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Abstract 

To be able to make informed descicions regarding the research of new drug 
molecules (ligands), it is crucial to have access to information regarding the 
chemical interaction between the drug and its biological target (protein). 
Computer-based methods have a given role in drug research today and, by using 
methods such as molecular docking, it is possible to investigate the way in which 
ligands and proteins interact. Despite the acceleration in computer power 
experienced in the last decades many problems persist in modelling these 
complicated interactions. The main objective of this thesis was to investigate and 
improve molecular modelling methods aimed to estimate protein-ligand binding. 
In order to do so, we have utilised chemometric tools, e.g. design of experiments 
(DoE) and principal component analysis (PCA), in the field of molecular 
modelling. More specifically, molecular docking was investigated as a tool for 
reproduction of ligand poses in protein 3D structures and for virtual screening. 
Adjustable parameters in two docking software were varied using DoE and 
parameter settings were identified which lead to improved results. In an additional 
study, we explored the nature of ligand-binding cavities in proteins since they are 
important factors in protein-ligand interactions, especially in the prediction of the 
function of newly found proteins. We developed a strategy, comprising a new set of 
descriptors and PCA, to map proteins based on their cavity physicochemical 
properties. Finally, we applied our developed strategies to design a set of 
glycopeptides which were used to study autoimmune arthritis. A combination of 
docking and statistical molecular design, synthesis and biological evaluation led to 
new binders for two different class II MHC proteins and recognition by a panel of 
T-cell hybridomas. New and interesting SAR conclusions could be drawn and the 
results will serve as a basis for selection of peptides to include in in vivo studies. 
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Sammanfattning 

Läkemedel består generellt av små molekyler (ligander) vars verkan i kroppen är en 
effekt av dess interaktion med kroppens proteiner. För att utveckla av nya 
läkemedel är det viktigt att kunna bestämma på vilket sätt liganderna binder till 
specifika proteiner och hur stark denna bindning är. Olika beräkningsmetoder, där 
ibland t.ex. dockning, har utvecklats just för detta syfte. I denna avhandling har vi 
undersökt olika dockningsprogram och deras förmåga att återskapa ligandernas 
geometrier och beräkna bindningsstyrka i komplex mellan ligander och proteiner 
med känd 3D-struktur. Men också, och kanske viktigare, dockningsprogrammens 
förmåga att identifiera nya ligander till ett protein. För att planera 
beräkningsexperiment och för att analysera resultaten har vi använt oss av 
kemometriska metoder. Dessa syftar till att minimera antalet experiment som 
behöver genomföras utan att information förloras på vägen, samt att hantera stora 
datamängder via olika projektionsmetoder som underlättar tolkningen av 
resultaten. Våra resultat visar att val av dockningsprogram och olika inställningar i 
dessa har stor betydelse för vilka resultat man får. Vidare kan man med ”smart” 
experimentell planering finna inställningar som är optimala när det gäller att 
identifiera geometrin hos en ligand i olika typer av protein-ligand komplex. Vi har 
också utvecklat en metod för att beskriva och gruppera proteiner med avseende på 
de kemiska egenskaperna hos de ligand-bindande ytorna. Vi kunde visa att det är 
möjligt att prediktera funktionen hos ett protein med hjälp av denna beskrivning. 
Vi har även applicerat de nya metoderna vi utvecklat för att designa nya ligander 
(glykopeptider) för en typ av protein involverat i uppkomsten av sjukdomen 
autoimmun artrit. Med hjälp av dockning och statistisk molekyl-design 
konstruerade vi 20 glykopeptider. Dessa syntetiserades och utvärderades i 
biologiska testsystem för att bestämma deras bindningskapacitet till två typer av 
proteiner och deras förmåga att inducera respons hos immunförsvarsceller (T-
cellshybridom). Genom denna studie kunde vi dra slutsatser kring vilka egenskaper 
hos glykopeptiderna som är viktiga för deras bindnigskapacitet. Detta kommer att 
ligga till grund för beslut kring vilka peptider som ska inkluderas i framtida 
vaccinationsstudier. 
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1. INTRODUCTION 

1.1 Molecular Interactions 

The studies presented in this thesis have to a large extent dealt with describing and 
quantifying non-covalent bonds between molecules. Put loosely, one of the main 
conclusions that can be drawn from the results obtained is that the attractive and 
repulsive forces that govern molecular interactions are both intriguing and puzzling. 
Drugs are typically small molecules that interact with proteins in our bodies by 
binding to important areas on or inside the protein. Thereby they can inhibit the 
protein's function or hinder its interaction with other proteins. How is it possible 
for a small (drug) molecule to find its way through the chaotic cellular environment 
that exists within our bodies and finally end up inside a specific target protein? 
Obviously the small molecule needs to overcome many obstacles on the way to its 
intended target and charting these obstacles is beyond the scope of this thesis. 
However, there must clearly be some kind of attractive force that causes the two to 
bind to one-another. So to be able to design a molecule which is intended to bind 
to a specific protein, we need to be able to distinguish molecules that will bind to 
the protein from those that will not. The famous lock and key metaphor1 illustrates 
the challenge: we must design a key that will fit the lock perfectly and which is also 
able to open the lock (i.e. produce the desired biological effect). This principle is 
illustrated in Figure 1a which depicts the surface of a protein (the lock) and a 
ligand (the key) which binds to the ligand binding site. 

 

 

Figure 1. a) The surface of a 
protein (acetylcholinesterase, 
AChE (PDB 2gyu)) with an 
inhibitor (HI-6) in the ligand-
binding site marked with a red 
circle. b) HI-6 and its non-
covalent bonds with amino 
acids in AChE. HI-6 carbons 
are orange, hydrogen bonds are 
indicated with purple lines and 
π-stacking and π-cation 
interactions are indicated with 
green lines. 
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Binding affinity experiments, computational methods based on quantum 
mechanics or molecular mechanics, and crystallography have all contributed to our 
current understanding of the factors that affect binding between proteins and small 
molecules (ligands).2 It is believed that the most important types of non-covalent 
bonds involved include ion-ion and ion-dipole interactions, Van der Waals (vdW) 

forces (Keesom forces and London forces), hydrogen bonds,3 and π system 
interactions;4 the last two of these are illustrated in Figure 1b. Common 
interactions found between ligands and proteins have been assembled in 
comprehensive libraries of interactions2 and reviews have been written on the 
subject5, 6 Even though these interactions are quite well understood and it is possible 
to estimate the contribution made by each type of bond to the overall ligand-
protein binding affinity, calculated binding affinities often do not correlate well 
with measured affinities.5, 7, 8 Obviously more factors need to be considered; one of 
the most important is the curious property called entropy.9 The energy of a system 
can be described in terms of its Gibbs free energy, G. Upon binding, the ligand and 
the protein form a complex with a lower free energy than the additive energy of the 
two separate species. The change in free energy can be expressed according to 

 ∆Gº = ∆Hº-T∆S (1) 

where ∆Gº is the change in standard free energy, ∆Hº and ∆Sº are the changes in 
the standard enthalpy and entropy of the system respectively, and T is the 
temperature in Kelvin. The formation and breaking of the above-mentioned non-
covalent bonds contribute to the enthalpy change, while the change in entropic 
energy is largely dependent on changes in the freedom of movement of the 
molecules. This is where the importance of considering the environment 
surrounding the two molecules becomes clear. Most ligand-protein interactions 
take place in an environment that largely consists of water, and water molecules 
form loosely-organised hydration shells around the two species. All of these 
molecules are in constant motion and some are bound together, which is 
entropically unfavourable. In simple terms, the binding of a ligand to a protein 
causes water to be 'squeezed out' from between the interacting surfaces of the two 
molecules. While the conversion of ordered water molecules on the surface of a 
solute to free water in solution is entropically favourable, the conversion of a freely-
moving protein and ligand to a single supramolecular entity is not. All of these 

factors contribute to the entropy change on binding. The T∆S term in equation (1) 
can be of considerable magnitude, especially when the ligand and protein have 
complementary lipophilicc surfaces, but is generally more complicated to estimate 
computationally than are the enthalpic elements.8, 10 Furthermore, there is a 
negative correlation between ∆Hº and ∆Sº, known as enthalpy-entropy 
compensation;11 while the free energy change of ligand binding is often small, the 
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enthalpy and entropy changes can vary widely. Therefore, small errors in the 
predicted values of either ∆Hº or ∆Sº can have vast effects on the calculated ∆Gº, 
and this must be accounted for when calculating binding affinities.5, 8 

1.2 How to Estimate Molecular Interactions 

The binding affinity between a ligand and a protein can be quantified 
experimentally using a biological test system (assay). For instance, changes in 
protein activity following the addition of a ligand can be measured. Alternatively, 
one can use a competitive assay, in which the ability of the ligand of interest to 
displace one of the protein's native ligands is measured; this approach was adopted 
in Paper IV. Affinity can also be measured by a range of other methods, including 
microcalorimetry.12 Binding can be studied using nuclear magnetic resonance 
(NMR) spectroscopy13 and x-ray crystallography (vide infra).14 All these 
experimental methods require access to pure samples of the protein (or the protein 
source) and ligands, which is not always achievable. There are many computational 
methods for predicting the geometry of protein-ligand complexes and for 
estimating their binding affinity. These methods can generally be classified as 
belonging to one of four groups:9 molecular docking and scoring, approximate free 
energy methods,15-17 and relative-18, 19 and absolute20, 21 binding free energy methods.22, 

23 Of these methods, molecular docking is the least computationally demanding and 
also the least precise, trading accuracy for speed. Hence, it can be used to rapidly 
evaluate the binding of many ligands to a protein, making it particularly valuable 
when screening large databases of molecules in a virtual screen (VS). Scoring 
functions are relatively simple mathematical expressions or regressions that estimate 
the strength of protein-ligand interactions. Some of them attempt to predict the 
enthalpy and entropy of binding or only the enthalpy; others make predictions on 
the basis of experimental data. In this thesis, we have investigated docking strategies 
and scoring functions (see the segment on scoring functions) and their ability to 
predict ligand binding poses and ranks on the basis of their predicted binding 
capabilities. 

