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Abstract 

Amyotrophic lateral sclerosis (ALS), also known as Charcot’s disease, motor neuron disease 

(MND) and Lou Gehrig’s disease, is a deadly, adult-onset neurodegenerative disorder 

characterized by progressive loss of upper and lower motor neurons, resulting in evolving 

paresis of the linked muscles. ALS is defined by classical features of the disease, but may 

present as a wide spectrum of phenotypes. About 10% of all ALS cases have been reported as 

familial, of which about 20% have been associated with mutations in the gene encoding for 

CuZn superoxide dismutase (SOD1). The remaining cases are regarded as sporadic. Research 

has advanced our understanding of the disease, but the cause is still unknown, no reliable 

diagnostic test exists, no cure has been found and the current therapies are unsatisfactory. 

Riluzole (Rilutek®) is the only registered drug for the treatment of ALS. The drug has shown 

only a modest effect in prolonging life and the mechanism of action of riluzole is not yet fully 

understood. ALS is diagnosed by excluding diseases with similar symptoms. At an early 

stage, there are numerous possible diseases that may present with similar symptoms, thereby 

making the diagnostic procedure cumbersome, extensive and time consuming with a 

significant risk of misdiagnosis. Biomarkers that can be developed into diagnostic test of ALS 

are therefore needed. The high number of unsuccessful attempts at finding a single disease-

specific marker, in combination with the complexity of the disease, indicates that a pattern of 

several markers is perhaps more likely to provide a diagnostic signature for ALS.  

    Metabolomics, in combination with chemometrics, can be a useful tool with which to study 

human disease. Metabolomics can screen for small molecules in biofluids such as 

cerebrospinal fluid (CSF) and chemometrics can provide structure and tools in order to handle 

the types of data generated from metabolomics.  

    In this thesis, ALS has been studied using a combination of metabolomics and 

chemometrics. Collection and storage of CSF in relation to metabolite stability have been 

extensively evaluated. Protocols for metabolomics on CSF samples have been proposed, used 

and evaluated. In addition, a new feature of data processing allowing new samples to be 

predicted into existing models has been tested, evaluated and used for metabolomics on blood 

and CSF. A panel of potential biomarkers has been generated for ALS and subtypes of ALS. 

An overall decrease in metabolite concentration was found for subjects with ALS compared 

to their matched controls. Glutamic acid was one of the metabolites found to be decreased in 

patients with ALS. A larger metabolic heterogeneity was detected among SALS cases 

compared to FALS. This was also reflected in models of SALS and FALS against their 

respective matched controls, where no significant difference from control was found for 

SALS while the FALS samples significantly differed from their matched controls. Significant 

deviating metabolic patterns were also found between ALS subjects carrying different 

mutations in the gene encoding SOD1. 

Keywords: Amyotrophic lateral sclerosis (ALS), motor neuron disease, Lou Gehrig’s 

disease, human disease, CSF, biomarkers, metabolomics, metabonomics, chemometrics, 

design of experiments, multivariate analysis. 



 

9 

Abbreviations 
“Why is abbreviation such a long word?”-Anonymous 

ALS  Amyotrophic Lateral Sclerosis 
CNS  Central Nervous System 
CNTF  Ciliary Neurotropic Factor 
CSF  Cerebrospinal Fluid 
CV  Cross Validation 
DA  Discriminant Analysis 
DoE  Design of Experiments 
FALS  Familial Amyotrophic Lateral Sclerosis 
FFD  Full Factorial Design 
FrFD  Fractional Factorial Design 
GC  Gas Chromatography 
HMCR  Hierarchical Multivariate Curve Resolution  
LC  Liquid Chromatography 
LMN  Lower Motor Neuron  
MND  Motor Neuron Disease 
MS  Mass Spectrometry 
MVA  Multivariate Data Analysis 
m/z  Mass to Charge Ratio 
NAA/Cr  N-acetyl aspartate/creatine 
NMR  Nuclear Magnetic Resonance 
OPLS  Orthogonal Projections to Latent Structures 
PBP  Progressive Bulbar Palsy/Paralysis 
PCA  Principal Component Analysis 
PLS  Partial Least Squares (alt. Primary Lateral Sclerosis) 
PMA  Progressive Spinal Muscular Atrophy 
RI  Retention Index 
SALS  Sporadic Amyotrophic Lateral Sclerosis 
SD  Standard Deviation 
SOD1  Copper- and zinc containing superoxide dismutase 
TDP-43  TAR DNA binding protein 
TMS  Trimethylsilyl 
TOF  Time of Flight 
UMN  Upper Motor Neuron  
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Notation 
"Mathematics compares the most diverse phenomena and discovers the secret analogies that unite 

them." -Jean Baptiste Joseph Fourier 

The following notation has been used throughout this thesis. Vectors are denoted by 
bold, lower case letters (e.g. t) and matrices are denoted by bold capital letters (e.g. 
X). Vectors are assumed to be column vectors unless indicated by transposition, 
(e.g. tT). A matrix inverse is denoted as X-1 for a matrix X. 

A Number of components in model 
K Number of columns in X 

M Number of columns in Y 

N Number of rows in X and Y  

B Matrix of regression coefficients for X, [K×M] 
E Residual matrix of predictor variables, [N×K] 
F Residual matrix of response variables, [N×M] 
P Matrix of loading vectors for X, [K×A] 
T Matrix of score vectors for X, [N×A] 
U Matrix of score vectors for Y, [N×A] 
X Matrix of predictor variables, [N×K] 
Y Matrix of response variables, [N×M] 
c Weight vector for Y, [M×1] 
p Loading vector for X, [K×1] 
t Score vector for X, [N×1] 
u Score vector for Y, [N×1] 
w Weight or covariance loading vector for X, [K×1] 
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1. Background 

“We said, we said, we said. This time was gonna be different.”  

–Comeback Kid (Wake the Dead) 

This chapter aims to acquaint the reader with amyotrophic lateral sclerosis (ALS) 
and explain why cerebrospinal fluid (CSF) biomarkers are of interest in ALS 
research. The concepts of chemometrics and metabolomics, on which this thesis is 
based, will also be introduced. 

1.1 Amyotrophic lateral sclerosis 
”Time takes us all. So why am I not just living for today?” - The Used (The Ripper) 

Amyotrophic lateral sclerosis (ALS), also known as Charcot’s disease, motor neuron 
disease (MND) and Lou Gehrig’s disease, is the most common deadly, adult-onset 
neurodegenerative disorder. ALS strikes about 3/100 000 persons each year 
worldwide, men and women of all ethnical groups[1].  
    ALS is often described by the classical features of the disease. The clinical 
hallmark of ALS is a progressive degeneration of the upper and the lower motor 
neurons (UMN, LMN) in combination. As a result an evolving generalized paresis 
of skeletal muscles is observed. In later stages of ALS, patients regularly progress to 
become totally paralyzed. Signs from the UMNs include spasticity, while symptoms 
from the LMNs include atrophy, fatigue, cramps and fasciculations. Oculomotor, 
autonomic functions and additional brain functions are reported being relatively 
spared, although have been reported involved in some patients with the disease. 
ALS ultimately leads to death, commonly due to respiratory failure when the 
respiratory muscles have become involved in the disease progression.  
    In most cases ALS affects adults of middle age showing a rapid progression. The 
mean onset of ALS is 47-52 years for familial ALS (FALS) and 58-63 years for 
sporadic ALS (SALS)[2] but the onset may vary, ranging from juvenile forms to 
patients suffering from the disease in the later stage of life. The median survival 
time reported for ALS cases that pass without treatment is 26 months[3]. There are 
however some cases showing atypical progress[4]. In about 10% of the ALS cases, 
the patients survive more than ten years[3]. Approximately 20-50% of the patients 
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show cognitive dysfunction of the fronto-temporal lobes and 3-5% (or more) 
develops dementia usually of frontotemporal type, semantic dementia or progressive 
non-fluent aphasia[2]. Patients diagnosed with progressive bulbar palsy (PBP, 
degeneration of LMN in the brainstem), progressive spinal muscular atrophy (PMA, 
degeneration of LMN in the ventral horn of the spinal cord) and patients diagnosed 
with primary lateral sclerosis[5] (PLS, degeneration of UMN) may all develop signs 
of both UMN and LMN degeneration and hence be diagnosed with ALS, although 
this is not always the case. The term motor neuron disease (MND) is often used to 
include diseases such as PBP, PLS and PMA[6]. 
    ALS has been described as a heterogeneous syndrome with multiple clinical, 
genetic and histological subtypes with ill-defined borders[1, 7]. And despite much 
effort aimed at solving the mystery of ALS, it is still not known whether it is a 
single or multisystem disease, or several diseases associated with motor neuron 
death[8, 9]. 
    ALS is commonly divided in to two major groups, SALS and FALS. Cases are 
classified as FALS when two, or several members in the same family have been 
diagnosed with ALS. The remaining cases are classified as SALS. FALS has been 
reported by epidemiological studies based on several different populations in 1-18% 
of ALS cases. Whether this reflects a hereditary disposition of the disease or 
populations commonly exposed by environmental factors remains unclear at present. 
Another fair question to ask is whether SALS cases actually are sporadic or if some 
cases are in fact FALS, classified as SALS due to insufficient family history. 
    In 1993 the first gene associated with ALS was identified when 11 different 
missense mutations was found in the gene encoding for CuZn superoxide dismutase 
(SOD1) in 13 different FALS families[10]. To date 151 mutations have been found 
in the gene encoding SOD1 in patients with ALS. It is however unclear whether or 
not all mutations are pathogenic[11]. At present, mutations have been discovered 
causative of ALS in six additional genes. Genetic studies have suggested existence 
of eleven additional loci for ALS, but the genetic defects remain to be identified. 
Mutations in SOD1 is at present the most common known genetic factor and has 
been reported in 12-23% of FALS cases and in 1-7% of SALS cases.  
    Diseases striking the nervous system represent demanding diagnostic tasks even 
for professional neurologists. The diagnosis of ALS is challenging in particular, 
since no exclusive diagnostic test exists for ALS. The diagnosis of ALS is decided 
after an exclusion of other possible diseases that may mimic ALS[2, 12]. The El 
Escorial[13] /Airlie House revised criteria[14] was developed as a template for 
diagnosis. Numerous diseases (over 40 differential diagnoses) exhibit overlapping 
symptoms with ALS at an early stage. Misdiagnosis made by neurologists has been 
reported in 5-8% of cases, of which some patients were suffering from treatable 
diseases[15-17]. The average time from first symptom until receiving the diagnosis 
ALS has been reported to be 13-16 months by Chio, A[18, 19]. One of the problems 
is the increased risk of misdiagnosis at an early stage[20], while diagnosing ALS 
after the patient has been ill for a longer time showing generalized symptoms are 



more straightforward[2, 12]. 
    There is still no cure for ALS[2]. Riluzole (Rilutek®) is the only approved drug 
(was approved in 1996 by the FDA) for treatment of ALS and it has been shown to 
prolong life modestly[21, 22]. Indications of a better effect of 
been shown in patients when the treatment 
diagnosis is essential. Quite recent studies have pointed towards the 
process of ALS to begin much earlier and the pathology to not be
involve only neurons but also glial and 
mechanism of action of riluzole is not yet fully understood but 
suggested to antagonize the release of the 
the synapse (for chemical structure of riluzole see figure 1)
ALS consists of symptom relief efforts 
progressed to the point where breathing is impaired

 

 

Figure 1. The chemical structure of riluzole (

There are many questions remaining to be answered regarding ALS. 
ALS, when does the disease actually start? 
are only a few of the important questions to be answered. 
properly diagnosed, providing safer and earlier 
diagnostic tools is of highest priority. For 
gained a lot of attention. 
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Riluzole (Rilutek®) is the only approved drug 
(was approved in 1996 by the FDA) for treatment of ALS and it has been shown to 

. Indications of a better effect of riluzole treatment has 
when the treatment is started early, indicating that early 

Quite recent studies have pointed towards the pathogenic 
and the pathology to not be restricted to 

and endothelial cells[23]. However, the 
mechanism of action of riluzole is not yet fully understood but the drug has been 

antagonize the release of the excitatory neurotransmitter glutamate into 
(for chemical structure of riluzole see figure 1). Additional treatment of 

 and ventilator support when the patient has 
progressed to the point where breathing is impaired[2]. 

