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Sustainability Spotlight Statement
under 

Ionic liquid strategy for chitosan production from chitin and molecular insights

Maximizing biomass waste utilization is a societal priority. Of marine biomass 
byproducts, chitin is found abundantly and holds importance for chitosan production in 
diverse industries. Traditional chitosan manufacturing methods rely on harsh 
alkaline/acidic solutions, detrimental to water ecosystems. We have proposed an energy-
efficient, sustainable chitosan production method, replacing even harmful reagents. 
Shrimp chitin was pretreated in [Emim][OAc] ionic liquid and subjected for microwave-
mediated deacetylation using [TBA][OH] or NaOH solution. This synergistic approach 
improved chitosan production, reaching 85 %DDA in two hours (40 wt.%-NaOH) and 
71 %DDA (40 wt.%-[TBA][OH]), surpassing traditional methods. Both [Emim][OAc] 
and [TBA][OH] could be regenerated, with 97% and 83%, respectively. Our research 
supports UN-Sustainable Development Goals: industry, innovation, infrastructure 
(SDG-9), responsible consumption/production (SDG-12), life below water (SDG-14).

Page 1 of 13 RSC Sustainability

R
S

C
S

us
ta

in
ab

ili
ty

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
/1

3/
20

24
 1

0:
52

:4
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4SU00053F

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4su00053f


  

 

ARTICLE 

  

Please do not adjust margins 

Please do not adjust margins 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

 

 

Ionic liquid strategy for chitosan production from chitin and 
molecular insights   

Van Minh Dinh,*a Santosh Govind Khokarale,a Pedro Ojeda May,b Tobias Sparrman,a Knut Irgum,a 
and Jyri-Pekka Mikkola*a,c 

To produce chitosan is an interesting research. Chitosan is an important polysaccharide in terms of its various applications 

in industries and is produced from chitin, an abundant biopolymer in crustacean shell biomass wastes. Traditional processes 

for chitosan manufacture are commonly based on highly concentrated alkaline or acid solutions which are, however, 

severely eroding and harmful to the environment. In this study, we have described a ‘greener’ method using 1-ethyl-3-

methylimidazolium acetate, [Emim][OAc] ionic liquid (IL), for decrystallization of shrimp crystalline chitin flakes followed by 

a microwave-mediated NaOH or tetrabutylammonium hydroxide, [TBA][OH], solution-based deacetylation step for chitosan 

production. The decrease in crystallinity in IL-pretreated chitin was confirmed by XRD and SEM analysis which subsequently 

benefited chitosan production with up to 85% degree of deacetylation (%DDA) in shorter time periods (1-2 hours) and lower 

alkaline concentrations (20-40 wt.%). The %DDA in chitin/chitosan was estimated via FT-IR and NMR analysis. Notably, we 

could regenerate the ionic liquids: in case of [Emim][OAc] 97 wt.% and in case of [TBA][OH] 83 wt.% could be reused. Roles 

of ionic liquids in the process were discussed. Molecular dynamics (MD) simulations showed roles of [TBA]+ cations in the 

molecular driving forces of [TBA][OH]-induced deacetylation mechanism. The strategy promises a sustainable and milder 

approach to the existing highly corrosive alkaline- or acid-involved processes for chitosan production. 

Introduction 

Deacetylation of chitin into chitosan is a key industrial process. 

Since being less acetylated and crystalline, chitosan has various 

technical applications compared to chitin.(1,2) Besides, the 

deacetylation process makes use of chitin – a main component 

(15-40 wt.%) of crustacean shell biomass wastes, which is 

released every year in million tons.(1,3,4) While chitin 

valorization is highly demanded, chitosan, being biocompatible, 

biodegradable, less toxic and having antibacterial properties, 

has important industrial roles in diverse fields. Examples include 

drug delivery in medicals, coating films in pharmaceuticals, 

carriers in agriculture, membranes for water purification, so 

forth.(5–8) Additionally, chitosan is also explored as 

nanosupports for heterogeneous reactions(9) as well as a 

precursor for synthesis of low molecular weight chemicals such 

as glucosamine and hydroxymethylfurfural.(10–12)   

Chemistry of the deacetylation comprises cleavage of acetyl 

groups in chitin for production of chitosan with free -NH2 groups 

(Figure 1), where to be called chitosan needs at least 50% 

degree of deacetylation (%DDA or molar fraction of non-

acetylated D-glucosamine unit).(13) Thermal treatment of chitin 

with the use of alkaline solution of NaOH is one of the 

traditional and industrially applied methods for the chitosan 

production.(14) However, this method is time- and energy 

consuming (up to days and/or at high temperatures and 

pressures) when, for instance, crystalline chitin microfibrils are 

used.(14) Besides, the method needs also large amounts of 

NaOH (60-70 wt.% solutions) which is a highly corrosive 

reagent, affecting not only the reaction equipment but also the 

environment. Recently, some methods have been introduced to 

improve the chitin deacetylation process, for example, deep 

eutectic solvents,(15) alkali treatment at high temperature with 

intermittent washing with water,(16) mechanochemistry with 

repeated ball milling cycles,(17) ultrasound-assisted alkali 

treatment,(18) alkali deacetylation at high temperature in 

presence of glycerol,(19) or use of water-miscible organic 

solvents together with alkali solution.(20) However, a few 

challenges still exist in terms of processing time, energy 
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Chemical-Biological Centre, Umeå University, SE-90187, Umeå, Sweden.  

