From Protein Sequence to Structural Instability and Disease

Lixiao Wang

Department of Chemistry
Umeå University, Sweden
Umeå 2010
To my family

学而不思则罔，思而不学则殆
Learning without thinking leads to confusion
thinking without learning ends in danger

孔子
Confucius
Abstract

A great challenge in bioinformatics is to accurately predict protein structure and function from its amino acid sequence, including annotation of protein domains, identification of protein disordered regions and detecting protein stability changes resulting from amino acid mutations. The combination of bioinformatics, genomics and proteomics becomes essential for the investigation of biological, cellular and molecular aspects of disease, and therefore can greatly contribute to the understanding of protein structures and facilitating drug discovery.

In this thesis, a PREDICTOR, which consists of three machine learning methods applied to three different but related structure bioinformatics tasks, is presented: using profile Hidden Markov Models (HMMs) to identify remote sequence homologues, on the basis of protein domains; predicting order and disorder in proteins using Conditional Random Fields (CRFs); applying Support Vector Machines (SVMs) to detect protein stability changes due to single mutation.

To facilitate structural instability and disease studies, these methods are implemented in three web servers: FISH, OnD-CRF and ProSMS, respectively. For FISH, most of the work presented in the thesis focuses on the design and construction of the web-server. The server is based on a collection of structure-anchored hidden Markov models (saHMM), which are used to identify structural similarity on the protein domain level.

For the order and disorder prediction server, OnD-CRF, I implemented two schemes to alleviate the imbalance problem between ordered and disordered amino acids in the training dataset. One uses pruning of the protein sequence in order to obtain a balanced training dataset. The other tries to find the optimal p-value cut-off for discriminating between ordered and disordered amino acids. Both these schemes enhance the sensitivity of detecting disordered amino acids in proteins. In addition, the output from the OnD-CRF web server can also be used to identify flexible regions, as well as predicting the effect of mutations on protein stability.

For ProSMS, we propose, after careful evaluation with different methods, a clustered by homology and a non-clustered model for a three-state classification of protein stability changes due to single amino acid mutations. Results for the non-clustered model reveal that the sequence-only based prediction accuracy is comparable to the accuracy based on protein 3D structure information. In the case of the clustered model, however, the prediction accuracy is significantly improved when protein tertiary structure information, in form of local environmental conditions, is included. Comparing the prediction accuracies for the two models indicates that the prediction of mutation stability of proteins that are not homologous is still a challenging task.

Benchmarking results show that, as stand-alone programs, these predictors can be comparable or superior to previously established predictors. Combined into a program package, these mutually complementary predictors will facilitate the understanding of structural instability and disease from protein sequence.
List of publications

IV. Wang L. and Sauer UH. (2010) Prediction of protein stability changes due to single amino acid mutations. (manuscript)
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Three-Dimensional</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>IDPs</td>
<td>Intrinsically Disordered Proteins</td>
</tr>
<tr>
<td>IUPs</td>
<td>Intrinsically Unstructured Proteins</td>
</tr>
<tr>
<td>MoRFs</td>
<td>Molecular Recognition Features</td>
</tr>
<tr>
<td>MoREs</td>
<td>Molecular Recognition Elements</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>DSSP</td>
<td>Definition of the secondary structure of protein</td>
</tr>
<tr>
<td>HCA</td>
<td>Hydrophobic Cluster Analysis</td>
</tr>
<tr>
<td>CASP</td>
<td>Critical Assessment of techniques for protein Structure Prediction</td>
</tr>
<tr>
<td>SCOP</td>
<td>Structural Classification of Proteins</td>
</tr>
<tr>
<td>CRFs</td>
<td>Conditional Random Fields</td>
</tr>
<tr>
<td>HMMs</td>
<td>Hidden Markov Models</td>
</tr>
<tr>
<td>DRs</td>
<td>Disordered Regions</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristic</td>
</tr>
<tr>
<td>AUC</td>
<td>Area Under the Curve</td>
</tr>
<tr>
<td>SVMs</td>
<td>Support Vector Machines</td>
</tr>
<tr>
<td>OVA</td>
<td>One-Versus-All</td>
</tr>
<tr>
<td>OVO</td>
<td>One-Versus-One</td>
</tr>
</tbody>
</table>
Contents

1. Introduction .. 1
 1.1 Biological background .. 1
 1.1.1 Protein structure .. 1
 1.1.2 Intrinsically disordered protein ... 4
 1.1.3 Protein stability ... 8
 1.2 Machine learning in Bioinformatics .. 11
 1.2.1 Prediction of protein disorder ... 14
 1.2.2 Prediction for protein stability change due to point mutation 15
 1.3 Research goal and scope .. 16
2. Material and methods .. 18
 2.1 Construction of FISH server .. 18
 2.1.1 Structure anchored Hidden Markov Models (saHMM) 18
 2.1.2 Architecture of the FISH server .. 19
 2.2 Predicting protein order and disorder ... 20
 2.2.1 Dataset ... 20
 2.2.2 Conditional random fields (CRFs) ... 22
 2.2.3 Feature selection .. 24
 2.2.4 Model building .. 25
 2.3 Predicting protein stability changes due to point mutations 29
 2.3.1 Dataset and refinement .. 29
 2.3.2 Support vector machines (SVMs) ... 34
 2.3.3 Feature selection .. 36
 2.3.4 Non-clustered model .. 39
 2.3.5 Clustered model for 3-state classification ... 41
3. Evaluation criteria ... 43
3.1 Cross validation ... 43
 3.1.1 Procedures of cross-validation .. 43
 3.1.2 Key Application ... 43
3.2 Assessment of classification ... 44
 3.2.1 Sensitivity and specificity .. 44
 3.2.2 ROC curve .. 45
 3.2.3 S-product, Sw and ACC .. 45
 3.2.4 Matthews’ correlation coefficient 46
3.3 Assessment of Regression .. 46
 3.3.1 Pearson's correlation .. 46
 3.3.2 Mean absolute error (MAE) and the standard error of estimate 46
4. Contributions and relate works ... 47
 4.1 Construction of FISH server (Paper I, II) 47
 4.2 Prediction of order and disorder in proteins (Paper III) 48
 4.3 Prediction of protein mutation-induced stability change (Paper IV) 55
5. Conclusions ... 57
6. Future plan ... 58
7. Acknowledgement ... 59
8. References ... 61
1. Introduction

Bioinformatics is the cross-disciplinary field that uses computational methods to solve problems in the life sciences. The most impressive task in this field is to develop tools and resources that aid in the analysis and interpretation of various types of data. Development of these tools or resources requires extensive computing knowledge, as well as a thorough understanding of biology.

1.1 Biological background

1.1.1 Protein structure

Proteins are linear polypeptides composed of 20 different naturally occurring amino acids whose structures are shown in Figure 1. The chemical structure of each amino acid contains a hydrogen atom (H), an amino group (NH$_2$) and an acid group (COOH) in common which are attached to the alpha carbon (C_α). The side chain attached to the fourth valence of the C_α atom leads to the different properties of each amino acid and has a major influence on how proteins fold and stabilized. The 20 amino acids can be divided into different classes, according to the physico-chemical properties of their side chains (Taylor 1986; Livingstone and Barton 1993) as shown in Figure 2. The key features are the charge, the overall size and the hydrophobicity of the side chain. During peptide synthesis, the ribosome connects the amino acids through peptide bonds as the chain is extended. In general, the protein chain starts from the N-terminal end, which contains a free amino group to the C-terminal end that contains a free carboxyl group. The formation of a series of peptide bonds generates a “backbone” or “main chain” from which the various side chains project. The succession of the side chain atoms in order away from the backbone are usually designated as β, γ, δ, ε, ζ and η.

Proteins are generally described in terms of “primary”, “secondary”, “tertiary” and “quaternary” structure to emphasize the structural hierarchy in proteins. The sequence of amino acids in a polypeptide chain is known as the primary structure. Many natural protein sequences are found to be similar to varying extents; some are virtually identical, while others show barely significant resemblance. Any statistically significant sequence similarity is taken as an indication that the two proteins might have a common evolutionary ancestor, in which case they are said to be homologous. The sequence similarities between
homologous proteins are very powerful tools in reconstructing the process of evolution (Wilson, Carlson et al. 1977; Felsenstein 1988). Sequence identity and similarity are very powerful means for identifying the function of a newly sequenced protein, so considerable effort has been invested to develop more rapid and more powerful sequence comparison methods.

Figure 1: The chemical structure of the 20 amino acids of proteins. Only side chains are shown, except for the first amino acid, alanine, where all atoms are shown. The bond from the side chain to Cα is red. The full name, the three-letter and one-letter codes are given for each amino acid.
Secondary structure occurs mainly as α-helices and strands and non-regular structure. The α-helix has a characteristic pattern of hydrogen bonds between the backbone carbonyl oxygen atom of each residue and the backbone NH group of the fourth residue along the chain and is built up form one continuous interval of the peptide sequence. In contrast to the α-helix, the β-sheet is built up from two or more β-strands which are not necessarily consecutive along the polypeptide chain. The β-strands are laterally connected by hydrogen bonds, forming a pleated sheet. The association of beta sheets has been implicated in the formation of protein aggregates and fibrils, observed in many human diseases, notably those caused by amyloid fibre formation.

Figure 2: A Venn diagram classification of amino acids according to their properties.
Secondary structure elements usually arrange themselves in motifs which are formed by certain packing of secondary structure elements. Several motifs in a protein usually combine to form compact globular structures, which are called domains. Domains can exhibit catalytic, regulatory and recognition functions and their combinatorial varieties supply an almost inexhaustible repertoire of building blocks for complex signalling/regulatory systems. Domains can be grouped into families by sequence similarities that suggest a common evolutionary origin. Establishing such relationships has become an important first line of analysis in any attempt to uncover the function of a novel protein, or even to characterize an entire genome. Data bases such as the Structural Classification of Proteins, SCOP, data base (Andreeva, Howorth et al. 2004) contain a hierarchical clustering of domains on the class, fold, super family and family level.

Tertiary structure describes both for the way motifs are arranged into domain structures and for the way a single polypeptide chain folds into one or several domains.

A fairly large number of proteins assemble into a quaternary structure, which consists of several identical or non-identical polypeptide chains that associate into a multimeric molecule.

The traditional view of structural biology: “one sequence, one structure, one function” assumes that proteins are biologically active only when folded in their native conformation. Therefore, understanding their three-dimensional structure is the key to understanding how they function. Most protein structures are determined by X-ray crystallography and NMR spectroscopy. X-ray crystal structures are usually more detailed and contain some information about flexibility, whereas NMR techniques provide additional dynamic information concerning flexibility and motion within the protein structure.

1.1.2 Intrinsically disordered protein

In contrast to the traditional view, significant experimental and computational data have recently confirmed that many proteins or parts of proteins lack a specific 3D structure in their native state. Nevertheless, these proteins are able to carry out essential biological functions in key biological processes (Wright and Dyson 1999; Uversky, Gillespie et al. 2000; Dunker, Lawson et al. 2001; Tompa 2002). These proteins and protein segments are collectively called intrinsically disordered proteins, IDPs, or intrinsically unstructured proteins, IUPs.
In a survey, Dunker et al. have identified at least twenty-eight different functions that are associated with IDPs and ID/IU regions (Dunker, Brown et al. 2002). The most common function involves protein-protein interactions, followed by protein–DNA and protein–RNA binding. Furthermore, Dunker et al. proposed four major functional classes: molecular recognition, molecular assembly and/or disassembly, protein post-translational modification and entropic chains (Dunker, Brown et al. 2002). Similarly, as shown in Figure 3, Tompa classified these 28 functions into five distinct functional classes (Tompa 2005). Many experimental results show that disordered regions can undergo a disorder-to-order transition upon binding to a structured complement which is not the case for entropic chains whose functions directly stem from the disordered state (Tompa 2005). Disorder-to-order transitions play a crucial role in macromolecular recognition. There are numerous examples of protein-protein, protein-nucleic acid, and protein-ligand interactions involving disordered protein segments. A specialized subset of these interacting domains have been recognized as ‘Molecular Recognition Features, MoRFs, or Molecular Recognition Elements, MoREs’ (Uversky, Oldfield et al. 2005) which are protein regions that specifically participate in protein-protein interactions. These various functions of IDPs and ID regions complement the functional repertoire of ordered regions (Xie, Vucetic et al. 2007), which have evolved mainly to carry out efficient catalysis (Radivojac, Iakoucheva et al. 2007).