1.3 The Molecule’s 3D Structure 

Modern drug design is facilitated by the knowledge of the 3D structures of ligands, 
proteins, and protein-ligand complexes (Figure 1a). Individual molecules are much 
too small to be identified by methods that rely on light in the visible spectrum, 
even when they are as large as proteins, which consist of thousands of atoms. 
Therefore, it is not possible to see a molecule. That being the case, it is remarkable 
that many (or at least, many chemists) have quite a clear picture of what they look 
like. To be able to see molecules, we need to use radiation of wavelengths other 
than those of visible light, such as x-rays, as in the case of x-ray crystallography,14 or 
radio waves, as in the case of NMR spectroscopy.13 These are the two most 
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commonly-used methods for deriving the 3D-structures of proteins and smaller 
molecules. 3D structures of proteins can also be derived by computational methods 
such as comparative modelling.24 The structures derived via this method are based 
on previously determined structures of proteins having similar sequences to the 
protein of interest; a protein whose 3D structure is unknown is modelled or 
“threaded” upon a structure with high sequence similarity, and a hypothetical 3D 
structure is derived after refinement and energy minimization. We adopted this 
approach to obtain a 3D structure for the class II major histocompatibility complex 
(MHC) Aq protein, which was then used in the structure-based design of 
glycopeptides (Paper IV). Typically, newly solved 3D protein structures are 
deposited in the publically available RCSB protein data bank,25 which contains 
roughly 65300 such structures as of the time of writing. All of the x-ray 
crystallographic protein structures (x-ray structures) investigated in these studies 
were obtained either from the protein data bank or from one of its subsidiary 
collections (specifically, the PDBbind database26, 27 and the Directory of useful 
decoys, DUD28). 

It is important to realize that x-ray structures are models based on experimental 
data, and that the “quality” of these models is sensitive to the experimental 
conditions and computational methods used. The quality of a 3D structure has 
implications, especially in structure-based design, where structural details such as 
the lengths of specific protein-ligand bonds are used to form conclusions and to 
design new and improved ligands. One measure of the 'quality' of an x-ray 
structure is its resolution, reported in Ångström (Å). For instance, in an x-ray 
structure with a resolution of 2.5 Å the standard deviation in the atomic 
coordinates may be as high as 0.4 Å.5, 29 Considering that the distance between 
heavy (non-hydrogen) atoms in a hydrogen bond is typically 2.4-2.8 Å3 it is evident 
that analysis of structures in which the standard deviation in the positions of heavy 
atoms exceeds 0.4 Å may result in faulty conclusions concerning the nature of the 
such interactions. Furthermore, at a resolution of > 2.5 Å the model details in the 
structure are more subjective and more dependent on the modelling strategy.30 In 
this work, we have only used x-ray structures with a resolution of more than 2.5 Å. 

1.4 Designing Drug Molecules 

A plethora of computational methods have proved useful in modern drug design.31, 

32 They are mostly used for calculating the physicochemical properties of molecules, 
estimating binding affinities (for instance, by calculating free energies of binding), 
predicting binding poses (e.g. docking), molecular dynamics (MD) simulations 
(simulations of the movement of molecules),33, 34 and different search methods (such 
as pharmacophore matching35 and scaffold hopping36, 37). It has been estimated that 
it takes ten years and a billion dollars (~10 billion SEK) to develop a drug and 
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bring it to market38 so the drug development process has much to gain in terms of 
time, costs and innovation by using computational methods. Methods like 
molecular docking, which is the primary topic of this thesis, can be used to identify 
potential ligands for a specific protein target (lead generation), and to assist 
chemists in identifying chemical modifications that might improve a molecule's 
pharmaceutical properties (lead optimization), reducing experimental costs. 
Furthermore, the value of experimental planning and statistical molecular design 
(SMD)39-43 in drug evolution should not be underestimated, as we have shown 
previously in the design of antibacterial Type III secretion inhibitors44 and as is 
further demonstrated in this thesis. 

1.4.1 Ligand-Based Design 

In the absence of a 3D structure for the protein of interest, it is possible to 
rationally design modified ligands by studying the structure of ligands known to 
produce the desired biological response. The design of molecules is a broad concept. 
Generally, any non-random structural modification of a molecule is considered to 
be designed. This thesis employs a more stringent definition of 'design' and uses 
more specific terminology when discussing different design strategies. For instance, 
Paper IV describes a ligand-based approach to design, in which SMD was used to 
construct a library of peptides composed of a selection of physicochemically-diverse 
amino acids; the amino acids employed were chosen on the basis of a statistical 
experimental design. The strengths of SMD are discussed in more detail below. 
Alternative ligand-based design strategies include similarity search methodologies,45 
which identify molecules having similar structures (e.g. 2D fingerprints46 or 3D 
pharmacophores)35 to known bioactive ligands, and scaffold hopping, which focuses 
on the exchange of individual substructures of bioactive molecules for similar 
fragments.36, 37 

1.4.2 Structure-Based Design 

If a 3D structure of the protein of interest is available, preferably complexed with a 
ligand, it is possible to perform a structure-based design of new ligands. This design 
strategy involves the rational modification of a ligand on the basis of the protein-
ligand interactions revealed in the 3D structure. This can be done by visual 
inspection of the 3D structure or by the analysis of protein-ligand interactions 
identified within the structure by computational methods such as molecular 
docking. Alternatively, it is possible to apply fragment-based47, 48 and de novo 
design49, 50 in which new ligands are designed by connecting fragments that bind to 
specific residues within the protein or by 'growing' a new ligand within the active 
site, respectively. An important and limiting aspect of structure-based design is that 
it does not generally consider the flexibility of proteins, which is perhaps natural 
since the designs are based on rigid protein-ligand complexes. Protein flexibility (or 
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the lack thereof) is discussed below; Teague has written an excellent review of the 
literature on the impact of flexibility on drug design.51 

1.5 Molecular Docking 

One method for exploring the interactions between a ligand and a protein is to 
synthesize the ligand, co-crystallize it with the protein and then try to obtain an x-
ray structure of the complex. Although both synthesis and crystallography can 
sometimes be quite unpredictable and time-consuming, the method may be viable 
for small collections of ligands. If synthesis or crystallization fails, or if the aim is to 
screen many ligands for binding to the protein, computational molecular docking is 
often the method of first choice, and has become popular within both academia 
and industry.52 Furthermore, docking can be valuable when forming hypotheses 
regarding the way a ligand binds to the protein, or for modelling parts of the ligand 
whose structure or conformation when bound have not been successfully 
determined by crystallography. More than 60 docking programs have been 
reported, of which roughly 10 are widely used.53 

Docking requires a 3D structure of the protein as input. Typically, the software will 
generate 3D conformations of the ligands and optimize their interactions with the 
protein by computing the binding affinity (scoring) between the two. In most 
docking programs used today, the ligand is treated as a flexible structure but the 
conformation of the protein is treated as being (mostly) rigid, and water molecules 
are typically not considered at all. Obviously, both of these approximations 
constitute major simplifications of the real environment in which ligands and 
proteins interact. Still they are useful because of the immense amount of 
computation that would be necessary to accurately model the effects of water and 
protein flexibility – imagine the difficulty of modelling a lock and key that are 
constantly changing shape, in aqueous solution, and trying to measure the 
interactions between the two! However, these simplifications are thought to be the 
two most important reasons why docking fails to correctly predict the affinity of a 
ligand for a protein, and the pose the ligand will adopt on binding (see segment on 
scoring),54 and this failure has plagued docking since its birth in the 1980s. In 
2006, Leach et al. stated that docking had reached a plateau in its development and 
was waiting for a breakthrough.55 Gratifyingly, reports of numerous studies seeking 
to address the problem of protein flexibility have since appeared, and a range of 
different methods including ensemble docking,56-60 coarse graining,61 flexibility 
trees,62 elastic potential grids,63 and genetic algorithms have been investigated.64 
Methods for dealing with protein flexibility have been reviewed by Alonso et al.,65 
B-Rao et al.,66 and Henzler and Rarey.67 The inclusion of structural water has also 
been intensively studied, and recent studies suggest that this does improve the 
accuracy of docking.68-70 
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The accuracy of docking software packages is often tested by so-called redocking 
experiments. These involve docking one or a set of ligands back into the binding 
site of the native 3D structure of the protein; the docking is judged to be successful 
if the software is able to reproduce the experimentally-observed ligand pose. 
Redocking results are commonly evaluated by calculating the root mean square 
deviations (RMSD) between the native ligand conformation (as observed in the x-
ray structure) and the ligand conformation suggested by the docking software 
(docking poses). RMSD is a measure of the average deviation in the positions of the 
heavy atoms of the ligand between the two complexes. The native pose is typically 
judged to have been “successfully” reproduced if the RMSD is below 2.0 Å,71-73 
although such fixed limits should be treated with caution in some cases. 

Despite (and perhaps because of) the many drawbacks of docking, we and our 
fellow scientists continue to further develop and investigate techniques to improve 
upon it, and the many reported success stories concerning the use of docking are a 
major driving force in this development.74-80 Many of these successes originate from 
the field of virtual screening (see below) which has identified many new and 
unexpected molecules as ligands for various proteins, or from lead optimization 
studies aiming to rationalize the binding of designed molecules. 

1.6 Scoring Functions 

In docking, the binding affinity, or rather the complementarity, between the ligand 
and protein is assessed by scoring functions. These can generally be classified into 
one of three categories: empirical, force field-based and knowledge-based.81 
Empirical scoring functions are the most common;53 they estimate binding affinities 
by dividing ∆Gº into scalable contributions from individual types of protein-ligand 
interactions such as hydrophobic effects, hydrogen bonding, and constraints upon 
movement imposed by binding. The equations involved are exemplified by a 
simplified version of the Chemscore scoring function:82 

 ∆G
bind

 = ∆G
H-bond

 + ∆G
metal

 + ∆G
lipo

 + ∆G
rotHrot

 + ∆G
0
 (2) 

where ∆Gbind is the estimated free energy of binding, and the remaining terms are 

contributions to ∆G
bind

 from hydrogen bonds (∆G
H-bond

), metal interactions (∆G
metal

), 

lipophilic interactions (∆Glipo), frozen rotatable ligand bonds (∆GrotHrot) and non-

specific interactions (∆G0). The coefficients for the individual ∆G terms were 
derived using multiple linear regressions (MLR). Other empirical scoring functions 
used in some of the studies discussed in in this thesis are Piecewise linear potential 
(Plp)54 and Screenscore.83 One of the major drawbacks of functions in this category 
is that their predictive ability is limited by the scope and quality of the 'training set' 
of complexes used when developing the function. 
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Force field based scoring functions, represented in our studies by Goldscore71, 
estimate binding affinities as the sum of electrostatic and vdW interaction energies 
(which are often modelled using Lennard-Jones potentials)84 calculated using 
molecular mechanics force fields. Atoms are treated as single particles and the force 
fields contain information regarding the nature and behaviour of different atoms, 
including their vdW area and partial charges. The force fields are parameterized on 
the basis of experiments and quantum mechanics calculations. These scoring 
functions tend to overemphasise polar interactions, although these effects can be 
compensated for to some extent.85 

The third category of scoring functions includes those based on the knowledge 
gained from the ever increasing number of protein-ligand complexes, hence the 
name knowledge-based scoring functions.86 These functions rely on pairwise atom 
potentials calculated from statistical analyses of bonds that are frequently observed 
between ligand and protein atoms. The final score is then calculated as the sum of 
all the pairwise interactions between the ligand and protein (within a defined 
distance cut off). A drawback of this method is that some rare types of interactions 
(e.g. interactions with halogens) may be less well parameterized. 

