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Abstract

This thesis consists of five papers related to the theory of unequal probability sam-
pling from a finite population. Generally, it is assumed that we wish to make model-
assisted inference, i.e. the inclusion probability for each unit in the population is
prescribed before the sample is selected. The sample is then selected using some
random mechanism, the sampling design.

Mostly, the thesis is focused on three particular unequal probability sampling
designs, the conditional Poisson (CP-) design, the Sampford design, and the Pareto
design. They have different advantages and drawbacks: The CP design is a maxi-
mum entropy design but it is difficult to determine sampling parameters which yield
prescribed inclusion probabilities, the Sampford design yields prescribed inclusion
probabilities but may be hard to sample from, and the Pareto design makes sample
selection very easy but it is very difficult to determine sampling parameters which
yield prescribed inclusion probabilities. These three designs are compared probabilis-
tically, and found to be close to each other under certain conditions. In particular the
Sampford and Pareto designs are probabilistically close to each other. Some effort
is devoted to analytically adjusting the CP and Pareto designs so that they yield
inclusion probabilities close to the prescribed ones. The result of the adjustments
are in general very good. Some iterative procedures are suggested to improve the
results even further.

Further, balanced unequal probability sampling is considered. In this kind of
sampling, samples are given a positive probability of selection only if they satisfy
some balancing conditions. The balancing conditions are given by information from
auxiliary variables. Most of the attention is devoted to a slightly less general but
practically important case. Also in this case the inclusion probabilities are prescribed
in advance, making the choice of sampling parameters important. A complication
which arises in the context of choosing sampling parameters is that certain prob-
ability distributions need to be calculated, and exact calculation turns out to be
practically impossible, except for very small cases. It is proposed that Markov Chain
Monte Carlo (MCMC) methods are used for obtaining approximations to the relevant
probability distributions, and also for sample selection. In general, MCMC methods
for sample selection does not occur very frequently in the sampling literature today,
making it a fairly novel idea.

Keywords: balanced sampling, conditional Poisson sampling, inclusion probabilities,
maximum entropy, Markov chain Monte Carlo, Pareto sampling, Sampford sampling,
unequal probability sampling.

2000 Mathematics Subject Classification: 62D05, 62E15, 65C05.
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1 Introduction

Suppose that we want to investigate one or more characteristics of a finite population.
A population consists of a number of units, which may be for instance citizens of
Sweden, manufacturing companies in Europe, the trees of a forest stand, and so on.
Examples of interesting characteristics are, e.g., the proportion of people in favour of
changing the currency from SEK to EUR, average expenditure on raw materials and
total timber volume. When investigating such characteristics, we define variables of
which we measure the numeric value. The variables we are interested in are called
interesting variables or study variables.

In some situations it is possible to obtain information on the interesting variables
from all units in the population, in which case we have performed a total count
or census. In practice, it is usually not possible to perform a census due to time
and/or economic reasons. In that case we perform a sample survey, i.e. we select a
sample of units from a sampling frame, the list of units in the population which are
available for selection. For the units selected in the sample, we measure the value
of the interesting variables, and generalize the result to the whole population, that
is, from the sample we estimate the characteristics of the population as a whole. If
a sample survey is performed, there is some uncertainty in the result for the whole
population, we have a sampling error.

If we perform random sampling, the size of the sampling error can be estimated
from the sample. Random sampling also reduces the risk of systematic errors in the
estimation procedure. When random sampling is performed, the random mechanism
used for selecting the sample is called the sampling design.

Of course, there are many other errors, called nonsampling errors, which can oc-
cur even if a total count is carried out. Examples of such errors are nonresponse,
measurement errors, frame errors, etc. When performing a survey all these possible
errors should be taken into account.

This thesis deals exclusively with problems connected to random sampling and the
sampling error. It contains five papers, mostly devoted to comparing and improving
three different sampling designs, namely the conditional Poisson, the Sampford, and
the Pareto designs. Some theoretical background is given in the following sections.
In section 2, we give some general background on inference and introduce some
notation. In section 3, we present some more theoretical considerations and results
which are specific for this thesis. In section 4, the included papers are summarized.
Finally, in section 5 we give some conclusions and mention some open problems.
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2 Random sampling and inference

We will first introduce some basic notations and definitions, and then move on to
inference aspects. That is, how to draw conclusions about a population based on the
information in a sample.

2.1 Definitions and notation

A unique number, or some other kind of label, is assigned to each unit in the popu-
lation, thus making identification possible. Let U = {1, 2, ..., N} denote the popula-
tion of size N . From the population we wish to select a random sample containing
n units. The sampling can be performed with replacement (WR) or without re-
placement (WOR). If the sampling is WR, the same unit in the population may be
selected several times in the sample. When sampling WOR an already selected unit
cannot be selected again, thus guaranteeing that all selected units are distinct. In
this case, the sample s is a subset of the population.

Now, we want to randomly select WOR a sample s of size n from a population U
which has size N . Such a random selection is described by some probability scheme,
called the sampling design. Mathematically, the sampling design is defined as a
probability distribution on the set of all possible samples, and p(s) is the probability
of obtaining a specific sample s. A sampling design can be implemented in different
ways.