By using bioinformatics methods, the prediction results indicate that sequence databases such as SWISS-PROT and PIR contain proteins with significantly higher fractions of predictions of long regions of disorder as compared to the sequences in the PDB (Romero, Obradovic et al. 1998; Dunker, Obradovic et al. 2000; Romero, Obradovic et al. 2001). These data suggested that nature produced proteins which are quite rich in disorder and furthermore that the PDB is strongly biased against intrinsic disorder, probably because of the requirement for crystallization (Romero, Obradovic et al. 1998). Further analysis of predicted protein disorder indicates that eukaryotic proteins
have a higher proportion of intrinsic disorder than bacteria or archaea (Dunker, Obradovic et al. 2000). Recently, Pfam domains (Sonnhammer, Eddy et al. 1997; Finn, Mistry et al. 2010) were analysed for structural disorder. It was found that 12.14% of the domains have more than 50% predicted disorder and 4.15% are fully disordered (Tompa, Fuxreiter et al. 2009). This indicates that long disordered regions can be recognized as a distinct class of biologically functional protein domains.

There are several significant differences between IDPs and structured globular proteins and domains regarding their amino acid sequences, such as amino acid composition, sequence complexity, hydrophobicity, aromaticity, charge, flexibility index value, and type and rate of amino acid substitutions over evolutionary time. IDPs are significantly enriched in P, E, K, S and Q, and depleted in W, Y, F, C, I, L and N, compared to the average folded protein in the PDB. Dunker and colleagues term the first group disorder-promoting amino acids, and the second group order-promoting amino acids (Romero, Obradovic et al. 2001). The physical rationale of this trend comes from the ensuing high net charge and low net hydrophobicity. On the other hand, due to the complex phenomenon of protein disorder, it is difficult to accurately identify IDPs or ID regions according to the amino acid composition or propensities. However, these properties are still very useful, therefore the differences between IDPs and ordered proteins have been utilized to develop many protein disorder predictors.
for predicting disordered regions from amino acid sequences (Romero, Obradovic et al. 2001).

Low-sequence complexity is another useful property to identify disordered regions in amino acid sequences. Wootton, who introduced the term low complexity for protein sequences (Wootton 1994), observed that low complexity regions in proteins deviate significantly from the amino acid composition typically observed for globular proteins. The reason is the repetitive nature of their sequences and/or because few amino acids dominate the distribution. It was shown that low-sequence complexity segments often appear in disordered proteins (Romero, Obradovic et al. 2001). Nevertheless, it is not a general rule. Low-complexity sequences can also form ordered structure under some circumstances, such as coiled-coils or other fibrous proteins. So, low-sequence complexity is limited to one single aspect of protein disorder. Alone, it is not sufficient to accurately identify IDPs or ID regions. However, it provides useful information for further protein sequence analysis.

Different lengths of protein disordered regions also have significant differences in their amino acid compositions (Romero P 1997; Radivojac, Obradovic et al. 2004; Obradovic, Peng et al. 2005). The general agreement is that the length threshold for a short disordered region is 30 amino acids.

Many IDPs are associated with a wide array of diseases, such as cancer (Iakoucheva, Brown et al. 2002), diabetes, autoimmune diseases, cardiovascular disease (Cheng, LeGall et al. 2006), amyloidoses, neurodegenerative diseases (Chiti and Dobson 2006), and others. This indicates that structural disorder poses a particular danger to the organism. Therefore, identifying and understanding the mechanistic details of their functioning particularly with respect to interaction with their binding partners can contribute new potential target for future drug discovery.
1.1.3 Protein stability
Understanding the amino-acid sequence determinants of protein stability and function is important for protein structure-function study. Genetic studies of protein structure and activity generally centre on the properties of proteins altered by deletions or point mutations (Pakula and Sauer 1989).

A wide range of experimental techniques can be used to measure the conformational stability of a protein, often determined as the difference in stability between the wild type protein and a variant, differing by a single amino acid mutation. These techniques rely on specific spectroscopic methods (Dobson and Karplus 1999), such as circular dichroism and fluorescence, and use specific ways to initiate protein (un)folding processes. Most frequently one uses thermal and chemical denaturation in the case of proteins.

In the simplest case, globular proteins fold and unfold spontaneously in a reaction that can be described in terms of a simple, two-state equilibrium as:

\[N \leftrightarrow D \] (1)

Such two-state behaviour leads directly to an expression for the equilibrium constant, \(K_d \), which is a measure of the ratio of unfolded to folded protein molecules.

\[K_d = \frac{[D]}{[N]} \] (2)

where \([N]\) and \([D]\) represent the concentrations of the native and denatured states, respectively.

The difference between the Gibbs free energies of the folded and the unfolded states, \(\Delta G \), can be calculated from \(K_d \) by:

\[\Delta G = -RT \ln (K_d) \] (3)

where \(R \) is the gas constant, \(T \) is the absolute temperature.

The conformational changes during unfolding can be monitored by changes in the circular dichroism (CD), UV, or fluorescence signal as a function of the denaturant concentration (Pace 1986). For thermal denaturation monitored by calorimetry methods, the changes in the conformational stability of the protein are monitored by the global heat exchange between the protein and solvent as a function of temperature (Privalov and Khechinashvili 1974).
The free energy change between a mutated protein and the WT protein can be defined as
\[\Delta \Delta G = \Delta G_{\text{mu}} - \Delta G_{\text{wt}} \] (4)
If the energy change \(\Delta \Delta G \) is positive, the mutation has increased stability. If \(\Delta \Delta G \) is negative, the mutation is destabilizing the protein.

Non-covalent interactions between different atoms of a protein are especially important in defining and stabilizing the three-dimensional structure of the protein, in which atoms distant in the covalent structure can interact at close range. These interactions are generally considered to be of four types: electrostatic interaction between charges and dipoles, van der Waals forces, hydrogen bonds, and hydrophobic interactions. Owing to protein structures containing a large number of these stabilizing interactions, it is often difficult to imagine that a point mutation could result in a serious perturbation of structure or stability. Experimental results show that most naturally accepted mutations

Figure 4: A simplified diagram illustrates that during the folding process the protein proceeds from a high energy unfold state to a low energy native state. The Gibbs free energy difference between the mutant and wild-type protein is the free energy change, \(\Delta \Delta G \).
have negligible effect on the fitness of the organism (Shortle and Lin 1985; Pakula, Young et al. 1986; Loeb, Swanstrom et al. 1989; Guo, Choe et al. 2004). This forms the basis of the so called neutral theory of evolution (King and Jukes 1969; Kimura 1983), which states that many mutations do not affect the protein much, they tend to conserve the proteins native fold and its biochemical (Bloom, Silberg et al. 2005; Bhattacherjee and Biswas 2009).

On the other hand, as the protein goes from a denatured state with many possible conformations to a native state with only one or a few conformations, almost all of its freedom is lost. Generally, the ΔG_{fold} is small, often less than 10kcal/mol under physiological condition. Thus, the native state is only marginally stable (Savage, Elliott et al. 1993; Ruvinov, Wang et al. 1997; Vogl, Jatzke et al. 1997; Taverna and Goldstein 2002). Similar to the introduction of mutations, changes in pH or temperature can turn biologically active proteins in their native state to a biologically inactive denatured state.

In protein engineering, different approaches have been used to identify mutations that enhance protein stability, such as rational design, directed evolution and consensus methods.

By using rational or structure-based design (Eijsink, Bjork et al. 2004), biologist makes particular amino acid mutations to specifically improve qualities in the protein’s structure. These mutations can be made to improve Van der Waals’ interactions, hydrogen bonds, salt bridges, interactions with ions, and disulfide bridges as well as several other terms. Since site-directed mutagenesis techniques are well-developed, this approach is inexpensive and relatively easy. However, there is a major drawback in that the detailed structural knowledge of a protein is often unavailable, and even when it is available, it can be extremely difficult to predict the effects of various mutations.

Directed evolution approaches (Hida, Hanes et al. 2007) apply random mutagenesis to the initial protein sequence, and these mutations are evaluated for improvements of specific qualities. The mutants that perform the best are then used for additional rounds of mutations until the researcher is satisfied with the results. This method mimics natural evolution and requires no prior structural knowledge of a protein. The drawback is that it requires a significant amount of laboratory resources for performing the multiple rounds of mutations and selections. Therefore, this approach can be both expensive and time-consuming.

In contrast to rational design, the consensus method does not require knowledge of the three dimensional structure of the protein and neither does it need the
laboratory resources required for directed evolution (Lehmann and Wyss 2001). It tries to find shared feature or attribute between proteins within the same family from sequence databases. Usually, the multiple sequence alignment is first performed together the query sequence with a large number of homologous sequences. If a majority of the homologous sequences all have the same amino acid in a particular position and if it is different from the amino acid in the query sequence, the consensus method states that the amino acid in the query sequence should be mutated to the amino acid shared by the majority of the homologous sequences. The drawback is that it requires a large number of sequences homologous to the target protein, as well as arbitrary constraints for picking which amino acids to mutate when there is not a clear ‘majority’ amino acid at a given position in the sequence alignment.

1.2 Machine learning in Bioinformatics

Machine learning is a subfield in computational intelligence and is concerned with the development of algorithms and techniques that allow computers to learn. Its key idea is to direct the computer to learn how to solve a problem rather than explicitly give the solution to the computer. With the exponential growth of the size of the biological databanks, analyzing and understanding these data have become critical. Traditionally, researchers do biological research by using their knowledge and intelligence, performing experiments by hands and eyes, and processing data by basic statistical and mathematical tools. Due to the huge amounts of biological data and a very large number of possible combinations and permutations of various biological sequences, the conventional human intelligence-based methods cannot work effectively and efficiently. Therefore, many machine learning methods have been developed to recognize complex patterns and make intelligent decisions based on data. Hence, machine learning in bioinformatics has become an important role in complex biological applications.

As shown in Figure 5, machine learning techniques have been widely applied for knowledge extraction in six different biological domains: genomics, proteomics, microarray, systems biology, evolution and text mining (Larranaga, Calvo et al. 2006).
There are two main paradigms in the field of machine learning: supervised and unsupervised learning. Both have been widely applied in biology. Supervised learning can be formalized as the problem of inferring a function $y = f(x)$ based on a training dataset $T = \{(x_1, y_1), \ldots, (x_n, y_n)\}$. Usually, the inputs, or features, are m-dimensional vectors $x_i = [x_{i,1}, \ldots, x_{i,m}]$. When y is continuous, we are in the context of regression, whereas in classification problems, y is of categorical nature. The goal in supervised learning is to design a system able to accurately predict the class membership or continuous values of new objects based on the available features. An overview of the process of supervised learning is shown in Figure 6.
In contrast to the supervised learning, in unsupervised learning, no predefined class labels are available for the objects under study. In the case, machine learning can be used to explore the data and discover similarities or identities between objects. Similarities or identities are used to define groups of objects, called clusters. Since all the data are unlabeled in unsupervised learning, the learning procedure consists of both defining the labels and associating objects with them. In other words, unsupervised learning tries to unveil natural groupings in the data.