b. High Performance Computing Center North (HPC2N), Faculty of Science and 
Technology, Umeå University, SE-90187, Umeå, Sweden. 

c. Industrial Chemistry & Reaction Engineering, Department of Chemical 
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Turku, Finland.  
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Figure 1. Transformation of chitin to chitosan proceeds by cleaving off acetyl groups.
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efficiency, or highly corrosive chemicals, which we aim to deal 

with. 

 

Chitin has a highly crystallized and rigid structure due to an 

extended intra- and intermolecular hydrogen bonding network, 

which is considered as a bottleneck for its direct dissolution as 

well as its processing in common solvents or reagents.(21,22) 

We hypothesize that when being less crystalline, chitin might 

efficiently interact with various reagents as well as solvents, 

allowing for desired application-oriented structural 

modifications. In order to diminish the crystalline nature of the 

chitin, several aqueous as well as non-aqueous solvent media 

have been used for chitin pretreatment, including alkali 

aqueous solvent,(23,24) inorganic salt aqueous solvent, ionic 

liquid (IL), deep eutectic solvent (DES), etc. (13,25) Out of these 

studied solvent systems, IL gained a considerable attention for 

dissolution and derivatization of chitin. Generally being liquids 

below 100 C, ILs are special non-aqueous solvent media 

commonly composed of an organic cation and an 

organic/inorganic anion.(13,25–27) Owing to their special 

solvent properties such as high thermal stability, low volatile 

nature, negligible vapour pressure, high ionic conductivity and 

large window of liquid phase, ILs have been extensively used as 

a solvent medium for organic transformations and biopolymer 

processing (cellulose, lignin, polyhydroxyalkanoate) as well as 

an electrolyte in batteries, etc.(28–31) In case of chitin 

processing, some types of ILs including different types of cations 

and anions in their composition have been previously applied to 

obtain a semi-crystalline or amorphous material via its 

dissolution under thermal treatments.(32,33) In this report, we 

used IL 1-ethyl-3-methylimidazolium acetate, [Emim][OAc] 

(Figure 2), for the pretreatment of shrimp crystalline chitin and 

subsequently employed the obtained pretreated chitin for 

further reaction. Amongst common ILs, [Emim][OAc] is 

popularly known for the pretreatment of biopolymers 

considering its highly basic nature and short cationic alkyl chains 

which effectively access the crystalline phase by entering the 

gap between the polymeric chains.(34) 

 

The main step, which is the chitin deacetylation to chitosan, 

requires energy for cleaving off acetyl groups. A method that 

can provide energy for alkaline deacetylation of chitin is 

microwave irradiation(19) – a rapidly emerging energy efficient 

technique applied for various types of organic reactions as well 

as biomass processing.(35,36) We hypothesize that alkaline 

NaOH-induced deacetylation system can use energy from 

microwave irradiation more effectively than from conventional 

heating. It was reported that aqueous ions are excellent 

candidates that absorb highly the microwave irradiation, thus 

can use the most of the energy from microwave irradiation.(37) 

In addition to NaOH, aqueous solution of tetrabutylammonium 

hydroxide, [TBA][OH], was also observed being able to cleave 

off acetyl groups of chitin.(38) However, potential for [TBA][OH] 

to be applied for chitosan production under microwave 

mediation has not been investigated. We therefore wished to 

study also the ability of [TBA][OH] in chitosan production, and 

later employ molecular dynamics (MD) simulation to 

understand the driving forces of [TBA][OH] in the chitin 

deacetylation process. 

With these motivations, we aim in this study to (a) test whether 

combining IL pretreatment and microwave mediation improves 

the chitin deacetylation; and (b) investigate the potential to use 

[TBA][OH] in chitosan production as well as discuss [TBA][OH]-

related mechanism using the MD simulation. 

Experimental 

Chemicals 

Practical grade shrimp chitin flakes were received and air-dried 

at room temperature overnight before further processing. 

Water was filtered and deionized before use (Milli-Q water). 