If the sampling is performed WOR, which this thesis is focused on, we can describe
the sample by

I = (I1, I2, ..., IN) ,

where Ik is a so-called inclusion indicator for unit k. It is a Bernoulli random variable
such that

Ik =

{
1 if unit k is selected in the sample.

0 otherwise.

These Ik satisfy
∑N

1 Ik = n. There are two important events to consider, namely
the event that unit k is included in the sample, and the event the units j and k are
both included in the sample. We use the following notation:

πk = E(Ik) = Pr(Ik = 1), πjk = E(IjIk) = Pr(Ij = 1, Ik = 1).

These are the first and second-order inclusion probabilities, respectively. Hence

Cov(Ij, Ik) = πjk − πjπk, V ar(Ik) = πk(1− πk).

We can also see that the πk:s satisfy
∑N

1 πk = n, by noting that
∑N

1 Ik = n, and
taking the expectation on both sides.

The first and second-order inclusion probabilities are the most important characteris-
tics of a sampling design. A WOR sampling design where the inclusion probabilities
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are not all equal is called a πps sampling design, or simply a πps design (see, e.g.,
Särndal et al. 1992, pp. 90-97). In many cases sampling designs are chosen with the
primary goal of obtaining specified first order inclusion probabilities in particular,
but second-order inclusion probabilities may be considered as well. This is due to
the fact that the estimators we want to use are functions of the inclusion indicators.
The moments of the estimators depend on the inclusion probabilities up to the order
of the moment of interest. Most often we only need the first and second moment of
an estimator, since then we know its mean and variance. It follows that the first and
second-order inclusion probabilities are the most important ones to know.

2.2 Inference in survey sampling

Assume for simplicity that we have only one study variable (i.e. we are only inter-
ested in one characteristic of the population), and denote it by y. Each unit in the
population has a numerical value of y. These values are denoted by {y1, ..., yN}. The
yk:s can be seen as fixed but unknown values or as realizations of some random vari-
ables. It is often the case that we also have access to information on one or several
auxiliary variables, usually denoted by x, but denoted by z in the introduction as
well as in some of the papers of the current thesis. Auxiliary variables are variables
which are not our primary interest, but it is reasonable to assume that they are
connected to our study variable in some way. If there is such a connection, we can
use it for improving the estimators. For instance, if the study variable is the mean
amount spent by household on consumer electronics, the income of the household is a
reasonable auxiliary variable, since there should be some connection between income
and spending. When selecting auxiliary variables, there are two basic requirements:
They should be related to y, and they should be easy to obtain information on.
A common way of selecting and obtaining information on auxiliary variables is by
using registers. Registers are useful because it is better if we know the values of the
auxiliary variables for all units in the population, not just for the sampled ones.

The topic of inference from surveys started attracting attention in the 1930’s, and
is still an active research topic. Usually the aim of the inference is to estimate the
population total or the population mean. The total is usually denoted by Y . The
mean is commonly denoted by Ȳ , or sometimes by µ. The definitions are

Y =
N∑

k=1

yk, Ȳ =
Y

N
.

From here on, all sums
∑

stated without restrictions are summations over the entire
population, i.e. from 1 to N .

Over the years, there have been two major inference approaches which have been
somewhat unified in more recent years.

First there is the design-based approach. Here, all randomness originates from the
sampling design, while the values of the y-variable are considered to be fixed but
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unknown. The uncertainty associated with our observed estimates is only due to
the fact that we do not study the entire population. Even though the values of
the study variable are fixed we will observe different estimates for different samples.
The most widely used estimator for design-based inference is the Horvitz-Thompson
(HT-) estimator (or π-estimator) for the population total:

ŶHT =
∑ yk

πk

Ik.

Sometimes, 1/πk is denoted by dk and called the design weight. This terminology
originates from the fact that each sampled unit can be considered to represent dk

units in the population, the observations are ”inflated” to match the magnitude of
the population. Since E(Ik) = πk, the HT-estimator is unbiased with respect to the
sampling design. The variance of the HT-estimator is, given in Sen-Yates-Grundy
form,

V ar(ŶHT ) = −1

2

∑ ∑
(πjk − πjπk)

(
yj

πj

− yk

πk

)2

.

The HT-estimator works best if the πk:s are approximately proportional to the yk:s.
One advantage of the design-based approach to survey sampling inference is that we
can derive estimators with desirable properties while making almost no assumptions
at all about the population.

For those willing to make more assumptions about the population, there is the model-
based approach. Here we consider the actual population values as realizations of the
random variables y1, ..., yN . We then need a suitable model, often called a superpop-
ulation model. The specification of the model is in principle up to the researcher
and only limited to what assumptions he or she considers appropriate to make. In
general, a model-based estimator of a population total can be written as

Ŷ =
∑
k∈s

yk +
∑
k/∈s

ŷk,

where the values of the non-sampled units are predicted using the model. The
estimation then relies on finding good predictions of the y-values for the unsampled
units, given the model. The actual sampling design is not that important. If the
model is correctly specified, the model-based approach may yield better results than
the design-based approach. If the model is incorrectly specified, all conclusions are
more or less invalid, depending on the degree of misspecification. In recent years
there has been a lot interest focused on small-area estimation, where we do not have
so much data and thus we need to develop appropriate models to be able to make
any inference. Attention has also been directed towards using models for dealing
with nonsampling errors such as nonresponse (see, e.g., Särndal & Lundström 2005).