Supervised and unsupervised machine learning techniques have been extensively applied in life science. For instance supervised machine learning methods were utilized to predict proteins secondary structure (Kim and Park 2003; Ward, McGuffin et al. 2003; Nguyen and Rajapakse 2005; Chen, Tian et
al. 2007; Zhao and Wang 2008) and zinc-binding sites (Shu, Zhou et al. 2008) from their amino acid sequences. Unsupervised learning technique, such as hierarchical and k-means clustering, gene expression data was successfully used to classify patients in different groups and to identify new disease groups (Aach, Rindone et al. 2000; Zhu and Zhang 2000).

1.2.1 Prediction of protein disorder
In structural biology, disorder prediction is crucial for protein sequence analysis. For example, protein disordered regions at the N or C termini or within proteins often make it difficult to express, purify and crystallize a protein or to measure its NMR spectrum. Consequently, it can be essential to utilize bioinformatics tools to predict protein disorder and unstructured regions in order to identify potentially structured domains. This will facilitate the design of constructs for 3D structure determination and for 3D structure prediction. Machine learning methods have been successfully applied to predict protein disorder. There are two mainly used machine learning approaches in the protein disorder prediction: Neural networks and Support vector machines. The first disorder prediction method, PONDR-VL-XT (Romero, Obradovic et al. 2001), was developed by using feed-forward neural networks based on local amino acid composition, flexibility and other sequence features. Since then, an increasing number of machine learning implementations have been developed. The DisEMBL method (Linding, Jensen et al. 2003) is trained based on artificial neural networks for predicting different aspect of protein disorder, such as loops and coils defined by DSSP, loops with high B-factor and missing coordinates in X-ray structure. PONDR VL3 (Radiwojaco, Obradovic et al. 2003) is also based on a neural network but trained on a larger dataset of variously characterised disorder region than PONDR VL-XT. DISOPRED2 (Ward, Sodhi et al. 2004) utilizes support vector machine, SVM, for protein disorder prediction. It incorporates information from multiple sequence alignments that was generated for each protein using PSI-BLAST. DisPSSMP (Su, Chen et al. 2006) also incorporates inputs from PSI-BLAST, but uses radial basis function networks as a training algorithm. RONN (Yang, Thomson et al. 2005) uses a modified version of radial basis function networks called bio-basis function neural networks which incorporates information based on similarity to known disordered segments. DISpro (CHENG, SWEREDOSKI et al. 2005) uses recurrent networks which incorporate evolutionary information in the form of
profiles, predicted secondary structure and relative solvent accessibility, and ensembles of 1D-recursive neural networks. POODLE-S and POODLE-L extract features from physico-chemical properties using PSI-BLAST profiles, and apply support vector machines to identifying short and long protein disordered regions (Shimizu, Hirose et al. 2007). Besides these machine learning methods, many protein disorder predictor directly utilize the phys-chemical properties to identify disordered proteins. FoldIndex (Prilusky, Felder et al. 2005) implement the algorithm of Uversky et al. which is based on the average residue hydrophobicity and net charge of the sequence. It reveals that proteins disordered region prefer to have a low hydrophobicity and high net charge (Uversky, Gillespie et al. 2000). Based on the results of how the Hydrophobic Cluster Analysis (HCA) (Callebaut, Labesse et al. 1997) method was able to predict protein linkers, and combine amino acids composition of protein disordered region, PreLink (Coeztaux and Poupon 2005) developed a computational tool for the detection of unstructured regions according to three defined rules. IUPred (Dosztanyi, Csizmok et al. 2005) uses a novel algorithm that estimated energy for each residue depends on the amino acid type and the amino acid composition of its neighbouring positions. Different predictors rely on different physicochemical features or different implementations. Therefore, many of these predictors are complementary.

1.2.2 Prediction for protein stability change due to point mutation
A large number of diseases have been attributed to protein single mutation. Testing of all possible relation between all single mutations and disease or experimental characterization of their effects on stability and function would be extremely expensive, time consuming and difficult. Consequently, different computational methods have been developed to predict protein stability upon single mutations.

Most of the methods predict the mutational free energy changes of the protein based on their 3D structure. CUPAST (Parthiban, Gromiha et al. 2006) uses coarse-grained atom potentials and torsion angle potentials to construct the prediction model. FoldX (Guerois, Nielsen et al. 2002) and Tan et al. proposed novel free energy functions to estimate protein stability changes. SRide (Magyar, Gromiha et al. 2005) predict stabilizing residues based on long-range interactions in protein structures. Huang et al. utilize a decision tree based on the difference in amino acid properties for predicting the stability of protein mutants. I-Mutant (Capriotti, Fariselli et al. 2004) uses a neural-network-based
method to predict if a given mutation increases or decreases the protein thermodynamic stability with respect to the native structure. Auto-mute (Masso and Vaisman 2008) is a method that combines a knowledge-based statistical potential with machine learning techniques in the prediction. Some predictors were developed for cases where tertiary structure information is not available. I-Mutant2 (Capriotti, Fariselli et al. 2005) is a method based on support vector machines that predicts protein stability changes due to single point mutation from the sequence. Taking into account structure-dependent and sequence-dependent information, MuPro (Cheng, Randall et al. 2006), a method which is based on SVMs, predict the stability changes for single site mutations in the two contexts respectively.

1.3 Research goal and scope
The ultimate goal of my research presented in this thesis is to use computational methods to analyze high throughput data in the form of protein sequences for understanding protein misfolding that can lead to disease. I focus specifically on identifying ordered and disordered regions in proteins from their amino acid sequences and predicting protein stability changes resulting from single amino acid mutation.

In order to indentify structured domains in protein sequences we constructed the FISH server. FISH stands for family identification with structure-anchored hidden Markov models. The server can be used on the domain level to detect the distant relationship of proteins. To facilitate the scientists analyzing their protein sequences, my main contribution consisted in the implementation of the underlying structure-anchored Hidden Markov Models (saHMMs) data base and the web interface of the in the FISH Server.

The key goal for any protein disorder classifiers is the ability to accurately predict protein disordered amino acids. However, if we analyze CASP7 results, although most of the predictors achieved relative good specificities, I found the sensitivity which stands for accuracy of correctly predicted disordered amino acids in the automatic server group is around 0.2-0.6. These results suggest that there is still room for improvement of the prediction accuracy for disordered amino acids. Therefore, our approach tries to improve the prediction accuracy for disordered amino acid, as well as achieve better overall performances.

Most machine learning methods for protein stability prediction are trained on the dataset derived from ProTherm (Bava, Gromiha et al. 2004). However, there are some drawbacks if one uses these data directly to train the prediction model.
Therefore, the first goal of this project is to obtain a refined training dataset. The second goal is to understand how the selected sequence and structure features affect the prediction accuracy.
2. Material and methods

2.1 Construction of FISH server

2.1.1 Structure anchored Hidden Markov Models (saHMM)
Structure-anchored hidden Markov models are constructed by selecting, within SCOP families (Murzin, Brenner et al. 1995), those structures whose sequences have a mutual sequence identity below a certain cut-off value. These saHMMs can be used for detecting protein structural relationships based on the amino acids sequence. The main procedures for constructing the saHMM data base are demonstrated in Figure 7. First step, in order to maximize the sequence diversity of the representatives from each SCOP family, only sequences with very low mutual identities are selected as members of that particular family. Then, multiple-structure superimpositions are performed which provide structure-based multiple sequence alignment (saMSAs). Finally, the saMSAs are utilized to build a saHMM representing one SCOP family (Tangrot, Wang et al. 2006; Tangrot, Kagstrom et al. 2009).

![Figure 7: Steps involved in constructing the collection of saHMMs (Tangrot, Kagstrom et al. 2009).](image-url)
2.1.2 Architecture of the FISH server

Figure 8: Schematic layout of the FISH server architecture. The user initializes a query via the web interface. The query is processed by the query interpreter, using the collection of saHMMs. The cross-link engine integrates information from the associated data bases [SCOP, ASTRAL, PDB, nr (NCBI), Swiss-Prot and TrEMBL] with the results of the query. The results assembler compiles the search results and presents them to the user via the web interface.

Figure 8 shows an overview of architecture of the Fish server. At the heart of the server lies a collection of 1050 saHMMs, which include all the saHMM members. The individual saHMMs, saHMM-members, and corresponding domain families were imported into a relational database (MySQL) and cross-linked with other established databases which are locally available (see Figure 8).

The MySQL database is implemented on a Linux platform. The user interface is written in Perl, PHP and JavaScript, and integrated with the Apache web server. The user inputs a query via the web interface. The query interpreter processes the input, using the collection of saHMMs. The cross-link engine merges information from the associated databases with the results of the query. The results assembler presents the outcome of the search to the user via the web interface. The search results can be sent to the user by e-mail in the form of a www-link and are stored on the server for 24 h.
2.2 Predicting protein order and disorder

2.2.1 Dataset

2.2.1.1 Training dataset
The training set was compiled by Pierre and colleagues (CHENG, et al., 2005). It was used to train the DISpro protein predictor (Cheng, et al., 2005). This set contains 215,612 residues, of which 13,909 (6.5%) are classified as disordered as shown in Figure 9. Of the 13,909 disordered residues, 3,282 (23.6%) are part of long regions of disorder (>30 AA) as shown in Table 1. These protein sequences are extracted from the PDB, with the following constraints:

1. Crystal structures at higher than 2.5 Å resolution;
2. More than 30 amino acids in length;
3. Disordered regions at least 3 residues in length;
4. Sequence identity lower than 30%.

![Disorder Composition](image)

Figure 9: The composition of order and disordered amino acids in the training dataset.
Table 1: The composition of the long and short disordered regions in the training dataset.

<table>
<thead>
<tr>
<th>Disordered length</th>
<th>Regions</th>
<th>Residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short(≤30aa)</td>
<td>1706</td>
<td>10627</td>
</tr>
<tr>
<td>Long(>30aa)</td>
<td>60</td>
<td>3282</td>
</tr>
</tbody>
</table>

2.2.1.2 Test datasets

Benchmark dataset For benchmarking, I use all 96 target sequences with known structures available during CASP7. Residues in targets solved by Xray crystallography were classified as disordered if no coordinates for the crystallized residues were present. For targets solved by NMR, those residues whose conformation was not sufficiently defined by NMR restraints, i.e. exhibited high variability within the ensemble, or were annotated as disordered in REMARK 465 by the experimentalists, were considered as disordered. Figure 10 shows the distribution of the length of disordered regions in sequences from CASP7. For the analysis of the accuracy of the predictions, only disordered segments in the experimental target structures with more than 3 contiguous disordered residues are chosen to evaluate.

Figure 10: Length distributions of disordered regions in target sequences of CASP7
Blind test To facilitate performance comparison with other protein disorder predictors, I used a blind test dataset that contains a balanced mixture of 80 sequences from fully ordered proteins and 79 fully disordered proteins. The disordered regions were identified experimentally by methods other than X-ray crystallography (Uversky, Gillespie et al. 2000). The fully ordered dataset was annotated by PONDR® and is available from its website.

2.2.2 Conditional random fields (CRFs)

There are two kinds of models for building a probabilistic model for segment and label sequence data: generative and discriminative models. Generative models, such as Hidden Markov Models (HMMs) (Rabiner 1989), are based on a model of the joint distribution \(p(y, x) \) where \(x \) and \(y \) are random variables which range over the user supplied observation sequence that is to be labelled and also over the corresponding sequence of labels. In order to define a joint distribution sequence, all possible observation sequences must be enumerated for a generative model. However, in most fields, this is difficult unless observation elements are represented as isolated, independent from other elements in an observation sequence. Therefore, HMMs require strict independence assumptions over observation elements. However, most real-world observation sequences contain multiple interacting features and long-range dependencies between observation elements.