NaOH micropearls were purchased from Sigma-Aldrich Co. LLC 

(Sweden) and were ground before each single use. Amberlite 

IRN-78 (hydroxyde form) was purchased from Supelco, Sigma-

Aldrich Co. LLC (Sweden). Deuterium oxide (99.9% D), 

deuterium chloride (99.5% D), dimethyl sulfoxide-d6 (99.9% D), 

chloroform-d (99.9% D), [Emim][OAc] ionic liquid, 40 wt.% 

aqueous [TBA][OH], LiCl, dimethylacetamide, glacial acetic acid 

and NaCl were purchased from Sigma-Aldrich Co. LLC (Sweden). 

Acetone and ethanol were purchased from VWR Co. LLC 

(Sweden). All these purchased chemicals were used without 

further purification. 

 

Ionic liquid pretreatment of chitin 

For the pretreatment, 2.5 wt.% chitin (~500 mg) was added in a 

round-bottom flask containing 20 mL [Emim][OAc] IL and 

heated at 120 C in 1 hour under magnetic stirring. When 

complete, the mixture was cooled down to ambient 

temperature and water was added to precipitate the dissolved 

chitin out of IL. The obtained mixture was stirred at 60 C in 20 

minutes and chitin was separated by filtration. The washing 

process was repeated twice followed by a final washing step 

with acetone. The collected chitin was dried at 40 C under 

vacuum for 2 hours to obtain a yield of 98 wt.% and saved in a 

desiccator for further deacetylation experiments (Figure 3a). 

The recovery of chitin was calculated using equation (1). 

 

Recovery yield of chitin % =
mregenerated chitin (𝑔)

minitial chitin(𝑔)
× 100% (1) 

 

The pretreatment of chitin in IL was also explored at different 

temperatures and processing time. Specifically, the mixture 

with 2.5 wt.% chitin (~50 mg) in a glass vial containing 2 mL 

[Emim][OAc] IL was treated at different temperatures (80 C, 

100 C, 120 C, and 140 C) for 1 to 16 hours. The recovery of 

the chitin was carried out by the same process as above.  

Figure 2. Structure of 1-ethyl-3-methylimidazolium acetate, [Emim][OAc] IL.
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To recover the [Emim][OAc] IL, the liquid fractions after the 

pretreatment were collected to remove water by rotary 

evaporator and dried under vacuum at 40 C to regenerate the 

ionic liquid. Regeneration yield of [Emim][OAc] was 97 wt.%. 

The recovery of IL was calculated using equation (2). 

 

Recovery yield IL % =
mregenerated [Emim][OAc] (𝑔)

minitial [Emim][OAc] (𝑔)
× 100% (2) 

 

Chitosan production by deacetylation of chitin 

To investigate the chitosan production, 75 mg chitin (IL-

pretreated or non-pretreated) was added in 3 mL of 20, 40, or 

60 wt.% aqueous NaOH solution. The reaction proceeded under 

stirring at 100 C either by conventional heating in 24 hours or 

by microwave mediation in 20 to 120 minutes (Microwave 

Initiator, Sweden, ~50 W). When complete, the reaction 

mixture was cooled down to ambient temperature and filtered 

to separate out the solid. The obtained solid (chitin/chitosan) 

was washed with water (60 mL x 3 times) until the neutral pH, 

dried at 40 C under vacuum for 2 hours (Figure 3b), and saved 

in a desiccator for further characterization. 

 

Chitin deacetylation with [TBA][OH] solution was also studied 

using the same microwave irradiation method. Typically, 75 mg 

of IL-pretreated chitin was mixed with 3 mL of 40 wt.% aqueous 

[TBA][OH] solution. The reaction proceeded for 20−120 minutes 

under microwave mediation at 100 C (50 W) and stirring. 

When the reaction completed, the product was obtained 

following the same procedure as described above. 

 

To regenerate the [TBA][OH], the aqueous fractions after the 

reaction were collected to perform acetate exchange with 

hydroxide anions using an ion-exchange resin column. 

Specifically, 60 g of resin Amberlite IRN-78 (hydroxide form) was 

dispersed in Milli-Q water and loaded into a glass column (3 cm 

internal diameter), giving a bed volume of 120 mL after 

equilibration. The column resin was washed with one column 

volume (CV) of water to remove any associated impurity prior 

to use. Next the collected aqueous solution of [TBA][OH] after 

reaction (20 mL) was then applied onto the column with a flow 

rate of around 5 mL/min (3 drops/second). Water was then 

added to elute the sample using a flow rate of 2 mL/min (slowly 

1-2 drops/second). Fractions were collected, evaporated and 

dried overnight at 60 °C under vacuum to remove the water. 

Meanwhile, the resin column was rejuvenated with 1 M 

aqueous NaOH solution. The regeneration yield of [TBA][OH] 

was 83% according to equation (3). 

 

Regeneration yield IL % =
mregenerated [TBA][OH](𝑔)

minitial [TBA][OH](𝑔)
× 100% (3) 

 

Analysis and characterization 

Nuclear magnetic resonance (NMR). NMR was used for 

structural analysis of ionic liquids and chitin/chitosan. For ionic 

liquids, the samples were diluted with DMSO-d6 or CDCl3 and 

the 1H and 13C NMR measurements were conducted at 400 MHz 

(Bruker Avance 400 MHz NMR instrument), 25 C.  