In practice, ”the middle way” appears to be most common in survey sampling infer-
ence. The design- and model-based approaches have been combined in the model-
assisted inference approach (Särndal et al. 1992). Roughly speaking, we use the
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design-based estimators and try to improve them by introducing simple models. For
example, if there is an auxiliary variable z, which we think is correlated to the study
variable y, we may choose a sampling design which yields desired inclusion probabil-
ities πd

k, k = 1, .., N, where

πd
k = n

zk∑
zi

.

We then use the HT-estimator

ŶHT =
∑ yk

πd
k

Ik.

The idea here is that πk = πd
k ∝ zk ∝ yk. The last proportionality does not usually

hold exactly, but the variance of the HT-estimator usually decreases even if it only
holds approximately. Does it hold exactly, the variance of the HT-estimator becomes
zero. Also, it must be possible to select a sampling design which yields

E(Ik) = πd
k,

since otherwise the HT-estimator will be biased.

Of course, other ideas about how to choose the πd
k:s have been proposed. One

example is connected to generalized regression estimation (GREG, see, e.g., Särndal
et al. 1989, 1992 sections 6.4-6.7, and Holmberg 2003). Here we have a model for y,

yk = xT
k β + εk,

where we further assume

E(εk) = 0, V ar(εk) = σ2
k, and Cov(εj, εk) = 0.

The πd
k:s are then chosen such that πd

k ∝ σk, and regression estimation is applied.

In summary, model-assisted inference is probably the most widely-used approach
today. However, it relies on the possibility of obtaining fairly large samples, so that
large-sample theory and approximations may be utilized. In situations where only
small samples are available, such as small-area estimation, the use of appropriate
models is essential.

2.3 Further considerations regarding inference

Assume that we want to apply model-assisted inference, using the HT-estimator.
The desired πd

k:s are derived from using some kind of model. The first problem we
encounter is to find a sampling design which yields inclusion probabilities πd

k.

However, if the model is not correctly specified there will be some problems. One way
of ”protecting” ourselves against misspecification of the model is to use a sampling
design which has a high entropy, where the entropy is given by

E = −
∑

s

p(s) · log p(s).
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Having high entropy corresponds to spreading the probability mass as much as possi-
ble over the allowed samples, while making sure that we obtain the correct inclusion
probabilities. The allowed samples are usually all possible samples having fixed size,
n. Sometimes, for instance in real time sampling (Meister 2004, Bondesson & Thor-
burn 2008) we may allow the sample size to be random, but that is not considered
here.

In recent years, the methods of calibration and balancing have been suggested for
improving either the HT-estimate (calibration) or the sample selection procedure
(balancing). They both rely on the possibility of utilizing information provided by
m auxiliary variables, z = {z(1), ..., z(m)}. We assume that the population total for
each z(j), j = 1, ...,m is known. The totals are denoted Z(j), j = 1, ...,m.

Calibration (see, e.g., Deville & Särndal 1992) is a method which adjusts the design
weights dk = 1/πk when a sample already has been selected. In calibration the design
weights are changed from dk to wk. The wk:s are chosen to be as close as possible to
the dk:s, in some metric, under the restrictions∑

k∈s

wkz
(j)
k = Z(j), j = 1, ...,m,

for all auxiliary variables Z(j). The idea is that if the study variable and the auxiliary
variables are correlated, weights which yield perfect estimates of the known totals
for the auxiliary variables will also bring the estimate of the population total for the
study variable closer to the true value.

The idea behind balancing (Tillé 2006) is similar to the one behind calibration.
Instead of changing the design weights after a sample has been selected, we change
the probability of selection, p(s), for the samples that are available for selection. It
is possible that some selection probabilities are set to zero. The balancing conditions
are based on the auxiliary variables, z(1), ..., z(m), and they are∑

k∈s

dkz
(j)
k = Z(j), j = 1, ...,m,

for all samples s such that p(s) > 0, where Z(j) is a known total. Only samples
satisfying the balancing conditions are given a positive probability of selection.

3 Some πps designs and related results

This thesis is devoted to studying various properties of πps sampling designs. To
illustrate, in figure 1 we have a small population consisting of five units, i.e. N = 5.
The units have different sizes (circle areas), and we wish to select n = 2 units
with probability proportional to size. For instance in forestry, trees are sampled
in this way, where the diameter at breast height is used to measure the basal area
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which is the size measure used for the sampling. The desired inclusion probabilities
πd

k, k = 1, ..., 5, are given within each circle.

Figure 1: A small population of trees with N=5 and n=2. Inclusion probabilities
proportional to disc areas.