 

The chemical structure of riluzole (Rilutek®). 

There are many questions remaining to be answered regarding ALS. What causes 
start? Why do the motor neurons die? These 

are only a few of the important questions to be answered. But before ALS can be 
and earlier diagnosis by offering better 

ity. For this reason, the area of biomarkers has 
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1.2 Biomarkers 
"I have not failed. I've just found 10,000 ways that won't work." -Thomas Edison 

Biomarkers are substances that can function as indicators of a specific biological 
state, or be used to follow a biological process, e.g. a normal biological process, a 
pathogenic process or a response to treatment. The definition of a biomarker as 
proposed by the Biomarkers Definitions Working Group is that “a biomarker may 
be applicable as a diagnostic and/or prognostic tool, staging or classification of the 
extent of a disease, or to be used for prediction and monitoring of clinical response 
to an intervention”. Some biomarkers may also be developed and used as surrogate 
endpoints instead of, or in combination with, clinical endpoints (to obtain a 
characteristic that reflects how the patient feels, functions or survives). Biomarkers 
may also provide clues about the molecular and cellular bases of a disease.[24] 
    Finding suitable biomarkers for the diagnosis and prognosis of ALS has gained 
increasing momentum recently and the topic that has been reviewed thoroughly, of 
late by Pradat et al. [25-29]. Despite strong efforts, the search for specific 
biomarkers for ALS has been unsuccessful and no verified marker exists to date.  
    In the beginning of 2005 Rozen et al presented a global metabolomics study 
performed on blood from two rather small study groups[30]. Signatures related to 
ALS were discovered in the metabolite patterns, but so far no follow up study for 
validation of these potential markers has been reported. In 2008 an increased level of 
homocystein was reported in ALS patients in relation to healthy controls by 
Zoccolella et. al[31]. The results have not been confirmed by follow up studies and 
the increase was only seen in a few patients.  
    Mutations in the gene encoding for SOD1[32] may be regarded as one of the few 
biomarkers for ALS.  
    A reduction in the number of spinal anterior horn cells, presence of Bunina bodies 
and ubiquinated cytoplasmic inclusions in the remaining spinal motor neurons can 
be seen as histological hallmarks post-mortem in patients with ALS. These 
inclusions may be immunoreactive to antibodies against the TAR DNA binding 
protein (TDP-43) and p62. In addition, the immunoreactivity to TDP-43 has shown 
to be rare or absent in patients carrying mutations in the SOD1 gene[33, 34]. 
    Till date, most studies on ALS have been performed on small and isolated sample 
sets. A recent study reported increased levels of inflammatory chemokines in 20 
ALS patients when compared to 20 non-inflammatory, neurological disease 
controls[35]. A larger study from 2008 by Laaksovirta and coworkers showed 
elevated levels of ciliary neurotrophic factor (CNTF)[36]. Unfortunately the study 
compared significantly older cases to younger controls, which could likely bias the 
interpretation and questions the reliability of the results.  
    In vivo studies have been performed using proton magnetic resonance 
spectroscopy. Results using MRS points towards a decrease in the ratio of N-acetyl 
aspartate/creatine (NAA/Cr) in subjects with ALS[37]. Similar results have been 
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shown in animal models [38]. Unfortunately, NAA/Cr cannot be used to diagnose 
ALS due to an overlap with other diseases[39]. 
    The study of human disease is a complex task. This applies to ALS especially, 
where the site of pathology is unavailable until the patient is deceased and an 
autopsy can been performed. The aim of finding a biomarker, or a set of biomarkers, 
that could distinguish ALS from differential neurological conditions at an early 
stage must, therefore, rely on the theory that the pathology is reflected by the 
chemical composition of a biofluid as, for example, CSF[40]. A desirable feature 
concerning biomarkers is to be able to detect and measure them in accessible 
biofluids (such as blood, urine, saliva). However, searching for biomarkers in less 
accessible biofluids and tissues closer to the site of pathology within the central 
nervous system (CNS) may increase the chances of finding characteristic 
markers/patterns (e.g. due to MN pathology) and hence decrease the risk of finding 
markers remaining from symptoms throughout the body such as the breakdown of 
muscle tissue. Knowledge about established markers derived from the CNS may 
then give clues as to the identity of markers in more accessible fluids.  
    The large number of reported studies regarding biomarkers in ALS, without the 
identification of a common, specific marker, in combination with the complexity of 
the disease, could indicate that a pattern of markers may be a more tractable target as 
a diagnostic signature[29]. The assumption that it is possible to find a single, 
measurable disease marker may be unqualified when multiple factors could be 
involved in the pathology of a disease[41].  
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1.3 Cerebrospinal fluid 
 “Everything is simpler than you think and at the same time more complex than you imagine.” 

-Johann Wolfgang von Goethe 

CSF (liquor cerebrospinalis) is the liquid that occupies the space between the 
arachnoid matter and the pia mater. Approximately 50-70% of the CSF is produced 
in the brain by modified ependymal cells in the choroid plexus. The volume of the 
space is in the range of 135-150 mL and the production rate has been estimated to 
500 mL/day. The CSF has multiple functions, one is to protect the brain from 
physical shock but one is also to circulation chemicals and nutrients. The 
composition of CSF is dependent on the rate of production in the brain so analysis 
can offer insights of the CNS[42]. Sampling of CSF is done via a spinal tap (for 
method see Chapter 3.2.1) where CSF is collected into tubes (figure 2, left). The 
CSF is a clear (figure 2, right) low viscosity fluid with a relatively low abundance of 
protein constituents and a relatively high concentration of carbohydrates. An initial 
inquiry of patients with a suspicion of motor neuron disease usually includes cell 
number, albumin, glucose and lactate content to be measured in CSF (CSF tests 
listed for MND inquiry at Umeå University Hospital).  

 

 

Figure 2. Tubes for collection and storing CSF (left), ( 1) 1.8 mL cryo-tube, (2) 3.5 mL tube 

for storage, (3) 10 mL polypropylene tube, ( 4) 10 mL polystyrene tube. CSF collected in 

polystyrene tubes (right). 
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1.4 Human metabolomics 
“The perfect, normal person is rare in our civilization.” -Karen Horney 

The human metabolome is defined as the complete set of small molecules (e.g. 
amino acids, fatty acids, mono- and di-carbohydrates etc.) deriving from human 
metabolism[43]. It is a complex system where the chemical substances may 
originate from metabolism, gut micro flora[44], drugs, phytochemicals[45] etc. of 
various origins and environments. The metabolites present in a metabolome can be 
studied using two different approaches, these being; (1) A relatively small set of 
molecules are analyzed based on a pre-defined hypothesis, or (2) global screening to 
quantify and identify as many metabolites as possible, i.e. metabolomics. The 
former is the traditional approach within molecular biology and has successfully 
identified many of the components and interactions known in human metabolism 
today. However, the drawback is that the vast complexity of the biological system is 
not generally considered, so much could remain undiscovered. For this purpose, 
metabolomics as a part of a holistic systems biology approach may give more 
comprehensive information[46]. 
    Metabonomics was introduced as a scientific field in 1999 by Nicholson et al [47] 
and short thereafter the term metabolomics was coined by Fiehn and coworkers[48]. 
These terms have similar definitions[47, 48]. However, metabonomics is often 
referred to as being nuclear magnetic resonance (NMR) based and used to describe 
multiple (but not necessarily comprehensive) metabolic changes caused by a 
biological perturbation. Metabolomics, on the other hand, has been established as 
being mass spectrometry (MS) based and places a greater emphasis on 
comprehensive metabolic profiling, regardless of the species being investigated. 
Nevertheless, the first studies performed according to the definition of metabolomics 
were published over 40 years ago[49, 50]. Recently a study of the human 
metabolome reported a major breakthrough in the field. In this study, Shrekuumaar 
and co-workers found sarcosine (the methylated form of glycine) as a putative 
biomarker for tumour progression in prostate cancer[51]. This result highlighted the 
potential of metabolomics as an important tool in disease diagnosis and prognosis 
for the future. A review of metabolomics and the search for biomarkers for use in 
the clinical arena was recently published by Nordström et. al.[52]. 
    In theory human metabolomics aims to unravel the quantity and identity of all 
these small molecules in the human metabolome. This poses a great challenge since 
the biochemical species belong to diverse chemical classes and may be present in 
concentrations spanning a wide dynamic range [53]. Practically, human 
metabolomics instead strives to characterize the human metabolome by analysis of 
various biofluids (e.g., CSF, blood, urine, saliva, microdialysis fluid etc.) and 
tissues. Even though the system is dynamic, studies conducted on human subjects 
often consist of samples taken at one time point for each subject, providing only a 
snapshot of the metabolic status. There are studies where multiple samples taken 
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over time have been investigated by metabolomics and metabonomics [54-56] but 
there are still not many studies performed that look in to human metabolism [54, 57-
59].  
    Besides the potential to become an important tool for the discovery of new 
markers for diagnosis, prognosis and treatment of disease, metabolomics could also 
provide indications of pathology by highlighting specific affected pathways. 
However, identification of the detected metabolites is of high importance for 
success. Identification is still one of the great obstacles for metabolomics since few 
resources are available[60]. The Human Metabolomics Database (HMDB) is the 
most complete and comprehensive database in the world that collects metabolite and 
human metabolism data and was only quite recently developed by Wishart and 
collaborators[61]. The CSF metabolome was the first biofluid to be 
comprehensively characterized in HMDB[42, 61]. A minimum reporting standard 
regarding chemical analysis and practices related to all aspects of metabolomics has 
been proposed by the Chemical Analysis Working Group and Metabolomics 
Standards Initiative[62]. Hopefully, a combination of these efforts will result in 
more accessible information regarding the difference of specific metabolites in 
various studies and how the studies were performed.   
    It may be fair to say that studying the human metabolome is a difficult and 
challenging, but exciting task that can generate vast amounts of data to help describe 
a complex reality. To deal with the size and the complexity of the data, suitable tools 
for data analysis, interpretation and visualization are required.  
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1.5 Chemometrics 
"We are drowning in information but we are starved for knowledge." -John Naisbitt 

Chemometrics constitutes the information aspect of complex systems and should be 
seen as a concept for turning data into information[63]. This is achieved by 
combining statistical experimental design[64-66] and multivariate analysis[67-71] to 
extract information from complex data that has been optimized to contain the 
relevant information[72].  
    When chemometrics was introduced as a computational field it was mainly 
applied to chemical problems and multivariate analysis was primarily used for 
interpretation of spectral data[73]. The method has extended and today 
chemometrics is also commonly applied within biological research. 
    Many analytical platforms and technologies have developed over the last decades 
to allow samples and variables to be measured in a high-throughput manner. Due to 
this, it is easy to generate large amount of data potentially stored in data tables. Data 
tables may be useful for gathering the vast amount of data but still they will not 
simplify what the data means[63]. For this purpose modeling of the data may 
provide a better understanding. The methods commonly used within chemometrics 
are projection based methods. These can be used to produce models based on 
experimental data (also referred to as semi-empirical modeling or soft models). Even 
though it is today possible to measure many variables in metabolomics, the access to 
samples is still limited especially within the study field of human disease. This 
results in data tables consisting of a larger number of characterized variables than 
samples. The data will also contain noise and the variables being highly correlated. 
Missing values may also be present in the data. Chemometrics provides 
sophisticated multivariate statistical tools for handling such data[63]. 
    There are three basic categories of multivariate analysis used within 
chemometrics being 1) exploratory analysis 2) classification analysis and 3) 
regression analysis. The most widely used multivariate methods are the 
unsupervised method principal component analysis (PCA) [69] and the supervised 
methods partial least squares (PLS) [70] and PLS-discriminant analysis (DA)[74], 
which have recently been further developed into orthogonal PLS (OPLS) [68] and 
OPLS-DA[67]. These methods will be further outlined in Chapter 3. 
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2. Aims of this work 

 “Nothing is impossible; the word itself says ‘I’m possible.’”  -Audrey Hepburn 

The overall aim of this work was to find a biomarker or a set of biomarkers of 
diagnostic value to allow a more accurate diagnosis of ALS at an earlier stage. 