For chitin and chitosan samples, 1H NMR was used to 

determine the degree of deacetylation according to equation 

(4).(39) In this case, the samples were dissolved in 20 wt.% 

DCl/D2O at 70 C in 30 minutes, and measured at 400 MHz, 80 

C.  

%DDA =

 
integrals H1D (H1 deacetylated units) 

integrals H1D (H1 deacetylated units) + integrals H1A (H1 acetylated units) 
× 100%

 (4) 
Besides, 13C cross-polarization magic angle spinning NMR 

(13C CP-MAS-NMR) was employed for solid chitin/chitosan 

samples. NMR spectra were recorded at 500 MHz using a Bruker 

Avance III 500 MHz spectrometer with 4 mm zirconia rotors 

spun at a magic angle of 10 kHz and 25 C. All the NMR spectra 

were assigned using Bruker’s Topspin (4.0.9) software. 

Fourier-transform infrared spectroscopy (FTIR). To acquire 

structural information of chitin and chitosan samples, FT-IR 

spectra were recorded in transmittance range from 4000 cm−1 

to 400 cm−1. The samples were ground with KBr before 

measurements. %DDA was estimated by comparing the 

absorption of the amide band at 1560 cm−1 and C-O-C band at 

1070 cm−1 as the reference peak.(40) Details of FT-IR for %DDA 

calculation are demonstrated in SI 3. 

X-ray powder diffraction (XRD). To investigate crystallinity of 

the samples, XRD measurements were recorded from 7 to 57° 

of 2 angle (step size 0.0167) using a PANalytical X’Pert X-ray 

diffractometer equipped with a Cu-Kα (λ = 1.54 Å) source and a 

split of 1/16.  

Scanning Electron Microscope (SEM). Surface morphologies of 

the samples were observed on a Carl Zeiss Merlin field-emission 

SEM (FE-SEM, Carl Zeiss Merlin GmbH) operating at 40 kV. 

Viscosity. Viscosity measurements were used to estimate 

molecular weight of the chitin/chitosan samples. A typical 

chitosan sample was prepared by dissolving 10 mg chitosan in 5 

mL aqueous solution of 0.1 M acetic acid and 0.2 M NaCl.(41) 

Three dilutions with the solvent were done for each chitosan 

sample and the viscometric measurements were performed at 

25 °C. Viscosity data was collected to determine reduced 

viscosity (red, mL.g-1) by subtracting the solvent viscosity from 

Figure 3. (a) Ionic liquid pretreatment of chitin in [Emim][OAc] at different temperatures 

and time; and (b) deacetylation of chitin for chitosan at various conditions. 
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sample values and then intrinsic viscosity ([η], mL.g-1) by 

extrapolating the reduced viscosity versus concentration in a 

linear regression. Finally, the viscosity-averaged molecular 

weight (Mv) of the samples was estimated using Mark–Houwink 

equation below with K and α are constants which depend on the 

nature of the polymer, solvent, and temperature. For chitosan 

samples: a = 0.93, K = 1.81  10-3 mL.g-1. 

[] =  𝐊 × 𝐌𝐯
 𝐚 (5) 

Chitin samples were prepared similarly by dissolving 10 mg 

chitin in 20 mL of 5% (w/w) LiCl/dimethylacetamide.(42) The 

measurements were performed at 30 °C and Mark–Houwink 

constant values for chitin samples were taken as a = 0.95, K = 

7.60  10-3 mL.g-1. 

 

Computational simulations 

To observe the initial arrangements of [TBA][OH]-chitin system 

prior to the chitin deacetylation, short-time scaled MD 

simulations were performed. A chitin model (6-mer  4-chain) 

was built for β-chitin based on experimental crystallographic 

data, showing regularly arranged chito-oligomers.(43,44) The 

model was introduced in a periodic cubic box of 45 Å side length 

containing a total of 45 ion pairs [TBA][OH] solvated with water 

molecules. [TBA]+ and [OH]- ions were optimized using the 

B3LYP method and the 6-311G** basis set with Maestro 11.2 

(Schrödinger, LLC).(45) Chitin and ionic liquid systems were 

generated using Packmol package (v20.3.3).(46) All MD 

calculations for the system were carried out in MOE platform 

(v2018.01, Chemical Computing Group ULC) using Nosé-

Poincaré-Andersen (NPA) method for the thermostat and the 

barostat simulator and together with the Amber10:EHT force 

field.(47)(48) An initial equilibration step of 100 ps was 

performed and followed by data production with further 200 ps 

at 373 K. Molecular graphics were constructed with the MOE 

platform and VMD 1.9.3 software.(49) 