Our work employs discriminative models so called, conditional random fields (CRFs) (Lafferty John, Andrew et al. 2001), which can overcome the drawbacks of generative models. Conditional random field are powerful probabilistic frameworks to label and segment sequential data. As a discriminative model, CRFs directly model the conditional distribution \(p(y|x) \), and they do not need to model the visible observation sequence \(x \), which results in the relaxation of strong independence assumptions over observation sequence. Moreover, CRFs are able to model arbitrary features of observation sequences, regardless of the relationships between them. Therefore, CRFs can overcome the inherent shortcomings of generative models and achieve better labelling and prediction performance.
In case of chain-structured CRFs, which make a first-order Markov assumption among label variables y that form a linear-chain, each label element of y has access to any of the observation variables in x (see Figure 11).

More formally, let \mathcal{G} be an undirected model for x and y, then the fully connected subgraphs define a set of cliques $C = \{\{x_c, y_c\}\}$. A CRF defines the conditional probability of label sequence y given observation sequence x as:

$$p_y(y | x) = \frac{1}{Z(x)} \prod_{c \in C} \Phi(y_c, x_c; \lambda)$$

(5)

Where Φ is a real-valued potential function parameterized by λ, and normalization factor

$$Z(x) = \sum_y \prod_{c \in C} \Phi(y_c, x_c)$$

(6)

The potential function can be parameterized by an arbitrary set of feature functions $\{F_i\}$ over each clique, a common form of which is

$$\Phi(y_c, x_c; \lambda) = \exp \left(\sum_{i} \lambda_i F_i(y_c, x_c) \right)$$

(7)

The model is parameterized by a set of weights $\lambda = \{\lambda_i\}$, where each λ_i weights the output of feature function $\{F_i\}$. Note that in a first-order CRF,
cliques contain labels y_i, y_{i-1} and an arbitrary subset of observations from x. Thus, the prediction for label y_i is a function of the previous prediction y_{i-1} as well as any number of features over the entire input sequence x.

In this study I use the CRF++ implementation for building CRF predictors. CRF++, which is developed by Taku Kudo, is a simple, customizable, and open source implementation of CRFs for segmenting and labeling sequenced data. It was designed for generic purposes and can be applied to a variety of tasks. The benefit of using CRF++ is that it enables us to redefine feature sets and specify the feature templates in a flexible way (CRF++ is available at: http://crfpp.sourceforge.net/).

2.2.3 Feature selection

Figure 12 shows the feature selection for CRF++. It shows a sample protein sequence (single amino acid sequence) with features marking which will be used as training and testing data. The first two columns constitute the observation sequence containing tokens (amino acids) and the predicted secondary structure tags. The last column is the label sequences that are represented according to their states. “O” stands for the ordered amino acids, and “D” for the disordered amino acids. Feature templates describe which features are used in training and testing. Each line in the template file denotes one template. In each template, special macro %x[row,col] is used to specify a token in the input data. “row” specifies the relative position from the current focusing token and “col” specifies the absolute position of the column.
2.2.4 Model building

2.2.4.1 Pruned CRF Model

Initially, training the CRFs model proved difficult due to a label imbalance problem, since less than 6.5% of amino acids in the dataset are disordered. In order to generate a more balanced training dataset, I keep only a limited number of ordered amino acids that flank the disordered regions on both sides, and prune the rest of the ordered sequence (see Figure 13). The rules for pruning were determined after many rounds of optimization and are as follows: For disordered regions, DRs, of less than or equal to 3 amino acids in length, DRs ≤ 3 aa., I keep one flanking amino acid on either side. Five flanking amino acids are kept: A, R, H, L, and T. The rules for pruning are as follows:

- For disordered regions of less than or equal to 3 amino acids in length, I keep one flanking amino acid on either side.
- The rules for pruning are determined after many rounds of optimization.

Figure 12: Feature selection of our models. A sliding window (size = 9) moves over the protein sequence, and generates features according to the feature templates that describe which features are used in training and testing.

<table>
<thead>
<tr>
<th>Protein sequence</th>
<th>2nd Structure</th>
<th>Label</th>
<th>Feature templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>C</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>C</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>E</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>%s[4,0]</td>
<td>E</td>
<td>%s[4,1]</td>
</tr>
<tr>
<td>V</td>
<td>%s[3,0]</td>
<td>E</td>
<td>%s[3,1]</td>
</tr>
<tr>
<td>I</td>
<td>%s[2,0]</td>
<td>E</td>
<td>%s[2,1]</td>
</tr>
<tr>
<td>L</td>
<td>%s[1,0]</td>
<td>E</td>
<td>%s[1,1]</td>
</tr>
<tr>
<td>S</td>
<td>%s[0,0]</td>
<td>C</td>
<td>%s[0,1]</td>
</tr>
<tr>
<td>E</td>
<td>%s[-1,0]</td>
<td>C</td>
<td>%s[-1,1]</td>
</tr>
<tr>
<td>Q</td>
<td>%s[-2,0]</td>
<td>H</td>
<td>%s[-2,1]</td>
</tr>
<tr>
<td>A</td>
<td>%s[-3,0]</td>
<td>H</td>
<td>%s[-3,1]</td>
</tr>
<tr>
<td>I</td>
<td>%s[-4,0]</td>
<td>H</td>
<td>%s[-4,1]</td>
</tr>
<tr>
<td>R</td>
<td>H</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>H</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>H</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>H</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>H</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

- # Unigram:
 - U01: %s[1,0]
 - U02: %s[0,0]
 - U03: %s[1,0]
 - U04: %s[2,1]
 - U05: %s[-2,0]
 - U06: %s[3,0]
 - U07: %s[-3,0]
 - U08: %s[4,0]
 - U09: %s[-4,0]

- U10: %s[4,0] %s[3,0] %s[2,0] %s[1,0] %s[0,0]
- U11: %s[0,0] %s[-1,0] %s[-2,0] %s[-3,0] %s[-4,0]

- # Bigram:
 - U12: %s[-1,1]
 - U13: %s[0,1]
 - U14: %s[1,1]
 - U15: %s[2,1]
 - U16: %s[3,1]
 - U17: %s[4,1]
 - U18: %s[-3,1]
 - U19: %s[4,1]
 - U20: %s[-4,1]

- U21: %s[4,1] %s[3,1] %s[2,1] %s[1,1] %s[0,1]
- U22: %s[0,1] %s[-1,1] %s[-2,1] %s[-3,1] %s[-4,1]
acids are kept if the disordered interval is 3 aa. < DR ≤ 11 aa., eleven amino acids if 11 aa. < DR ≤ 21 aa., 23 amino acids for 21 aa. < DR ≤ 30 aa. and 47 flanking amino acids for 30 aa. < DR. Thus, the ordered residues are removed if they are not part of the flanking amino acids and only the features near the transition sites are preserved. The pruning procedure resulted in a new almost perfectly balanced training dataset, with a ratio of ordered to disordered residues of 1:1.04.

![Figure 13: An overview of pruning procedure.](image)

Three pruned CRFs models are trained and evaluated with different feature sets. ‘Amino acids sequence’ (AAS) only uses the 20 letters as features of amino acid sequences; ‘Secondary structure’ (SS) only uses the secondary structure predicted by SSpro; ‘AAS + SS’ is the combination of these features. The results from Table 2 and Figure 14 indicate that combining the extracted information from sequence and the predicted secondary structures can achieve significantly better performance than depending on the sequence or predicted secondary structure alone.

<table>
<thead>
<tr>
<th>Feature Selection</th>
<th>Sens.</th>
<th>Spec.</th>
<th>MCC</th>
<th>ACC</th>
<th>Prob. excess</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acids Sequence (AAS)</td>
<td>0.39</td>
<td>0.96</td>
<td>0.34</td>
<td>0.674</td>
<td>0.349</td>
<td>0.8</td>
</tr>
<tr>
<td>Secondary Structure (SS)</td>
<td>0.48</td>
<td>0.92</td>
<td>0.33</td>
<td>0.702</td>
<td>0.403</td>
<td>0.78</td>
</tr>
<tr>
<td>AAS + SS</td>
<td>0.6</td>
<td>0.9</td>
<td>0.37</td>
<td>0.752</td>
<td>0.504</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Figure 14: Comparison of receive operating characteristic (ROC) curves based on different feature combination.

By using 10-fold cross validation, I find that a window size of nine amino acids results in the best template file for the feature subset selection. The optimal value for the hyper-parameter “C” is 0.65, which trades the balance between overfitting and underfitting. For all other parameters the default CRF++ values are used.

Table 3: Results for the self consistency experiment.

<table>
<thead>
<tr>
<th>Sequences</th>
<th>Sens.</th>
<th>Spec.</th>
<th>Q²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pruned</td>
<td>0.985</td>
<td>0.99</td>
<td>0.987</td>
</tr>
<tr>
<td>Original, Not-pruned</td>
<td>0.976</td>
<td>0.947</td>
<td>0.949</td>
</tr>
</tbody>
</table>
The most interesting result comes from the self-consistency experiment. After the OnD-CRF-Pruned is trained on the pruned artificial protein sequences, I use it to predict order and disorder in the artificial training sequences as well as in the original sequences. The results are shown in table 3, not surprisingly, the prediction for the pruned training sequences achieves an almost perfect performance since it was trained on them. But surprisingly OnD-CRF-Pruned trained on the data set which contains only 7% of the original ordered amino acids (see Figure 15) also achieves a high specificity of 0.947, which means the fraction of ordered residues correctly identified. The results reveal that disordered regions are influenced by their flanking amino acids in addition to their amino acids content.

2.2.4.2 OnD-CRF model

There are many measurements to assess the performance of a prediction model, as will be presented in section 3.2. These evaluations are from different points of view and have different results. Among these measures, the area under the ROC curve (AUC) is a widely used method to assess the performance of a binary classifier system.

Since a CRF is a kind of probabilistic model, it can estimate the disorder probabilities for each tag by using CRF++. For the binary classifier, as the default, if the disorder probability of an amino acid is not less than 0.5 the residue is considered to be disordered. However, as shown in Figure 10, the disordered residues are rare and ordered residues dominate in our training dataset which makes it hard to predict disordered residues. So, we should give
more advantages for predicting a disordered residue than for predicting an ordered one. Therefore, instead of pruning the sequence, I adopt another strategy to overcome the imbalance problem. First, by using the 10-fold cross-validation, I find the best AUC value for the OnD-CRF built on the training dataset. And then, the best operating point, which gives the best trade off between sensitivity and specificity, is identified according to ACC and S_w. Based on the two steps, I find the best AUC value of 0.867 for the OnD-CRF built on the training dataset and the best operating point which give rise to an optimal P-value cut-off of $P < 0.05$ for ordered and $P \geq 0.05$ for disordered amino acids. Using this cut-off the OnD-CRF model achieves an ACC of 0.790 and a weighted score S_w of 0.580, respectively.

2.3 Predicting protein stability changes due to point mutations

In this study, for the classification task, I base our predictor on a three step classification: destabilizing mutations ($\Delta\Delta G < -1.0$ kcal/mol), neutral mutations (-1.0 kcal/mol $\leq \Delta\Delta G \leq 1.0$ kcal/mol) and stabilizing mutations ($\Delta\Delta G > 1.0$ kcal/mol).