Many different πps sampling designs have been suggested over the years. The books
by Brewer & Hanif (1983) and Tillé (2006) give quite comprehensive reviews of
available methods. In this thesis, we will concentrate mainly on three different
πps designs, namely the conditional Poisson (CP) design (Hájek 1964, 1981), the
Sampford design (Sampford 1967) and the recent Pareto design (Rosén 1997a,b) .

3.1 The CP design

We perform CP sampling by sampling unit k in the population independently of all
the other units with sampling probability pk, where usually

∑
pk = n. In the end,

we only accept samples of size n. This may take some time, but less time-consuming
procedures, for instance list-sequential procedures, have been suggested by, e.g., Chen
& Liu (1997) and Traat et al. (2004). In Grafström (2009b), another very efficient
implementation is discussed. It is possible to show (Hájek 1981, pp. 28-31) that it is
a maximum entropy design, i.e. that CP sampling yields maximum entropy among
all designs having fixed sample size n and factual inclusion probabilities πk. One
drawback is that πk 6= pk, and thus we need to determine somehow which sampling
probabilities to use in order to achieve our desired inclusion probabilities.
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3.2 The Sampford design

Sampford sampling (Sampford 1967, Hajek 1981, pp. 85-87) is performed as follows.
We have sampling probabilities pk, such that

∑
pk = n. To start with, one unit is

selected with replacement and selection probabilities equal to pk/n, k = 1, . . . , N.
Then n − 1 further units are selected with replacement according to probabilities
p′k ∝ pk/(1−pk), such that

∑
p′k = 1. We accept the sample if all n units are distinct,

otherwise we repeat until acceptance. This procedure is potentially time consuming.
A rejection-free method of selecting a Sampford sample has been introduced by
Grafström (2009a). This is not a maximum entropy design, although quite close to
being one. Further, it has the distinct advantage that πk = pk, which makes it easy
to determine what sampling probabilities to use, we just set pk = πd

k.

3.3 The Pareto design

Pareto sampling (Rosén 1997a,b) is an order sampling design with sampling param-
eters pk, k = 1, ..., N . To be comparable with the CP and Sampford designs, the
sampling parameters should be specified so that

∑
pk = n. In general, an order

sampling design bases the sample selection on order statistics. To each unit in the
population is assigned a value of a ranking variable,

Qk =
F−1(Uk)

F−1(pk)
, k = 1, ..., N,

where F is a probability distribution function on (0,∞) and the Uk:s are i.i.d. U(0, 1).
The n units with smallest values of Qk constitute the sample. Ohlsson (1998) used
the uniform distribution function, F (x) = x, 0 < x < 1, but this is not the best
choice. For Pareto sampling, F is chosen as the Pareto distribution function, F (x) =
x/(1 + x), x ≥ 0. The ranking variables Qk are then

Qk =
Uk/(1− Uk)

pk/(1− pk)
.

In some texts, including Rosén’s original ones, the parameters are denoted by λk.
This design is very simple to sample from, since there are no rejections. We always
obtain a sample directly, and πk ≈ pk. The approximation is quite good for large
sample sizes but not so good for smaller sample sizes. Further, it is not a maximum
entropy design, but rather close to being so. We need some method to determine
which sampling parameters to use in order to achieve exactly our desired πd

k:s.

3.4 Choosing pk:s for the CP and Pareto designs

The topic of choosing sampling probabilities pk for the CP and Pareto designs is
mainly treated in papers I, II, III, and V. We assume that we have desired inclusion
probabilities, πd

k, k = 1, ..., N. A first naive choice of pk:s is to let

pk = πd
k,
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which unfortunately yields, for both designs, that

πk 6= πd
k

and we introduce some bias in the HT-estimator. There are now two options: we
can use an analytical approach or a computer-intensive iterative approach, or a
combination. The main contributions in this thesis are in the analytical field. We
have the πd

k:s to work with, and it is reasonable to assume that there exist functions,
f and g for CP and Pareto respectively, such that if we choose

pk = f(πd
k, d) and pk = g(πd

k, d),

where
d =

∑
πd

k(1− πd
k),

we will obtain almost correct inclusion probabilities, i.e. πk ≈ πd
k, where the approx-

imation is very close. We need some idea about how to choose f and g. Further, it
is in fact easier to work with the ”sampling odds”

rk = pk/(1− pk)

than with the pk:s themselves. In the first three papers we consider an asymptotic
case, namely the case where d is large. In paper I it is shown that in this asymptotic
case, the CP, Pareto and Sampford designs are equal from a probabilistic point of
view. We use this similarity in papers I, II, and III. In paper III, we also derive
measures of the probabilistic distances between these designs, based on asymptotic
considerations, and make some illustrations for a few cases. It is shown that the
Pareto design with adjusted pk:s is very close to the Sampford design. In paper V,
we consider the CP design for the asymptotic case where d is close to zero. This is a
rather extreme case corresponding to, for a population ordered by decreasing desired
inclusion probabilities,

πd
k ≈

{
1 k = 1, ..., n

0 k = n + 1, ..., N.