To achieve this, the specific aims have been to:  

• Investigate the stability of metabolites and metabolite patterns in human 
CSF samples in relation to variations in collection and storage procedures. 

• Establish a working method for predictive metabolomics in human CSF. 

• Make multivariate comparisons of the human CSF metabolome between 
matched control and ALS subjects to look for systematic differences in 
relation to ALS and ALS subtypes. 
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3. Methods 

"Everything should be made as simple as possible, but not one bit simpler”.  -Albert Einstein 

This chapter aims to present and discuss the methods used throughout this thesis. 
Focus will be on explaining how the chemometric thinking has been applied in all 
steps of the process to try to obtain tailored studies, structured in a way to allow the 
multivariate methods to extract information out of the complex data generated. 
Illustrating examples will be given from papers I-V. 

3.1 Design of metabolomics studies 

”A goal without a plan is just a wish.”-Antoine de Saint-Exupery 

Even though metabolomics aims to perform a hypothesis free screening of the 
metabolome, the designing of the studies is not. Scientific research is a process of 
guided learning i.e. collecting information (performing experiments, collecting 
information from literature etc.) about an area and further to decide whether the 
material supports or discards a pre-defined hypothesis. From this new hypotheses 
and knowledge may be generated. The object of statistical methods is to make that 
process as efficient as possible[64]. How a study is designed will decide the quality 
of the data, the information content in the data and without doubt decide what kind 
of conclusions may be drawn from it. Within clinical research some common study 
designs are the cohort studies, cross-sectional studies, case-control studies and case 
studies. All studies may generate useful results, but will provide different levels of 
interpretation. Depending on the purpose of the study, one or the other may prove 
more useful related to the cost, time and effort invested. However, for performing 
quality control of collection and storage of samples a basic statistical approach such 
as a factorial design can provide structure and interpretability. 

3.1.1 Case –control studies  

Case-control studies are often preferred when investigating rare diseases. When 
studying a human disease using a metabolomics approach, a well designed case-
control study can provide data controlled for confounding and biases (age, sex etc.). 
    Case-control studies are based on subjects reported as cases of a condition (e.g. 
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subjects diagnosed with ALS) compared to subjects not reported as cases of the 
same condition (e.g. subjects not diagnosed with ALS). The most important issue in 
the case-control study is how the subjects are selected. The subjects should 
preferably be matched for all possible characteristics (age, sex, lifestyle etc.) to 
avoid introducing bias into the data.  

3.1.2 Factorial designs 

A full factorial design (FFD) is a common statistical experimental setup that was 
described for the first time in literature by Fisher in the early 1920’s[75]. A FFD is 
an orthogonal design which investigates each variable at two or more discrete levels. 
Usually additional experiments are added in the center of the design to allow 
curvature and reproducibility of the model to be investigated (figure 3). FFDs often 
give too many experiments, hence a more convenient choice is to use a reduced FFD 
in terms of number of experiments i.e. a fractional factorial design (FrFD). 
However, using FrFD may be problematic when it comes to interpretation of the 
results since the investigated variables become confounded with each other. Another 
potential problem using FrFD is when the collection and analysis of samples is 
complex and samples may be lost due to technical difficulties.  

 

 

Figure 3. A FFD setup for investigating three factors (age, sex and disease) in two levels with 

three center points. 

3.1.3 Design of studies in the presented work  

Early in this project I was told “You can’t design the patients in your studies”. 
However, what can be done is to design the studies to fit the patients.  

3.1.3.1 A tailored design  

In paper II, the purpose was to investigate how alternations of collection and 
storage procedures may affect the concentrations of metabolites in CSF. To address 
factors that may influence the quality and to create an overview of time-spans to 
investigate, a few normal collection procedures were observed. Based on the regular 

Age

Disease

Sex
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procedure, factors (i-iv) were selected for investigation.   
 
i) type of plastic tube (polystyrene/polypropylene) 
ii) time (0, 10, 30, 90, 150 min) 
iii) storage temperature (-80 °C/-20 °C) 
iv) subject (age, diagnosis) 

The type of plastic tube used for sampling is commonly made of polystyrene or 
polypropylene (figure 2, left). The time the sample was stored in room temperature 
differed between 10 or 30 min, if the sample was not divided into tubes for storage 
during this period of time, the samples were first put in refrigerator for short time 
storage. Therefore the samples in this study design were stored first in room 
temperature and samples to be stored for longer periods were first stored for 30 
minutes in room temperature followed by 60 or 120 minutes in refrigerator. The 
possibility of freezing the sample immediately by placing them in liquid nitrogen 
was also included as a time factor denoted as 0 min. However, for this purpose a 
smaller type of cryotubes had to be used (figure 2, left). The temperature of freezer 
storage was also included as a factor. Samples are regularly stored at -80 °C, 
however in some rare cases storage at -20 °C may have been used over a shorter 
period of time. The combination of factors most resembling a “normal collection 
and storage procedure” was selected for replicates (e.g. sample collected in a 
polypropylene tube, kept 30 min in room temperature and stored at -80 °C). To 
allow for all possibilities CSF had to be collected into nine 10 mL tubes (4 
polystyrene, 5 polypropylene) and four 1.8 mL cryotubes giving a total of 22 
samples for each sampled subject (figure 4). The replicate tubes were collected as 
the fifth and last tube, allowing to check for changes from early to late collection. 
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Figure 4. Tube setup for collection of CSF. PP=polypropylene tubes, PS=polystyrene tubes, 

numbers are given according to the time in room temperature/refrigerator storage. 

To check for variability between subjects, repeatability over time and between 
subjects with varying diseases, we included many subjects in the study. By the time 
the analysis was started the total number of patients agreeing to contribute could not 
be fully determined. Hence the design needed to have the ability to be further 
extended. When samples had been collected from 13 male patients (6 ALS, 7 non-
ALS) we terminated the study giving a total of 286 CSF samples. 
    In order to provide biological information related to disease as well as covering 
the complete set of variance in the investigated factors from collection and storage, 
the subjects were divided in subgroups of two (one ALS and one non-ALS). This 
allowed an adequate number of samples to be analyzed by gas chromatography 
coupled to mass spectrometry (GC-TOFMS) in the same run. A grouping was 
performed according to a scattered arrangement in the scores space of a principal 
component analysis [76, 77]. More details can be found in paper II. 
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3.1.3.2 Mining of a CSF biobank  

In paper IV the main goal was to find a marker or a set of markers that could be 
developed into a diagnostic tool for ALS. The study also aimed to compare SALS 
with FALS and cases with and without a mutation in the SOD 1 gene in order to 
detect possible perturbations in the metabolite patterns in relation to these sub-
groupings. For this purpose a case control study was chosen and the biobank at 
Umeå University Hospital was mined for samples of subjects with different subtypes 
of ALS and suitable control samples. The selection of subjects for the study had to 
be representative for the diseased population and any discovered putative marker or 
marker pattern should preferably be valid for patients of all ages and both genders. 
Alternatively, be specific for defined subsets of the population. To allow for result 
verification two subsets containing 79 samples each (39 ALS and 39 matched 
controls) were selected from the available CSF samples. The samples were selected 
to include both male and female subjects ranging in age between 40-80 years (figure 
5). In addition, samples were selected to include patients with mutations in the 
SOD1 gene and other subtypes of ALS (pure UMN or LMN disease or PBP). 
Control samples were then matched for sex, age and time in freezer storage. The 
controls were selected to include differential diagnoses to ALS, other neurological 
conditions not mimicking ALS as well as healthy subjects.  
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Figure 5. Scheme showing how samples from ALS patients were selected and how matched 

control samples were assigned. 

3.2 Generation of metabolomics data  
“If there is no struggle, there is no progress.” -Frederick Douglass 

3.2.1 CSF collection 
Collection of CSF is done by performing a spinal tap. A needle is placed between 
the vertebras in the lower back while the patient is lying in a resting fetal position. 
The internal pressure can be measured prior the collection. A possible side-effect of 
performing a spinal tap is that some patients develop post-dural puncture 
headache[78]. The CSF is collected into tubes and sent for analysis or stored in -80 
°C for future analysis. The procedure is most often performed for diagnostic 
purposes and when MND is suspected the CSF is analyzed for albumin, glucose, 
lactate and cell count. Depending on suspicion of disease additional test may be 
carried out. 
    CSF samples from ALS and control subjects were initially drawn as a part of the 
diagnostic evaluation of the patient during the visit at the Umeå University Hospital. 
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The ALS patients fulfilled the revised El Escorial criteria for ALS[14]. The spinal 
tappings were performed by the same physician at all times. A 22 G non-traumatic 
needle was used and the CSF was collected between the L3-L4, L4-L5 or L5-S1 
while the patient was lying down on the right side. Most of the spinal taps were 
performed in the morning and the patients had been told to eat a large breakfast 
before arrival. The ALS subjects included in papers IV and V were genotyped for 
SOD1 gene mutations[79].  

3.2.2 Extraction of metabolites from CSF 

In the beginning of the first study, no extraction method for global analysis of the 
CSF metabolome had to our knowledge been reported. Thus, a slightly modified 
version of  the standard in-house developed extraction method for blood[80] was 
tested and evaluated for CSF (paper I). In 2007 Pears et. al presented a protocol for 
GC-TOFMS of CSF[81]. No extraction procedure for CSF was though presented. In 
2008 Wishart et al[42] presented work about the CSF metabolome where extraction 
and analysis of pooled CSF samples were performed.  

3.2.2.1 A protocol for extraction of CSF   

In paper I, II, IV and V CSF samples were thawed in room temperature (~25 °C) 
instead of 37 °C to avoid trigger enzyme activity. 100 µL of CSF was used for 
extraction and 900 µl extraction solution consisting of methanol and water (9:1, 
spiked with 11 stable isotope-labeled internal standards) was added. In each 
experiment the same batch of extraction solution was used to avoid introducing bias 
between samples. The amount of CSF used for extraction was varied between 100-
200 µL as a test (not reported in the papers) and high concentrations of sugars in the 
CSF were established to cause the largest problems. The CSF samples were 
extracted in a bead mill without beads followed by incubation on ice. By 
centrifugation the supernatant could be separated and transferred to GC-vials. 200 µl 
of the supernatants were dried in a speedvac with heating (max 40 °C). The dry 
extracts were either frozen and stored at -80 °C prior GC-TOFMS or derivatized 
directly.  

3.2.3 Derivatization prior to GC-TOFMS analysis 

Prior to analysis with GC-TOFMS, derivatization is usually carried out to convert 
polar compounds containing functional groups, –OH, -SH or -NHX, into more 
volatile derivatives. For this trimethylsilyl (TMS) groups are often introduced. A 
disadvantage associated with the reaction is that TMS-derivatization of reducing 
sugars usually results in five peaks (five tautomeric forms) complicating both 
identification and quantification. Another problem is the formation of side products 
(artefacts).  
    A two step derivatization procedure is the most widely used method for pre-
treating samples prior GC-TOFMS analysis[48]. In the first step O-
methylhydroxylamine hydrochloride is used to stabilize the carbonyl moieties in the 
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metabolites, resulting in suppressed keto-enol tautomerism and avoidance of 
formation of multiple acetal-or ketal-structures. For reducing sugars this additional 
step limits the formation of anomers from five to two, resulting in a reduced number 
of eluating peaks in the chromatogram. As a second step N-Methyl-N-
trimethylsilyltrifluoroacetamide (MSTFA) is added with 1% trimethylchlorosilane 
(TMCS) as catalyst to convert the remaining functional groups to TMS-derivatives.  
    The derivatization process is known to be sensitive to water. Due to this it is 
necessary to overview the dryness in the samples prior derivatization. For CSF high 
concentration of sugar compounds may be a factor causing problems when trying to 
obtain dry samples. The oximation reaction in the first step is a rather slow reaction, 
however the silylation reaction in the second step is fast. The silylation reaction will 
continue to proceed even though the samples are diluted with heptane prior GC-
TOFMS analysis, and artefacts will continue to form as a side product during 
analysis. This together with fluctuations in the sensitivity of the measurements is 
some of the factors that may introduce systematic trends in the data seen in relation 
to GC-TOFMS runorder. 
    The derivatization procedure used in papers I-V has been optimized for plant 
extracts by Gullberg et. al.[82]. A summary of the extraction and derivatization 
procedures used for CSF can be found in figure 6.  
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Figure 6. A schematic overview of the extraction and derivatization procedures of CSF prior 

to GC-TOFMS analysis. 