Other types of scoring functions that do not belong to any of these three classes 
have also been developed. For instance, Gaussian scoring functions,87 represented 
by Chemgauss3, Shapegauss, and chemical Gaussian overlay (CGO) in this thesis. 
These functions use smooth Gaussian functions to represent atoms and to evaluate 
steric clashes and beneficial interatomic interactions;87 these functions may 
incorporate additional terms to describe hydrogen bonding, desolvation, and metal 
interactions (Chemgauss3) or to account for overlap with a bound ligand (CGO). 
Finally, rescoring using a more computationally demanding physics-based 
approach, such as molecular mechanics Poisson-Boltzmann/Generalized Born 
surface area (MM-PB/GB-SA)15, 88, 89 has become more popular in recent years 
because of the promising results.16, 17, 90-92 The increase in available computational 
power allow these powerful but computationally demanding calculations to be 
performed in reasonable timeframes.  

One may ask whether this lack of correlation between calculated and measured 
affinities is due to the failure of the models to account for protein flexibility,93 to 
the failure to account for the presence of water,68 or simply to poor descriptions of 
the interactions between the ligand and the protein. In all likelihood, the answer is 
that all of these factors contribute to some extent; it may be the case that scoring is 
more a measure of the complementarity between a ligand and a protein rather than 
an estimate of affinity. Nevertheless, scoring functions have been surprisingly 
accurate in many cases, especially in ranking active compounds in VS75 and in the 
identification of accurate binding poses7, 73, 94, 95 and they are continuously being 
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refined and improved. The development of target-specific or “tailor-made” scoring 
functions has become increasingly popular,57, 96-98 and the development and 
application of methods for selecting an appropriate scoring function are described 
in this thesis. 

1.7 Virtual Screening 

The aim of VS is to find molecules (hits) not previously identified as ligands 
(actives) for a specific protein. In drug discovery, these new ligands should 
preferably be structurally and/or physicochemically different from the already-
known ligands and also quite small in size. This is because hits from the VS will go 
through a structural evolution as they are turned into potentially viable drugs, and 
smaller molecules can be more extensively modified and can have more additional 
chemical groups incorporated before they reach “non-drug like” sizes (i.e. molecular 
weight > 500 g/mol).99 VS has proved to be a very useful techniques in lead 
generation75, 76, 100 and it has been estimated that new ligands have been found for 
more than 50 different proteins.100 Several successful docking-based VS campaigns 
have been reported,74, 77, 101-103 many of which have been reviewed elsewhere.104  

If a VS tool is able to assign high ranks to active compounds from a library of 
potential ligands, i.e. more actives can be found among the top ranked molecules 
than among the low-ranked molecules, it is said to "enrich" the library. Moitessier 
et al.

53 claim that “in virtually every case, it is worth running a VS to guide the 
development of a focused library as enrichment is likely to be obtained”. 
Essentially, this means that it is desirable to use every bit of information we have 
regarding the target protein and its possible interactions with small molecules. We 
adopted this concept in Paper IV, in which a VS was performed against a 
comparative model of a protein. 

A range of different methods can be employed in VS, including ligand-based and 
structure-based methods.105 Ligand-based methods include strategies where 
molecules are compared to 2-dimensional representations of known ligands (e.g. 
topology fingerprints/descriptors, as reviewed by Hert et al.)106 or to 3D 
representations. Examples of the 3D approach include ligand pharmacophore 
modelling35, 107 and screening based on ligand shape.108 Docking is the most 
commonly-used structure-based method, although other methods such as protein-
ligand complex pharmacophores have been developed.35, 109-112 Comparisons of 
ligand- and structure-based methods have not given consistent answers as to which 
are the most reliable. In some cases ligand-based methods work best;113 in others, 
both give comparable results.114 It has been suggested that combining the different 
methods114, 115 or applying post-VS pharmacophore filters116, 117 might be useful in 
achieving good VS results. 
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Choosing an appropriate VS tool is challenging because the tool strongly affects the 
outcome of a VS. Furthermore, the quality of the 3D ligand and/or protein 
structures and the scoring functions employed also influence the outcome. 
Different VS tools can be evaluated using what we prefer to call “simulated VS”, in 
which a VS is performed against a protein using a database of "decoy" molecules 
that are presumed to be inactive, but which has been spiked with known active 
ligands. If the tool is able to enrich this database, i.e. if it identifies and assigns high 
ranks to the active ligands, it may be suitable for use in a real VS focusing on that 
protein. Valuable guides for setting up VS experiments have been written by 
Kirchmair et al.

76 and Nicholls.118 The performance of a tool in simulated VS can be 
evaluated using the so-called Enrichment Factor (EF), which provides a measure of 
the enrichment achieved, or by using the Receiver Operating Characteristics Area 
Under Curve (ROC-AUC).119, 120 The EF focuses on ligands in an arbitrarily chosen 
high percentile of the ranked database, and its value is dependent on the ratio of 
actives to decoys in the database. The sensitivity to the precise percentile chosen 
and the active/decoy ratio can makes comparisons between reported EF values 
difficult. All of the simulated VS experiments performed in our study (Paper III) 
had very similar active/decoy ratios; for comparative purposes, we examined  
relative (normalized) EF values121. ROC-AUC is a more general measure of 
enrichment than EF in the sense that it measures enrichment in the whole database, 
not just in some high percentile. ROC-AUC compares the ratio of correctly 
identified actives to total identified actives (i.e. real actives plus false positives) and 
the ratio of correctly identified decoys to total identified decoys (i.e. real decoys 
plus false negatives). Using this criterion, good enrichment has been achieved if the 
ratio of actives compared to that of decoys is high in the beginning of the ranked 
database and the ROC-AUC value is close to 1. A ROC-AUC of 0.5 indicates a 
random distribution of actives in the ranked database and a ROC-AUC below 0.5 
indicates a negative enrichment. An attempt to shed some light on the effectiveness 
of different tools and scoring functions in VS using a small set of diverse proteins is 
presented in Paper III. 

1.8 Chemometrics in Drug Discovery 

Multivariate data analysis and Design of Experiments (DoE), which are the two 
pinnacles of chemometrics, have proved to be very useful in drug discovery and 
development.122-124 We view chemometrics as a concept, or a tool box, which 
contains tools that can be used to effectively plan and evaluate experiments within 
almost any area of research, i.e. despite what its name might imply, its applicability 
is not restricted to chemistry. Both computational and “wet” experiments usually 
generate a lot of information but this information is encoded in some sort of data, 
such as spectroscopic read-outs from analyses of samples or the calculated molecular 
properties of a set of ligands. Information in the data that is relevant to the 
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questions at hand is often intertwined with non-relevant information; in the case of 
spectroscopic data, this may be due to fluctuations in the measuring equipment 
(noise), while in the case of ligand properties, it may be due to the calculation of 
non-relevant properties. Importantly, the identification of relevant information is 
not just something to be done using multivariate methods after the experiment has 
been conducted: one can use the statistical method for experimental design when 
planning the experiments to maximise the amount of relevant information in the 
data gathered.125 

1.9 Chemometric Methods 

Variation is an important concept in chemometrics. Using a collection of molecules 
as an example, the collection will exhibit variation if its members have a range of 
different molecular properties. Many of the methods applied in chemometrics, such 
as principal component analysis (PCA)126-128 and partial least-square projections to 
latent structures (PLS)129, 130 are said to “extract variation” in a dataset, but what 
does this really mean? Molecular features can be described in various ways, for 
example using calculated descriptors or spectroscopic data. Such data are referred to 
as descriptor data. By quantifying or extracting the main variation in the descriptor 
data we gain information embedded in the descriptor data concerning the 
similarities and differences between the molecules. In essence, variation is 
information, although it can be irrelevant or non-systematic and hence hard to 
model and interpret. In the simplest case, variation can be statistically verified by 
calculation of the variance, and one can thereby determine whether one molecule is 
statistically different from another based on the properties by which they are 
described. Variability can be extracted by multivariate methods such as factor 
analysis128 and PCA, where the aim is to identify relationships and patterns among 
the observations (e.g. molecules), or by PLS and MLR which make it possible to 
identify variability among observations which is connected to a response. PCA and 
PLS were used extensively used in this work and are described in the following 
paragraphs. 

1.9.1 Design of Experiments 

For a simple example of the value of DoE, consider a one-step synthesis of a 
molecule where you want to optimize the yield of the product. The choice of 
solvent, reaction temperature and catalyst are all factors influencing the yield and it 
may seem intuitive to start by testing different solvents to find the optimal one, 
followed by identifying the optimal temperature and then the optimal catalyst. 
However, this approach is flawed in that it relies on the assumption that all of the 
factors are uncorrelated, i.e. (for example) that the effect of the catalyst is 
independent of solvent and that the solubility of the reactants in a certain solvent is 
independent of the reaction temperature. Obviously, this is generally not the case. 
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The existence of dependencies between the factors that influence the outcome of 
experiments is common in all fields of research, including purely computational 
fields (for example, the optimal values of the parameters in the docking software 
investigated in this thesis are interdependent). By applying DoE, in which several 
factors are investigated at the same time, it is possible to determine how important 
individual factors are and to identify combination effects (dependencies) involving 
multiple factors. DoE relies on the use of experiments in which every factor is 
tested at two or more levels (e.g. two or more different temperatures) in every 
possible combination, at least in the case of full factorial designs (FD). Alternatively 
(and more practically), one may conduct a subset of experiments that preserve 
statistical balance, for example by using a fractional factorial design (FFD),125 or D-
optimal design.131, 132 One problem with DoE, which is especially pronounced for 
“wet” experiments, is that the number of experiments required to elucidate the 
effects of all of the factors may be too great to be practical. However, elucidating 
effects without DoE may be even more impractical, and might lead one to perform 
numerous experiments that generate little or no new information. To avoid this, 
one can use fractional designs when there are many factors to be investigated, 
although these have the drawback that it may be harder to identify combination 
effects. 

DoE has proved useful in both optimization and experimental planning within 
drug discovery,123 and has been further extended to the design of molecules via 
SMD;43, 133, 134 in this case, the chemical features of molecules are the factors which 
are explored. This is of particular interest in drug design, where the aim is to 
identify (quantitative) structure-activity relationships ((Q)SAR), i.e. to identify 
relationships between the structural features of a molecule and its biological effects 
(e.g. inhibition of enzymes or antibacterial properties). In the 1990s, SMD was 
primarily used for the design of combinatorial libraries;133, 135, 136 this thesis focuses on 
our efforts to extend the applicability of SMD to encompass the design of libraries 
of small molecules41, 44and peptides.42, 137 The main advantage of SMD is that it 
generates a set of molecules that exhibits variation in the factors (i.e. the chemical 
features) thought to be important in generating biological responses. This in turn 
means that a range of biological responses will be observed, which is necessary for 
statistically-valid conclusions to be drawn from the SAR. 