2.3.1 Dataset and refinement

The dataset quality is important for building a reliable model. In recent studies that used the training datasets S1615 (Capriotti, Fariselli et al. 2004) and S1948 (Capriotti, Fariselli et al. 2005) one found that these datasets contain a significant percentage of redundant. After removing identical mutations that were measured at the same temperature and pH value, Cheng et al. compiled a redundancy-reduced dataset based on the dataset S1615. Kang et al. removed the identical mutations if the sign of $\Delta\Delta G$ values conflicted and kept one if all of them are of the same sign. In this project, I compile a new dataset of protein mutation used for training and testing which is derived from ProTherm (Oct 2009), with following constraints:

1) Considering only single point mutations.
2) The wild type protein structure must be deposited in the PBD.
3) The difference in free energy of unfolding is experimentally determined by thermal denaturation.
4) All experimental conditions must be reported including the pH.
After this filtering procedure, I obtained a thermal denaturation datasets consist of 2091 single mutations. Then, I performed a dataset refinement procedure as shown in Figure 16. First, I eliminated 12 mutants associated with PDB entry 1LRP because they only contain the Ca coordinates. Then, I removed those entries which differ significantly in their ΔΔG values, depending on the reduced or oxidized form of disulfide bonds in the protein (PDB 2lzm, mutation I3C). I also removed the degenerate mutant from a protein with numerous other bona fide mutants (PDB 1PGA, mutation T53T). Second, I identified 728 duplicate mutations where the ΔΔG values were determined at the same pH value. Third, I analyze the differences between the ΔΔG values of these duplicate mutations. If the biggest difference exceeds 1 kcal/mol, I remove all the samples. Otherwise, I calculate an average ΔΔG value of the mutation at a fourth step. Finally, I get a refined training dataset which contains 1537 different single point mutations derived from 62 different protein sequences by the thermal denaturant experiments (ST1537). The composition of each class in the training dataset is shown in Figure 17.
Figure 16: The refinement procedure for the training dataset.
Figure 17: The composition of mutations according to the three classes.

Figure 18: Comparisons of amino acid frequencies considering the 20 amino acids. Blue bars: the amino acid was replaced by any of the other 20 amino acids, e.g. Ala \rightarrow Xxx. Red bar: this amino acid was used for mutation e.g. Xxx \rightarrow Ala.

Considering all 20 amino acids, as shown in Figure 18, the change of amino acids to alanine is significantly more common than other mutations. This may
be due to the Alanine-scanning mutagenesis (Cunningham and Wells 1989) which is a simple and widely used technique in the determination of the catalytic or functional role of protein residues. On the other hand, valine is more frequently substituted by other amino acids according to our training data set. This is probably because valine is a hydrophobic residue often found in the hydrophobic core of proteins. Mutation of hydrophobic core residues to other amino acids is a widely used technique to investigate the relationship between the hydrophobic core packing and three dimensional structure of the protein. This is also verified by statistical analysis based on the six environmental categories for side-chains (Bowie, Luthy et al. 1991) as shown in Figure 19. In the training dataset, most mutations were made in the partially buried P1 (34.7%) and the buried B1 (31.9%) environmental classes.

Figure 19: Training data distribution according to the six basic environmental classes grouped according to area buried, ab, and fraction polar, f. E: fully exposed (ab < 40 Å²), Class P: partially buried (40 Å² ≤ ab ≤ 114 Å²), Class B: buried (ab > 114 Å²). The partially buried class is subdivided into classes P1 (f < 0.67) and P2 (f ≥ 0.67). The buried class is subdivided into classes B1 (f < 0.45), B2 (0.45 ≤ f < 0.58) and B3 (f ≥ 0.58). The frequency of each class observed in the training data set is given in brackets.
2.3.2 Support vector machines (SVMs)
Support vector machines (SVMs) (Vapnik 1998) are the most important algorithm in machine learning and have been successfully applied to a variety of fields. In bioinformatics, SVMs have been widely applied to gene expression data classification, protein 3D structure and function prediction (Cai, Liu et al. 2001) and protease function site recognition (Nanni and Lumini 2006).

The main idea of SVMs is to implicitly map data to a higher dimensional space via a kernel function and perform classification through constructing a maximum-margin hyperplane that optimally separates training data into two classes. Figure 20 depicts an overview of the SVM process. When points are separated by a nonlinear region as shown in the input space, SVMs use a kernel function, $K(x,y) = \Phi(x) \times \Phi(y)$ to calculate the dot product of $\Phi(x)$ and $\Phi(y)$ implicitly, where x and y are input data points, $\Phi(x)$ and $\Phi(y)$ are the corresponding data vectors in feature space, and Φ is the map from input space to feature space. The mapped points become separable by a hyperplane in the feature space. This hyperplane corresponds to a nonlinear curve in the original input space.

![Figure 20: An overview of the SVMs process](image)

34
In the feature space, the two dashed lines correspond to the boundaries of two classes respectively. The distance between the dashed lines is called the margin. SVMs try to find a hyperplane that is oriented so that the margin between the support vectors is maximized. The vectors (points) that constrain the width of the margin are the support vectors.

Originally, SVMs were developed for binary classification tasks. However, most real-life datasets are not binary classification. How to extend binary SVMs to multi-class problems is still an ongoing research. Several approaches were constructed during the last few years. Although there are many sophisticated approaches for multi-class SVMs, numerous experimental analysis have shown that “One-Versus-ALL” (OVA) and “One-Versus-One” (OVO) are among the most suitable methods for practical use.

Technically speaking, OVA is the simplest approach for multi-class SVM. It constructs K binary SVMs. The ith SVM is trained with all the samples from the ith class against all the samples from the rest classes. Given a sample x to classify, all the K SVMs are evaluated and the label of the class that has the largest value of the decision function is chosen.

On the other hand, OVO is constructed by training binary SVMs between pairwise classes. Therefore, an OVO model consists of K(K-1)/2 binary SVMs for a K-class problem. Each of the K(K-1)/2 SVMs casts one vote for its favoured class, and finally the class with most votes wins.

None of the multi-class implementation methods significantly outperforms the others in terms of classification accuracy. The difference mainly lies in the training time, evaluation speed and the size of the trained classifier model. For example, as for the training time, although OVA only require K binary SVM, its training is computationally most expensive because each binary SVM is optimized on all the N training samples. OVO has K(K-1)/2 binary SVMs to train, which seems much more than OVA need. However, each SVM is trained on 2N/k samples. The overall training speed is significantly faster than OVA. Thus, in this study, I apply the OVO for the 3-state classification SVM because the OVO approach can achieve better prediction accuracy and faster cross-validation speed.

The libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) support vector machine package is used to build the 3-state classification and regression predictors. The radial basis function (RBF) \[\exp (-\gamma |u-v|^2) \], which is a non-linear kernel function, is used. The kernel parameters are obtained by cross-validation. The cost parameter, C, controls the trade off between allowing training errors and
forcing rigid margins. It creates a soft margin that permits some misclassifications. Increasing the value of C increases the cost of misclassifying points and forces the creation of a more accurate model that may not generalize well. The Gaussian width, gamma, is the inverse of the variance of the RBF. The larger the value for gamma, the more peaked the Gaussians become around the support vectors, and therefore the more complex the decision boundary can be. Smaller gamma corresponds to a smoother decision boundary (Schölkopf, Tsuda et al. 2004).

2.3.3 Feature selection
In order to investigate what information could affect the prediction accuracy of protein stability changes, three different input and encoding strategies are proposed: sequence-generated information only (SeqOnly), structure-generated information only (StruOnly) and the combinations of sequence and structure (Stru&Seq). All strategies include the experimental pH values. Different from many previously published methods, I do not consider the experimental temperature since it is one of the variables for thermal denaturation experiments. For the SeqOnly strategy, the features are extracted as follow:
i) I incorporate information derived from the protein sequence by encoding local amino acid composition of the partial wild type and mutated sequences within an input window (size=31) centred on the mutated residue, which includes the frequencies of each 20 amino acid, and the frequency for the spacer character which needs to be introduced at N- and C- terminus of the protein.
ii) The physicochemical z-scales, three for a particular amino acid of the WT protein, and three for the mutated protein, resulting in 3×2=6 z-scales for each position. The z-scales are based on 29 principal physicochemical properties of the amino acids, and are used to describe the deleted and the introduced amino acids (Hellberg, Eriksson et al. 1991; Sjostrom, Rannar et al. 1995).
iii) Similar to z-scales, I derive e-scales by principle components analysis (PCA) of the 3D-1D scoring table that contains measurements of the compatibilities of the twenty amino acids with the eighteen environmental classes. In other words, one maps the 20 amino acids onto the 18 environmental classes. These 18 classes include the three secondary structure states (helix, strand, loop) in addition to the six environmental classes mentioned in Fig. 19 (Bowie, Luthy et al. 1991). The e-scales reflect the most important compatible properties of an amino acid, such as volume, hydrophilicity and charge.
Considering all the above, the SeqOnly method has a total of 55 inputs.
Most of the previously published methods, such as I-mutant2 (Capriotti, Fariselli et al. 2005), Mupro (Cheng, Randall et al. 2006) and AutoMute (Masso and Vaisman 2008), utilize tertiary structure information for the prediction of stability changes. These methods use the frequency of each type of residue within a sphere of 9 Å or 12 Å radiuses (between the Cα atoms) around the target mutated residue as input feature. The limitation of such sphere models is that they ignore the size, shape and orientation of amino acids, and in general do not take into account the atomic groups that surrounding the mutated amino acids. Figure 21 shows the neighbouring atomic groups of N101 in the T4 lysozyme protein (PDB entry 2LZM). The Cα distance between N101 and Y161 is more than 12 Å. However, the oxygen atom of the side chain of N101 is close to OH of Y161. In order to avoid these limitations for the StruOnly strategy, I extracted the features as follow:

i) for the first set of 26 (13×2) inputs, I define the packing density ρ_{xi} for each of the 13 atomic groups (N3H0, N3H1, N3H2, N4H3, O1H0, O2H1, C3H0, C3H1, C4H1, C4H2, C4H3, S2H0, S2H1) (Tsai, Taylor et al. 1999) surrounding the side-chain and main-chain of mutated amino acid as:

$$\rho_{xi} = \begin{cases} \frac{\sum x_i}{4} & \text{if chain=mainchain} \\ \frac{\sum x_i}{N} & \text{if chain=sidechain} \end{cases} \quad (8)$$

When considering the main-chain ρ_{xi}, I sum each of the 13 atomic groups of other-residues at distances less than 4 Å and then divide those numbers by 4 since there are four atomic groups (N3H1, C4H1, C3H0, and O1H0) on the main-chain. For side-chain ρ_{xi}, I add the number of each 13 atomic groups of other-residue at distances smaller than 4 Å and then divide those numbers by N which is the overall side-chain atomic groups.

In the general labels XnHm, X stands for the atom type of the non-hydrogen atom, n its valence; Hm, the number m of hydrogen atoms attached to the atom. E.g. C3H1 is a trigonal carbon atom with one attached hydrogen (Tsai, Taylor et al. 1999).

ii) I include a further 12 inputs: the number of hydrogen bonds which surround the side chain of the mutated amino acid (1 input), the six basic environmental
classes determined from the area of the side chain that is buried in the protein and by the fraction of the side chain area that is exposed to polar atoms (6 inputs), the fractional accessible surface area (ASA) of side chain (1 input) and the secondary structure of mutated the amino acids (4 inputs; helix, strand, coil and turn). All these inputs are calculated by the VADAR program package (Willard, Ranjan et al. 2003) from the wild type structure.

iii) The mutation information consist of 20 inputs which code for the 20 different amino acids. The input corresponding to the mutated residue type is set to -1 and the input corresponding to the introduced residue type is set to +1. All other inputs are set to 0. Considering all inputs, the StruOnly method includes a total of 59 inputs.