  

100 µL CSF + 900 µL IS extraction mix
(Methanol/water (9:1) + 11 internal standards)

CSF samples 
(thawed in room temperature)

Dried extracts 
(stored at -80 C)

Beadmill 1 min, 30 Hz
2 h on ice

Centrifugation 10 min, 14 000 rpm
200 µL samples  

Evaporization in speedvac until 
complete dryness

Thaw in speedvac 

30 µL methoxyamine (15 µg/µL) in pyridine
Shake +1 h in 70 C +16 h room temperature

30 µL MSTFA 
Shake +1 h in room temperature

30 µL heptane (15 ng methylstearate/µL)  +shake

Derivatized samples 
(for GC-TOFMS analysis)
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3.2.3 GC-TOFMS 

GC-TOFMS is a common platform for generating metabolomics data. For GC-
TOFMS analysis, pre-treatment of samples (i.e. extraction and derivatization) is 
often necessary. 

3.2.3.1 Protocol for GC-TOFMS analysis    

GC-TOFMS analysis in papers I-V was carried out according to a standardized 
protocol developed for various biofluids and plant extracts [80, 82]. 1 µL aliquot of 
the derivatized samples was injected splitless by an autosampler into the GC (10 m 
× 0.18 mm (inner diameter) fused-silica capillary column (chemically bonded with 
0.18 µm DB 5-MS stationary phase). A temperature program was used where the 
temperature of the column was kept steady on 70 °C for 2 min. The temperature was 
then increased by 40 °C/min until 320 °C was reached. The temperature was kept at 
320 °C for 2 min before the oven was allowed to return and stabilize at 70 °C. This 
is a rather short program developed for high-throughput analysis.   
    In the mass spectrometer ions were produced by hard ionization (70 eV electron 
beam, 2.0 mA) to allow for comparisons of the mass spectra against in-house and 
publicly available databases. Masses were acquired between m/z 50-800, at a rate of 
30 spectra s-1 after a solvent delay of 165-170 seconds. This long delay prohibited 
lactate to be discovered in the samples but the delay was necessary to establish the 
baseline of the chromatograms. 
    In the beginning of the analysis a mixture of standardized alkanes (C8-C40) was 
analyzed to allow for retention index (RI) calculations in the system. For sensitivity 
assessment methylstearate (5 ng/µL in heptane) are usually analyzed between every 
6th samples. For almost all of the GC-TOFMS analysis (papers I-V) the samples 
were analyzed in randomized order. However, randomizing the runorder may 
introduce bias of cases and controls. To avoid this, cases and controls were first 
randomized within each group. The runorder was then constructed by making sure 
that every second sample was a control.  

3.2.3.2 Optimization of GC-TOFMS runorder for matched samples   

To allow for result verification in papers IV and V, two sample subsets were 
constructed containing 78 samples each (39 ALS and 39 matched controls). The first 
subset was analyzed in a runorder created by the common randomization process. 
However, even by performing such a randomization there is a possibility to end up 
with a runorder bias affecting the comparison of the matched pairs (ALS vs. 
matched control). For this purpose the runorder for the second dataset was 
constructed by randomizing each pair (ALS-matched control) followed by 
randomizing which sample within the pairs to measure first (to avoid analyzing all 
ALS prior the matched control or vice versa). This procedure minimized the effect 
of the drift from the GC-TOFMS analysis between the matched samples as shown in 
figure 7.  
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Figure 7. Optimization of the runorder for matched controls in two sets of samples. Left; 

samples randomized within each group and running every second sample from each group. 

Right: samples randomized in matched pairs with permutation of the runorder. 

3.2.4 GC-TOFMS data for multivariate data analysis   

In metabolomics the goal is to detect differences between samples based on their 
metabolite composition. For this purpose, multivariate analysis[67-70] is often used. 
These multivariate methods can handle two dimensional data structures. Using 
hyphenated methods for analysis, such as GC-TOFMS, information from both the 
chromatographic and the spectral dimension is provided giving a two dimensional 
data structure for each sample. In metabolomic studies the chromatography almost 
never separates all metabolites, providing chromatograms with overlapping peaks. 
This greatly complicates compound quantification and identification and thus also 
comparisons by multivariate analysis. In addition, when analyzing multiple samples 
as in metabolomics, the data also becomes three-dimensional. So, in order to be able 
to apply multivariate methods the data must be converted into a suitable format.   

3.2.4.1 Hierarchical multivariate curve resolution (HMCR) 

HMCR[83] is a multivariate deconvolution method able to divide the information 
from such three-dimensional data structures into two separate, but still linked two-
dimensional parts. One part consisting of the relative concentration of resolved 
chromatographic profiles (e.g. metabolites) for all samples. Thus, HMCR can be 
regarded as a type of ‘mathematical chromatography’. For multivariate analysis it is 
important that the samples are characterized using the same variables, meaning that 
the columns in the two-dimensional data structure is in fact the concentration of the 
same metabolite. To check for this feature, validated-HMCR was recently 
developed[84]. The second part extracted by HMCR consists of the spectral 
information. For each resolved chromatographic profile a corresponding mass 
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spectra is provided, which may be used for identification of the resolved compound. 
Multivariate curve resolution is data intensive. For this reason the data is divided 
into chromatographic windows and the deconvolution is performed for each window 
separately (hence the name hierarchical). Still, the method is rather time consuming 
and a limited number of samples can be resolved simultaneously. 

 3.2.4.2 Predictive HMCR 

In order to use metabolomics as a diagnostic tool, the possibility of including and 
predicting the faith of new samples is crucial. In paper III a new feature of HMCR 
was implemented and tested that allowed new samples to be predictively resolved 
using the same parameters as used for resolving a set of representative model 
samples. This was achieved by resolving the new samples by utilizing the spectral 
information obtained for the previously resolved samples in the same defined time-
windows. As a result of this the same metabolites as in the initially resolved samples 
will be quantified in the new samples and metabolites not present in the initially 
resolved sample set, will not be found in the new samples. For this reason it of great 
importance to use a representative subset of samples to provide valid metabolite 
information.  
    In paper III this was exemplified on a relatively small number of subjects but the 
same methodology can be used in order to, in theory resolve unlimited amounts of 
samples in a short time making it not only a potential tool for diagnostics but also a 
high throughput  global metabolic screening method[85]. 
    In papers IV and V the predictive feature of HMCR made it possible to combine 
the two datasets characterized at different points in time. This allowed modeling of 
all subgroups of ALS (FALS, SALS, with and without mutations in the SOD1 gene) 
together.      

3.2.4.3 Manual calculations of metabolites 

HMCR provides a matrix of resolved chromatographic profiles and mass spectra for 
identification that can be used for multivariate modeling. However, in some areas of 
the chromatograms the curve resolution performs insufficient. This is especially true 
for CSF where many metabolites are low abundant relative to urea, glucose (and 
other sugars) present in the samples at high concentrations. Smaller peaks covered 
by large co-eluting peaks are often missed by HMCR due to low variation between 
the samples. Large peaks (e.g. glucose, urea) are however split into many resolved 
profiles hence providing a too high number of resolved peaks. All the included IS 
are isotope-labeled endogenous metabolites. A problem using HMCR is an overlap 
of information from IS with endogenous metabolites in the resolved spectral 
dimension, providing un-precise calculations of the relative concentrations.  
    In paper I a method for manual calculations of small peaks in CSF was presented 
using a in-house developed Matlab based script (MATLAB 7.3 (R2006b), 
Mathworks, Natick, MA). The IS was used to locate the chromatographic window 
for the compounds by plotting the intensity of specific mass channels for the IS. 



 

33 

When the chromatographic areas were found for the IS, the area under curve was 
integrated for mass channels belonging to the endogenous compound. Some 
compounds split by HMCR were also recalculated using this method, except that the 
RI was used from HMCR to locate the chromatographic peaks and the mass 
spectrum from HMCR was used to estimate mass channels unique for the 
compound. This method was also used to extend the data in papers II, IV and V. 

3.2.5 NMR data for MVA   

NMR spectroscopy is a common analytical technique used to characterize bio-
molecules. Today it is a commonly used platform in the area of metabonomics. 
    In metabonomics, proton NMR (1H NMR) is combined with solvent suppression 
techniques since biological samples contain water. Water will produce a very intense 
signal in the NMR spectrum that will obscure the peaks from the metabolites in the 
spectrum. The peak position from certain metabolites in the NMR spectrum is also 
sensitive to pH changes in the samples and peaks from certain metabolites may 
migrate for samples recorded at different pH.  

3.2.5.1 NMR of CSF   

In paper II NMR was used to analyze samples from one subject. 450 µL of CSF 
was combined with 50 µL D2O. The 1H NMR experiments were acquired on a 600 
MHz instrument equipped with a cryoprobe to increase sensitivity. For pre-
saturation of the water-signal excitation sculpting was used[86]. Quantification of 
metabolites was achieved using the NMR Suite software (Chenomx Inc., Canada) 
developed to identify and quantify metabolites in NMR data.  
    NMR may give complementary information to GC-TOFMS analysis. In paper II 
some peaks were found to be shifted in the NMR data between samples stored at -
20°C compared to those stored at -80 °C. This suggested that a change in pH may 
have been introduced between CSF samples stored at different temperatures.  

3.2.5.2 pH of CSF   

In a publication from 2008 by Wishart et al.[42] CSF was reported to be heavily 
buffered by bicarbonate ions and to maintain a constant pH of 7.3.  
    Follow up studies of our NMR findings in paper II by measuring pH and pCO2 
on two samples, one stored at -20 °C and one stored at -80 °C (otherwise identically 
handled) showed a clear increase of the pH of the sample stored at -20 °C (The 
expected pH of CSF is reported to be 7.32.[87, 88]) (figure 8). Analysis of pH/pCO2 

was then performed on 25 of the CSF samples (from the 13 patients included in the 
study). The analysis showed clearly that samples stored at -20°C had an increased 
pH (above 9) and almost all CO2 had vanished from the samples compared to the 
ones stored at -80 °C. Among the samples stored at -80°C the pH varied from just 
below 7 to slightly above 8. Some of the samples with lower pH showed a strikingly 
high amount of CO2 that could not be explained. The increased pH and the lower 
amount CO2 found in the samples stored at -20 °C could probably be explained by 
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the increased storage temperature. At temperatures above -78 °C, CO2(s) has the 
ability to sublimate to CO2(g)[89]. 
    The literature was surveyed for information regarding CSF and pH relations and 
as early as in 1925 a study by MqQuarrie et. al[88] had realized this feature of CSF, 
however discussion about implications for metabolomics and metabonomics studies 
regarding variability of pH in CSF could not be found.  
    The body have several ways to buffer for pH changes. In blood, haemoglobin 
counts for the largest part of the H+-removal, followed by other proteins and a 
buffering system of phosphates. Carbonic acid/bicarbonate accounts for the smallest 
part of the buffering in blood.[90] For CSF the buffering of pH depends largely on 
the carbonic acid/bicarbonate system (as suggested by Wishart et al.), and the pH in 
CSF will therefore depend on ventilation. The volume of the CSF space in vivo is 
constant, however when CSF is sampled the equilibrium is disturbed and CO2 can 
diffuse to the surroundings. This can hence force the equilibrium towards CO2 with 
implications that the pH will increase in the samples due to a lower concentration of 
hydrogen ions ([H+]). 