Results and discussion 

Ionic liquid pretreatment and its regeneration 

The [Emim][OAc] IL has an ability to dissolve various types of 

rigid and crystalline biopolymers.(50,51) Besides, its water-

tolerant nature is a benefit considering a certain level of 

moisture in naturally occurring polymers. Here, chitin was 

pretreated in [Emim][OAc] IL at different temperatures and 

time, and the crystallinity of chitin was recorded using XRD 

measurements (Figure 4). The XRD patterns of neat chitin 

showed three intense reflections at 2 9.7° (020), 19.8° (110), 

and 26.8° (013) and minor reflections at 12.9° (021) and 23.9° 

(130), corresponding mostly to α-chitin.(52) After IL-

pretreatment at increasing temperatures from 80 to 100, 120 

and 140 C in 1 hour (Figure 4a), the characteristic peaks in 

chitin were steadily shortened and broadened, implicative of 

the decreased crystallinity and more amorphous nature of the 

sample. It is also noticeable that a complete dissolution of chitin 

was obtained at 120 oC and above (SI 1) while a partly dissolved 

mixture was occurring at 80 and 100 C. This depicts a 

relationship between the processing temperature, chitin 

dissolution and the crystallinity of the material. Further, it was 

recorded that the processing time had also significant influence 

on the IL-pretreatment of chitin (Figure 4b). Observing the 

progress of the IL-pretreatment at 100 C for varying time from 

1 hour to 16 hours, the intensity of the characteristic peaks in 

chitin decreased from 1 to 8 hours and even disappeared upon 

further pretreatment, indicating  the decrystallization of chitin 

during the process. Considering the obtained results, we 

therefore chose the IL pretreatment condition as follow: 120 C 

and 1 hour, since it provided the treated material with 

significantly amorphous nature in a short processing time. The 

approach of chitin pretreatment using imidazolium-based ILs 

was also reported previously. Xie and coworkers described the 

dissolution of pure chitin using 1-butyl-3-methylimidazolium 

chloride [Bmim][Cl] at 110 C in 5 hours.(53) 1-allyl-3-

methylimidazolium bromide [Amim][Br] was also used by 

Yamazaki et al. to obtain a similar solubility at 100 C in 24 

hours.(54) More recently, Jaworska et al. used [Emim][OAc] to 

achieve the chitin dissolution at 105 °C in 48 hours.(55)  

 

Upon the IL-pretreatment of chitin at the chosen conditions 120 

C and 1 hour, SEM analysis was performed to compare the IL-

pretreated chitin and the neat sample.  As shown in Figure 5, we 

Figure 4. XRD shows a decrease of chitin crystallinity when treated with [Emim][OAc] IL 

over (a) temperatures (80-140 C, 1 hour); and (b) time (1-16 hours, 100 C). 

Page 5 of 13 RSC Sustainability

R
S

C
S

us
ta

in
ab

ili
ty

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
/1

3/
20

24
 1

0:
52

:4
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4SU00053F

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4su00053f


Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 5  

Please do not adjust margins 

Please do not adjust margins 

observed a major change in the surface morphology of the 

samples. While the neat chitin presented a well-organized 

surface, the IL-pretreated sample exhibited a more irregular 

and damaged structure. The damaging in the IL-pretreated 

chitin may represent the amorphous nature and the breakage 

of the intramolecular or intermolecular hydrogen bond 

networks in chitin. 

 

Considering the alkaline characteristics of [Emim][OAc] IL, we 

also studied whether there happened any deacetylation of 

chitin during the IL-pretreatment process. By using FT-IR, 

structural changes of chitin after the pretreatment at 100 OC 

would be recorded for various reaction times. SI 2 shows the 

common peaks of chitin and chitosan at 3450 and 3300 cm−1, 

attributed to the O-H and N-H stretching vibrations and the 

extensive inter- and intra-molecular hydrogen bonding 

network. The bands in the region of 3000–

2800 cm−1 correspond to the -CH2 symmetrical and 

asymmetrical stretching vibrations of polysaccharides. Chitin 

exhibits the doublet amide I band at 1655 and 

1637 cm−1 representing the presence of H-bonding in the C=O 

group with the NH group of the adjacent chain and the O-H 

group of the inter-chain. The amide II band is located at 1560 

cm−1. The peak at 1320 cm−1 corresponds to the amide III band 

(in-plane mode of CONH group). The vibrations at around 

1070 cm−1 are attributed to the C-O stretching of the 

polysaccharide. Upon deacetylation, the acetyl groups in chitin 

are cleaved, leaving chitosan structure with a decreased 

intensity of amide group signals at 1320 and 1560 cm−1. By 

calculations we observed that [Emim][OAc] IL were not able to 

induce the deacetylation of chitin samples, where %DDA were 

almost unchanged during the process i.e. 11-12 %DDA (SI 3). 