3.4.1 Analytic results - the CP design

For the asymptotic case where d is large, we exploit the similarity with the Sampford
design and make some approximations. We finally obtain

rk = α · πd
k

1− πd
k

exp

( 1
2
− πd

k

d

)
,

where α is chosen so that
∑

pk = n is satisfied. In papers I and II, the exponential
factor is presented as exp((1− πd

k)/d), which just means another α than here. Since
we make some approximations, we do not obtain πk = πd

k exactly, but come very
close, and much closer than with the naive choice of sampling probabilities.
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When considering the other asymptotic case, d close to 0, we obtain,

rk =


β

πd
k

1−πd
k

√
d
2

if πd
k is close to 1

β
πd

k

1−πd
k

√
2
d

if πd
k is close to 0.

The value of β is chosen such that
∑

pk = n.

In paper V we unify the two asymptotic cases by suggesting that, in general for
the CP design, the sampling probabilities may be chosen according to (we omit the
proportionality constant here)

rk ∝
πd

k

1− πd
k

· h(πd
k, d),

where h(πd
k, d) is chosen as follows. Let xk =

(
1
2
− πd

k

)
/d, to shorten expressions.

Then we let
h(πd

k, d) = h(xk) = exp (a · arcsinh(xk/a)) ,

where arcsinh(x) = x +
√

1 + x2, and a must be chosen somehow. Based on theo-
retical considerations and simulation results, we recommend in paper V that a is
chosen as a = 1/2 + d3/2. This choice of a implies that, as d →∞, h(x) → ex. This
is consistent with the previous results regarding the case where d is large.

3.4.2 Analytic results - the Pareto design

When considering the asymptotic case of large d, we once again exploit the similarity
with the Sampford design and make some approximations. We obtain for the pk:s,

rk = γ · πd
k

1− πd
k

· exp

(
πd

k(1− πd
k)(

1
2
− πd

k)

d2

)
,

where γ is chosen so that
∑

pk = n is satisfied. Since we make approximations,
we do not obtain πk = πd

k exactly, but we come extremely close, even closer than
in the corresponding CP case. Of course, we also come much closer than with the
naive choice of sampling probabilities. It may be noted that this is very easily im-
plemented in practice. The Pareto ranking variables for the naive choice of sampling
probabilities are

Qk =
Uk/(1− Uk)

πd
k/(1− πd

k)
,

and the new ranking variables are then given by

Q̃k = Qk · exp

(
πd

k(1− πd
k)(π

d
k − 1

2
)

d2

)
.

We just need to add one simple factor in the calculations.
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For the asymptotic case where d is close to zero, we have no analytical results for
the Pareto design. It is suggested in paper V that the earlier function h may be used
ad hoc for the Pareto design, replacing the xk:s with

yk = xk ·
(

πd
k(1− πd

k)

d

)
,

with xk as before. Some initial numerical experiments suggest that the πk:s are closer
to the πd

k:s compared to the naive choice of sampling probabilities. The improvement
is most obvious when d is very small, about 0.4 or smaller. For d-values larger than
1 the refined adjustment is of no importance.

3.4.3 A little about iterative procedures

As mentioned previously, another way of finding appropriate pk:s is to use some iter-
ative procedure. Such procedures rely heavily on the possibility of rapid calculation
of the πk:s for the design in question. For this purpose, recursion formulas have been
derived by, e.g., Aires (1999), Chen et al. (1994) and Tillé (2006). We also have
presented some recursion formulas for the CP and Pareto designs, in papers I, II, IV
and V. For instance, the inclusion probabilities for the CP design of size n can be
calculated using the inclusion probabilities for the CP design of size n− 1 by using

π
(n)
k = n

rk(1− π
(n−1)
k )∑

i ri(1− π
(n−1)
i )

.

We will present a brief overview of two iterative procedures.

The first procedure. This procedure has been suggested and used by Aires (1999)
and Tillé (2006, pp. 81-84). We select some starting values p0

k for the sampling
probabilities, usually p0

k = πd
k, and use the procedure

p
(t+1)
k = p

(t)
k + c

(
πd

k − π
(t)
k

)
, t = 0, 1, 2, ...

where the π
(t)
k :s are the factual inclusion probabilities in iteration step t. A common

choice is c = 1. Provided that the procedure converges, the desired pk:s are obtained.
It may be noticed that, for CP sampling,

∂πk

∂pj

=
Cov(Ik, Ij)

pj(1− pj)
.

This implies that, if pk can be chosen close to πk for all k = 1, ..., N , the Jacobian
matrix of the transformation from p = {p1, ..., pN} to π = {π1, ..., πN} has diagonal
elements approximately equal to one. Also, if all the covariances Cov(Ii, Ij), i 6= j are
small, the Jacobian matrix is close to the identity transformation, which motivates
the use of this procedure with c = 1.
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The second procedure. Another possible choice is iterative proportional fitting.
Here we let

p
(t+1)
k

1− p
(t+1)
k

=
πd

k/(1− πd
k)

π
(t)
k /(1− π

(t)
k )

· p
(t)
k

1− p
(t)
k

, t = 0, 1, 2, ... ,

which illustrates how the name was chosen. For this procedure Chen et al. (1994)
prove convergence for fixed size CP sampling. However, the procedure may be applied
for Pareto sampling as well.