 

In order to measure this effect in relation to collection of CSF in tubes of different 
size, CSF was further collected from three patients according to a similar design 
setup (as the previous 13 patients). Three different tube sizes were used for the CSF 
collection in this batch and a time-span practically achievable was evaluated 
simultaneously. To mimic a worst case scenario (and a close to worst case scenario), 
two samples were collected in 10 mL tubes. One tube was capped and one was kept 
without lid to allow for free ventilation with the surrounding air. Both tubes were 
kept for more than 150 minutes in room temperature. The small tubes were filled 
with CSF, the medium tubes were filled to about half the volume and the largest 
tubes were only filled with a small volume in the bottom of the tube. All samples 
were analyzed for pH/pCO2 and the worst case scenario samples were analyzed last. 
After the final analysis, the sample from the tube with closed lid was vortexed and 
new measurements were carried out. The results clearly showed that CSF collected 
in the small tubes had a pH value closer to 7.32, while the larger tubes showed 
increased pH (figure 8). From this we concluded that open tubes and vortexing of 
samples will cause the pH to rise. A take home message from this study was to 
control the sample handling of CSF and avoid contact with air to maintain a correct 
and stable pH. 

H
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- H2CO3 H2O + CO2

H
+
 + HCO3
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Figure 8. pH was increased in samples stored at 

tube sizes for collection of CSF were found to keep the pH closer to the expected pH 7.32

(right).      

3.3 Multivariate analysis
“Failure is success if we learn from it.” -Malcolm Forbes

PCA and PLS are multivariate projection methods commonly used within 
chemometrics. In this work PCA [69] was 
OPLS/OPLS-DA[67, 68] a further development of PLS, 
systematic patterns between sample groups and to 
metabolites causing the separation between 

3.3.1 PCA   

PCA was first described by Karl Pearson in 1901
of the most widely used latent variable based method. Latent variables are variables 
that may not be directly observed or measured, but can be described or measured in 
variables directly affected by an underlying factor. For metabolomics this may be a 
perturbation of several metabolites remaining from the same pathway
an underlying biological mechanism (such as 
    PCA compresses correlated variables in a multivariate data matrix 
orthogonal principal components (latent variables).
used to describe the variation within the data
components. PCA can be calculated using the Nonlinear Iterative Partial Least 
Squares (NIPALS) algorithm or alternatively by using 
Decomposition (SVD)[92, 93]. 
    The data (for instance metabolomics data) 
column describes a measured variable (e.g. 
concentrations of the measured variables (metabolites) for 
matrix X will be approximated by a matrix product of lower 
where T is a matrix of scores that summariz
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pH was increased in samples stored at -20 °C compared to -80 °C (left). Smaller 

F were found to keep the pH closer to the expected pH 7.32 

Multivariate analysis of metabolomics data 
Malcolm Forbes 

PCA and PLS are multivariate projection methods commonly used within 
was used to explore the data and 

a further development of PLS, was used to detect 
systematic patterns between sample groups and to extract information regarding 

separation between these groups. 

first described by Karl Pearson in 1901[91] and has since then become one 
used latent variable based method. Latent variables are variables 

that may not be directly observed or measured, but can be described or measured in 
variables directly affected by an underlying factor. For metabolomics this may be a 

metabolites remaining from the same pathway, perturbed by 
(such as a disease).  

PCA compresses correlated variables in a multivariate data matrix X into A 
orthogonal principal components (latent variables). A is the number of components 

to describe the variation within the data, hence the number of model 
using the Nonlinear Iterative Partial Least 

algorithm or alternatively by using Singular Value 

(for instance metabolomics data) is stored in a matrix X, where each 
column describes a measured variable (e.g. a metabolite) and each row describes the 

sured variables (metabolites) for a sample. In PCA, the 
will be approximated by a matrix product of lower rank than X, TP

T, 
a matrix of scores that summarizes the variables (metabolites) in X.  P is 
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a matrix of loadings that reflects the importance of the variables in X for describing 
the principal components (latent variables) T. The first principal component will 
describe the largest variation found in the data. The second principal component will 
be orthogonal to the first component and describes the second largest variation 
within the data and so on. In order to estimate the number of principal components 
to use in the model, cross validation (CV)  is the most commonly used method[94]. 
The variation not captured by the principal components is stored in a residual matrix 
E. The residual matrix should explain only low-variance stochastic events (i.e. 
noise) if the CV has performed sufficiently. A PCA model can be summarized as 

X = TP
T + E  

Since metabolomics data consist of multi-collinear variables (i.e. metabolites) the 
number of extracted scores T is often much less than the number of measured 
variables in X.  
    A useful feature of PCA is the possibility to overview the multivariate data by 
plotting the principal components. The data may be viewed as one, two- or three-
dimensional pictures to map relationships between observations and variables (i.e. 
scores and loadings) to uncover clusters, groupings and trends and to discover 
deviating observations and variables (figure 9). 
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Figure 9. PCA can unravel groups, trends and deviating samples in the data. Here a plot 

shown of the scores from the two first principal components (t1/t2). The first score describes 

the largest direction of variation in the metabolomics data and the second score the second 

largest variation. The latent variables may for instance hold information related to sex, age 

etc. 

3.3.2 PLS and OPLS  

Multivariate regression methods are useful for relating measured variables (such as 
metabolites) in a matrix X to properties in a vector y or matrix Y (for instance 
continuous variables such as the age, weight or blood pressure of patients or discrete 
variables such as e.g. disease). These methods are called supervised methods since 
information about the response is used to find the linear relationship between X and 
Y.  It can be shown that the multiple linear regression (MLR) method, also called 
Ordinary Least Squares (OLS)[73] provides the optimal solution to find the 
maximum fit of X to Y (i.e. minimizing the sum of squares of the residuals (the 
mismatch between the predicted and measured values of Y). The linear relationship 
between X and Y can be described as 

Y= XB + F 

Where B is the regression coefficients and F represents the residuals (the variation 
that cannot be explained by the model). When B is known, applying this solution to 
new samples measuring the same variables in X, Y can be predicted for new 
samples. The key is then to find B, and for MLR the solution to B becomes  
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B = (X
T
X)

- 1 
X

T
Y 

However, if the matrix X contains co-linearity among the variables, or if the number 
of columns is larger than the number of rows, the inverse (XT

X)
- 1  does not exist and 

hence the equation for B cannot be solved. This is more or less always the case for 
metabolomics data where samples are characterized by a number of variables (e.g. 
metabolites) that far exceeds the number of characterized samples and the variables 
are co-linear and noisy. Therefore alternative methods are needed to model 
metabolomics data.  
    PLS and OPLS are latent variable regression methods based on the same 
assumption as made for PCA, namely that X can be described by a smaller number 
of latent variables. PLS starts by finding a set of latent variables, scores T. The 
scores are used to solve the problem of finding B by replacing (XT

X)-1 with (TT
T)-1. 

The score vectors (t1, t2, t3, …, tA) are by definition linearly independent 
(orthogonal) and the inverse exist. PLS and OPLS can hence handle data structures 
where X contains co-linear variables and noise, such as metabolomics data. 
    In PLS the latent variables are calculated to maximize the co-variation between X 

and Y in relation to PCA where the latent variables are calculated to maximize the 
variation explained in X. PLS is hence focused on describing the variation in X that 
can be used to predict the response Y (e.g. the metabolites in X that contains 
information about the response Y). The PLS score vectors are formed as linear 
combinations of the original variables in X by  

ta=Xwa 

Where ta represents the a th score vector and wa represents the corresponding a th 
weight vector or the co-variance loading. 
    The models for X and Y can be summarized as  

X = TP
T + E  

Y = TC
T + F 

The PLS components can be extracted using iterative algorithms (e.g. in this work 
the PLS-NIPALS algorithm)[73, 93, 95].  
    For PLS to be able to predict properties of new samples, all systematic effects in 
X must be incorporated into T. Systematic effects may include both variation that is 
linearly dependent to Y (correlates to Y) and linearly independent to Y (does not 
correlate to Y). When Y consists of a single response (y) the scores are calculated to 
be good estimators of both X and y, meaning that the residuals from both should be 
small. In order to obtain good predictions it is necessary to deal with systematic 
variation in X unrelated to Y so that only one PLS component is needed for 
modeling a single y. Recently PLS was further developed into OPLS dealing with 
such variation. OPLS splits the variation that is correlated to Y and the variation that 
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is uncorrelated (i.e. orthogonal) to Y into two blocks. This provides OPLS with the 
advantage, compared to other generalized inverse regression models, that it 
facilitates model interpretation and visualizations of both types of variations.  
    A special case of PLS and OPLS is when the response Y is constructed as dummy 
variables holding information about the sample class. This is called discriminant 
analysis (DA) and variables in X can be extracted that separates (or discriminates) 
between the sample classes (the methods are then called PLS-DA/OPLS-DA). 

3.3.3 MVA in this work  

The combination of MVA methods used in this work was selected based on the data 
structures provided by the underlying designs.   
    In papers I and III the purpose was to model the data and check for possibilities 
to predict new samples, hence OPLS-DA was applied to a training data set and new 
samples belonging to a test data set were predicted into the model.  
    In paper II the aim was to find trends in the data caused by different collection 
and storage of CSF. The design of the study (Chapter 3.1.3.1) made it possible to 
extract variations in the metabolite patterns caused by the investigated factors (recall 
i-iv) for each subject using OPLS/OPLS-DA. The purpose of using multiple patients 
was to avoid interpreting metabolites altered by chance and instead focus on 
metabolites that were commonly affected to provide information of which 
metabolites were more prone to change due to non-biological factors. Hierarchical 
modeling using PCA to describe the overall trends in the factors was therefore 
applied (figure 10).  

 

Figure 10. A schematic view of the hierarchical modeling (OPLS/OPLS-DA-PCA) of the 

designed metabolomics data in paper II. 
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Trends related to all the investigated factors (i-iv) could be found. The largest effect 
was found to be related to the storage temperature separating in the first component 
in the PCA model (figure 11, left). In the second and the third component 
differences related to tube type was found. A trend related to time and the collection 
order of the samples was also found in these components (figure 11, right). Both the 
samples collected as replicates (time 30, polypropylene tubes) and the samples 
collected in liquid nitrogen (time 0) were found to be more similar to samples 
collected before and after (recall figure 4), suggesting that the order of sampling 
may be likely to cause the trend rather than the factor time. A possible interaction of 
the tube type and the time may due to an increased in pH as seen from NMR and 
pH/pCO2 measurements. The features of PCA to detect interactions and latent 
variables that may not be directly measured in the experiment setup can hence 
provide clues about underlying factors responsible for the trends seen in the data.  

 

Figure 11. Hierarchical modeling (OPLS/OPLS-DA-PCA) revealed storage temperature to be 

the largest factor introducing perturbations in the metabolite data (left), trends in the data was 

also found in relation to tube type and the time the sample had been kept in room 

temperature/refrigerator (right).  

In papers IV and V the aim was to find metabolites separating ALS from controls, 
thus OPLS-DA analysis was applied.  