DoE can be applied to introduce, or ensure, variation in experiments and 
independence between factors influencing the outcome of the experiments. 
Factorial and D-optimal designs were employed in several of the studies described 
in this thesis. Prior to a DoE, it is common practise to select the factors one would 
like to investigate; in our case, these were changeable parameters in various docking 
programs. Next, the span of these factors' values and the number of levels of each 
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factor that will be investigated must be determined. Finally, in a FD, one generates 
an exhaustive list of all possible combinations of the factors and their respective 
levels, generating N experiments, where N = xk

, x is the number of factor levels, and 
k is the number of factors. For example, in Paper III, three factors were 
investigated at two levels (e.g. the clash scale parameter was set to either 0.25 or 
0.75) giving rise to 23 = 8 experiments (Figure 2). 

 

It is possible to reduce the number of experiments via FFD which creates a subset 
of the experiments used in a FD according to N = xk-n where x is the number factor 
levels, k is the number of factors, and n is the reduction factor. Hence, in the 
example from Paper III, the reduced design consisted of the corners in Figure 2 
highlighted with red borders. In addition it is important to include centre point 
experiments, to be able to identify non-linear relationships between factors and 
responses in subsequent regression modelling. Preferably, three centre points should 
be added to be able to determine the experiment reproducibility. 

Other DoE strategies applied in this thesis include space-filling designs138 and D-
optimal designs. The aim of both these design strategies is generally to select a 
predefined number of objects in a multi-dimensional space (e.g. a matrix consisting 
of molecules described by several physicochemical descriptors) such that the objects 
span the space as well as possible. The procedure for generating space-filling designs 
is iterative; the goal is to select an evenly-distributed subset of the xk experiments 
from an FD design by maximizing the minimum Euclidean distance between the 
selected objects. In D-optimal designs, the aim is to select a subset of objects that 
span the space “D-optimally”. Geometrically, this means that the selected subset 
should span the greatest possible volume of space. Obviously, it is possible that 
several subsets of different objects may span the same volume, and so the subsets 
are further distinguished by the designs’ condition number (a measure of the 
sphericity of the space spanned by the subset) The D-optimal onion design 
(DOOD) divide the space into layers and a D-optimal design is performed in each 

Figure 2. A graphical representation of a 23 full 
factorial design with eight experiments and one 
central point experiment. Factors are indicated 
in the axis and each factor is varied at a high 
and low setting. Points with gray boarders 
correspond to a fractional factorial design. 
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layer, leading to a balanced selection throughout the space.40 The benefit of these 
three design types is that the user can impose restrictions on the selected subsets 
and specify the number of experiments or selected objects. 

1.9.2 Principal Component Analysis 

An important tool in the chemometrics toolbox is the unsupervised multivariate 
modelling method known as PCA.126-128 Data derived from chemical, biological and 
computational experiments can be very information rich, especially if DoE has been 
employed. PCA is a data analysis tool that extracts the main variation in the data, 
reduces its complexity, and allows the visualisation of data structures, simplifying 
the interpretation of the data. For example, molecules can be described by 
physicochemical descriptors, which may be determined experimentally or 
computationally. These descriptors include properties such as molecular weight, 
volume, hydrophobicity (LogP), and charges. A set of molecules may be described 
by hundreds of these types of descriptors (as was the case in Papers I, II and IV) in 
an effort to create a unique physicochemical description of each molecule in the 
data matrix and thence to relate the biological response generated by the molecules 
to their physicochemical properties. Simply looking at a descriptor data matrix 
containing hundreds of dimensions does not tell us how and to what extent the 
molecules are similar or different (i.e. how they vary), in which physicochemical 
features these differences and similarities are most pronounced, or to what extent 
the variables are correlated. PCA can extract the main variation (the principal 

properties in which the molecules are most diverse) in a data matrix by calculation 
of principal components (PCs) as shown in Figure 3. 

 

The PCs are eigenvectors; the first PC (t1) is aligned in the direction of the bulk of 
the variation in the descriptor matrix. Each object is then assigned a score value 
along t1 by projecting its old position in the descriptor space onto the new PC 

Figure 3. A geometric representation 
of the extraction of the first PC in 
PCA exemplified by a matrix of 
observations (gray dots) with three 
variables (x1, x2 and x3). The red 
dotted line corresponds to an 
eigenvector (PC1) placed in the 
direction of the main variation in the 
data. Each observation is projected 
orthogonally (blue line) down onto 
the new vector and receives a new 

value (score-value in score-vector t1). 
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(Figure 3).The contribution of a specific descriptor to the orientation of the new 
PC is described by its loading value, p. These PCs gives rise to a new 
decomposition matrix according to: 

 X = TP´ + E = t
1
p

1́
  + t

2
p

2́
  + ... + t

A
p

Á
  + E (3) 

where T is the score vector matrix, P´ is the transposed loading vector matrix, E is 
the residual, t is a score vector, p´ is a loading vector and A is the number of 
extracted PCs. In our experience, the number of PC extracted from matrices of 
molecular descriptors ranges from three to seven, with each PC corresponding to 
one of the principal properties of the molecules. The main variation (PC 1) usually 
separate the molecules based on size which is a property that is captured in size-
related descriptors such as molecular weight and volume. The interrelations 
between the molecules can be identified by studying the score plots and explained 
by studying the loading plots. Prior to modelling, it is common practise to scale to 
unit variance (UV-scale) and centre the data; this is particularly important when 
the variables in X are of different magnitudes. This thesis discusses the use of PCA 
in extracting the principal properties of ligands (Papers I and II), ligand-binding 
cavities in proteins (Papers II and III), and in separating amino acids on the basis 
of their principal properties and docking scores (Paper IV). 

1.9.3 Response Modelling 

A response is a numerical description of the outcome of an experiment such as the 
yield of a reaction, a biological effect, or the outcome of a docking experiment, and 
is typically stored in a response matrix, Y. The relationship between the response 
and the factors influencing the response (e.g. features of a ligand that affect protein-
ligand affinity) is commonly estimated by a regression model; MLR125 or PLS129, 130 
are often employed for this purpose in chemometrics. These methods correlate 
matrix X, which contains experimental data with matrix Y, which contains response 
data, via linear regression according to: 

 , (4) 

where yi is the ith response, xik is the ith experiment/molecule described by k = 1...K 
factors, b

k
 is the model coefficient for each factor k, and f

i
 is the residual of the ith 

response. Correlation between matrices X and Y is observed if there is common or 
shared variance (covariance) between the two; PLS extracts this common variation. 
Specifically, PLS determines the inner relation (Figure 4) by connecting the 
decomposition matrix of X and Y. Hence the first PLS-component (analogous to 
the first PC in PCA) is a line in X-space and a line in Y-space that approximates 
each data-point in X and Y and that provides a good correlation between the scores 
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in t1 and u1 (Figure 4). The inner relation can thus be used to predict the Y-values 
that will be associated with specific new observations in X. Unlike MLR, PLS can 
be used to analyse numerous X-variables, which may be correlated and noisy. An 
additional benefit of PLS is that the method can model several responses 
simultaneously. 

 

Figure 4. A geometric representation of the extraction of the first PLS-component in PLS exemplified by 
a matrix of observations (gray dots) with three variables (x1, x2 and x3) and three responses (y1, y2 and y3). 
The first PLS-component consists of a one score-vector (t1) in variable space and one in response-space 
(u1), and these are oriented so that the correlation between t1 and u1 is optimised. 

As previously mentioned, the aim of DoE is to introduce variation in, and 
independence between, factors which are believed to have an effect on a response. 
Since DoE commonly results in the generation of a dataset with a broad variety of 
observed responses, the regression coefficients (see equation 4) can be determined 
with increased certainty. The benefit of having a broad variation in the responses is 
shown schematically in Figure 5. In Figure 5a, there is little variation in the factor 
x1, which gives rise to little variation in the response y. This leads to uncertainty 
about the nature of the regression line and the coefficient (i.e. the slope of the line). 
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In Figure 5b, the variation in the response data is greater, and so the coefficient is 
more precisely determined. Furthermore, predictions regarding the response 
associated with new molecules/experiments are likely to be more reliable since the 
range of the factors is larger and there is less risk of unreasonable extrapolation. PLS 
is somewhat restricted to the modelling of linear relationships between variables 
and responses; if the relationship is non-linear, PLS may perform less well in 
accurately correlating X with Y. Provided that a sufficiently large number of 
experiments has been run, non-linearity in this relationship can be identified and 
compensated for to some extent by the introduction of interaction or squared terms 
of the original variables. Non-linear relationships may also be modelled by methods 
such as support vector regression machines,139 or neural networks.140, 141 This thesis 
discusses the use of response modelling using PLS in the analysis of the relationship 
between docking parameters and docking performance (Papers I and III) and in 
QSAR modelling of peptides that bind to MHC proteins (Paper IV). 

1.9.4 Validation of Multivariate Models 

Validation is a very important aspect of the modelling process, and we have strived 
to validate our PCA, PLS and design models in a careful and transparent manner. 
The goodness of fit (R2) is a valuable measure that reveals the percentage of the 
original variation in X (or in Y) that is explained by the model. Another measure of 
a model's quality is its cross validation, Q2, which provides an estimate of the 
model's internal predictive capability, i.e. its ability to predict the data from which 
it was built.127, 142 In practice, this is achieved by leaving out one or a subset of 
observations and rebuilding the model based on the remaining data. The new 
model is then used to predict the values of the variables from the excluded 
observations; an estimation error is calculated from the difference between these 
predictions and the true values. Both R2 and Q2 range between 0 and 1, where a 
value of 1 indicates a perfect model fit and internal prediction capability (which, if 
encountered in real life, would cause suspicion). Analysis of Variance (ANOVA) 
can be used to determine model significance and lack of fit by analysis of residual 
variation and replicate errors. A model's ability to predict the properties of objects 
or responses can be validated using external test-sets. For instance, new molecules 
can be created based on conclusions drawn from a QSAR model. Preferably, the 

Figure 5. Schematic picture of the benefit of a 
large variation in variable x1 and response y. a) 
A small variation in x1 typically led to a small 
variation in y making it hard to verify the 
relationship between the two leading to 
uncertainty in the regression coefficient. b) A 
large variation in x1 and y will lead to a more 
well-determined coefficient. 
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test set (molecules) should not have been used in building the model, and should 
only be introduced when testing the finished model. In addition, a model builder 
can identify outliers (strongly deviating objects) using measures such as the distance 
to model in X (DModX) and Hotelling statistics.143, 144 PLS models can be validated 
by performing permutation experiments.145, 146 In these experiments, the response 
matrix Y is scrambled and new models are created using these distorted matrices. 
Large values of R2 and Q2 for the permutated models would indicate that the 
original model lacks significance. 
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2. SCOPE OF THE THESIS 