3.5 Sampling with desired second-order inclusion probabil-
ities

It may be of interest to have a sampling design which yields desired second-order
inclusion probabilities, πd

jk, rather than first-order ones (Sinha 1973). The second-
order inclusion probabilities appear in the variance of the HT-estimator. If we have a
superpopulation model, the expected variance of the HT-estimator can be minimized
by choosing the πd

jk:s properly. It may be noticed that for a design of fixed size n the

second-order inclusion probabilities πd
jk, j 6= k, determine the first-order ones since

(n− 1)πd
k =

∑
{j, j 6=k} πd

jk.

In paper II, we consider some possible designs for sampling with desired second-order
inclusion probabilities. The first proposal is a design belonging to the exponential
family with sampling parameters pjk. It is not obvious how to choose the sampling
parameters in order to obtain desired πd

jk:s. It is suggested that iterative procedures
such as iterative proportional fitting (cf. section 3.4.3) are used. Another suggestion
is to use an ordinary CP design with sampling parameters pk = πd

k, and modify its
probability function p(x) = Pr(I = x) by multiplication by a quadratic form, xTAx,
where A is a symmetric N × N matrix with zeros on the diagonal and the other
entries given by a system of N(N − 1)/2 equations involving inclusion probabilities
of order up to four for the CP design.

Both the suggested methods in paper II require a lot of calculations. There are no
rigorous existence proofs regarding the sampling parameters or the matrix A. In
the examples considered in paper II, both sampling parameters and matrix could be
calculated and verified to yield correct first and second-order inclusion probabilities -
thus they existed. Thus it seems as though these quantities exist if we do not choose
the inclusion probabilities in too an extreme way.

3.6 On measuring probabilistic distances

The issue of measuring the distance between two probability distributions is an old
one. Many different types of measures have been suggested over the years. An
overview is given by Gibbs & Su (2002). Here we will give a short introduction of
the measures used in this thesis.
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Two of the most widely used distance measures are the Kullback-Leibler (KL) diver-
gence (Kullback & Leibler 1951) and the Hellinger distance (see, e.g., Pollard 2002,
p. 61). Let f1(x) and f2(x) be discrete probability distributions. For simplicity, we
will just write f1 and f2. The expressions for the respective distance measures are

DKL(f1, f2) =
∑
x

f1 log

(
f1

f2

)
= Ef1 log

(
f1

f2

)
,

DH(f1, f2) =

√
2 ·

∑
x

(√
f1 −

√
f2

)2

.

When we take asymptotic considerations into account, we use a Taylor expansion of
both the above probability metrics. The goal is to get an expression which is easier
to deal with analytically. Using a Taylor expansion of order two, we obtain the same
result for both the KL divergence and the squared Hellinger distance. We denote
the common result by D2

χ. The formula resembles the expression of a Chi-Square
Goodness-of-fit test statistic, which motivates the notation. The χ2 distance is given
by

Dχ2(f1, f2) =

√
1

2

∑
x

(f2 − f1)2

f1

.

It may be noted that all the distance measures above are in fact special cases of
the more general Cressie-Read distance (Cressie & Read 1984). The constants in
the Hellinger and χ2 distances may vary between authors. In some cases they are
also defined without taking the square root. We can also see that the Hellinger
distance is symmetric and satisfies the triangle inequality, but the KL divergence
and χ2 distance are both non-symmetric. Among these three probability metrics,
the Hellinger distance is the only true metric.

In paper III, the χ2 distance measure is used for theoretical considerations and the
Hellinger distance is utilized when performing principle coordinate analysis (PCO,
see, e.g., Cox & Cox 1994) in a few examples. Performing PCO means that we try to
draw a map of how, in this case, the sampling designs are positioned with respect to
each other. This map is based on pairwise distances between all the designs. The map
is usually, as in paper III, in two dimensions. This means that the pairwise distances
may not be reproduced exactly. The results of both theory and PCO suggest that
especially the Pareto design with adjusted ranking variables is probabilistically very
close to the Sampford design. The CP design is a bit away from the other two, even
if adjusted sampling parameters are used.

3.7 On balanced sampling with maximum entropy

We begin by briefly restating the idea of balanced sampling. The balancing is based
on auxiliary variables z(1), ..., z(m) with known population totals Z(1), .., Z(m). The
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balancing conditions are ∑
k∈s

dkz
(j)
k = Z(j), j = 1, ...,m,

for all samples s such that p(s) > 0. Only samples satisfying the balancing conditions
are given a positive probability of being selected.

In paper IV, we consider balancing conditions with some restrictions. We consider
a cross-stratified population, i.e. a population stratified in t ≥ 2 different ways. We
have fixed sample sizes for each stratum but not for each cross-stratum. This means
that the balancing conditions are of integer type, since the auxiliary variables are
stratum indicators

z
(j)
k =

{
1 if unit k belongs to stratum j

0 otherwise,

and the known totals are the stratum sizes. To illustrate, consider an example.