3.3.3.1 MVA in the search for biomarkers of ALS   

Unraveling information regarding disease in data acquired from human samples is a 
complex task. A complicating factor is the many sources of variation is present in 
the data unrelated to the status of disease. By not considering and taking such 
variation into account severe misinterpretations of the data can occur. 
    Looking specifically at ALS, samples have often been stored for many years 
before an adequate number to include for statistical comparisons is obtained. 
Furthermore the age for disease onset in the patients tends to vary and the diagnosis 

-15

15

-30 30

t[3]

t[1]

-80 C
-20 C

PP

PS

PP

PS

PS

PS

PS

PS

PS

PS

PS

PP

PP

PP

PS

PP

PP

PP

PPPP

PP
PP

PP

PP

PP

PP

PP PP

PP

PP

PP

PP

PP

PS

PS

PP

PS

PS

PS

PS

PS

PS

PS

PS

-15

15

-20 20

t[3]

t[2]
150

10

150

0

0

30

90

10

30
90

150

30

0

10

150

0

30

90

10 90

150
90

30

150

90

10

30R
30

10

30Rr

0

30 R

30R

150

90

0

150

30

10

90

30

0

10

0

-80 C
-20 C



 

41 

itself is uncertain. Thus patients classified as ALS may in fact have a differential 
diagnosis and subjects classified as controls may have ALS although showing no 
symptoms or not yet been diagnosed. Besides the aspect of having false positive and 
false negative subjects, the subjects may also have other diseases (multiple diseases, 
diagnosed or not diagnosed). Patients with ALS may also have been symptomatic 
for longer or shorter times before a spinal tap is performed. In addition ALS is 
known to be a heterogeneous disease showing various rates of progression and 
degeneration of UMN and LMN.    
    From a statistical point of view these systematic variation sources can be divided 
into related metabolite patterns (e.g. disease) and unrelated metabolite patterns (e.g. 
analytical drift, different times of sample storage etc.). Heterogeneous factors may 
be disease subgroups better suitable for modeling. Possible misdiagnoses are 
regarded as errors in y and poor sample characterization are regarded as errors in X.  
    A controlled selection of samples (Chapter 3.1.3.2) can help in making factors 
known to introduce bias in the data unrelated to the disease variation. However, 
MVA should still be utilized to identify and overview patterns in relation to such 
variation sources. Because even though precaution has been taken to avoid bias, 
confounding factors can still exist in the data.  
    In paper IV PCA was used to screen for groupings, trends and deviations among 
samples. OPLS-DA was used to find patterns of metabolites separating between 
ALS and controls, FALS and controls as well as SALS and controls. To look for 
patterns in relation to ALS, cases diagnosed with ALS were modeled against their 
matched controls. All subjects were plotted in the model scores to allow 
visualization of the difference between the matched subjects. From this it was clear 
that the majority of the ALS cases differentiated from their matched control in the 
same direction. This was better visualized by subtracting the matched control score 
values from their corresponding ALS case score values (figure 12). Interestingly, the 
results showed a larger number of SALS cases not separating from the control group 
as compared to FALS cases. These samples were complicating the separation in the 
model and resulted in a model with poor predictive ability.  
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Figure 12. OPLS-DA scoreplots. Matched pairs (ALS-control) versus the first score vector 

(t[1]). ALS was modeled against controls (left) for the two datasets (above/below). Matched 

controls subtracted from the ALS in t[1] (right). 

The ALS group was further divided into FALS and SALS and remodeled against 
their matched controls. This modeling revealed a significant separation for FALS 
versus controls. This was however not the case for SALS where a significant model 
between SALS and controls could only be obtained for one of the two datasets. This 
division into ALS subgroups made it possible to detect FALS as a more 
homogeneous group as compared to SALS.  
    Two datasets were analyzed at different points in time (six months in between). 
Drifts in the GC-TOFMS instrumentation were a possible complicating factor for 
the interpretation of the data after samples in the first subset had been predictedly 
resolved by HMCR into the other. This problem with additive and multiplicative 
deviations between sets of samples analyzed with a large time-span in between has 
been recognized previously (in other types of samples such as blood) and efforts 
have been made for solving this problem. In papers IV and V this deviation 
between the datasets could be accounted for by using the matched controls for 
normalization of the data allowing modeling of all ALS cases together.  
    OPLS-DA modeling between FALS and SALS revealed a significant difference 
between the two ALS subgroups. Two SALS cases were carriers of a SOD1 
mutation and modeling was therefore also performed after excluding these subjects. 
These subjects were instead predicted into the new model. After exclusion of these 
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two subjects a stronger model was obtained and the predictions into the model 
placed them closer to the FALS group as compared to SALS (figure 13). This 
indicated that a mutation in the SOD1 gene may be a possible cause for the 
separation between FALS and SALS or the patients could in fact be FALS rather 
than SALS (not yet discovered).  

 

 

Figure 13. OPLS-DA model between FALS and SALS (above) showing two SALS cases 

with mutation in the gene encoding SOD1 included in the model and (below) showing the 

same cases predicted into the model.  
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Modeling FALS and SALS carriers of a mutation in the SOD1 gene (here called 
SOD1 positive) against SALS cases negative for SOD1 mutations (here called 
SOD1 negative) also resulted in a significant separation. Prediction of FALS (SOD1 
negative) samples into the model resulted in four out of six cases being predicted 
into the group of SALS (SOD1 negative) while two samples were predicted on the 
border between the groups. OPLS holds the feature of summarizing the disease 
related variation of the metabolite data in the first model component which makes it 
possible to combine information from several models to check for consistency in the 
metabolite patterns between models. The large bias between FALS cases and 
carriers of a mutation in the SOD1 gene could be visualized by plotting the first 
score vector (t[1]) from the FALS versus SALS model against t[1] from the model 
of SOD1 mutation (negative versus positive) (figure 14). Here, two subjects 
regarded as FALS without a mutation in the SOD1 gene were clearly classified into 
the SALS group.  

 

Figure 14. Combining information from two OPLS-DA models (SALS-FALS versus SOD1 

mutation-non-SOD1 mutation) indicated two FALS cases without mutations in the SOD1 

gene to fit into the SALS group. 

To extract single metabolites or patterns of metabolites related to the separation 
between subjects, the importance of metabolites in X can be interpreted from the 
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first correlation loading vector (pcorr[1]) alternatively the first covariance loading 
vector (w*[1]) of the OPLS-DA models. The interpretation will then reflect the 
metabolites separating the groups seen in the scores t[1]. To sort out which 
metabolites are common for the separation between matched samples, an additional 
approach was used in this work. Contribution of metabolites according to separation 
between pairs (ALS versus matched control or FALS versus matched control) were 
summarized and divided into metabolites showing an increase/decrease in relative 
concentration in subjects with ALS in relation to the control in 2/3 of the matched 
pairs (figure 15). 

 

Figure 15. A scheme for extracting variables separating the groups based on contribution of 

variables (i.e. metabolites) between individual pairs, decided by applying a 2/3 cut-off for 

significance.  

In papers IV and V glutamic acid was found to decrease in patient with ALS and 
FALS compared to controls. In addition the FALS group showed a larger decrease 
than SALS. Glutamic acid have been reported to increase in patient with ALS 
compared to controls [96, 97] although normal levels have also been reported[98].  
In paper II glutamic acid was found increased in samples stored at -20 °C. It is 
therefore important to consider such factors as bias when interpreting the data.  
    The question is whether metabolites such as glutamic acid and other more prone 
to change in relation to factors like storage are suitable to draw disease related 
conclusion from. To do so, confounding factors must be clearly overviewed and 
controlled to not misinterpret the results. This is one of many aspects that may be 
regarded as important when looking to find markers for disease. In addition, the 
metabolites and patterns of metabolites suggested for diagnosis should preferably 
not be strongly correlated to factors such as sex and age. Chemometrics provides 
tools for extraction of such information from the data[99, 100].  
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3.4 Interpretation of metabolomics data  
“All meanings, we know, depend on the key of interpretation.”- George Eliot 

MVA modeling is one way to extract information from metabolomics data. The 
meaning of the information must however be interpreted to allow for a better 
understanding and validation of the underlying biological processes. MVA may be 
used to interpret data but may also be used to generate information and input for 
further interpretation (e.g. pathway analysis, analysis by complementary techniques 
of highlighted compound classes i.e. target analyses, raw data inspection). The input 
metabolite data for such analyses should however be statistically validated, 
preferably in multiple studies, to avoid misinterpretation (which may regard 
pathway analysis in particular). However, depending on the system under 
investigation different interpretations must be performed. In paper II the changes in 
metabolite pattern originated from storage (e.g. chemical reactions in samples rather 
than metabolism). Methods used within chemometrics are considered transparent 
since the results in the latent variables can easily be traced back to the original 
variables (e.g. metabolites) in the raw data. In this study the raw data was inspected 
to confirm significant changes of concentration between samples in glyceric acid, 
glutamic acid and citric acid (fig. 16). Glyceric acid was found to be most affected 
by the different storage temperature. These results were found to be in accordance 
with the study made by Levine et. al[101]. 

 

 

Figure 16. Three acids prone to change in concentration due to storage at different 

temperatures (-20 °C/-80 °C). 

3.4.1 Bioinformatics  

When studying human disease the area of bioinformatics may provide 
complementary tools and software specifically developed for highlighting associated 
metabolic pathways in relation to metabolites found deviating in classification 
modeling. Pathway analysis can help understanding the biological relevance of 
metabolite deviations and clues may hence be provided regarding systems biology 
(the connection between genes, proteins and metabolites) and new hypotheses may 
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be generated regarding mechanisms (e.g. disease). Bioinformatics also provides 
tools for visualization and for creating maps of the metabolic pathways, thereby 
results may become more clear for interdisciplinary collaborators and enhance 
interpretability.  

3.5 Predictive metabolomics  
“The only person who is educated is the one who has learned how to learn and change.” -Carl Rogers 

Predictive metabolomics is a an approach based on implementing the chemometric 
concept to metabolomic studies to allow for screening of large sample sets, without 
compromising the quality of the data. The aim of predictive metabolomics is to 
enable diagnostic modelling and pattern verification in independent samples and 
sample cohorts. The development of the approach has been largely dependent on the 
progress of HMCR (paper III) and its ability to perform curve resolution on new 
sample sets together with the use of predictive MVA modelling. 
    An important factor for predictive metabolomics is the application of the 
chemometric concept already from the beginning of the studies and throughout its 
duration. This means utilizing experimental design protocols for designing studies 
and for deciding on inclusion of samples or optimal conditions (e.g. sample handling 
and analytical procedures). In this way the probability to generate informative data 
without systematic bias is increased. Furthermore, chemometrics is applied 
throughout the studies for data processing, analysis and evaluation to allow for 
modelling, validation and visualization of the results.  
    The methodology we use for predictive metabolomics is to our knowledge the 
only approach were both data processing and multivariate classification allows 
predictions of new samples in a high throughput fashion. Predictive metabolomics 
are today continuously developed and applied routinely within the metabolomics 
facility at Umeå University for data processing in a variety of projects ranging from 
plants to humans[56, 58, 99, 102-105]. The current focus is on further development 
of the methodology to obtain robust diagnostic systems based on whole metabolite 
profiles or specific metabolite patterns. 
    Judging from the research aiming to find metabolic markers for disease or 
treatment of disease it is highly likely that specific metabolite patterns rather than 
single metabolites will make up the predictive signatures for ALS, ALS subtypes or 
treatment response. With this reasoning it is evident that predictive metabolomics, 
with its described properties, could be valuable for finding and verifying marker 
patterns that could later be developed into diagnostic or prognostic systems. 
Furthermore, a future use of the methodology will be to use the validated metabolite 
patterns and link it to pathway predictions. In this way possibilities for a deeper 
understanding of disease progression and clues for development of new targeted 
therapies based on validated metabolic signatures may be offered. 
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4. Results and discussion of the 

papers 

”The beginning of knowledge is the discovery of something we do not understand.” -Frank Herbert  

This chapter aims to outline the objectives of, discuss and summarize each of the 
papers I-V included in the thesis.  

4.1 Paper I 
”When it is not necessary to make a decision, it is necessary not to make a decision.” –Lord Falkland  

Objective: To provide a working method for global analysis of CSF according to 
the predictive metabolomics concept. 

Results: 

(a) A working method for predictive metabolomics was presented for CSF based on 
GC-TOFMS data. 
(b) Data extension by manual calculations of metabolites not fully resolved by 
HMCR to increase the information prior multivariate analysis was implemented. 
(d) Data processing and data analysis was performed predictively to check for the 
ability of performing external validation, multiple study verifications and future 
diagnostics. 