The main objective of this thesis was to investigate and improve molecular 
modelling methods for the assessment of protein-ligand interactions. In general, all 
of the studies performed involved the use of multivariate methods such as statistical 
design, PCA, and PLS when setting up experiments and interpreting results. More 
specifically, molecular docking was investigated as a tool for the reproduction of 
ligand poses in protein structures (Papers I and IV) and for virtual screening 
(Papers III and IV). Statistical design was used to vary and optimise the values of 
adjustable parameters in the docking software that was used, resulting in the 
identification of values that give improved results. The nature of ligand-binding 
cavities, which play crucial roles in protein-ligand interactions, was investigated in 
Paper II. Similarities and differences in the properties of 239 different protein 
cavities were evaluated by calculating a set of physicochemical descriptors for each 
one. In addition, the biological function of a set of proteins structurally unrelated 
to those studied was correctly predicted. The strategies developed in Papers I and 

II were applied in Paper III to select a set of physicochemically dissimilar proteins 
which were used in a virtual screen with various docking parameters. This resulted 
in the identification of scoring functions that are likely to be useful (and some 
which are not so useful) in virtual screens against these proteins. Finally, the 
strategies developed in Papers I and III were applied in the design of a set of 
glycopeptides which were used to study autoimmune arthritis (Paper IV). We 
designed 20 glycopeptides (using docking and SMD) which were synthesized and 
biologically evaluated both as ligands for two different class II MHC proteins and 
in terms of their recognition by a panel of T-cell hybridomas. New and interesting 
SAR conclusions regarding the binding preferences of Aq and DR4 were drawn, and 
the T-cell activation results will serve as the basis for the selection of a set of 
glycopeptides for in vivo studies. 
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3. AN INSIGHT INTO DOCKING (Paper I) 

3.1 Factors Influencing Docking 

Setting up a docking experiment is, in practise, quite easy nowadays. The 
development of intuitive graphical interfaces has made the software more accessible 
and user friendly. Nevertheless, docking software manuals tell us very little about 
how to interpret the results we get from docking or about the limitations of the 
software. Consequently, users may be disappointed when software does not live up 
to their expectations and may regrettably even end up dismissing docking as a 
valuable technique altogether. In some cases docking may not be the best choice for 
tackling the problem at hand and indeed, many factors influence the outcome of a 
docking experiment. Fortunately there are measures that can be taken in order to 
elucidate how some of these factors affect results and how to control them. As 
mentioned in the introduction, these factors include the representation of the 
protein (i.e. the quality of the 3D structure and how well it represents reality), the 
representation of the ligand, the docking software, and the scoring function used. 
In Paper I we investigated the way in which one of these factors, namely the values 
of the user-specified parameters in the docking program, can influence the 
outcome. Although programs have vendor-specified default values for these 
parameters, these defaults will not necessarily be optimal for docking any specific 
protein-ligand complex. 

3.2 A Study of the "Tunability" of Docking Software 

Paper I describes a DoE-based approach to the investigation and optimisation of 
variable parameters in the docking programs FRED147 and GOLD.71, 148, 149 Both 
programs are commonly used in drug research but they differ significantly in the 
way they address the problem of docking. Their primary differences have to do 
with the mechanisms they use to generate ligand conformations: FRED relies on 
rigid docking of pre-generated ligand conformations while GOLD uses a genetic 
algorithm (GA) to generate ligand conformations in the protein's ligand-binding 
site. 

Five parameters in FRED and 10 in GOLD were subjected to a factorial and D-
optimal design respectively. This gave rise to 243 experiments in FRED and 126 in 
GOLD, with each experiment employing a unique combination of parameter 
settings. A set of 68 ligands were redocked into their target proteins with the 
different parameter sets, and the RMSD between the docked ligand and the x-ray 
ligand was calculated for the 15 top-ranked solutions in each case. The protein-
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ligand complexes included in the study were physicochemically diverse in terms of 
the properties of the ligands, allowing us to identify optimal settings for a broad 
range of ligand types. This high diversity was achieved by selecting ligands from a 
principal property space that was constructed by means of PCA compression of a 
matrix of physicochemical ligand descriptors using a space-filling design. 

3.3 Results 

We set out to compare the results of docking using the programs' default settings to 
those obtained using the settings that gave the best results in terms of RMSD. 66 
ligands were evaluated in docking parameter variation experiments using FRED 
and 65 in GOLD. The top 15 poses for each ligand were compared to their pose in 
the x-ray structure of their protein-ligand complex by calculating the RMSD values 
for the top-ranked pose and for the best pose (i.e. the pose with the lowest RMSD 
relative to the x-ray ligand, selected from the 15 most highly-ranked poses for that 
protein-ligand pair). Using FRED, 32 of the ligands had at least one highly-ranked 
pose with an RMSD < 2.0 Å in at least one of the designed experiments; using 
GOLD, this number rose to 45. These dockings were considered to be successful 
(Figure 6). Using its default settings, FRED successfully docked 17 ligands (i.e. for 
these ligands, it generated at least one highly-ranked pose with an RMSD < 2.0 Å) 
while 29 ligands were successfully docked using individually-optimised settings 
(Figure 6a). Using GOLD, the corresponding numbers were 25 ligands with the 
default settings and 45 with tuned settings. Hence, a substantial number of ligands 
can be docked with RMSD values below 2.0 Å if one uses tuned parameters. We 
also noted that increasing the number of GA runs in GOLD from 20 to 100 did 
not result in a drastic difference in the results obtained when using the default 
settings (Figure 6b). 

Although parameter tuning can have a large impact for individual ligands, our 
results demonstrate that for a set of ligands with a broad range of properties, the 
default settings are a good choice, i.e., no other parameter setting that we tested 
significantly improved docking on average. This can clearly be seen in the PLS 
models used to relate the parameter settings to the docking outcomes as described 
by RMSD: the score plots show that the default settings are consistently positioned 
close to the optimal settings (see Paper I). 

Analysis of the PLS models' regression coefficients revealed which parameters had 
the largest impact on the outcome of docking and are thus most worth tuning. In 
FRED, the identity of the exhaustive scoring function had the greatest influence; 
clash checking had some lesser influence, and the rest of the parameters were of little 
importance. On average, Chemgauss was the best exhaustive scoring function and a 
low clash checking value was preferable for our set of ligands. In GOLD, the number 
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of operations were clearly the most important parameter, with optimal values 
ranging between 50500 and 100 000. Niche size was the second most important 
parameter in GOLD; for this parameter, a setting of 3 proved beneficial. 

 

Figure 6. Docking results obtained for individual protein-ligand complexes presented as RMSD-values 
for the top ranked pose. Ligands are ordered from left to right according to the number of rotatable 
bonds present in them. Results when the default settings were used are shown by a black line and the 
docking results based on the best parameter sets for each complex are shown as a red line. a) FRED 
results. b) GOLD results. The dotted line corresponds to the results obtained with default settings and 
100 GA runs. 

3.4 Summary of Paper I 

• Statistical experimental design together with PLS modelling is a viable and 
straightforward way of elucidating the impact of changing docking 
parameters on the outcome of docking.  

• For roughly 25% of the ligands, it was possible to reduce the RMSD to 
less than 2.0 Å by using tuned settings instead of the defaults. However, 
use of the default settings in FRED and GOLD gave reasonably good 
results with all of the ligands examined. 

• Ligands with many rotatable bonds tended to be poorly docked, although 
even ligands with as many as 30 rotatable bonds could be successfully 
docked using suitable parameter settings. 
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• Of the different parameters one might vary when seeking to improve the 
results of redocking experiments using FRED, changing the identity of 
the exhaustive scoring function and the value of the clash checking 
parameter are most likely to be useful. With GOLD, one should look to 
vary the number of operations and niche sizes. In both programs, these 
changes may also reduce the time taken for a docking run. 
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4. MAPPING LIGAND-BINDING CAVITIES IN PROTEINS (Paper II) 

4.1 Why are Ligand-Binding Cavities Interesting? 

In this thesis, we sought to develop an understanding of the interactions between 
ligands and proteins by using different computational tools and experiments. 
Obviously, elucidating the nature of the protein (and especially the area in the 
protein where the ligands bind) is of fundamental importance when trying to 
understand protein-ligand interactions. We use protein crystal structures in our 
calculations; as discussed in the introduction, these static structures do not provide 
a complete picture of the protein's behaviour under 'real' conditions. Nevertheless, 
we can obtain insights into protein-ligand interactions by describing both binding 
partners and comparing them. In theory, the properties of a ligand should be 
complementary to those of the protein it binds to. The use of physicochemical 
descriptors to describe ligands is well-established, and this thesis contains several 
examples of this approach. Furthermore, over the course of the last decade, 
physicochemical descriptors for the ligand-binding cavities of proteins have been 
developed. We wished to find ways to correlate the properties of proteins with 
those of their ligands, and to select a subset of proteins exhibiting high diversity in 
the natures of their binding sites from larger datasets. To this end, we developed a 
method for describing proteins' cavities which is similar to those used in describing 
and selecting diverse ligands; this method was presented in Paper II. 

4.2 Charting Ligand-Binding Cavity Property Space 

In Paper II, a set of ligand-binding cavities were described by calculating their 
physicochemical properties; the matrix of calculated properties was then 
compressed with PCA to provide an overview of the relationships between the 
proteins as judged by the properties of their cavities. The training set consisted of 
239 ligand-binding cavities (representing 121 unique Structural Classification of 
Proteins  (SCOP)150 protein domains) The cavities' properties were determined by 
calculating 239 descriptors for each one using the Surface Cavity Recognition and 
Evaluation (SCREEN)151 program. These descriptors include measures of the 
cavity's size, polarity, hydrogen bonding potential, amino acid content, shape, 
electrostatics, flexibility and secondary structural features. The predictive ability of 
the model was tested using two sets of cavities that had not been used in the 
modelling procedure. Set A consisted of 13 cavities from protein domains which 
were represented in the set used when building the PCA model (except for 1FDQ), 
while set B consisted of cavities from two protein domains, chymotrypsinogen and 
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subtilisin, represented by five cavities each. Notably, the PCA model did not 
include any representatives of the subtilisin SCOP family used in set B. 

4.3 Results 

The use of PCA to visualize the inter-relations between proteins on the basis of the 
properties of their ligand-binding cavities was successful in the sense that the 
groups and deviators identified among the proteins could be rationalized by 
considering the proteins' structures and the SCOP to which they belonged. The 
PCA of the cavities' properties identified 11 PCs which described 54 % of the 
original variation with a cross-validated Q2 of 0.42. Although 11 PCs were 
statistically significant, only the six first were evaluated in detail, mainly because 
PC1-6 accounted for the bulk of the variation present in the majority of cavities. 
Score and loading plots of PC1 versus PC2 are shown in Figure 7. 

 

Figure 7. PCA score- and loading plots of PC1versus PC2 and surfaces of cavities. a) Score plot of PC1 
versus PC2; each dot represents a ligand binding cavity. In red are proteins which are opposites in PC1 
and PC2 and for which cavities are shown below. b) Loading plot of PC1 versus PC2; each dot 
represents a surface descriptor. The most influential descriptors in each PC are colour-coded as follows. 
PC1: size (red), depth (dark blue), shape (yellow), flexibility (light blue), and polarity (brown). PC2: 
charge (orange), polarity (brown), electrostatic field (light purple), and hydrogen-bond density (dark 
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purple). c-f) Ligand-binding cavities of 1JQD, 1GNY, 2SIM and 1D7J, respectively. Colours in the 
cavities are related to polarity: brown areas are lipophilic and blue areas are hydrophilic. 