Example 1 (Stratification by age and gender). Suppose that we have a pop-
ulation of size N , stratified with respect to age and gender. We wish to sample nM

males, nF females, nY people below 50 years of age, and nO people of age 50 or
above. The total sample size should be n, where nM + nF = nY + nO = n. The
resulting cross-stratification table is seen in table 1 below.

Table 1: Cross-stratification by age and gender

Age < 50 Age ≥ 50 Sample size
Male Males < 50 Males ≥ 50 nM

Female Females < 50 Females ≥ 50 nF

Sample size nY nO n

If we denote the set of all possible samples satisfying the balancing conditions by
Ω, it can be shown that in order to obtain maximum entropy, we should perform
conditional Poisson (CP-) sampling within the set Ω. We give a proof in paper IV,
and note that the maximum entropy property of CP sampling has been proven before
in another way by, e.g., Hájek (1981, pp. 28-31).

As a further requirement on the balanced design, we still want to obtain desired
inclusion probabilities, πd

k. In order to achieve that, we somehow need to determine
what sampling probabilities to use when we carry out the CP sampling. The situation
becomes complicated since the sample size for at least one cross-stratum is random,
i.e. the sample size follows some (discrete) probability distribution. This means that
we cannot use the results from papers I, II and V, since then we require that all
sample sizes are fixed. We propose the use of iterative methods instead. If we want
to apply iterative methods, there are two problems to solve.
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1. We need to calculate the probability distribution for the sample sizes.

2. For all possible sample sizes in each cross-stratum, we must calculate the ac-
tual inclusion probabilities given the sample size in the cross-stratum and the
sampling probabilities.

The first problem turns out to be computationally challenging. The required prob-
ability functions may be written down explicitly, but in practice the number of
combinations for which calculations need to be done grows rapidly. For very small
examples, however, we can calculate the probability function exactly by using the
expression for it. For more realistic situations, we propose the use of Markov Chain
Monte Carlo (MCMC) techniques, or Gaussian approximations, as a way of obtain-
ing approximations to the distribution in question. The MCMC procedures are very
general and may be used in almost any possible setting. Further, we advocate the
possibility of using MCMC methods for sample selection as well. Currently MCMC
methods are not widely used in sampling theory. Now, once the first problem stated
above has been solved, we can solve the second one by combining the solution to the
first problem with our previously known recursion formulas for CP sampling. We
can thus use some iterative procedure to determine the sampling probabilities.

There is then the question if there always exists a sampling design that yields desired
inclusion probabilities πd

k satisfying
∑

k∈S πd
k = nS, where S denotes a stratum and

nS the stratum sample size, for each stratum. We give, in paper IV, such a proof for
the case of no more than three balancing conditions. For the case of four balancing
conditions, we present a counterexample to show that in general there is no guarantee
that an appropriate sampling design exists.

4 Summary of the papers

Note that in the summaries of the papers, the notation has been adapted to be
coherent with the rest of the introduction. The notation in the actual papers may
differ somewhat from notation used here in the summaries.

4.1 Paper I. Pareto sampling versus Sampford and condi-
tional Poisson sampling

In this paper we first compare the Pareto and Sampford sampling designs. We use
their respective probability functions and Laplace approximations, and show that
from a probabilistic viewpoint these two designs are very close to each other. In
fact, they can be shown to be asymptotically identical. The rejective method of
Sampford sampling may be time consuming. We show that a Sampford sample may
be generated by passing a Pareto sample through an acceptance−rejection filter. It
is still a rejective method, but the number of rejections are reduced substantially.
Most often, there are no rejections at all. This technique can be modified to give
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us an efficient method to generate conditional Poisson (CP) samples as well. We
also show how to calculate inclusion probabilities of any order for the Pareto design
given the inclusion probabilities for the CP design. Finally, we derive a new explicit
approximation of the second-order inclusion probabilities. The new approximation is
valid for several designs, and we show how to apply it to get single sum type variance
estimates of the Horvitz-Thompson estimator.

4.2 Paper II. On sampling with desired inclusion probabili-
ties of first and second order

We present a new simple approximation for obtaining sampling probabilities pk for
conditional Poisson sampling to yield given inclusion probabilities πd

k. This approx-
imation is based on the fact that the Sampford design yields the desired inclusion
probabilities. We present a few alternative routines to calculate exact pk-values, and
carry out some numerical comparisons. Further we derive two methods for achieving
desired second-order inclusion probabilities πd

jk. This might be interesting if we want
to control (and minimize) the variance of the Horvitz-Thompson estimator. The
first method is to use an exponential family probability function. We determine the
parameters of this probability function by using an iterative proportional fitting al-
gorithm. The second method we use is to modify the conditional Poisson probability
function with a quadratic factor. We perform a small numerical study on these two
methods as well.

