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Abstract 

Every year approximately 2800 Swedes are diagnosed with malignant 
melanoma, the form of cancer that is most rapidly increasing in incidence in 
the Western world. The earlier we can identify and diagnose a malignant 
melanoma, the better is the prognosis. In Sweden, 155 000 benign naevi, 
harmless skin tumours or moles, are surgically excised each year, many of 
them because melanoma cannot be dismissed by non-invasive methods. The 
excisions result in substantial medical costs and cause unrest and suffering 
of the individual patient. For untrained physicians, it is often difficult to 
make an accurate diagnosis of melanoma, thus a tool that could help to 
strengthen the diagnosis of suspected melanomas would be highly valuable. 
This thesis describes the development and assessment of a non-invasive 
method for early skin cancer detection. Using near infrared (NIR) and skin 
impedance spectroscopy, healthy and diseased skin of various subjects was 
examined to develop a new instrument for detecting malignant melanoma. 
Due to the complex nature of skin and the numerous variables involved, the 
spectroscopic data were analysed multivariately using Principal Component 
Analysis (PCA) and partial leas square discriminant analysis (PLS-DA). The 
reproducibility of the measurements was determined by calculating Scatter 
Values (SVs), and the significance of separations between overlapping 
groups in score plots was determined by calculating intra-model distances.  

The studies indicate that combining skin impedance and NIR spectroscopy 
measurements adds value, therefore a new probe-head for simultaneous NIR 
and skin impedance measurements was introduced. Using both 
spectroscopic techniques it was possible to separate healthy skin at one body 
location from healthy skin at another location due to the differences in skin 
characteristics at various body locations. In addition, statistically significant 
differences between overlapping groups of both age and gender in score plots 
were detected. However, the differences in skin characteristics at different 
body locations had stronger effects on the measurements than both age and 
gender. Intake of coffee and alcohol prior to measurement did not 
significantly influence the outcome data. Measurements on dysplastic naevi 
were significantly separated in a score plot and the influence of diseased skin 
was stronger than that of body location. This was confirmed in a study where 
measurements were performed on 12 malignant melanomas, 19 dysplastic 
naevi and 19 benign naevi. The malignant melanomas were significantly 
separated from both dysplastic naevi and benign naevi. 

Overall, the presented findings show that the instrument we have developed 
provides fast, reproducible measurements, capable of distinguishing 
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malignant melanoma from dysplastic naevi and benign naevi non-invasively 
with 83% sensitivity and 95% specificity. Thus, the results are highly 
promising and the instrument appears to have high potential diagnostic 
utility. 
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Abbreviations 
 
BCC Basal Cell Carcinoma 
DF Dermatofibroma 
DN Dysplastic Naevus 
DNS Dysplastic Naevi Syndrome 
IMP Impedance 
LM Lentigo Maligna 
LMM Lentigo Malignant Melanoma 
Mis Melanoma in situ 
MM Malignant melanoma 
N Benign naevus 
NIR Near InfraRed 
NIRIMP Combined Near InfraRed and IMPedance  
PC Principal Component 
PCA Principal Component Analysis 
PLS Partial Least Square Regression 
PLS-DA Partial Least Square Discriminant Analysis 
SCC Squamous Cell Carcinoma 
SK Serborrheic Keratosis 
SNV Standard Normal Variate 
SSM Superficial Spreading Melanoma 
SV Scatter Value 

 
 

Notations 
 
A Number of components a=1,…, A 

f Frequency 

I Distance between centroid and measurement point in a score 
plot 

ImZ Imaginary impedance 

IZI Magnitude of frequency 

K Number of variables, k=1,…, K 

N Number of calibration observations, n=1,…, N 

pa Loading vector for component a in X 

q Intra-model distance 

ReZ Real impedance 

ta Score vector for component a in X 

X Data matrix [NxK] 
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Y Response matrix 

ya  Response vector for component a in Y 

Ф Phase shift of frequency 

Z Impedance 

 
 

Medical glossary 
 
Acral peripheral or apex 

Apoptosis induced cell death 

Basal cell carcinoma non-melanoma skin cancer 

Benign harmless, not dangerous 

Benign naevus harmless pigmented lesion of the skin often 
referred to as a “mole” 
 

Cirrhosis chronic liver disease  

Dermatofibroma benign, chiefly fibroblastic nodule of the skin 
found especially on the extremities of adults 
 