The positions of individual cavities in the score plot (Figure 7a) are determined by 
their principal properties (loading values in Figure 7b). Size descriptors and 
descriptors correlated to size were most influential in PC1 and size is thus the most 
influential principal property in discriminating between the cavities. The proteins 
1JQD (histamine methyltransferase) and 1GNY (xylanase 10c) shown in Figure 7c-
d provide examples of cavities which are well-separated along PC1: the former has a 
large and deep cavity while the latter has a small and shallow cavity. The second 
principal property differentiating the cavities was their polarity; descriptors affected 
by this property are the primary constituents of PC2 (Figure 7b). Two proteins 
whose cavities are located at the extreme of PC2 are 2SIM (salmonella sialidase, 
Figure 7e) which has a very hydrophilic cavity, and 1D7J (FK-506 binding protein, 
Figure 7f) which has a lipophilic cavity. Subsequent PCs described the cavities' 
charges (PC3), depth/shape (PC4), electrostatic fields (PC5), and 
aromaticity/flexibility (PC6). 

We wanted to investigate the relationships between the physicochemical properties 
of the ligand-binding cavities and those of their ligands. To do this, we calculated 
physicochemical descriptors for the ligands and extracted their principal properties 
using PCA. Interestingly, although the same properties were dominant in the two 
first PCs of both the ligand and the cavity PCAs (i.e. PC1 corresponded to size and 
PC2 to polarity in both cases) there was no evidence of correlation between the two 
property spaces. This indicates that proteins do not completely embrace their 
ligands, which has implications for the design of new ligands. It suggests that that it 
may be possible to develop ligands with very different binding modes compared to 
'natural' ligands, which do not necessarily fill the cavities in which they bind. 

There is a great need for new methods for the prediction of proteins' functions in 
drug discovery and in related fields because new proteins whose purpose is unclear 
are frequently identified. The function of newly discovered proteins can often be 
assigned by comparison with proteins whose functions are known because it is 
often the case that similar proteins have similar roles in biological systems. 
Although the prediction of functionality was not the primary objective of this 
study, our model proved to have reasonable predictive ability in assigning the 
functions of unknown proteins. We defined the cavities' principal property space in 
terms of the first six PC from the PCA and created a map (PCA clustering tree) of 
the cavities' positions within this six-dimensional space (Figure 8). By calculating 
and visualising the distances between cavities within this space, we were able to 
draw conclusions about the relationships between the cavities and the proteins to 
which they belong. Proteins close to each other on the branches of the tree have 
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similar cavity-properties. By simply studying the tree, we could identify segregated 
and coherent domain distributions, and we could draw conclusions about the 
physicochemical basis of these patterns by analyzing the score and loading plots 
from the underlying PCA. The predictive ability of the PCA tree was assessed by 
using it to predict the functions of the cavities in test sets A and B. All of the 
cavities in set A were found to cluster close to their respective domains while those 
in set B were located on the branch containing the serine proteases (urokinase-type 
plasminogen activators and trypsinogens) found in the lower half of the tree in 
Figure 8. The cavities of set B do indeed have similar functions to these domains, 
but interestingly, the subtilisins of set B have a completely different fold to the 
serine proteases. 

 

 

4.4 Summary of Paper II 

• PCA together with SCREEN descriptors proved to be a viable alignment-
independent method for elucidating the relationships between proteins on 
the basis of the properties of their ligand-binding cavities. 

• The biggest differences between the cavities were due to variation in their 
sizes. Progressively smaller differences were observed in terms of their 
polarity, charges, depth/shape, electrostatic fields, and 
aromaticity/flexibility. 

• In general, there is no clear correlation between the main properties of the 
ligand-binding cavities and those of their ligands, indicating that it may 
be possible to design more suitable ligands in some cases. 

Figure 8. PCA clustering tree of 
a subset of the modelled 
cavities. Proteins are positioned 
at the ends of branches and the 
distances along the branches 
correspond to the Euclidean 
distance between the proteins 
in the PC space spanned by the 
first six PCs. Examples of 
positions of protein domains 
are indicated with coloured 
ellipses. Prediction sets A and B 
are indicated by prefix A or B 
and the PDB-code. 
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• Differences in the properties of the protein ligand-binding cavities within 
a domain were typically attributable to differences in their conformations. 
This should be borne in mind when selecting protein 3D structures for 
use in structure-based design, the results of which are highly sensitive to 
such structural details. 

• Two proteins with substantial differences between their sequences may 
nevertheless have cavities with similar physicochemical properties. This 
may be important in predicting their functionality and cross-reactivity. 
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5. AN INSIGHT INTO VIRTUAL SCREENING (Paper III) 

5.1 Virtual Screening 

Much like the single ligand docking experiments investigated in Paper I, VS results 
are heavily dependent on both the software and the scoring-functions used. The 
objective of VS is to screen a database of molecules to find ligands that will fit in 
the protein's ligand-binding cavity. The proposed binders are then tested in 
biological experiments; ideally, the experiments will confirm their affinity for the 
protein. Although many successful VS campaigns have been described, it is still 
very hard to plan a VS experiment. As discussed in the introduction, one must 
carefully choose the protein crystal structure to be examined as well as the docking 
software and scoring function. We know that all these factors influence the results, 
so how should we go about finding “optimal” conditions which will lead to new 
exciting molecules with high affinities for the targeted proteins? A comprehensive 
answer to this question is beyond the scope of this thesis. However, our attempts to 
address some aspects of this question are discussed in Paper III. We applied the 
methods described in Papers I and II to design a method that can be used to 
identify factors that affect VS targeting specific proteins. 

5.2 Design of Virtual Screening Experiments 

The ability of a docking program to find known ligands for a protein can be 
investigated using data mining techniques which we call “simulated VS”. These 
experiments rely on the use of a database of molecules that are unlikely to bind to 
the protein (so-called "decoys") that has been spiked with a small number of known 
binders (ligands, or "actives"). The spiked database is used to evaluate the docking 
program's ability to identify good ligands by assessing its ability to assign high ranks 
to the known binders i.e. its ability to enrich the database. We used this strategy in 
conjunction with spiked databases created specifically for six different proteins to 
test the ability of FRED152 and GOLD71, 148, 153 to correctly identify actives. The 
docking parameters and scoring functions used with FRED were varied according 
to DoE to investigate their influence on the results of the VS. There are significant 
differences between the physicochemical properties of the binding cavities of the 
different proteins used in this study; the proteins were selected to maximise these 
differences because it is known that different kinds of proteins require different VS 
conditions. In this way, it would be possible to relate the properties of the different 
cavities to the performance of the VS.  
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The six proteins were obtained from the DUD database28 which contains proteins 
and associated databases of molecules comprising both known binders (~50-150) 
and decoys (~1600-5700). Cavity descriptors were calculated for the DUD proteins 
using SCREEN151 and then subjected to compression by PCA; six proteins were 
selected from the directory on the basis of their positions in the resulting score-
plots. The properties of the decoys in the DUD have, to some extent, been 
matched to those of the ligands so that the ligands are similar to the decoys, making 
it more of a challenge for the docking software to identify ligands that will fit to the 
protein. The ligands from the databases were docked to their respective proteins 
using five different combinations of parameter settings in FRED and one in 
GOLD. Five different scoring functions were used to rank the output databases. 
Ligand enrichment in the ranked databases was assessed in terms of their EF and 
ROC-AUC.119 Finally, the relationships between the docking software settings and 
the VS results were analysed in terms of their EF and ROC-AUC values using a 
PLS regression model. 

5.3 Results 

Six proteins with physicochemically diverse cavities were examined: angiotensin-
converting enzyme (ACE), acetylcholinesterase (AChE), cyclin-dependent kinase2 
(CDK2), fibroblast growth factor receptor 1 (FGFr1), coagulation factor Xa (FXa), 
and trypsin. A broad range of enrichments was observed over the 25 VS 
experiments with FRED and five with GOLD, depending on the precise settings 
and scoring functions used. The choice of post-docking scoring function was found 
to have the largest impact on the results, and different protein targets were found to 
have different optimal scoring functions for enriching active binders. In general, 
enrichment was highest for FXa, CDK2 and trypsin. The Chemgauss3 and Plp 
scoring functions were optimal for finding active binders of FXa, while Chemscore 
was optimal for CDK2 and trypsin. Furthermore, different scoring functions 
tended to assign high ranks to different kinds of active molecules. For example, of 
the molecules screened against FXa, 21 of those in the 95th percentile as ranked by 
Chemgauss3 were not ranked highly by Plp. Similarly, Plp identified nine active 
molecules that did not feature in the 95th percentile as calculated using Chemguss3. 
This suggests that by using multiple scoring functions, it may be possible to 
identify actives with a broader range of properties than would be obtained if one 
focused exclusively on a single function. 

One point of concern in this study was the finding that the DUD database which 
had simply been sorting on ligand vdW volume generated EF values greater than or 
equal to those obtained with the various 'real' scoring functions for all of the 
proteins examined. This enrichment was only really apparent when considering EF 
values; the ROC-AUC values achieved by sorting in this way were rather lower 
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than those achieved in the docking-based VS. By design, the DUD should contain 
36 similar decoy molecules for each ligand,28 so it was somewhat surprising that the 
vdW volumes of so many of the decoys were so dissimilar to those of the real 
ligands. One consequence of this was that good enrichments were obtained with 
Shapegauss, which focuses exclusively on volume complementarity. 

We also found weak indications of a relationship between the identity of the 
optimal scoring functions for a given protein and the properties of the protein's 
ligand-binding site. Thus, Chemgauss3 and Plp seemed to give higher enrichment 
for lipophilic cavities such as those found in AChE and FXa, while Chemscore was 
better at enriching actives for target cavities with many ionic amino acids and 
potential hydrogen bonding groups such as trypsin (and to some extent CDK2 and 
FGFr1). 

5.4 Summary of Paper III 

• We used DoE and PLS to elucidate the effects of various docking 
parameters and scoring functions on the outcome of simulated VS. 

• The choice of scoring function was found to be the single most important 
factor influencing the outcome. Importantly, good (and bad!) choices of 
parameter settings and scoring functions could be identified for all of the 
targets used in the study. 

• Different scoring functions assigned high ranks to different kinds of active 
molecules, indicating that it may be possible to obtain a set of binders 
having a broader range of properties by screening with multiple scoring 
functions. 