For the Stru&Seq strategy, all sequence-generated information and structure-generated information are combined except the 20 inputs which code for the 20 different amino acids. Finally, I obtain 94 inputs for Stru&Seq method.

Figure 21: Neighboring atomic groups of N101 in the T4 lysozyme protein (PDB entry 2LZM).
2.3.4 Non-clustered model

2.3.4.1 Three-state classification

In the non-clustered model we include all protein sequences in the training data set regardless to which protein family they belong.

As shown in Table 4, combining the structure and sequence information, (Stru&Seq model) increases the overall accuracy, ACC, by ~1.5 percent and correlation coefficient, CC, by ~2.2 percent compared to the SeqOnly model. It can also be seen that, the prediction accuracy of the SeqOnly model is slightly better compared to the StruOnly model. This indicates that, for non-clustered model, the protein sequences alone carry the necessary information for predicting the change of protein stability. The higher the sequence identity or the more similar the structures and function are, the better prediction results will be achieved.

<table>
<thead>
<tr>
<th>Method</th>
<th>ACC[-]</th>
<th>ACC[N]</th>
<th>ACC[+]</th>
<th>ACC</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stru&Seq</td>
<td>0.738</td>
<td>0.85</td>
<td>0.502</td>
<td>0.776</td>
<td>0.678</td>
</tr>
<tr>
<td>SeqOnly</td>
<td>0.739</td>
<td>0.827</td>
<td>0.484</td>
<td>0.761</td>
<td>0.656</td>
</tr>
<tr>
<td>StruOnly</td>
<td>0.693</td>
<td>0.815</td>
<td>0.438</td>
<td>0.73</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Further, I noticed that the prediction of destabilizing and neutral mutation achieve significantly better performance than the prediction accuracy of stabilizing mutations. Considering the composition of the training datasets based on the three classes, as shown in Figure 17, I believe this is due to the uneven proportion of the samples of the three classes in the training datasets. This is reasonable since it’s harder to make protein more stable in general. On the other hand, it means that the prediction for stabilizing mutation is still a challenging task.

2.3.4.2 Predicting directly the values of the free energy changes (ΔΔG)

Figure 22 displays the relationship between the experimental and predicted values of ΔΔG for the training dataset using SVM regression with Stru&Seq method. As shown in Table 5, the performance of the regression models are evaluated by correlation coefficient (CC), Mean Absolute Error (MAE) and
Standard Error of estimate (σ_{est}). The correlation coefficient (CC) reaches values over 0.80 for both Stru&Seq and SeqOnly method. And, when based on the Stru&Seq method, the best MAE and σ_{est} reach 0.665 and 1.05, respectively.

Figure 22: The correlation between the experimental and predicted values based on the Stru&Seq method is very good.

Table 5: Results of the 20-fold cross-validation on dataset ST1537 for regression

<table>
<thead>
<tr>
<th>Method</th>
<th>CC</th>
<th>MAE</th>
<th>σ_{est}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stru&Seq</td>
<td>0.825</td>
<td>0.665</td>
<td>1.05</td>
</tr>
<tr>
<td>SeqOnly</td>
<td>0.8</td>
<td>0.699</td>
<td>1.11</td>
</tr>
</tbody>
</table>

2.3.4.3 Prediction accuracy according to environmental class

Table 6 reports the prediction accuracy for stabilizing, neutral and destabilizing mutations with regard to the six basic environment classes. The predicting model was built according to the Stru&Seq scheme.
Table 6: The prediction accuracy of the training datasets based on the six environmental classes

<table>
<thead>
<tr>
<th>Environmental class</th>
<th>ACC [-]</th>
<th>ACC [N]</th>
<th>ACC [+</th>
<th>ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0</td>
<td>0.73</td>
<td>0.87</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>P2</td>
<td>0.66</td>
<td>0.88</td>
<td>0.44</td>
<td>0.77</td>
</tr>
<tr>
<td>P1</td>
<td>0.73</td>
<td>0.82</td>
<td>0.48</td>
<td>0.75</td>
</tr>
<tr>
<td>B3</td>
<td>1.00</td>
<td>1.00</td>
<td>0.67</td>
<td>0.93</td>
</tr>
<tr>
<td>B2</td>
<td>0.75</td>
<td>1.00</td>
<td>0.00</td>
<td>0.86</td>
</tr>
<tr>
<td>B1</td>
<td>0.78</td>
<td>0.85</td>
<td>0.56</td>
<td>0.79</td>
</tr>
</tbody>
</table>

The experimental mutation under the environmental classes B2 and B3 are rare (See Figure 19). From a biological point of view, this is probably due to the low frequency of amino acids found in a buried and at the same time polar environment. Analyzing the results of the other four environmental classes, I noticed that most experimental mutations carried out in the B1 and P1 environments, achieve best performance for both stabilizing and destabilizing mutations.

2.3.5 Clustered model for 3-state classification

In order to investigate the prediction accuracy for the proteins that are not included in our training dataset, we cluster the training data set sequences according to the SCOP family definition (Murzin, Brenner et al. 1995). The 62 proteins are clustered together into 47 families, as shown in Figure 23. The prediction results after 47-fold cross validation are listed in Table 7. The overall accuracy and correlation of the predictions for protein sequences that are not homologous to any of the training data set sequences are 0.63 and 0.37, respectively. Both values are significantly lower than the values obtained from the not-clustered method. This is due to the fact that when one performs 20-fold cross validation on the non-clustered data, there are many homologues or protein differing by just one mutation, contained in the training and test datasets.

Table 7: Results of 47-fold cross-validation on dataset ST1537 for 3-state classification of the clustered model

<table>
<thead>
<tr>
<th>Method</th>
<th>ACC [-]</th>
<th>ACC [N]</th>
<th>ACC [+</th>
<th>ACC</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stru&Seq</td>
<td>0.54</td>
<td>0.78</td>
<td>0.09</td>
<td>0.63</td>
<td>0.37</td>
</tr>
<tr>
<td>SeqOnly</td>
<td>0.54</td>
<td>0.70</td>
<td>0.04</td>
<td>0.58</td>
<td>0.29</td>
</tr>
<tr>
<td>StruOnly</td>
<td>0.52</td>
<td>0.79</td>
<td>0.11</td>
<td>0.62</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Figure 23: The composition of the training dataset based on SCOP family.
3. Evaluation criteria

3.1 Cross validation
In machine learning community, cross-validation is a commonly used and widely accepted technique for estimating the generalization performance, model comparison and optimizing learning model parameters.

3.1.1 Procedures of cross-validation

Hold-Out Validation This method randomly split the available data into a training dataset and a test dataset. Generally, the testing data is less than a third of the initial data. The model is trained on the training dataset, and predictive performance is assessed using the testing data. Hold-out validation avoids the overlap between training data and test data, yielding a more accurate estimate for the generalization performance of the algorithm. The drawback is that this procedure does not use all the available data and the results are highly dependent on the choice for the training/test split.

K-fold cross validation In this approach, the data is randomly partitioned into k equally (or nearly equally) sized subsets or folds. Of the k subsets, a different single subset is held-out as the test data for testing the model, and the remaining k−1 subsets are used for learning. The cross-validation process is then repeated k times (the folds), with each of the k subsets used exactly once as the test data. The k results from the folds then can be averaged to produce a single estimation.

Leave-One-Out Cross-validation Leave-One-Out cross-validation is a special case of k-fold cross-validation where k is the number of data points. Leave-one-out cross validation is useful because it does not waste data. When training, all but one of the points are used, so the resulting regression or classification rules are essentially the same as if they had been trained on all the data points. The main drawback to the leave-one-out method is that it is expensive - the computation must be repeated as many times as there are training set data points.

3.1.2 Key Application

Performance estimation Cross-validation can be used to estimate many performance measurements such as accuracy, sensitivity, specificity, or correlation. For example, using 10-fold cross-validation, one repeatedly uses 90% of the data to build a model and test its accuracy on the remaining 10%. The resulting average accuracy is likely to be somewhat of an underestimate for the
true accuracy when the model is trained on all data and tested on unseen data, but in most cases this estimate is reliable, particularly if the amount of labelled data is sufficiently large and if the unseen data follows the same distribution as the labelled examples.

Model comparison Different predictors may use the cross-validation to compare the predictive performance on some benchmark datasets.

Optimizing Many classifiers are parameterized and their parameters can be tuned to achieve the best result with a particular dataset. For example, support vector machines (SVM) use soft-margins to deal with noisy data. There is no easy way of learning the best value for the soft margin parameter for a particular dataset other than trying it out and seeing how it works. In such cases, cross-validation can be performed on the training data as to measure the performance with each value being tested. Alternatively a portion of the training set can be reserved for this purpose and not used in the rest of the learning process. But if the amount of labelled data is limited, this can significantly degrade the performance of the learned model and cross-validation may be the best option.

3.2 Assessment of classification

3.2.1 Sensitivity and specificity

For binary predictions, sensitivity (Sens.) and specificity (Spec.) are commonly used to evaluate predictive accuracy. Sens. and Spec. are defined in the following equations:

\[
Sensitivity = \frac{N_{TP}}{N_{TP} + N_{FN}} \quad (9)
\]

\[
Specificity = \frac{N_{TN}}{N_{TN} + N_{FP}} \quad (10)
\]

In the disorder prediction, sensitivity represents the fraction of disordered residues correctly identified in a prediction, while specificity indicates the fraction of ordered residues correctly identified. \(N_{TP}\) is true positive (residues predicted and observed disordered). \(N_{FN}\) is false negative (residues predicted ordered but in fact disordered). \(N_{TN}\) is true negative (residues predicted and observed ordered). \(N_{FP}\) is false positive (residues predicted disordered by observed ordered).
3.2.2 ROC curve
The Receiver Operating Characteristic (ROC) curve is a two dimensional measure of classification performance. It shows a classifier’s performance as a trade off between specificity and sensitivity.

The area under the ROC curve (AUC) is a convenient way of comparing classifiers. A random classifier has an area of 0.5, while an ideal one has an area of 1.

The operating point, usually a classifier, is used at a particular sensitivity, or at a particular threshold. The ROC curve can be used to choose the best operating point which lies on the classifier's ROC. The best operating point might be chosen so that the classifier gives the best trade off between the costs of failing to detect positives against the costs of raising false alarms. The best place to operate the classifier is the point on its ROC which lies on a 45 degree line closest to upper left corner (0, 1) of the ROC plot.

3.2.3 S-product, Sw and ACC
In order to reward the predictors more generously for correctly predicting a disordered residue than for predicting an ordered one, in the evaluation of CASP disorder prediction, S-score (S_w) is introduced (Jin and Dunbrack 2005; Bordoli, Kiefer et al. 2007).

\[
S_w = \frac{W_d N_{TP} - W_o N_{FP} + W_o N_{TN} - W_d N_{FN}}{W_d N_d + W_o N_o}
\] \hspace{2cm} (11)

Where N_d and N_o are the total number of residues observed as disordered and ordered, respectively. W_d and W_o are weights assigned to experimentally defined disordered and ordered residues.