Diabetes syndrome with insufficient insulin excretion 

Dysplastic naevi 
syndrome 
 

familiar history of multiple dysplastic naevi 

Dysplastic naevus atypical benign naevi 

Erythema abnormal redness of the skin 

in vivo "in a living organism" 

Lentigo malignant 
melanoma 

type of malignant melanoma that shows primarily 
on chronically sun-damaged skins 
 

Lentigo melanoma precursor for Lentigo malignant melanoma 

Malign harmful, dangerous, cancerous tumour that might 
metastasise 
 

Malignant melanoma most lethal form of skin cancer 

Melanin skin pigment, produced by melanocytes in the 
skin, which provides protection against ultraviolet 
radiation 
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Melanoma in situ non-invasive precursor to malignant melanoma 

Microcirculation blood circulation in the microvascular system 

Neuropathy degenerative state of the nerves 

Neurotransmitter a substance that transmits nerve impulses across 
synapses 
 

Nodular malignant 
melanoma 

less common type of melanoma that shows rapid 
vertical growth 
 

Non-invasive not tending to invade healthy tissue/not involving 
entry into the living body  
 

Oxygenate supply with oxygen 

Psoriasis chronic skin disease characterised by 
circumscribed red patches covered with white 
scales 
 

Rosacea a chronic inflammatory disorder of the skin 

Seborrheic keratoses benign hyperkeratotic tumours that occur singly 
or in clusters on the surface of the skin, usually 
light to dark brown or black in colour, typically 
having a warty texture, often with a waxy 
appearance 
 

Squamous cell 
carcinoma 
 

non-melanoma skin cancer 

Stratum corneum outermost skin layer 

Superficial spreading 
melanoma 

type of malignant melanoma that spreads in a 
horizontal direction but can enter a vertical phase; 
the most common form of malignant melanoma. 
 

Vasodilation increase in calibre of blood vessels 
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Populärvetenskaplig sammanfattning 
(summary in Swedish) 
 
Swedish title: Nära infrarött ljus- och hudimpedans-spektroskopi mätningar 
in vivo på mänsklig hud 
- ett diagnostiskt instrument för upptäckt av hudcancer. 

Malignt melanom är den cancerform som ökar snabbast i västvärlden och 
bara i Sverige upptäcks drygt 2 800 nya fall varje år. Ju tidigare man kan 
hitta ett elakartat melanom, desto större är sannolikheten att bli botad. 

Samtidigt tas det i Sverige bort ca 155 000 ofarliga märken på huden, s.k. 
naevi, varje år. Detta eftersom behandlande läkare inte alltid kan utesluta att 
det rör sig om ett melanom. Detta leder till höga kostnader för sjukvården 
och orsakar i onödan lidande och oro för många patienter.  

För oerfarna läkare kan det vara svårt att ställa en korrekt diagnos på 
melanom. Behovet av ett instrument som kan hjälpa till att stärka 
bedömningen av misstänkta melanom är därför stor. Vi har utvecklat ett 
instrument som är helt utanpåliggande som med 83 procents sensibilitet och 
95 procents specificitet kan identifiera maligna melanom. Sensibiliteten är 
ett mått på hur många av alla melanom som identifieras och specificiteten är 
med vilken säkerhet detta görs. 

Genom att mäta med Nära infrarött ljus (NIR) och med hudimpedans (en 
svag ström) på ett misstänkt märke får vi en bild av hur cellerna och de 
utrymmen som finns mellan cellerna är uppbyggda. Cancerceller skiljer sig 
markant från friska och normala celler och detta avspeglar sig därför i 
mätningarna.  

NIR-spektroskopi innebär att man lyser på hudmärket med nära infrarött 
ljus. Detta orsakar att olika molekyler kring och i cellerna börjar vibrera. 
Beroende på hur molekylerna är uppbyggda, kommer olika våglängder av det 
infraröda ljuset att starta vibrationer. Dessa blir synliga i ett s.k. 
absorbtionsspektra.  

Hudimpedans innebär att man skickar en svag växelström, med varierande 
frekvens, mellan två guldelektroder som placeras på huden. Strömmen rör 
sig sedan igenom och runt cellerna och beroende på hur strömmen rör sig får 
man information om cellstrukturen. Detta är beroende av frekvensen. Vid 
höga frekvenser går den mesta av strömmen rakt igenom cellerna och vid 
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låga frekvenser går strömmen mellan cellerna. Hur den rör sig vid de olika 
frekvenserna synliggörs i ett s.k impedansspektrum.  