• Trends in the properties of the actives and decoys in the databases used 
for studies such as this are highly important and can influence the results. 
Much works remains to be done in balancing the properties of molecules 
in the reference databases to reduce bias introduced by things like 
differences in size of the actives compared to the decoys. 
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6. PEPTIDE DESIGN FOR THE STUDY OF AUTOIMMUNE 

ARTHRITIS (Paper IV) 

6.1 Background 

Rheumatoid arthritis (RA) is a chronic inflammatory disease. It primarily affects 
the joints, and leads to disfigurement, loss of function and pain, especially in the 
hands and feet.154 RA is thought to be an autoimmune disease but its cause is 
unknown. Its symptoms are due to an abnormal immune system response which 
destroys the connective cartilage in the joints. Collagen-induced arthritis (CIA) is a 
form of arthritis that can be induced in mice using rat collagen, and is used as a 
model for the study of RA. The class II MHC, a protein found in antigen 
presenting cells such as macrophages, plays a key role in the onset of arthritis; it is 
involved in the presentation of self and non-self protein fragments to T-cells 
(Figure 9). 

 

Figure 9. Upper right: schematic picture of the T-cell/MHC interaction mediated by the glycopeptide. 
Left: a ribbon representation of the ligand-binding region of Aq. The glycopeptide (CII260-267) is in 
green carbons and the anchor amino acids (Ile260 and Phe263) are pointing down into the anchoring 
pockets P1 and P4 in Aq. The pockets are coloured in gray/blue where dark blue areas are more 
hydrophilic. Glycopeptide 1 (CII259-273, to the lower right) is a known binder to Aq, and position 260 
and 263 in the peptide has been modified as part of this study. 
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A comparative model of the peptide-binding region of the mouse MHC protein Aq 

is shown in Figure 9.155 Glycopeptide 1 (Figure 9) is a known binder of Aq; when 
bound, its galactose moiety, which is recognized by the T-cells, projects outwards 
from the MHC.156, 157 The Ile260 and Phe263 residues of glycopeptide 1 (which are 
located in peptide positions p260 and p263, respectively) are referred to as 
“anchoring residues”, and are important in the binding of the peptide to the MHC. 
Previous studies have shown that it is possible to prevent and even reverse CIA in 
mice by vaccination with glycopeptides such as 1 or with glycopeptide-MHC 
complexes.158, 159 

We designed a set of 21 novel glycopeptides (including 1) and studied their 
binding to MHC proteins (mouse Aq and its human counterpart, DR4) and the 
response of a range of T-cell hybridomas to these glycopeptide-MHC complexes. 
The glycopeptides were prepared using solid-phase peptide synthesis, and 
incorporated various natural and unnatural amino acids. The affinity of the 
glycopeptides for the Aq and DR4 proteins was evaluated in vitro, as was the ability 
of the glycopeptide-MHC complexes to promote T-cell activation with six T-cell 
hybridomas associated with Aq and two that are associated with DR4. The study 
generated novel and useful insights into the relationships between glycopeptide 
structure and the binding preferences of Aq and DR4, and into the SAR associated 
with T-cell responses. These findings will be taken into consideration when we 
select a group of glycopeptides to include in future in vivo studies. 

6.2 Results 

6.2.1 Glycopeptide Design 

A two-step process was used when designing the glycopeptides. The first step 
involved a docking-based VS of 11025 truncated versions of 1 against the Aq 
protein. The truncated peptides consisted of the minimal epitope between Ile260 and 
Gln267, and did not incorporate the sugar moiety. Various different amino acids 
were incorporated at p260 and p263 to assess the impact of variation in these 
positions on binding. The aim of this first step was to filter out amino acids that 
were likely to result in peptides that could interact with the anchoring pockets in 
the active site of Aq. The second step involved the design of new glycopeptides by 
means of a SMD strategy using the amino acids identified in the VS. The SMD 
resulted in a library of 21 peptides whose members collectively exhibit a broad 
range of chemical properties at positions p260 and p263. 

6.2.2 Virtual Screening and Docking Software Tuning 

In the first step, a VS was performed using both the FRED152 and GOLD71, 148, 153 
docking programs. The use of two software packages was motivated by the fact that 



38 
 

different programs sometimes arrive at different conclusions regarding putative 
binders. Initial redocking experiments using the peptide from the comparative 
model of the Aq–glycopeptide complex (henceforth referred to as the “native 
peptide”) and the default software settings failed to reproduce the binding pose 
observed in the model. It has been suggested that in order for a VS to be fruitful, 
the docking software needs to be able to reproduce the pose of the ligand in the x-
ray structure; we agree with this suggestion.160 Docking (non-drug like) molecules 
of the size of the native peptide (30 rotatable bonds) is complicated due to the huge 
number of conformations that must be evaluated. Nevertheless, even with large 
molecules, it is sometimes possible to optimise the docking process by varying the 
docking parameters, as was shown in Paper I.  

Therefore, new protocols were designed for the generation of conformations in 
OMEGA161 and for docking in FRED and GOLD, inspired by the parameter 
optimization strategies presented in Papers I and III. First, a docking constraint 
was introduced to restrict the rotation of the peptide. Second, DoE (in the form of 
a FFD) was used to tune the parameters of the docking software. The OMEGA 
settings recommended by Kirchmair and co-workers were initially adopted,162 but 
later experiments showed that with further parameter optimisation, OMEGA can 
produce conformations with an RMSD of only 1.60 Å relative to the native 
peptide; the default parameters produce conformations with an RMSD of 2.74 Å 
(unpublished results). These optimized settings in OMEGA (maxconfs = 250, 
ewindow = 35 and rms = 0.8) have an additional benefit compared to the default 
settings: because the value of maxconfs is reduced, the docking calculations are 
faster. Tuning of the settings resulted in a slight improvement in the results 
obtained with FRED and in a rather greater improvement in those obtained with 
GOLD, which ultimately generated docking solutions with an RMSD of 1.59 Å, 
compared to the RMSD of 2.80 Å obtained with the default settings. In addition, 
the use of optimised settings reduced the time required for docking with both 
programs. 

A VS was performed in FRED, using the tuned software settings, on 11025 virtual 
peptides. A physicochemically-representative subset of 2916 peptides selected by 
DOOD was docked using GOLD. Post-docking filtration was performed to 
remove peptides whose RMSD relative to the native peptide structure was > 3 Å, 
and the remaining peptides were subjected to an energy minimisation. Peptides 
that had an RMSD < 1.5 Å relative to the native peptide after this re-minimisation 
(of which there were 1540 from FRED and 741 from GOLD) were rescored using 
Chemgauss2, Chemgauss3, Chemscore,82 Goldscore,71 Plp,54 Screenscore,83and 
Shapegauss87 to assess their binding to Aq. 
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By applying PCA to the re-scoring results, we developed a strategy by which it was 
possible to use the scores for whole peptides to assess the influence of individual 
amino acids at the p260 and p263 positions on the overall affinity of the peptides 
for the MHC. For example, of the 1540 peptides that were reoptimised after 
FRED dockings and then re-scored, 29 incorporated a phenylalanine (Phe) residue 
at p263, making Phe one of the most commonly-observed residues in this position. 
The average Chemgauss3 score value for all peptides containing Phe was -124, with 
a standard deviation of 6.8, and the best score value for a peptide containing Phe 
was -134, making it the 12th most highly-ranked amino acid. The data from the 
re-scoring was used to create descriptors for the 'performance' of specific amino 
acids at p260 and p263. Thus, at p263, Phe was characterised by a frequency of 29 
and by the average, standard deviation, and maximum of the scores assigned to all 
of the peptides incorporating Phe at p263, by all of the scoring functions examined. 
This effectively allowed us to evaluate the 'consensus' on the performance of Phe in 
position p263. On the basis of the score plot from the PCA, a subset of 46 highly-
scored and frequently-observed p260 amino acids and 52 highly-scored and 
frequently-observed p263 amino acids were selected for inclusion in a SMD of new 
glycopeptide ligands for the MHC.  

6.2.3 Statistical Molecular Design of Glycopeptides 

Physicochemical descriptors were calculated for the amino acids that had been 
selected for use in the SMD, and PCA were performed to extract and visualise the 
variability in their properties. On the basis of the PCA, two subsets of seven 
physicochemically-diverse amino acids were selected, one for p260 and another for 
p263, for incorporation into a small library of new glycopeptides (Figure 10).  
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Figure 10. Seven amino acids (whose side chains are displayed here) for p260 and p263 were selected 
from PCA scores. The combination of these amino acids gave rise to 49 theoretical peptides from which 
20 were selected by DOOD to be synthesized. 

The amino acids selected for p260 exhibited diversity in terms of their size, 
hydrophobicity and flexibility, whereas the variance in those selected for p263 was 
largely restricted to differences in hydrophobicity and density. With two sets of 
seven amino acids, the maximum possible number of unique glycopeptides in the 
library was 49; of these, a subset of 20 was selected using DOOD. Importantly, 
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each amino acid was incorporated into two or (more often) three glycopeptides, 
facilitating a robust interpretation of their individual biological effects. 

6.2.4 Affinity Evaluation of the Designed Glycopeptides 

The 20 designed glycopeptides and glycopeptide 1, were synthesized, and their 
affinities for the Aq and DR4 proteins were assessed, along with their recognition by 
T-cell hybridomas. (Table 1)  

Table 1. Competitive inhibition of biotinylated CII259-273 binding to the Aq and DR4 protein by 
glycopeptides 1-21 substituted in p260 and p263. 

glyco- 
pept. 

p260 
side 
chain 

p263  
side  
chain 

Aq  
% inhib.a 

DR4 
% inhib.b 

glyco- 
pept. 

p260 
side 
chain 

p263 
side 
chain 

Aq 
% inhib.a 

DR4  
% inhib.b 

1 

  
90 ± 1 72 ± 4 12 

 OH 
- 73 ± 3 

2 

 F 
87 ± 1 73 ± 6 13 

 N 
- 52 ± 3 

3 

 OH 
28 ± 3 65 ± 4 14 S

N

  
20 ± 4 74 ± 1 

4 
 

S
N  

86 ± 1 31 ± 10 15 
S

N

 

CH3

 
41 ± 1 76 ± 2 

5 

 F 
29 ± 2 77 ± 1 16 S

N

 N 
- 23 ± 11 

6 

  
46 ± 1 84 ± 4 17 

O NH2

 
S

N  
- 26 ± 11 

7 

 
S

N  
39 ± 2 34 ± 6 18 

O NH2

  
- 60 ± 6 

8 

 

CH3

 
55 ± 3 70 ± 3 19 

O NH2

 OH 
- 80 ± 5 

9 

  
38 ± 6 75 ± 0 20 

  

- 82 ± 3 

10 

 N 

- 19 ± 15 21 

  

- 84 ± 5 

11 

 

CH3

 
29 ± 3 76 ± 5 

     

a Inhibition at 100 µM. Glycopeptides assigned with” –“ were identified as inactive (< 30% inhibition) in a 

preliminary Aq assay and were not included in the second assay presented here. b Inhibition at 500 µM. 



