this method, systems may become
slightly faster and require fewer resources. This could in turn lead to smoother interactions
with tools like chatbots, making them quicker to respond, or educational software & virtual
assistants, where updates to content can be processed more swiftly. It is a step towards making
our digital tools more agile and user-friendly, without any noticeable changes in how we use
them every day.

In terms of what comes next, future research could delve into developing predictive mod-
els to determine the ripple effect of text modifications on token stability. By understanding
the reach of these modifications, it may be possible to optimize memory usage, retaining
only those tokens that are likely to be affected by changes. Exploratory work could also ex-
amine the benefits of varying the breadth of the initial re-tokenization scope and adjusting
the expansion strategy during re-tokenization, potentially in asymmetrical ways for the left
and right context. Such investigations would not only refine the algorithm’s efficiency but

19

could also reveal inherent patterns in how textual changes spread through tokenized data.
This could lead to more sophisticated, context-aware algorithms that further streamline text
processing tasks.

20

References

(1]

(2]

(3]

[12]

(13]

R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words with
subword units,” arXiv preprint arXiv:1508.07909, 2015.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances
in neural information processing systems, vol. 33, pp. 1877-1901, 2020.

T. Kudo and J. Richardson, “Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing,” arXiv preprint arXiv:1808.06226,
2018.

F. Stollenwerk, “Training and evaluation of a multilingual tokenizer for gpt-sw3,” arXiv
preprint arXiv:2304.14780, 2023.

A. Ekgren, A. C. Gyllensten, F. Stollenwerk, J. Ohman, T. Isbister, E. Gogoulou, F. Carls-
son, A. Heiman, J. Casademont, and M. Sahlgren, “Gpt-sw3: An autoregressive language
model for the nordic languages,” arXiv preprint arXiv:2305.12987, 2023.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473, 2014.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts, “Recur-
sive deep models for semantic compositionality over a sentiment treebank,” in Proceed-
ings of the 2013 conference on empirical methods in natural language processing, 2013, pp.
1631-1642.

G. Lample and A. Conneau, “Cross-lingual language model pretraining,” arXiv preprint
arXiv:1901.07291, 2019.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al, “Improving language under-
standing by generative pre-training,” 2018.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

M. Schuster and K. Nakajima, “Japanese and korean voice search,” in 2012 IEEE interna-
tional conference on acoustics, speech and signal processing (ICASSP). IEEE, 2012, pp.
5149-5152.

T. Kudo, “Google/sentencepiece: Unsupervised text tokenizer for neural network-based
text generation.” accessed: 2023-12-19. [Online]. Available: https://github.com/google/
sentencepiece

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
L. Polosukhin, “Attention is all you need,” Advances in neural information processing sys-
tems, vol. 30, 2017.

21

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[15] H. Bjorklund, W. Martens, and T. Timm, “Efficient incremental evaluation of succinct
regular expressions,” in Proceedings of the 24th ACM International on Conference on In-
formation and Knowledge Management, 2015, pp. 1541-1550.

[16] M. Berglund and B. van der Merwe, “Formalizing bpe tokenization,” arXiv preprint
arXiv:2309.08715, 2023.

[17] P. Gage, “A new algorithm for data compression,” C Users Journal, vol. 12, no. 2, pp.
23-38, 1994.

[18] T. Kudo, “Subword regularization: Improving neural network translation models with
multiple subword candidates,” arXiv preprint arXiv:1804.10959, 2018.

[19] B. Heinzerling and M. Strube, “Bpemb: Tokenization-free pre-trained subword embed-
dings in 275 languages,” arXiv preprint arXiv:1710.02187, 2017.

[20] Meta, “M2m100 1.2b,” accessed: 2023-12-19. [Online]. Available: https://huggingface.
co/facebook/m2m100 1.2B

[21] Python Software Foundation, “timeit — measure execution time of small code
snippets: timeit.timer.repeat,” accessed: 2023-12-19. [Online]. Available: https:
//docs.python.org/3/library/timeit.html#timeit. Timer.repeat

22

https://huggingface.co/facebook/m2m100_1.2B
https://huggingface.co/facebook/m2m100_1.2B
https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat
https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat

A Tokenizer Implementation (in Python)

The code shown in Listing A.1 implements the encode function for BPE models in Sentence-

Piece. The input string is assumed to be a normalized string.

def my_encode (normalized: str) -> list([str]:
if not normalized:
return []

agenda = []
symbols = []

Inner function t add new symbol pairs tc he agend:
def maybe_add_new_symbol_pair (left, right):
if left == -1 or right == -1:
return
piece = (l:=symbols[left].piece) + (r:=symbols[right].piece)

piece_id = sp_model.piece_to_id(piece)

unknown = sp_model.unk_id(
if piece_id == unknown and any (unknown != sp_model.piece_to_id(p) for p in (1,r)): # toke
check
return
piece_score = sp_model.get_score (piece_id)
h = SymbolPair (left, right, piece_score, len(piece))

heappush (agenda, h)

Splits the input into cha sequence
for index in range(len(normalized)):
s = Symbol (piece=normalized[index])
s.prev = index - 1
s.next = index + 1 if index != len(normalized)-1 else -1

symbols.append (s)

Initialize the agenda with symbol pairs

for i in range(l, len(symbols)):
maybe_add_new_symbol_pair(i - 1, i)

#P 5t
while agenda:
top = heappop (agenda)
if (not symbols[top.left].piece or not symbols[top.right].piece or
len (symbols[top.left].piece) + len(symbols[top.right].piece) != top.size):
continue

symbols[top.left].piece += symbols[top.right].piece

symbols[top.left].next = symbols[top.right].next

if symbols[top.left].next >= 0:
symbols[symbols[top.left].next].prev = top.left #

symbols[top.right].piece = "" # ol is 1 fully

maybe_add_new_symbol_pair (symbols[top.left].prev, top.left) i et top
maybe_add_new_symbol_pair (top.left, symbols[top.left].next) i ol top
output = []
index = 0
while index != -1:

if symbols[index].piece:
output.append(symbols[index] .piece)
index = symbols[index].next
return output

Listing A.1: Python implementation of SentencePiece’s encode function (for BPE models).

23

24

B Incremental Re-Tokenization Implemen-
tation

Listing B.1 presents a Python implementation of Algorithm 3.

def update (prefixes: list[str], affected_text: str, suffixes: list[str]) -> list[str]:
P = prefixes or []
S = suffixes or []

n, m, = len(P)-1, len(S)-1
i, 3 =n, 0

while True:
new_tokens = tokenize(''.join(P[i:] + [affected_text] + S[:j+1]))

if (new_tokens[:1] == P[i:i+1] or i <= 0) and (new_tokens[-1:] == S[j:j+1] or J >= m):
return P[:1] + new_tokens + S[j+1:]

if new_tokens[:1] != P[i:i+1] and i > O0:
i-=1

if new_tokens[-1:] != S[Jj:j+1] and j < m:
o= 1

Listing B.1: This update-function incrementally re-tokenizes a given text segment,
utilizing specified prefix and suffix tokens. The resulting tokens will match the
tokens obtained from a tokenization of the full text.

25

o

UMEA UNIVERSITY

	Introduction
	Related Work
	Background
	Byte Pair Encoding
	SentencePiece
	Tokenization example

	Incremental algorithm for re-tokenization
	Correctness of the algorithm
	Incremental re-tokenization example

	Experimental Setup
	Results
	Discussion
	Impact and Future Work

	References
	Tokenizer Implementation (in Python)
	Incremental Re-Tokenization Implementation