To combine both sensitivity and specificity to a single measurement, the S-product and ACC are defined as follow:

\[
S_{product} = Sens \times Spec
\] \hspace{2cm} (12)

\[
ACC = \frac{Sens + Spec}{2}
\] \hspace{2cm} (13)
3.2.4 Matthews’ correlation coefficient
In machine learning, Matthews’s correlation coefficient (MCC) is a measurement for the quality of binary classifications. The MCC is defined as follow:

\[
MCC = \frac{N_{TP}N_{TN} - N_{FP}N_{FN}}{\sqrt{(N_{TP} + N_{FP})(N_{TP} + N_{FN})(N_{TN} + N_{FP})(N_{TN} + N_{FN})}}
\] (14)

3.3 Assessment of Regression

3.3.1 Pearson's correlation
For protein stability prediction, the Pearson correlation coefficient (CC) is used to determine the relationship between the predicted and experimental ΔΔG by following equation:

\[
CC = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \sum (y - \bar{y})^2}}
\] (15)

For the protein stability prediction, \(x\) and \(y\) are the predicted and experimental ΔΔG values, respectively. \(\bar{x}\) and \(\bar{y}\) are the sample means of the predicted and experimental ΔΔG.

3.3.2 Mean absolute error (MAE) and the standard error of estimate
For SVM regression, the performance is also evaluated using the mean absolute error (MAE) and the Standard error (\(\sigma_{est}\)):

\[
MAE = \frac{1}{n} \sum_{i=1}^{n} |x_i - y_i|
\] (16)

Here, \(x_i\) is the prediction and \(y_i\) is the experimental value. And, \(n\) is the number of all mutations from dataset.

\[
\sigma_{est} = \sqrt{\frac{\sum (y - x)^2}{n}}
\] (17)

Here, \(y\) is an experimental value, \(x\) is a predicted values. The numerator is the sum of squared differences between the experimental values and the predicted values, and \(n\) is the number of pairs of scores.

46
4. Contributions and relate works

4.1 Construction of FISH server (Paper I, II)
In this work, the FISH server for the identification of sequence homologues on the basis of protein domains has been developed. It is not only able to compare a query sequence with all structure anchored hidden Markov models (saHMMs) assign family membership on the domain level, but also can be used to discover those proteins in a database that harbour a certain domain, independent of sequence identity and annotation status. Moreover, the cross-link between saHMM database and other biological databases, such as SCOP, PDB, ASTRAL, SwissProt and TrEMBL, has been established on the server (see Figure 24 and Figure 25). This could facilitate further exploration of the structure and function of the query sequence.

![Diagram of database cross-linking used in the FISH server]

Figure 24: Schematic view of the database cross-linking used in the FISH server
4.2 Prediction of order and disorder in proteins (Paper III)
Two strategies for predicting order and disorder in proteins using conditional random fields have been developed. I compare our two predictors (OnD-CRF-Pruned and OnD-CRF) to fifteen previously developed protein disorder predictors over CASP7 benchmarking dataset. Evaluation is done with respect to the AUC, the sensitivity, Ssens, the specificity, Sspec, their product, Sprod, the ACC and Sw. The sensitivity and specificity are interpreted as the fraction of correctly identified disordered and ordered residues, respectively. The
benchmarking results for all 17 disorder prediction methods are listed in Table 8. The comparison is divided into the fully automated server group and the human expert group. The main difference between the categories is human groups can make use of expertise of a knowledgeable human and time to interpret the automated method's results while preparing their nonautomated predictions for CASP.

Within the automatic server group, both our methods achieve better overall performance for AUC, S_{prod}, ACC and S_w as well as the Sens. The performance of OnD-CRF method is comparable to the best human expert methods, such as ISTZORAN and fais. The results show, that OnD-CRF and OnD-CRF-Pruned are accurate and effective methods for the fully automated prediction of disorder in proteins.

Table 8: Comparing OnD-CRF and OnD-CRF-Pruned with prediction methods that participated in CASP7.

<table>
<thead>
<tr>
<th>Method</th>
<th>AUC</th>
<th>S_{sens}</th>
<th>S_{spec}</th>
<th>S_{prod}</th>
<th>ACC</th>
<th>S_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASP7 Automatic Server Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OnD-CRF</td>
<td>0.84</td>
<td>0.69</td>
<td>0.81</td>
<td>0.56</td>
<td>0.75</td>
<td>0.50</td>
</tr>
<tr>
<td>OnD-CRF-Pruned</td>
<td>0.81</td>
<td>0.62</td>
<td>0.85</td>
<td>0.53</td>
<td>0.74</td>
<td>0.47</td>
</tr>
<tr>
<td>DISpro</td>
<td>0.82</td>
<td>0.6</td>
<td>0.85</td>
<td>0.51</td>
<td>0.73</td>
<td>0.45</td>
</tr>
<tr>
<td>GeneSilicoMetaServer</td>
<td>0.8</td>
<td>0.53</td>
<td>0.91</td>
<td>0.48</td>
<td>0.72</td>
<td>0.44</td>
</tr>
<tr>
<td>BIME@NTU_serv</td>
<td>0.8</td>
<td>0.59</td>
<td>0.84</td>
<td>0.5</td>
<td>0.72</td>
<td>0.43</td>
</tr>
<tr>
<td>DISOPRED</td>
<td>0.84</td>
<td>0.43</td>
<td>0.95</td>
<td>0.41</td>
<td>0.69</td>
<td>0.38</td>
</tr>
<tr>
<td>Distill</td>
<td>0.72</td>
<td>0.56</td>
<td>0.79</td>
<td>0.44</td>
<td>0.67</td>
<td>0.35</td>
</tr>
<tr>
<td>MBI-NTU-serv</td>
<td>0.8</td>
<td>0.33</td>
<td>0.97</td>
<td>0.32</td>
<td>0.65</td>
<td>0.3</td>
</tr>
<tr>
<td>DRIPPRED</td>
<td>0.76</td>
<td>0.38</td>
<td>0.91</td>
<td>0.35</td>
<td>0.65</td>
<td>0.29</td>
</tr>
<tr>
<td>CASP7 Human Expert Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISTZORAN</td>
<td>0.86</td>
<td>0.73</td>
<td>0.84</td>
<td>0.61</td>
<td>0.78</td>
<td>0.56</td>
</tr>
<tr>
<td>fais</td>
<td>0.84</td>
<td>0.56</td>
<td>0.92</td>
<td>0.51</td>
<td>0.74</td>
<td>0.48</td>
</tr>
<tr>
<td>CBRC-DR</td>
<td>0.85</td>
<td>0.45</td>
<td>0.97</td>
<td>0.44</td>
<td>0.71</td>
<td>0.42</td>
</tr>
<tr>
<td>BIME@NTU</td>
<td>0.8</td>
<td>0.54</td>
<td>0.88</td>
<td>0.47</td>
<td>0.71</td>
<td>0.42</td>
</tr>
<tr>
<td>IUPred</td>
<td>0.78</td>
<td>0.4</td>
<td>0.95</td>
<td>0.38</td>
<td>0.67</td>
<td>0.34</td>
</tr>
<tr>
<td>CBRC-DP_DR</td>
<td>0.7</td>
<td>0.34</td>
<td>0.97</td>
<td>0.33</td>
<td>0.66</td>
<td>0.31</td>
</tr>
<tr>
<td>Oka</td>
<td>0.61</td>
<td>0.28</td>
<td>0.94</td>
<td>0.26</td>
<td>0.61</td>
<td>0.22</td>
</tr>
<tr>
<td>Softberry</td>
<td>0.7</td>
<td>0.2</td>
<td>0.97</td>
<td>0.2</td>
<td>0.59</td>
<td>0.17</td>
</tr>
</tbody>
</table>
In addition, I compare our two predictors to fifteen previously developed protein disorder predictors over a blind test dataset.

The main purpose of the experiment on blind test dataset is checking whether a method is under-predicting or over-predicting protein disorder. As shown in Figure 26, most predictors prefer to lie on the left side of the triangle. They achieve much higher specificity, which indicates the fraction of correctly identified ordered residues. The sensitivity represents the fraction of disordered residues correctly identified in a prediction. These methods tend to under predict protein disorder. For example, PreLink with the highest specificity 0.991 but a very low sensitivity 0.319. In contrast, DisPSSMP have a highest sensitivity of 0.825 but at the expense of specificity (0.765) which show the tendency of predicting disordered more than order. A good predictor should avoid either under- or over-prediction of protein disorder. As mentioned in section 3.2, I use ACC, Sw and Prob.excess to evaluate the performance. When compared with the other methods, OnD-CRF-Pruned performs the best when the overall accuracy measures are considered (See table 9). The best S_w 32 and Prob.excess 0.643 indicate OnD-CRF-Pruned achieves more balanced prediction than other methods. Although the OnD-CRF does not achieve the best result, it lies in the middle of the triangle (see Figure 26). This indicates that the OnD-CRF is able to obtain a balanced prediction for protein ordered and disordered amino acids.

![Figure 26: Plot comparing the performance of the blind testing of fifteen different disorder predictors.](image)
Table 9: Comparing the performance of fifteen disorder prediction methods on the blind test dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sens.</th>
<th>Spec.</th>
<th>Mcc</th>
<th>ACC</th>
<th>S_w</th>
<th>Prob.excess</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnD-CRF-Pruned</td>
<td>0.724</td>
<td>0.92</td>
<td>0.661</td>
<td>0.822</td>
<td>32</td>
<td>0.643</td>
</tr>
<tr>
<td>IUPred(long)</td>
<td>0.678</td>
<td>0.942</td>
<td>0.65</td>
<td>0.81</td>
<td>30.9</td>
<td>0.62</td>
</tr>
<tr>
<td>DisPSSMP</td>
<td>0.825</td>
<td>0.765</td>
<td>0.589</td>
<td>0.795</td>
<td>29.4</td>
<td>0.59</td>
</tr>
<tr>
<td>RONN</td>
<td>0.675</td>
<td>0.888</td>
<td>0.58</td>
<td>0.7815</td>
<td>28.2</td>
<td>0.563</td>
</tr>
<tr>
<td>OnD-CRF</td>
<td>0.794</td>
<td>0.751</td>
<td>0.544</td>
<td>0.7725</td>
<td>27.1</td>
<td>0.545</td>
</tr>
<tr>
<td>FoldIndex</td>
<td>0.722</td>
<td>0.815</td>
<td>0.54</td>
<td>0.7685</td>
<td>26.68</td>
<td>0.536</td>
</tr>
<tr>
<td>IUPred(short)</td>
<td>0.556</td>
<td>0.915</td>
<td>0.511</td>
<td>0.7355</td>
<td>23.5</td>
<td>0.472</td>
</tr>
<tr>
<td>DISPRED2*</td>
<td>0.469</td>
<td>0.981</td>
<td>0.543</td>
<td>0.725</td>
<td>22.1</td>
<td>0.449</td>
</tr>
<tr>
<td>PONDR</td>
<td>0.632</td>
<td>0.782</td>
<td>0.42</td>
<td>0.707</td>
<td>20.6</td>
<td>0.414</td>
</tr>
<tr>
<td>Dispro</td>
<td>0.383</td>
<td>0.982</td>
<td>0.467</td>
<td>0.6825</td>
<td>18.2</td>
<td>0.365</td>
</tr>
<tr>
<td>DisEMBL(465)</td>
<td>0.348</td>
<td>0.978</td>
<td>0.43</td>
<td>0.663</td>
<td>16.27</td>
<td>0.327</td>
</tr>
<tr>
<td>PreLink</td>
<td>0.319</td>
<td>0.991</td>
<td>0.43</td>
<td>0.655</td>
<td>15.34</td>
<td>0.31</td>
</tr>
<tr>
<td>DisEMBL(hot)</td>
<td>0.502</td>
<td>0.749</td>
<td>0.26</td>
<td>0.6255</td>
<td>12.49</td>
<td>0.251</td>
</tr>
<tr>
<td>DisEMBL(coils)</td>
<td>0.719</td>
<td>0.446</td>
<td>0.17</td>
<td>0.5825</td>
<td>8.21</td>
<td>0.165</td>
</tr>
<tr>
<td>GlobPlot</td>
<td>0.308</td>
<td>0.821</td>
<td>0.151</td>
<td>0.5645</td>
<td>6.42</td>
<td>0.129</td>
</tr>
</tbody>
</table>

The accurate prediction of order and disorder in proteins based on our methods can be used to determine domain boundaries for 3D structure analysis. As shown in Figure 27, the OnD-CRF prediction of the ordered and disordered regions of CRK is in close agreement with the solution NMR structure of this molecule. The SH2 domain (residues 10–120), the nSH3 domain (134–191) and the cSH3 domain (238–293) are located in the regions of the OnD-CRF plot with highest probability for ordered residues. Furthermore, the amino-acid interval with a high probability for disorder, located roughly in the middle of the CRK-SH2 domain, corresponds precisely to the highly dynamic loop (residues 65–85) connecting the βD and βE strands. The DE-loop changes its conformation and provides additional interaction surface when bound to the regulatory SH3 domain of Abl. (Donaldson et al., 2002). This is remarkable example for identifying functional disordered regions in a protein. The example also shows that the OnD-CRF trained on a data set containing exclusively crystal structures, performs well when presented with NMR data.
Figure 27: OnD-CRF Prediction analysis for the human cancer-related signaling adaptor protein CRK.