 

Roles of the [Emim][OAc] IL in dissolution and decrystallization 

of chitin were reported.(56,57) In contact with chitin 

microfibrils, anionic acetate [OAc]– species, as a small-sized 

component with ability to form H-bonds with −OH and −NHCO− 

groups in chitin, penetrate easily into the crystalline structure 

and disturb the highly ordered intra- and intermolecular 

hydrogen bonding network of the chitin. The [Emim]+ species, 

following the acetate anions via ionic interactions, can also 

access inside the chitin lattice. With its large size and highly 

basic property, [Emim][OAc] limits the re-bonding of 

intermolecular H-bonds in chitin microfibrils, enabling the chitin 

to be decrystallized and become porous, less crystalline with 

more open structural sites. This open and reactive state of chitin 

can be beneficial for reagents to enter the lattice, creating more 

interactions with the functional groups −NHCOCH3 on chitin. 

 

Another interesting point of this pretreatment process is the 

ability to regenerate the [Emim][OAc] IL. We were able to 

regenerate up to 97% yield of [Emim][OAc] for reuse. The IL 

structure remained intact during the process (confirmed by 

NMR analysis). 1H and 13C NMR results (Figure 6) demonstrated 

spectroscopic features between fresh and regenerated ionic 

liquids. Signals of [Emim]+ and [OAc]– species remained the 

same while the only difference is water peak at 4.55 ppm 

(singlet) in the 1H NMR spectrum of the regenerated 

sample.(58–60) Success of this regeneration step implies ability 

to reuse the chemical and diminish effects on the environment, 

making the ionic liquid a ‘green’ solvent. 
Deacetylation of chitin 

Chitin deacetylation proceeded while 1H NMR and 13C CP-MAS-

NMR analysis were used to study the formation of chitosan 

(Figure 7 and SI 4) and estimate %DDA according to the 

equation (4). One benefit of using DCl as solvent in 1H NMR 

measurements is that the resonance of the solvent (HDO) does 

not interfere with any carbohydrate protons. Figure 7 shows the 

characteristic resonances of the acetylated  and β-H1 anomers 

at 5.84 and 5.38 ppm, respectively. Besides, H2 of the 

acetylated  and β-anomeric units appear respectively at 3.74 

and 3.46 ppm. Meanwhile, H1 of deacetylated units resonates 

at 5.36 ppm and H2 resonates at 3.61 ppm. Acetyl-protons 

appear at 2.42 ppm, while the remaining ring protons appear 

between 3.8 and 4.5 ppm. It can be seen that after 

Figure 5. SEM imaging (at 200X magnification) illustrates chitin being more amorphous 

during IL pretreatment: (a) non-pretreated; and (b) IL-pretreated at 120 C, 1 hour.

Figure 7. 1H NMR analysis gave structural information and the degree of deacetylation in 

chitin/chitosan samples.

Figure 6. Recovery of [Emim][OAc] IL was confirmed by spectroscopic data (1H and 13C 

NMR) with (a) fresh IL; and (b) recovered IL.

Page 6 of 13RSC Sustainability

R
S

C
S

us
ta

in
ab

ili
ty

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
M

ar
ch

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
/1

3/
20

24
 1

0:
52

:4
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D4SU00053F

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4su00053f


ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

deacetylation, signals of acetyl groups and acetylated units 

decreased while signals of deacetylated units aroused.  

 

For the deacetylation, two types of chitin (IL-pretreated or non-

pretreated) were processed at different conditions (microwave 

irradiation or conventional heating) with different 

concentrations of aqueous NaOH solution from 20 to 60 wt.% 

(Figure 8). It was observed with increasing NaOH concentration, 

%DDA increased accordingly. NaOH is the reagent that gave rise 

to the deacetylation by breaking acetyl groups out of chitin. 

Comparing IL-pretreated samples with non-pretreated ones, it 

can be seen that the IL-pretreatment accelerated the 

deacetylation reaction. This is in agreement with the discussion 

about IL-pretreatment mentioned above, where the decrease in 

crystallinity of chitin allowed for more accessible sites towards 

the reagent. Regarding the heating methods, the microwave-

assisted reactions were speeded up compared to the traditional 

heating. The combination of IL pretreatment and microwave 

mediation allowed to reduce time to one hour with less amount 

of NaOH needed (40 wt.% NaOH) while giving a higher %DDA 

(approximately 70 %DDA), compared to around 60 %DDA for 

non-treated chitin with 60 wt.% NaOH in 24 hours of 

conventional heating. Besides, microwave mediated-

deacetylation of IL-pretreated chitin was studied over time to 

observe changes in %DDA (SI 5). With two hours of microwave-

mediated reaction in 40 wt.% aqueous NaOH solution could give 

up to 85 %DDA. Microwave irradiation method for chitin 

deacetylation was also previously reported where 82−85 %DDA 

was obtained using 40% w/v NaOH solution at 150 C in a 

microwave chamber for 3 to 6 hours, conducted by 

Lertwattanaseri and coworkers.(61) However in our study, IL-

pretreatment allowed for the chitin deacetylation to be 

achieved at even milder conditions (100 C, 50 W, 2 hours). 