De erhållna NIR- och impedans-spektra läggs sedan samman och analyseras 
med multivariata dataanalysmetoder som Principal komponent analys (PCA) 
eller Partial least square diskriminant analys (PLS-DA). Dessa 
analysmetoder innebär att man reducerar de stora datamängder som fås 
med NIR- och hudimpedansspektroskopin och åskådliggör dem. Med PCA 
och PLS-DA får man därigenom bilder av hur olika mätningar grupperar sig, 
eller skiljer sig, från varandra i s.k. Score plots. 

Genom att applicera dessa metoder på de data som vårt instrument 
genererar kan vi med relativt god precision särskilja maligna melanom från 
ofarliga hudmärken. 

Hud på olika delar av kroppen grupperar sig olika och hudmätningar 
grupperar sig även beroende på kön och ålder. Däremot kan vi inte visa att 
ett intag av kaffe eller alkohol har betydelse för mätningen trots att de 
eventuellt kan påverka hudens cellulära karaktär. Detta innebär att vi inte 
behöver ta hänsyn till om en patient har druckit kaffe eller alkohol innan han 
eller hon kommer till en mottagning för att få ett misstänkt melanom 
diagnostiserat. Patientens ålder, kön och på vilken plats på kroppen som 
märket är lokaliserat är också av mindre betydelse för en korrekt diagnos av 
ett misstänkt melanom. 
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1 Introduction 

1.1 The human skin 

The skin is the largest organ in the human body and performs many 
specialised functions. It consists of three major layers – the epidermis, 
dermis and hypodermis. The skin acts as a barrier between the body and the 
environment and provides immunological protection against harmful 
environmental pathogens. The uppermost layer of the epidermis, the 
stratum corneum, provides a water-impermeable barrier that prevents 
dehydration of the body. In the hypodermis fatty cells act as insulation to 
prevent heat loss. Hair follicles and sweat glands in the dermis are also 
important for thermoregulation of the body. The skin has neurosensory 
functions and also produces vitamin D. The thickness of the skin varies in 
thickness, depending on its location, from ca. half a millimetre on the eyelids 
to up to a centimetre on the heels (1-3). 

 
Figure	1	Cross‐section	of	the	human	skin	

 

The skin has high regenerative capacity. The bottom layer of the epidermis, 
the stratum basale, contains stem cells that renew the epidermis every 30 
days. The stratum basale also contains melanin producing cells, called 
melanocytes. Melanin gives the skin its colour and protects the nuclei of skin 
cells from UV-damage. A mole, or a benign naevus (N), is a cluster of 
melanocytes in the skin. (1-3) 
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1.2 Skin cancer 

Skin cancers as a group are the most commonly forms of human cancer (3-
5). The Caucasian population is the most susceptible due to the low content 
of protective melanin (6). 

Skin cancers are divided into two groups of tumours: melanoma skin 
tumours, i.e. malignant melanoma (MM), and non-melanoma skin tumours. 
Of the non-melanoma skin tumours the main types are basal cell carcinoma 
(BCC) and squamous cell carcinoma (SCC). Although the latter are the most 
common skin cancers, MMs account for 80% of all deaths due to skin 
cancers (3, 7, 8). In Sweden in 2009 MM represented 10.4% of all cancer 
cases and during the last decade it has been one of the most rapidly 
increasing types of malignant tumour. The average increases per year in the 
last 10 years have been 4.1% for males and 4.2% for females. (9) 

The melanoma skin tumours are sub-divided into Superficial spreading 
melanoma (SSM), Nodular malignant melanoma (nodMM), Lentigo 
malignant melanoma (LMM), and Acral Lentiginous melanoma. Forty per 
cent of SSMs originate from a Dysplastic Naevus (DN), vide infra, and about 
5% of LMMs originate from premalignant Lentigo Maligna (LM). Melanoma 
in situ (Mis), the earliest stage of MM, is not invasive and only affects the top 
layer of the skin. Similarly as naevi, the DN and LM are benign skin tumours. 
Other benign skin tumours include Seborrheic Keratoses (SK) and 
Dermatofibromas (DF) (10).  