Besides being able to predict disorder, our methods can also be used to estimate the B-factor distribution of a protein from its amino acid sequence. Figure 28 shows the results of OnD-CRF-Pruned analysis of the order and disorder tendencies of p53 which is a tumor-suppressor transcription factor of 393 amino acids. The prediction of OnD-CRF-Pruned not only delineates four main functional domains of p53 (Figure 28B), but also demonstrates a remarkably correlation with the B-factor distribution of its DNA binding domain (Figure 28A).
Figure 28: OnD-CRF-Pruned Prediction analysis for p53. The result shows a clear correlation of the disorder prediction probability curve with the B-factor distribution derived from the well-folded DNA binding domain (within the dash line). (A) The mean B-factor plot for DNA binding region in absence of DNA (PDB entry 2OCJ). (B) The four domain regions of p53, the N-terminal transactivation domain (residues 15-29), the core domain, which contains the specific DNA binding activity (residues 102-292), the tetramerization domain (residues 325-355), and the negative regulatory domain (residues 367-393), are outlined by the prediction of Pruned-OnD labelled with a, b, c and d, respectively.
In addition, our prediction result for the N-terminal transactivation domain is also in agreement with current understanding structural and functional attributes of IDPs according to the concept of molecular recognition elements/features (MoREs/MoRFs) which suggest that interaction site of disorder-to-order transition tend to be short regions of apparent order surrounded by regions of predicted disorder.

Furthermore, our protein disorder prediction methods can be used to predict if amino acid mutations will increase or decrease the content of disordered structure in a protein. As shown in Figure 29, the human Transthyretin triple mutant TTRG53S/E54D/L55S significantly increases the disorder probability of the protein. The prediction results are in agreement with the experimental results that show the triple mutations lead to a three-residue shift in β strand D so-called “β-slip” and destabilize the whole area between Phe-33 and Phe-64 (Eneqvist, Andersson et al. 2000).

Figure 29: OnD-CRF Prediction analysis for the effect of the triple mutant TTRG53S/E54D/L55S of human Transthyretin protein.
4.3 Prediction of protein mutation-induced stability change (Paper IV)

In the last manuscript, I describe a method for predicting protein stability changes due to single mutation, called ProSMS. The ability to predict a protein’s tolerance to amino acid substitutions is of fundamental importance to understand natural protein evolution, for developing protein engineering strategies, and for understanding the basis of genetic diseases (Bloom, Silberg et al. 2005). In contrast to the common binary predictors, I base our predictors on a three-state classification which introduces in addition to the destabilizing mutations ($\Delta \Delta G < -1.0$ kcal/mol) and stabilizing mutations ($\Delta \Delta G > 1.0$ kcal/mol), as a third class the neutral mutations (-1.0 kcal/mol $\leq \Delta \Delta G \leq 1.0$ kcal/mol).

Moreover, based on a refined training dataset, I propose non-clustered and clustered models for a three-state classification of protein stability changes resulting from single amino acid mutation. Results for the non-clustered model (see Table 4) indicate that the prediction accuracy based only on the protein sequence information is comparable to the accuracy when protein structure information is included. However, for clustered model, the prediction accuracy is significantly improved when protein tertiary structure information, in form of local environmental conditions, are available.

From comparing the prediction accuracies of the non-clustered and the clustered models we can conclude, that many established predictors appear to be more accurate than they actually are. They perform well on sequences that are homologous to sequences in the training data set, but perform worse on non-homologous sequences. The reason is that due to the traditional k-fold cross validation, they can only estimate the prediction ability for query proteins that are homology related to proteins in their training datasets. Confronted with a novel sequence, without homologue in the training data set, they will not be able to achieve high accuracy.

The predictive model based on the 47-fold cross validated clustered training data set, provides a realistic estimate of the lower bound for predictions, since none of the query sequences were used for training the model.

The predictive ability of our 3-state model is then compared with the method developed by Capriotti et al., who adopted a hypothesis of thermodynamic reversibility of the existing experimental data, and using cross validation on 20 sub datasets which were clustered according to their sequence similarity using
the blastclust program in the BLAST suite. For the 3-state classification, the best SVMs method (SVM-3D9) achieves an accuracy of 61% with a correlation coefficient of 0.35. Our method can predict the 3-state of protein mutants with an accuracy of 78% and a correlation of 0.68 for non-clustered model with 20-fold cross validation, and an accuracy of 63% and a correlation of 0.37 with 47-fold cross validation for clustered model. Although direct comparison is not appropriate due to the difference of datasets used in for training and test, I use a refined experimental dataset and more elaborate cross-validation, the significant improvement in accuracy and correlation indicates that our method is better and more reliable.

I also compare the performance of predicting the actual free energy changes resulting from mutation and 2-state classification by the S1948 dataset which was used by AutoMute(Masso and Vaisman, 2008). The results are shown in Table 10.

Table 10: Comparison of regression algorithms over S1948 dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>CC</th>
<th>σ_{est}</th>
<th>Regression line</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProSMS-Stru&Seq</td>
<td>0.9</td>
<td>0.9</td>
<td>$y=0.777x-0.212$</td>
</tr>
<tr>
<td>AUTO-MUTE-REPTree</td>
<td>0.8</td>
<td>1.1</td>
<td>$y=0.5357x-0.4376$</td>
</tr>
<tr>
<td>Capriotti (SVMreg)</td>
<td>0.7</td>
<td>1.3</td>
<td>$y=0.5223x-0.4705$</td>
</tr>
</tbody>
</table>

Based on the 20-fold cross-validate results, the correlation coefficient and the standard error of our ProSMS method is with 0.9 and 0.9, respectively, significantly better than the AUTO-MUTE-REPTree and Capriotti (SVMreg)(Capriotti, et al., 2005).

For the 2-state classification, our method achieves a comparable area under the curve (AUC) 0.91, which corresponds to a better ACC of 0.87 and MCC of 0.68, as shown Table 11.

Table 11: Comparison of 2-state classification over the S1948 dataset.

<table>
<thead>
<tr>
<th>Method</th>
<th>ACC</th>
<th>MCC</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProSMS-Stru&Seq</td>
<td>0.87</td>
<td>0.68</td>
<td>0.91</td>
</tr>
<tr>
<td>AUTO-MUTE-REPTree</td>
<td>0.86</td>
<td>0.66</td>
<td>0.91</td>
</tr>
<tr>
<td>AUTO-MUTE-SVM</td>
<td>0.84</td>
<td>0.61</td>
<td>0.86</td>
</tr>
</tbody>
</table>
5. Conclusions

- The FISH server is a versatile tool for identifying the family membership of domains in a query protein sequence, even in the case of very low sequence identities to known homologues. The embedded databases cross-link engine facilitates biologist to do further analysis.
- The accurate prediction of order and disorder in proteins can be used to identify the domain boundaries. Moreover, the inherent relations between protein disorder and protein flexibility can be used to estimate B-factor distribution and protein stability changes resulting from mutation.
- Prediction of disorder can also be used to generate functional insight.
- Different predictors rely on different feature selection and/or algorithms, each have strengths and weaknesses. Thus, the predictors are complementary. Comparison of predictions by different algorithms based on different physical and/or computational principles are required.
- Compiling a representative training dataset is crucial to develop a reliable method for predicting protein stability changes due to single amino acids mutation.
- The prediction accuracy of mutation stability on clustered proteins with respect to training dataset is still a challenging task.
6. Future plan

- At the moment, the information provided by our protein disorder predictors are mainly the binary classification of proteins as ordered or disordered and no more detail information of function from the disordered regions. In the future, I am going to optimize our prediction to recognize the regions undergoing disorder-to-order transition.

- Datasets derived from ProTherm facilitate the implementations of machine learning to predict protein stability changes from mutation. However, as shown in section 2.3.1, there are some drawbacks for the training data set from ProTherm with the current constrains. First, the high proportion of mutation from other amino acids to alanine may lead to bias toward mutation that features large-to-small residues substitutions. Second, since protein is only marginally stable under the native state, the experimental condition, such as the concentration of denaturants, the type of solvents, the added ion and the effect of oxidized and reduced forms of the protein, should also be considered. Therefore, the next step, I am going to optimize the training dataset for predicting protein stability changes from mutation.
7. Acknowledgement

First and most importantly, I want to express my sincere gratitude to my supervisor, Uwe Sauer, who introduced me to the field of bioinformatics. Thank you for giving me the opportunity to work with you. You have always provided me with excellent ideas, the best work conditions and guided my research forward. Secondly, my co-supervisor Michael Sjöström and Jan Larsson, we may not have had such close supervisor/student relationship but I appreciate your guidance and support in all issues. Thirdly, I would like to thank Elisabeth Sauer-Eriksson, not only for your comprehensive, high-class education in structure biology, but also for your advice and encouragement to my research.

The fulfillment of this thesis had not been possible without plentiful support of many other people and in particular I am indebted to:

Jeanette Tängrot, my first bioinformatics colleague and friend, for invaluable discussion which let me enter the field of structure bioinformatics.

Marek Wilcynski for maintenance to my computer and our servers work well.

Shenghua Huang It’s so nice to have you as my roommate during these years.

You have given me numerous help both in scientific work and daily life.

Christin Grundström Thank you so much for all help you gave me.

Tobias Hainzl for all the helpful suggestions whenever I need advice.

Many thanks to all former and present members of the structural biology group

My special thanks to Lena Lewin and Per-Erik Jansson for course organization and administration of PhD Programme in Medical Bioinformatics (FMB).

Many thanks to all members of Computational Life science Cluster for our interesting discussions and productive mutual exchange of experiences.

Special thanks to Patrik Rydéén for helps and suggestions and teaching me statistics.

Maria Westling, Barbro Forsgren and Lennart Johansson, for always being ready to help with administrative affairs.

Thanks to my Chinese friends. Nu Huang for always being concerned about my family, Aihong Li and Sa Chen for advises and support, Hailing Yang and Qingying Zheng, Li Wang and Junfa Liu for all the chats, Xiaohua Xu and
Yingfu Xie, Liping Ke and Yuqiang Sun for playing badminton together, Ming Sheng and Changchun Chen for delicious food.

Finally, I want to thank my parents for supporting and encouraging me in all my life. Most of all to my beloved wife, Xiaolian, and my lovely son, Zikai, with you my life has a meaning.

This work has been supported by the Swedish Knowledge Foundation through the Industrial PhD programme in Medical Bioinformatics at Corporate Alliances, Karolinska Institutet as well as by BIOVITRUM AB and Umetrics AB.
8. References