 

Molecular weights (MW) of chitin/chitosan were also of interest 

and estimated using viscosity measurements and the Mark–

Houwink equation. Since viscometric analysis requires the 

polymers to be soluble in a medium, we used acetic 

acid/NaCl/water for dissolving chitosan and 

LiCl/dimethylacetamide for chitin. By measuring viscometric 

values we could determine intrinsic viscosity of the samples 

before calculating their molecular weights. It can be seen that 

molecular weight of the obtained materials decreased 

corresponding to an increase in concentration of aqueous NaOH 

solution or reaction time, irrespective of microwave or 

conventional heating (Figure 8 and SI 5). Additionally, we noted 

that chitosan produced by the microwave irradiation method 

gave a more extensive decrease in molecular weight than the 

one from conventional heating. It was described in the previous 

reports that the removal of acetyl groups (primary reaction) and 

the cleavage of glycoside bonds (side reaction, 

depolymerization) due to energy impact (microwave irradiation 

or heating), and chemicals such as NaOH and [Emim][OAc] 

induced the decrease in molecular weight of the obtained 

products.(62–64)  The deacetylation process gave a medium to 

high molecular weight (250–500 kDa and above), depending 

on the reaction condition involved. Hence this method can be 

useful for the synthesis of medium to high molecular weight 

chitosan materials with mild reaction conditions.(65) 

 

Besides IL-pretreatment, use of microwave heating was a 

benefit to the chitin deacetylation. Microwave irradiation, 

which has its energy at the molecular level, interacts strongly 

with ionic molecules (conduction mechanism) by collisions and 

polar molecules (dipolar polarization mechanism) by 

rotations.(66,67) Hence these molecules will absorb very well 

the microwave irradiation to convert into heat energy. When 

using an aqueous solution of NaOH, polar water molecules and 

ionic features of Na+ and OH- were being taken advantage, 

allowing for the reagent to use most of the energy from 

microwave irradiation. Hence OH- anions could rapidly attack 

the acetamido groups in chitin and then effectively cleave off 

the acetyl groups upon the deacetylation reaction (Figure 9). 

Meanwhile, conventional heating requires a regular energy 

transfer that distributes evenly to the whole system, implicative 

of an energy waste towards unnecessary sites during the 

reaction, for example, the reactor jacket.  

 

Figure 9. Mechanism of deacetylation reaction using NaOH or [TBA][OH] as reagents.

Figure 8. %DDA and molecular weight (kDa) of chitin/chitosan against NaOH 

concentration (20-60 wt.%) were plotted for different reaction conditions, where 

deacetylation of IL- or non-pretreated chitin (75 mg) proceeded at 100 C with either 1 

hour of microwave irradiation or 24 hours of conventional heating.  
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[TBA][OH] in chitin deacetylation and possible molecular roles  

With the benefits of IL pretreatment and microwave irradiation 

over conventional heating, we continued studying the 

microwave-assisted deacetylation of the IL-pretreated chitin 

over time using aqueous [TBA][OH] 40 wt.% solution as the 

reagent (Figure 10). The reaction was investigated up to two 

hours at 100 oC and %DDA was estimated from 1H NMR analysis. 

It can be seen that an increased deacetylation was obtained 

over time to 59 %DDA in 120 minutes and reached up to 71 

%DDA when performed twice on the same chitin (60 minutes  

2 times of reaction with fresh 40 wt.% aqueous [TBA][OH] 

solution). Although the %DDA is still slightly worse than in case 

of aqueous NaOH (85 %DDA), it is higher than conventional 

heating (60 %DDA, 24 hours) and similar to commercial chitosan 

(69 %DDA). A decreasing trend in molecular weight was also 

observed when using aqueous [TBA][OH] solution in the 

deacetylation process over time (Figure 10). 

 

It was also noticeable that [TBA][OH] could be regenerated with 

83% yield using ion exchange resin, making it promising 

compared to highly corrosive NaOH solutions at elevated 

temperature. Spectroscopic results of the recovered [TBA][OH] 

are shown in Figure 11, confirming success of regeneration. The 
1H and 13C NMR spectra demonstrates that [TBA][OH] was 

recovered with high purity. For the liquid after deacetylation 

reaction, we could also observe the presence of acetate anion 

signals at 1.54 ppm (−CH3, singlet) on 1H NMR and 25.6 ppm 

(−CH3) and 173.5 ppm (−CO−) on 13C NMR. These peaks 

disappeared when [TBA][OH] was regenerated. 