Comments and Discussion: When the first work of this thesis was initiated no 
protocol for global metabolite profiling of CSF using GC-TOFMS or similar 
methods could be found in the literature. In order to trust our results and to be able 
to use and apply the general metabolomics approach on a routine basis for CSF, the 
methodology had to be tested and adjusted to suit some of the unique features of 
CSF. CSF is often mistaken to be easier to analyze than blood and general reviews 
of metabolomics often mentions CSF as a biofluid suitable for metabolomics 
studies. Hence, there is a common belief that methods are readily reported in the 
literature. However, most studies have been performed measuring only a few 
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metabolites or globally analyzed by NMR. The fact is that global analysis struggles 
to detect, quantify and identify a large set of metabolites derived from a range of 
chemical classes (i.e. sugars, amino acids, fatty acids, etc.) in CSF. The obstacles of 
analyzing CSF are the high levels of sugar compounds in combination with the low 
abundance of other metabolites. NMR can offer robust measurements of many 
metabolites yet have drawbacks such as low sensitivity. GC-TOFMS is commonly 
used for global screening of metabolites[106]. Within our group protocols for GC-
TOFMS based metabolomics have been developed for blood (plasma, serum)[80], 
tissue, urine, saliva and a protocol for erythrocytes was previously reported by A, J 
et al[107]. In addition, fellow scientists have on repeated occasions addressing the 
issue how we perform our global analysis on CSF using GC-TOFMS as the 
analytical platform.   
        Paper I shows how the predictive metabolomics method can be used for CSF. 
The strategy was based on HMCR uniquely combined with manual integration of 
metabolites from GC-TOFMS data.  The HMCR method used for resolving 
chromatographic profiles could not produce sufficient results for the whole 
chromatogram so in order to extend the data in such areas HMCR was 
complemented with manual calculations of metabolites to extend the information of 
the dataset prior multivariate analysis. This was followed by multivariate sample 
classification by means of OPLS-DA. An example was given on data from a real 
study from which the method was tested on a subset of samples from two patients. 
The data was divided into a training set (one patient; 22 CSF samples) and a test set 
(one patient; 22 CSF samples). The training set was resolved using HMCR with 
default settings, and the test set was predictively resolved by HMCR using the same 
settings as for the training set. OPLS-DA was the used to build a model from the 
training set data with regards to the storage temperature (-20°C or -80°C). The test 
set was then predicted into the model and the predictive accuracy was shown to be 
100%. This was an important step to assure that the predictive metabolomics 
approach could be modified and applied successfully to model the CSF metabolome. 
    Other groups have recently presented studies where global analysis of CSF has 
been successfully performed [42, 81]. However, details are missing about the 
robustness of the methods and the ability to include new samples for external 
validation. Recently Crews et. al reported a study where CSF was characterized by 
LC-MS. The study aimed to investigate analytical and biological variance in CSF  as 
compared to blood, where CSF was shown to be less variable[108].  
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4.2 Paper II 

“In every walk with nature one receives far more than he seeks.”  -John Muir 

Objective: To explore possible variations in the CSF collection procedure and 
storage conditions and investigate their effect on metabolite concentrations. One aim 
was to provide more reliable interpretations of metabolic changes in CSF samples 
from biobanks. A further aim was to give information and guidance on how to 
minimize such variation for future collection and storage of CSF. 

Results: 

(a) Changes in CSF metabolite patterns could be linked to all the investigated 
factors.  
(b) Significant alterations in metabolite concentrations were found between samples 
stored in -20 °C compared to samples stored in -80 °C. 
(c) Glyceric acid was found to be the metabolite most affected by storage 
temperature. 
(d) Glutamic acid, pyroglutamic acid and citric acid were also found to be affected 
by storage temperature, although more moderately altered. 
(e) pH was found to be increased in samples stored at -20 °C. 
(f) Use of larger tubes for collection and careless treatment of the CSF could 
potentially increase pH in samples. 
(g) Guidelines for collection and storage of CSF for metabolomics studies were 
provided. 

Comments and Discussion: Before drawing conclusions about a change in 
concentration of one or several metabolites, confounding effects should always be 
considered. In this study different procedures for collection of CSF together with 
varied storage conditions were investigated. Studies concerning quality of samples 
and sampling have been performed in blood[109], urine[109], amniotic fluid[110]. 
However the literature regarding CSF was sparse and nothing was found looking at 
of the effects on metabolites. 
    The results showed that storing CSF samples at -20 °C instead of -80 °C resulted 
in perturbations of the metabolite composition. pH was increased in samples stored 
at -20 °C compared to samples stored at -80 °C. pH-fluctuations in CSF have been 
known for a long time[88]. However, the effect of sample quality for metabolomics 
has not been considered. When storing CSF samples in biobanks for future analysis, 
-80° storage is recommended and precaution should be taken to avoid ventilation 
with air to circumvent increasing the sample pH. Metabolites found to be affected by 
collection and storage factors should be interpreted with caution as potential disease 
markers in studies concerning samples stored in biobanks. 
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4.3 Paper III 
”Prediction is very difficult, especially about the future.” –Niels Bohr 

Objective: To develop and evaluate a new feature of HMCR allowing GC-TOFMS 
data from new samples to be predictively resolved prior to multivariate modeling or 
prediction.   

(a) We showed that it was possible to predictively resolve GC-TOFMS data from 
new samples using the mass spectral information form a representative model set. 
(b) The presented findings allowed fast processing of large sample sets without 
compromising data quality. 
(c) This was the first example of the combination of predictive data processing and 
multivariate predictions allowing for development of diagnostic systems based on 
metabolite profiles or patterns. 
 

Comments and Discussion: To allow for metabolomics to be used as a diagnostic 
tool, the possibility of including and predicting new samples is crucial. In paper III 
a new feature of HMCR was introduced and tested to allow new samples to be 
resolved using pre-established settings for HMCR. Spectral information from 
previously resolved samples is used to search for the metabolites within the same 
defined time-windows for new samples. As a result of this the same metabolites as 
in the initially resolved samples will be quantified in the new samples and 
metabolites not present in the initially resolved sample set, will not be found in the 
new samples. For this reason it was of great importance to use a representative 
subset of samples to provide representative metabolite information.  
    The predictive feature with HMCR makes it possible to process in theory an 
unlimited number of samples. The time for processing is also decreased. Thysell et. 
al. have since then showed how processing of a subset of 16 samples (selected to 
cover the metabolic diversion amongst samples i.e. subjects)  took 6 h 29 min 
compared to predicting 77 test samples in 10 min (<10sec/sample)[85]. 
    This work was also a part of former PhD student’s Pär Jonsson thesis 
“Multivariate Processing and Modeling of Hyphenated Metabolite Data” defended 
in 2005. He also developed HMCR with all its features during his PhD project. 
However, for testing the new predictive feature on human samples I was responsible 
for the work regarding human plasma samples all the way from sample extraction to 
performing the tests with predictive HMCR followed by interpretation of results. 
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4.4 Paper IV 
 

“There's no strength where there's no struggle, without struggle there is no strength.” 

 –Randy (Out of Nothing Comes Nothing) 

Objective: To look for systematic differences in relation to ALS and ALS subtypes 
through multivariate comparisons of the human CSF metabolome between matched 
controls and ALS subjects.  

Results: 

(a) Dominant trends of decreased concentrations of metabolites were found in ALS 
samples in relation to control samples. 
(b) FALS subjects significantly differed from their matched controls and were found 
to be a metabolically more homogenous group compared to subjects diagnosed with 
SALS.  
(c) ALS subjects carrying a mutation in the gene encoding SOD1 were found to 
have a metabolite pattern deviating from ALS subjects without mutations in SOD1.  
(d) Glutamic acid was one of the metabolites found to be systematically decreased in 
subjects with ALS compared to controls. 

Comments and Discussion: The finding that glutamic acid was being 
systematically decreased in subjects with ALS compared to their matched controls is 
in controversy to previous studies showing increased or non altered levels in CSF. 
Interestingly, samples from subjects diagnosed with FALS differed significantly 
from their matched control samples, while this was not the case for SALS. A 
possible explanation to this was that the subgroup of SALS cases was found to be 
more heterogeneous as compared to FALS. In addition, ALS patients with a 
mutation in the SOD1 gene were found to have a metabolite pattern deviating from 
ALS subjects negative for SOD1. This might suggest a common neurodegenerative 
pathway for patients carrying mutations in the SOD1 gene. Although the study 
clearly suggests that systematic alterations in the CSF metabolome in relation to 
ALS and ALS subtypes exist, it is still too early to suggest specific markers or 
marker patterns of diagnostic value. To reach that goal verification in multiple 
studies will be required for finding common ALS related for extracting specific 
markers better suitable for classification of patients into disease sub-groups.  
    The large normal variation in humans is often addressed as a problem. However, 
by using sophisticated designs and tools for controlling and modeling such variation 
it may instead be seen as useful for finding stable marker patterns in human CSF 
more suitable for use in clinical testing. 
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4.5 Paper V 

“Arriving at one goal is the starting point to another.” –John Deweyit 

Objective: To perform a detailed investigation of possible differences in metabolite 
patterns between carriers of different mutations in the gene encoding SOD1. 

Results: 

(a) ALS patients carrying a D90A SOD1mutation were found to have a different 
CSF metabolite pattern compared to ALS subjects carrying other SOD1 gene 
mutations. 

Comments and Discussion: To date 151 mutations have been found in the gene 
encoding SOD1 in patients with ALS. However, whether or not all mutations are 
pathogenic is still unknown [11]. Many studies have been performed in order to 
unravel any common denominator for the mutants. Patients with SOD1 mutations 
have been reported to be clinically similar to patients without such mutations[32]. 
They have also been reported to have a disease onset at almost any site (known for 
ALS) although the dominating feature is spinal onset of a primarily LMN 
disorder[32, 111]. On the other hand there are no SOD1 mutation that has been 
associated with a predominantly UMN phenotype so far.  
    The question of this study has been whether patients with different mutations in 
SOD1 show common or separate features regarding metabolite patterns in CSF. We 
have discovered significant differences in the metabolome of CSF of ALS patients 
carrying a SOD1 mutation compared to ALS cases without mutations in the SOD1 
gene. We here also reported differences between subjects carrying dissimilar 
mutations in the SOD1 gene. One of the more incomprehensible mutations found in 
ALS patients and one of the most frequent reported is the D90A SOD1 gene 
mutation[112]. This mutation may be inherited as a recessive trait with a 
characteristic of a slower progressing disease associated with longer survival times. 
In studies of different populations, pedigrees with ALS caused by D90A 
(homozygous) have members of the families carrying a D90A (heterozygous) 
mutation without showing symptoms of ALS. There are however some rare (and 
fewer) pedigrees where ALS patients have been found heterozygous for the D90A 
mutation.  
    In this study we showed that ALS cases carrying a D90A mutation are different 
from ALS cases carrying other SOD1mutations on a metabolite level in CSF. The 
finding that SOD 1 mutation cases are different from cases without a SOD1 
mutation and that D90A (especially D90A homozygous) show differences in the 
metabolite patterns compared to other SOD1 mutation are supported by previous 
studies measuring neurofilament light chain in CSF indicating subjects with SOD1 
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gene mutations constitute a distinct subgroup within the ALS-syndrome, in 
particular patients with a D90 A mutation[113].  
    A number of amino acids were found to be generally decreased in the CSF 
metabolome in subjects carrying a D90A mutation compared to subjects carrying 
other SOD1 mutations, FALS and SALS. A number of unidentified compounds 
were also found altered and work to unravel the identity of these compounds will be 
needed to allow for a better understanding of potential mechanisms involved. 
    This study was performed on a limited number of ALS patients carrying a SOD1 
mutation. The cases carrying a heterozygous D90A mutation showed a rather slow 
rate of progression. To provide a broader understanding about the D90A mutation in 
the SOD1 gene, inclusion of cases showing a faster disease progression would be of 
great interest. For this purpose follow up studies in a larger cohort will be needed.  
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5. Conclusion 

 “I may not have gone where I intended to go, but I think I have ended up where I needed to be.” 