The subjective ABCDE algorithm is a helpful tool for the detection of 
melanoma, where the A stands for asymmetry, B for border irregularity, C 
for colour variation, D for diameter greater than 6 mm and E for evolution 
(7). The stage of melanoma is based on histopatholocic characteristics such 
as Clark level of invasion, Breslow thickness, presence of ulceration, 
metastatic nodes, and mitotic rate, which are negative prognostic factors 
(11). In Sweden the five-year survival rate for patients with non-ulcerated 
MMs of a Breslow thickness ≤1 mm is 98.1% while patients with an ulcerated 
MM of a Breslow thickness >4 mm have a 55.5% five-year survival rate (12). 
For malignant melanoma early detection and proper treatment is therefore 
important for cure (8, 13).  

A family history of melanoma is also a strong risk factor for melanoma and a 
familial atypical multiple-mole syndrome (FAMMM), or Dysplastic Naevus 
syndrome (DNS), is thought to account for 10% of all melanoma cases. The 
presence of DN increases the risk of developing melanoma, which 
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demonstrates that these lesions, aside from being precursors to melanoma 
skin tumours, also are important risk markers (8).  

 

1.3 Near infrared and impedance spectroscopy as non-invasive 
tools for diagnosis  

Near infrared (NIR) and skin impedance spectroscopy are non-invasive and 
non-destructive methods that have enormously wide-ranging applications, 
from determining species of wood samples (NIR, (14)) and detecting steel 
corrosion (impedance, (15)) to characterising tissue samples in medical 
diagnosis. Our group (hereafter, we) has experience of these non-invasive 
diagnostics to study, inter alia, neuropathy, blood glucose levels and 
microcirculation in patients with diabetes, and for examination of 
radiotherapy induced erythema (16-20).  

Several other authors have also used these techniques in relevant 
applications. Notably, Halter et al. used impedance to differentiate normal 
and malignant prostate tissue (21). Glickman et al., Har-Shai et al., and 
Åberg et al. all used impedance scanning for melanoma diagnosis (22-24). 
The applied procedures were similar in these three studies, except that Åberg 
et al. analysed the acquired data multivariately. The sensitivity for 
melanoma skin tumours was reportedly between 81-95% while the specificity 
was 49-64%. The instruments used in these three studies were all micro-
invasive with electrodes designed to penetrate the stratum corneum. 

Egawa used NIR spectroscopy for measuring urea and water in human 
stratum corneum, while Shuler et al. used NIR spectroscopy to describe the 
measurable response of normal tissue oxygenation in the leg after acute 
trauma (25, 26). McIntoch et al. have used infrared and NIR spectroscopic 
methods to distinguish between skin tumours in vivo. Using linear 
discriminant analysis of truncated NIR spectra to classify spectra according 
to lesion type, they achieved 70-98% accuracy in differentiating benign 
lesions from pre-malignant and malignant lesions. However, they did not 
include any melanoma skin tumour spectra in their datasets (27-29). 
Salmatina et al. determined and compared the in vitro NIR spectroscopic 
properties of human skin of non-melanoma skin cancers. They observed a 
significant difference in the NIR scattering between cancerous tissues and 
control skin, and noted that the absorption was significantly lower for basal 
cell carcinomas than for control skin (30). 
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1.4 Coffee and alcohol effects on skin 

Ridder and co-workers used diffuse reflectance NIR spectroscopy as a non-
invasive tool for measuring alcohol levels in human tissue (31). Ten people 
with a blood alcohol level of ca. 120 mg/dl were tested. The acquired spectra 
were then compared to calibration spectra, which made it possible to 
measure alcohol content in skin. Many of the associations between alcohol 
misuse and skin diseases, such as psoriasis, rosacea and post-adolescent 
acne, have not been fully elucidated. However, cirrhosis, vascular effects, and 
immunodysfunctions due to alcohol misuse are suggested triggers of these 
skin diseases. Acute alcohol consumption is associated with vasodilation in 
the skin, thereby increasing blood flow and skin temperature (32-34). 

Acute responses in skin characteristics resulting from drinking coffee have 
not been reported in the literature. However, Tagliabue et al. found that 
drinking coffee can increase skin temperature (35). Other reported health 
effects of coffee consumption that might affect skin characteristics are 
increases in blood pressure and reductions in vasodilation (36-38). Daily 
intake of coffee or other caffeinated beverages also reduces the risk of non-
melanoma skin cancer (39). This can be explained by caffeine’s effects on 
DNA-damage responses, which promote apoptosis in cells damaged by UVB 
radiation, thus preventing them from becoming malignant (40). 
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2 Aims of the studies 

The overall aim of the studies in this thesis is to develop a non-invasive 
diagnostic tool for fast and reliable diagnosis of skin cancer using NIR and 
skin impedance spectroscopic techniques, and to improve methods for 
analysing the acquired data.  