41 
 

In the model of the complex formed between Aq and the 'natural' glycopeptide 
CII259-273, the P1 pocket accommodates an Ile residue, while P4 plays host to the 
side chain of a Phe (Figure 9). The P4 pocket is larger and deeper than P1 and both 
pockets are mainly lipophilic but they contain a hyrdrophilic region close to the 
pocket floor. The inhibitory effects of the designed glycopeptides are shown in 
Table 1; most of them were found to show affinity for Aq. Binding to Aq was 
relatively insensitive to modifications at p263. In contrast, modifications at p260 
were not well tolerated; the incorporation of bulkier or more polar side chains than 
that of isoleucine lead to a total loss of binding (peptides 12, 13, 17-21). 

The use of smaller side chains such as cyclopropylalanine also led to a decrease in 
binding, suggesting that isoleucine has “optimal” properties for interacting with 
this pocket.With the exception of the 4-pyridylalanine side chain (which was 
detrimental to binding; see peptides 10, 13, and 16), most modifications at p263 
were well tolerated. This means that it may be worth investigating the 
incorporation of even more diverse amino acids at this position in future studies. 
On the basis of the comparative model of Aq, we hypothesised that the P4 pocket 
might be able to accommodate Phe-type residues bearing small substituents in the 
para- and/or meta-positions, and this indeed proved to be the case. Both 4-
fluorophenylalanine (cf. 2 with 1) and m-methylphenylalanine (cf. 15 with 14) 
exhibited the same affinity for Aq as the native peptide. The more bulky 3-
cyclohexylalanine (cf. 6 with 7) is also a good substitute for Phe, as is 4-
thiazolylalanine. However, replacing phenylalanine with tyrosine led to a reduction 
in affinity for Aq (cf. 3 with 1). 

DR4 also binds to 1, and the glycopeptide residue Phe263 is most heavily involved in 
this binding is.163 The anchoring pocket in the DR4 binding can accommodate 
larger amino acids than Phe.164, 165 Our binding experiments showed that some of 
the designed peptides have a greater affinity for DR4 than does the native peptide 
(Table 1).The binding evaluations clearly show that the DR4 anchoring pocket is 
very tolerant of a broad range of amino acids: essentially all of the glycopeptides 
except those incorporating 4-thiazolylalanine or 4-pyridylalanine at p263 bound 
well to DR4. Varying the amino acids at p260 caused only small changes in 
affinity, which suggests that it may be interesting to examine the impact of 
introducing residues bearing larger and more hydrophobic side chains at this 
position. 

6.2.5 Comparison of Affinities and Docking Scores 

With the biological results in hand, we had an opportunity to evaluate the 
performance of the different scoring functions in predicting the influence of the 
different amino acids on the peptides' affinity for Aq. Our first observation was that 



42 
 

different scoring functions differed in their rankings of amino acids, and that the 
default scoring function in FRED, Chemgauss3, did not reliably assign high ranks 
to amino acids that contribute usefully to binding. Weak correlations between the 
binding results and the rankings obtained with Chemscore and Plp were observed 
for amino acids at p260 and p263. Chemscore recognized the inactive amino acids 
Gln and 2-indaneglycine as weak binders, ranking them in the lower half of the 
105 amino acids docked to the p260 position. Plp was the only scoring function to 
rank the inactive 4-pyridylalanine last among the biologically tested amino acids. 

6.2.6 Evaluation of T-cell Responses 

The ability of the appropriate T-cells to recognise the complexes formed between 
the new glycopeptides and the MHC proteins was measured. The results clearly 
showed that there is a substantial correlation between T-cell recognition and MHC 
binding (see Paper IV). This was anticipated since the peptides need to bind to the 
MHC in order for it to be recognized by the T-cells. However, the results also 
demonstrate that by itself, a high peptide-MHC affinity is not sufficient for strong 
T-cell recognition. All of the T-cells responded well to MHC complexes with 
glycopeptide 1 but, interestingly, the complex formed between Aq and glycopeptide 
4 (which has a high affinity for Aq) was only weakly recognized by two of the six T-
cell hybridomas examined, indicating that changing the amino acid at p263 can 
affect T-cell recognition. Subsequent MD simulations revealed that the variation in 
RMSD was larger for Aq/glycopetide complexes which induced stronger T-cell 
responses (1 and 7) compared to those that induced weaker responses (6 and 9). 
Further MD simulations may reveal if there is a general connection between 
Aq/glycopetide complex flexibility and T-cell recognition. 

In the case of DR4, some of the designed glycopeptides generated even stronger T-
cell responses than did glycopeptide 1 (cf. 1 with 5, 8 and 11). Furthermore, 
certain amino acids (e.g. cyclohexylalanine) were found to consistently generate 
stronger responses towards one of the hybridomas (mDR17.2) when incorporated 
at p263. Finally, when compared to the native ligand, some of the designed species 
exhibited enhanced recognition with respect to one hybridoma but diminished 
recognition by the others (cf. 1 and 4). 

6.3 Summary of Paper IV 

• Anchoring residues in a glycopeptide that binds to MHC proteins were 
exchanged for various natural and unnatural amino acids, resulting in 
peptides whose affinities for MHC proteins are similar to or better than 
those of the native ligand and which generate a range of different T-cell 
responses. 
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• The use of docking software parameters tuned by DoE facilitated the 
successful redocking of the native peptide. 

• A combination of docking-based virtual screening and SMD allowed us to 
create a set of glycopeptides that exhibited a range of affinities for Aq and 
DR4, allowing robust SAR conclusions to be drawn. 

• The P1 pocket of Aq is more sensitive to peptide modifications than is the 
P4 pocket. The anchoring side chain in p260 should be aliphatic and of 
medium size (i.e. it should not contain more than four carbons), while the 
side chain in p263 should be a non-substituted or meta-substituted 
phenylalanine- or 3-cyclohexylalanine derivative. 

• The Chemscore and Plp scoring functions produced the best predictions 
of the affinities of the peptides for Aq and may be generally useful for 
docking peptides to Aq. 

• The designed glycopeptides elicited a range of T-cell responses and we 
were able connect some of these effects to changes in the epitope seen in 
MD simulations. This augurs well for the use of related compounds in 
future in vivo studies, where they may prove useful in elucidating the 
biological effects of the responses of specific T-cell types. 
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7. PERSPECTIVE AND FUTURE WORK 

Understanding and predicting the interactions between ligands and proteins are 
two of the great challenges of modern chemistry, and good solutions to these 
problems would be of great value, not least in the context of drug discovery. 
Molecular modelling tools that can satisfactorily meet these challenges have yet to 
be developed. It is necessary to consider a huge number of factors when assessing 
binding, and workers in this area have only recently begun to address issues such as 
molecular flexibility and the effects of water. Much work remains to be done in the 
development of more accurate and efficient tools. In the absence of such new tools, 
we need to exploit the full potential of existing modelling tools and to develop 
strategies to effectively describe proteins. This work described in this thesis 
represents a contribution towards this latter challenge.  

In our experience, the software used to perform molecular modelling tasks such as 
docking is often 'tuned' by individual researchers to improve its performance in the 
problems that have attracted their interest. However, the manner by which the 
tuning has been performed is not often discussed in the literature. Furthermore, no 
comprehensive reports have been presented regarding the possibility of optimizing 
software for use in the study of specific types of proteins, although it is clear that 
the default settings of most programs are tuned for applicability to drug-like 
molecules. We have shown in this thesis that multivariate designs can be used to 
investigate factors that influence docking results, both in redocking experiments 
and in virtual screening. These methods could easily be applied to the tuning of 
scoring functions, or to the identification of optimal default settings for any 
molecular modelling tool with adjustable parameters. In addition, relatively simple 
methods based on varying the parameters used in docking might provide attractive 
approaches to generating ligand poses for subsequent scoring with more advanced 
methods such as PB/GB-SA. We adopted this strategy in a recent study where we 
correlated calculated free energies of binding with experimentally-determined 
binding data for a set of small-molecule ligands of the FXa and MHC proteins.92 

Unfortunately, in recent years, the tendency has been to hide the parameters used 
in docking programs from the end-user, making it more difficult change them and 
to investigate their influence. We have also noticed that software packages 
increasingly tend to focus on certain specific target protein classes. Why not offer 
one software package that can be tuned for use with different targets at will? Such a 
program would probably be attractive to a large number of users, especially to those 
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who are studying non-drug like compounds, and to academics, whose funds are 
typically somewhat limited.  

With regard to tuning software for virtual screening, we feel that our results show 
that multiple different scoring functions can be suitable for enriching actives 
against different target proteins. Although this has been stated by others, our results 
complement these prior findings in that they provide a method by which suitable 
scoring functions can be efficiently identified. It is evident from our results and 
from those of other studies that the evaluation of the effectiveness of a VS tool is 
heavily dependent on the availability of bias-free databases. However, no such 
databases have yet been made publically available. If one sought to create a truly 
physicochemically-balanced dataset containing highly similar ligands and decoys, 
one could calculate descriptors and use PCA to identify and quantify this similarity. 
Finally, the transferability of results obtained from simulated VS to real-world 
problems remains to be investigated. 

When dealing with protein-ligand interactions it is important to have a clear 
picture of the properties of both molecules in order to understand how and why 
they interact. For instance, are the properties of the ligand and the ligand-binding 
cavity complementary, and if so, is it possible to identify new ligands for a protein 
solely on the basis of the physicochemical properties of the ligand-binding site? 
Given that the number of new potential drug targets with unknown ligands is 
rising and the importance of predicting off-target actions of existing drugs, 
questions such of these are of great interest to members of the bioinformatics 
community who focus on drug research. The results described in this thesis suggest 
that one cannot identify new ligands for a protein solely on the basis of similarities 
between their properties and those of the binding cavity; the property spaces of the 
ligands and the cavities are not directly correlated. However, it may be possible to 
use this approach to match the properties of ligands and proteins to find potential 
binders, although the descriptors we have used will probably need to be augmented 
with information on interatomic and inter-functional group distances. Our strategy 
can also be used to select target proteins in structure-based design and to predict 
the purpose of proteins whose function is unknown by relating the properties of 
their cavities to those of proteins whose function is known. 

Finally, some of the work described in this thesis focused on the study of 
autoimmune arthritis. We showed that combining structure-based and ligand-
based design is an efficient way to incorporate known data on ligand- and protein-
structures into one's experimental designs. The method is useful in ensuring that 
the molecules one ultimately designs will be sufficiently diverse to allow meaningful 
conclusions to be drawn from their SAR. We developed this strategy for non-drug 
like molecules but it is equally applicable to the design of molecules other than 
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peptides. Furthermore, the results from the MD simulation studies were 
encouraging, and they may help to unveil the structural changes that occur on 
binding in peptide-MHC complexes, which may be related to changes in their T-
cell recognition. The results obtained will be used to identify peptides suitable for 
use in in vivo vaccination studies looking at the effects of MHC binding and T-cell 
responses on the development of the disease. 
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