4.3 Paper III. On the distance between some πps sampling
designs

Here, we derive an approximation for obtaining sampling parameters pk for Pareto
sampling in order to obtain given inclusion probabilities πd

k. We continue by inves-
tigating the distances between some probability distributions arising from different
πps sampling designs. The designs in question are Poisson, Conditional Poisson
(CP), Sampford, Pareto, Adjusted CP (cf. Paper II), and Adjusted Pareto sampling,
as derived in this paper. We begin by using the Kullback-Leibler divergence and the
Hellinger distance. Then we use a Taylor expansion of order two on both distance
measures. The common result is a simpler distance measure to work with theoreti-
cally. This measure of χ2-type is evaluated first theoretically and then numerically in
examples with small populations. We further illustrate the numerical examples by a
multidimensional scaling technique called principal coordinate analysis (PCO). From
both the theoretical analysis and the illustrated examples we see that Adjusted CP,
Sampford, and adjusted Pareto are rather close to each other. In particular, Samp-
ford and adjusted Pareto are very close. Pareto is located slightly further away from
these, while CP and especially Poisson are quite far from all the others.
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4.4 Paper IV. Balanced unequal probability sampling with
maximum entropy

We investigate how to perform balanced unequal probability sampling with maximum
entropy. We focus on some particular balancing conditions, namely the conditions of
having specified marginal sums of the sample sizes in a cross-stratification table, but
unspecified sample sizes in each cross-stratum of the table. When only the marginal
sums are fixed, the sample sizes for one or more cross-stratums in the table are
random. In principle, it is possible to express the probability distribution for those
sample sizes explicitly. However, the computations quickly become difficult, except
for very small cases. It is crucial to determine the probability distribution somehow,
otherwise we are not able to calculate the inclusion probabilities for the design. We
propose the use of Markov Chain Monte Carlo (MCMC) methods for obtaining good
approximations to the probability distributions in question. It is proposed that the
MCMC methods are used for sample selection as well. As another alternative, we
consider large-sample Gaussian approximations. As usual when conditional Poisson
sampling is used, the inclusion probabilities do not equal the sampling ones. Regard-
less of which method one uses for distributional calculation, iterative procedures may
be used for obtaining sampling probabilities yielding inclusion probabilities very close
or equal to the specified ones. We suggest a few different such iterative methods.

4.5 Paper V. A note on choosing sampling probabilities for
conditional Poisson sampling

In this paper, the starting point is conditional Poisson sampling, and the fact that
the sampling probabilities and the factual inclusion probabilities are not identical,
even if

∑
pk = n. This is a problem. We present a new method for choosing

the sampling probabilities, which may be used under more general conditions than
previously suggested methods (cf. paper II). The new method uses only the desired,
predetermined, inclusion probabilities πd

k and the number d =
∑

πd
k(1 − πd

k). We
then compare the performance of this new method to other reasonable choices of
sampling probabilities. Finally we note that this new method could also be used as
an ad hoc method for determining the parameters for Pareto sampling.

5 Conclusion and some open problems

This thesis is very much about the CP, Sampford and Pareto sampling designs. They
have been thoroughly compared both theoretically and with examples (Papers I, II
and III), and we have derived adjustments for the CP and Pareto designs in order
to obtain desired inclusion probabilities (Papers I,II and V for CP, paper III for
Pareto). In particular, the adjustment for Pareto sampling is quite simple to use.
The adjusted Pareto design has been found to be probabilistically very close to the
Sampford design. We have considered the CP design in connection with balanced
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maximum entropy sampling (Paper IV). It might seem strange, but there is still
much more to be done. A few things will be mentioned below.

The area of balanced πps sampling has been introduced in the literature fairly re-
cently, and there are plenty of things to do. For instance, the results about maximum
entropy balanced sampling given in paper IV should be possible to generalize and
extend quite a bit, both regarding existence of and how to determine the sampling
probabilities. The gaussian approximations could perhaps be replaced with some
approximate discrete probability distribution, since we are trying to approximate a
discrete distribution. The problem of finding a convenient and practical way of per-
forming maximum entropy balanced sampling needs more attention. Possibly some
generalization of Pareto sampling could be applied.

Regarding sampling with desired second-order inclusion probabilities a lot remains
to be done. There are theoretical problems, such as determining if a set of given
πd

jk:s really are second-order inclusion probabilities corresponding to some sampling
design. There is also the problem of finding a practical way of performing the actual
sampling. It is possible to use MCMC methods for sampling.

The analytical expressions for the sampling probabilities/parameters pk in CP and
Pareto sampling could possibly be improved, which will of course also be of benefit
when applying iterative procedures, since we will have access to excellent starting
values for the iterations. For the case where d is small an explicit expression for the
pk:s, if such an expression even exists, has not yet been derived.

Finally, an issue which is not really a research problem. Considering the methods of
adjusting CP and Pareto sampling, they are not well known to the general sampling
public. In particular the modification of Pareto sampling for large d is very simple
to use in practice, and for most populations found in practice, d is large enough to
make sure that the modification yields inclusion probabilities closer to the desired
ones. Pareto sampling is one of the methods suggested by Statistics Sweden (2008)
for performing πps sampling.
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