 

To acquire insights into the roles of [TBA]+ and [OH]- ions, MD 

simulations were performed to visualize the initial 

arrangements and motions of the system prior to the chitin 

deacetylation. As shown in Figure 12, we constructed a model 

of chitin (6-mer  4-chain) featuring regularly arranged chito-

oligomers as well as [TBA]+ and [OH]- ions (Figure 12a). To 

represent the amorphous state of IL-pretreated chitin, polymer 

chains were introduced randomly into the MD simulation box. 

Although the importance of [OH]- ions in cleaving off acetyl 

groups in chitin is already known, from experimental and 

theoretical perspectives,(68–70) the roles of [TBA]+ cations in 

the system are still pending.  Through simulations, we observed 

a notable preference of [TBA]+ species to selectively bind to the 

chitin surface. As depicted in Figures 12b and 12c, [TBA]+ 

cations, being the larger constituents of the ionic liquid, 

exhibited a tendency to aggregate around the chitin fiber, 

attracting [OH]- anions of opposite charge. This electrostatic 

attraction facilitated the penetration of [OH]- anions into 

previously inaccessible regions of the chitin structure for further 

deacetylation reaction.  

 

Intermolecular bonding involving [TBA]+, [OH]-, and chitin can 

be attributed to: (1) electrostatic attraction among quaternary 

nitrogen of the cation and oxygen of hydroxyl or acetamido 

groups in chitin; (2) hydrophobic interactions among butyl 

groups and carbohydrate backbone; and (3) hydrogen bonds 

between hydroxyl or acetamido groups on chitin and [OH]- 

anions.(71,72) These interactions are likely responsible for 

maintaining proximity between [OH]- anionic reagents and the 

chitin surface. This spatial closeness provides numerous 

opportunities for effective collisions between the [OH]- anions 

and acetamido groups during the deacetylation process, as 

illustrated in Figure 12c. The theoretical insights gained from 

these observations offer a rationale for understanding how the 

[TBA][OH] solution can effectively proceed the deacetylation of 

chitin without requiring additional NaOH reagent. 

Conclusions 

In this study, we succeeded in improving the deacetylation of 

crystalline chitin for chitosan production using milder 

conditions. The developed method was composed of two steps: 

ionic liquid pretreatment and microwave-mediated 

deacetylation. The [Emim][OAc] IL pretreatment effectively 

Figure 10. Aqueous 40 wt.% [TBA][OH] solution was used for microwave-mediated 

deacetylation of IL-pretreated chitin (75 mg) at 100 C over time, plotted with %DDA and 

molecular weight (MW, kDa) against irradiation time (minutes). Experiment 60x2 implies 

two times of 60-minute reaction on the same chitin with fresh [TBA][OH] solutions.

Figure 11. Regeneration of [TBA][OH] was confirmed by 1H and 13C NMR analysis of (a) 

fresh solution, (b) liquid after the reaction, and (c) recovered solution.
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decreased the crystallinity in chitin by disturbing the 

intermolecular hydrogen bonding among its polymeric chains, 

confirmed by XRD analysis. At 120 OC in 1 hour of pretreatment, 

amorphous/semi-crystalline chitin was obtained for using in 

further decetylation reactions. Upon the chitin deacetylation, 

combination of IL pretreatment and microwave mediation 

proved to increase significantly the %DDA of chitosan products 

up to 85% in two hours of reaction time using 40 wt.% NaOH 

solution. In comparison, non-pretreated chitin with 

conventional heating method gave merely 60 %DDA chitosan in 

24 hours of reaction time and 60 wt.% NaOH solution. For the 

deacetylation of IL-pretreated chitin with 40 wt.% [TBA][OH] 

solution under microwave irradiation, chitosan products were 

obtained with 59-71 %DDA. Even though [TBA][OH] solution is 

b) 

c) 

a) 

Figure 12. a) Structures of chitin (6-mer x 4 chains) and [TBA][OH]. Color scheme: red (oxygen), green or gray (carbon), blue (nitrogen) and white (hydrogen); b) Illustrations of 

relative positions between [TBA]+, [OH]- and chitin at the start and end simulations; c) Dynamic attractions (from left to right) of [TBA]+ and [OH]- towards chitin for further collisions 

between [OH]- and acetamido groups.
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slightly less effective compared to NaOH solution, the %DDA of 

the obtained chitosan was better compared with the 

conventional heating approach. Noticeably, both the 

[Emim][OAc] IL and the reagent [TBA][OH] were regenerated 

with 97 wt.% and 83 wt.%, respectively. MD simulations 

revealed the molecular driving forces and motions of [TBA][OH] 

in contact with chitin before the deacetylation process. By 

intermolecular interactions in the system, OH- anions remained 

close to the chitin polymeric chains, enabling the deacetylation 

of chitin through the cleavage of acetyl groups. With the 

‘greener’, milder, and more sustainable approach in this report, 

we hope it can further more explorations for scalable 

production of chitosan considering the recoverability of the 

solvent/reagent systems and industrially feasible reaction 

parameters. 
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