 -Douglas Adams  

Characterizing the human CSF metabolome in search for diagnostic biomarkers for 
ALS is a difficult task, which has yet to be fully addressed.  
    Working towards this goal we have developed a working methodology for 
screening and comparing groups of human CSF samples based on a comprehensive 
metabolic fingerprint. This methodology is based on a combination of GC-TOFMS 
analysis for metabolite detection and quantification, HMCR for data processing and 
multivariate data analysis for multiple sample comparisons. Furthermore, a 
predictive metabolomics approach has been developed and further modified and 
extended to work specifically for CSF. This approach allows screening of large 
numbers of CSF samples with maintained high data quality for quantification and 
identification of metabolites. It can also be seen as the first step towards developing 
truly predictive systems for diagnosis based on characteristic patterns of metabolites 
in CSF. 
    Studying the effects of collection and storage of CSF on metabolite stability for 
metabolomics analyses suggested that CSF sampled and stored under different 
conditions also expressed different metabolomic profiles. This was especially 
evident for the temperature of storage, where samples kept in -20 °C showed a 
clearly altered metabolic profile in a number of important metabolites (e.g. glyceric 
acid, glutamic acid, pyroglutamic acid and citric acid) as well as an increase in pH. 
These results highlighted the importance of standardized protocols for sample 
handling and storage in metabolomics, but also emphasized the importance of 
considering confounding factors effect on the metabolite profiles when screening 
samples stored in biobanks. 
    In this work it has also become clear that the selection of a representative control 
group is a crucial factor in human metabolomics studies. This may however be 
difficult to practically achieve for less accessible biofluids such as CSF. Another 
important factor herein is that the aim of the study must be well defined so that 
controls with the right properties for the objective are selected. In this work with the 
aim of finding markers or marker patterns specific for ALS, CSF samples from 
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patients with differential diagnoses were included as a part of the control group, 
together with healthy controls, in order to find markers separating diseases with 
similar symptoms. The controls were also matched according to age, sex and the 
time the samples had been stored. This was done to achieve the best possibilities for 
making reliable and unbiased comparisons between sample groups as well as 
between matched control and ALS samples. 
    Using the developed methodology, together with a careful study design, including 
selection of ALS samples and matched controls, we could detect significant 
systematic patterns in the data related to ALS and ALS subtypes. 
    A general pattern related to ALS was seen as a decrease in the majority of the 
detected metabolites. A similar pattern has earlier been seen in a metabolomics 
study in blood plasma for ALS versus healthy controls[30]. 
      Interestingly, we detected a larger metabolic heterogeneity among SALS cases 
compared to FALS, which were clearly more defined as a group. This was also 
reflected in models of SALS and FALS against their respective matched controls, 
where no significant difference from control was found for SALS while the FALS 
samples significantly differed from their matched controls. One possible explanation 
to this could be that ALS in fact consists of a group of diseases or that it is one 
disease with different characteristic metabolic profiles originating from different 
combinations of symptoms or being dependent on the rate of progression of the 
disease. Another possibility is that multiple mechanisms may participate in the 
pathological process.  
    It was also possible to differentiate between ALS cases carrying a D90A mutation 
and ALS cases carrying other SOD1 mutations. The reported findings have support 
in a previous studies measuring neurofilament light chain in CSF. This study 
concludes that subjects with SOD1 gene mutations make up a distinct ALS 
subgroup, especially patients with a verified D90 A mutation[113]. 
    In summary we believe that we have a well working strategy for targeting the 
CSF metabolome in the hunt for diagnostic biomarkers or biomarker patterns for 
ALS or even more likely for specific ALS subtypes. In addition we already have a 
methodology in place for developing a diagnostic system if or when we manage to 
detect and validate a biomarker pattern for ALS. However, although the findings in 
this work are interesting and some maybe even promising, there is still a lot of work 
to be done before there is a diagnostic method for ALS based on metabolomics data 
in place. Even though we might be one step closer to diagnosing ALS we are still 
only in the infancy of exploring the complexity and wealth of the metabolome in 
relation to ALS. 
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6. Research ethics 

”Great words won´t cover ugly actions, good frames won´t save bad paintings.” -Refused (New Noise) 

Medical research demands great efforts in the area of research ethics. Studies 
conducted on human subjects require an even higher level of knowledge of the 
people working with such studies. The Declaration of Helsinki is a well known, 
established set of ethical principles concerning experimentation on humans that has 
been developed by the World Medical Association (WMA). The studies included in 
this thesis have been performed in accordance with the Declaration of Helsinki and 
have been approved by the medical ethical research board at Umeå University, 
Sweden (94-135, 98-240, 03-398, 09-160M). 
    Good research ethics may be thought of as following rules and directions. This 
should however only be seen as a part of conducting ethical research. For research to 
be considered ethical there are still far more aspects to cover. For example, the 
collected samples and generated data must be stored safely. A plan for the outcomes 
of studies and how results should be used and presented is also necessary to 
consider. Performing ethical studies may be seen as being one step ahead of the 
research. 
    The CSF samples collected and used in the studies included in this thesis were 
coded at the timepoint of sampling and stored in the biobank (#472) at (Umeå 
University Hospital) in locked -80 °C freezers. Selected samples were moved in 
boxes cooled by CO2(s) to a -80 °C freezer located at the Department of Chemistry, 
secured by a temperature supervised alarm system. Data security was achieved using 
anti-virus software and backup of raw data to external hardware and DVD-discs was 
done continuously. Work in progress was secured by external backup against a 
distant server.  
    All studies were performed on CSF from human subjects. If possible the ratio 
between male/female samples selected for analysis was 50:50. In the study of 
collection and storage of CSF (paper II), only male subjects gave their informed 
consent and were included in the study. The study was designed to allow an 
extension in terms of new subjects (potentially female subjects).  
    Replicates of samples were either designed or randomly selected and deviating 
samples were excluded based on deviations in chromatograms due to technical 
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problems and/or samples detected as outliers in multivariate space. All sample 
exclusions have been reported. The results have been validated using multiple 
samples and/or datasets. The combination of methods used throughout this thesis 
provides us with tools to overview the work in a way to assure a high quality. 
    Study results have been communicated at national and international congresses in 
addition to the published works. The research has also been described to the 
community in the journal Reflex (NHR), #3, 2007 and a local newspaper.  
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9. Populärvetenskaplig 

sammanfattning 

”Det finns alltid en tredje utväg, de gäller bara att hitta den.” -Selma Lagerlöf 

I denna avhandling har vi mätt nivåer av metaboliter (små kemiska molekyler) i 
cerebrospinalvätska (den vätskan som omger hjärnan). Syftet har varit att hitta en 
eller flera metaboliter som får förändrad koncentration då man drabbas av den 
dödliga sjukdomen amyotrofisk lateralskleros (ALS). Varje år drabbas runt 300 
personer i Sverige av ALS. Ett av de mer kända fallen av sjukdomen var Rapports 
nyhetsankare Ulla-Carin Lindquist som fick diagnosen ALS våren 2003.  
    I ALS dör de nervceller i hjärnan och ryggmärgen som styr musklerna (de sk. 
alfa-motorneuronen). När nervcellerna dör avtar signalerna till musklerna vilket 
resulterar i att musklerna förtvinar. En fortlöpande försämring av muskelstyrka är ett 
av symptomen på ALS, men sjukdomssymptom har setts variera mycket från fall till 
fall. Det som är gemensamt är att sjukdomen alltid leder till döden, oftast inom 
loppet av 3 år. I dagsläget finns det ingen effektiv diagnosmetod eller behandling av 
ALS. Rilutek® är hittills det enda läkemedlet som har visats ha en viss bromsande 
effekt på sjukdomsförloppet. Studier pekar mot att ju tidigare Rilutek® sätts in, 
desto bättre effekt har läkemedlet för att öka livslängden. Det finns dock inget säkert 
test för att ställa diagnosen ALS. En rad liknande sjukdomar måste därför uteslutas 
innan diagnosen ALS kan ges. Detta medför oftast långa utredningar och risken 
finns att fel diagnos ställs om någon sjukdom med liknande symptom missas under 
utredningen. Det är i dagsläget därför av hög prioritet att hitta och utveckla en bättre, 
säkrare och snabbare diagnosmetod för ALS. 
    Arbetet som denna avhandling bygger på har främst syftat till att leta efter 
kemiska markörer som på sikt ska kunna utvecklas till en diagnosmetod för ALS. 
Genom att mäta många metaboliter är förhoppningen att öka chanserna att hitta en 
eller flera metaboliter som kan påvisa ALS. Genom att tolka mönster av förändrade 
metaboliter kan förhoppningsvis även en ökad förståelse fås för vad som händer i 
kroppen om man drabbas av ALS, dvs. få ledtrådar om vad som orsakar sjukdomen. 
    Med dagens analytiska tekniker kan man mäta hundratals lågmolekylära 
metaboliter samtidigt i ett prov. Detta genererar enorma mängder data som måste 
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omvandlas till tolkningsbar information. Kemometri är ett koncept som går ut på att 
designa och strukturera forskningsförsök så att informationen lättare kan tolkas. 
Kemometri använder sig av multivariata analysmetoder som kan hantera de 
datatyper som genereras när många metaboliter mäts samtidigt. Dessa metoder gör 
det möjligt att överblicka informationen i datat, undersöka vilka individer som är 
lika repektive olika varandra. Metoderna gör att det även är möjligt att hitta 
metaboliter som är förändrade mellan sjuka och friska patientgrupper. 
    I denna avhandling har kemometriska metoder används för att söka efter 
metaboliter som skiljer sig åt för olika typer av ALS i relation till andra sjukdomar. 
Förändrade metabolitmönster hittades i cerebrospinalvätska för patienter med ALS i 
jämförelse mot kontroller. En trend som sågs var att ALS patienter hade lägre halter 
av många metaboliter jämfört med kontrollgruppen. Glutamat (aminosyra som 
agerar signalmolekyl i hjärnan) var en av de metaboliter som sågs systematiskt 
minskad hos ALS patienterna. Halter av glutamat har tidigare rapporterats både som 
ökade och oförändrade hos ALS patienter. En av andledningarna till dessa tvetydiga 
resultat har vi i en studie visat kan bero på ostabilitet under förvaring av prover.  
    En viss grupp av ALS patienter har genförändingar (mutationer) i en gen som 
kodar för ett enzym (SOD1) i kroppen. Vi har sett skillnader i metabolitmönster i 
cerebrospinalvätskan från ALS patienter med olika typer av mutationer i denna gen 
(hittills känner man till 151 olika mutationer i SOD1). ALS är en sjukdom som kan 
ge många olika typer av förlopp (snabbare eller långsammare) och symptom 
(beroende på vilka motor neuron som är mest drabbade av sjukdomen). Det är därför 
intressant att undersöka om patienter med ALS uppvisar likheter eller skillnader i 
cerebrospinalvätskans metabolit mönster. Tidigare forskningsresultat har 
rapporterats då man sett att patienter med mutationer i SOD1 skulle kunna vara en 
sub-typ av ALS, då speciellt en av de funna mutationerna ska kunna vara 
annorlunda.  
    Genom att förstå sjukdomen bättre och kunna klassificiera eventuella fall i 
subgrupper skulle forskningen kring ALS kunna göras mer inriktad. Det skulle 
kunna vara en av nyklarna till att hitta fungerande diagnostiska verktyg samt i 
längden kunna leda till att man kan hitta verksamma läkemedel. Det kan vara så att 
det inte är en diagnostisk markör eller signatur (dvs. flera metaboliter i mönster) vi 
letar efter utan flera olika (eftersom vi fortfarande inte vet om ALS är en eller flera 
sjukdomar). Vi vet heller inte om det kommer behövas olika läkemedel för olika 
typer av ALS (eftersom vi inte vet om det är en eller flera mekanismer som orsakar 
ALS). Genom detta arbete har vi förhoppningsvis kommit lite närmare en lösning 
till gåtan om sjukdomen ALS.  

 