Specific aims of the individual studies were: 

I. to investigate whether impedance and NIR spectroscopy can 
differentiate between skin at various locations and to assess the 
potential value of combining data collected using the two techniques. 

II. to develop a combined impedance and NIR spectroscopy probe head 
for simultaneous measurements and assess its sensitivity and 
robustness. Explore how the calculation and analysis of intra-model 
distances can be used to decide whether a statistically significant 
difference is present between overlapping groups in a PCA score 
space. 

III. to investigate whether coffee or alcohol influence NIR and 
impedance spectroscopic measurements of normal skin. We also 
aimed to determine whether repeated measurements of the same 
dysplastic naevi remain constant for more than a year. 

IV. to separate suspect melanoma skin tumours from naevi or dysplastic 
naevi using NIR and skin impedance spectroscopic methods. 
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3 Instrumentation and techniques  

The instrumentation used in the studies this thesis is based upon is shown in 
Figure 2. A Matrix F NIR spectrometer (Bruker Optics, Täby, Sweden) is 
connected to a standard PC in which a NI PCI-5402 signal generator and a NI 
PCI-5112 high speed digitiser (both from National instruments Sweden AB, 
Solna, Sweden) are installed for recording impedance spectra. The NIR 
spectrometer is controlled by the accompanying OPUS 5.0 software and the 
generator and digitiser are controlled by LABVIEW (National Instruments 
Sweden AB). All of the equipment is powered through a PFIS600 insulation 
transformer (Tufvassons Transformator AB, Sigtuna, Sweden). The 
instruments have been tested for patient safety and approved for use in 
clinical investigations by the Department of Medical Technology and 
Informatics at Umeå University, Sweden. 

 
Figure	2	The	instrumentation	

For simultaneous NIR and impedance spectroscopic measurements a 
combined probe head was developed by our group (41). It is described in 
detail in paper II and shown in Figure 3. The NIR fibre bundle is in the 
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middle of the probe with two gold electrodes on each side. The NIR fibre 
bundle and the impedance electrodes are surrounded with a circular cavity 
connected to a vacuum pump to ensure reproducible pressure against the 
skin during measurements. 

 
Figure	3	The	combined	probe	head	for	simultaneous	NIR	and	skin	impedance	
measurements	

 

This probe was used in Study II onwards. In Study I two separate probes 
were used: a fibre-optic reflectance probe for NIR measurements, and a 
probe with flat circular gold electrodes arranged on a plane in a hexagonal 
pattern for impedance measurements. 

 

3.1 Near Infrared Spectroscopy, NIR 

Infrared (IR) light is electromagnetic radiation in the wavenumber range 
12820 cm-1 to 330 cm-1, or wavelength (λ) range 780 to 30300 nm. The IR 
range is partitioned into three regions, designated near, mid, and far IR. 
Molecules absorb IR at different frequencies and begin to vibrate at 
characteristic frequencies, yielding a characteristic spectrum, that depend on 
their nature, in terms of their bonds, mass and environment. By studying the 
frequencies at which a molecule starts to vibrate, information on the 
functional groups present in it can be obtained.  

NIR spectroscopy technique measures transmitted or reflected light in 
wavelengths between 780 and 2500 nm (12820 cm-1 and 4000 cm-1). The 
absorption of NIR light is due to overtones and combinations of overtones of 
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the vibration that occurs for the bonds between hydrogen and the atoms 
oxygen, carbon and nitrogen.(42) 

NIR spectroscopy allows us to determine characteristic molecular changes in 
the composition and structure of biological tissues such as skin.  

 
Figure	4	Sixty‐three	typical	NIR	spectra	of	human	skin	

Typical NIR spectra of human skin, measured in vivo, are shown in Figure 4. 
Each is composed of numerous overlapping peaks, making it impossible to 
discern many important traits from measurements of a single wavelength. 
Therefore, multivariate methods are essential when analysing NIR data in 
many contexts. 

 

3.2 Skin impedance 

Unlike NIR spectroscopy, skin impedance spectroscopy requires some pre-
treatment of the skin before measurement in order to reduce resistance in 
the uppermost layer, the stratum corneum, of the skin (43, 44). Prior to 
measurements with our instrument the skin is soaked with a saline solution 
for 90 s.  

According to Ohm´s law the impedance, Z, is the ratio between alternating 
voltage and alternating current. A small alternating voltage is applied 
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between two gold electrodes and the resulting alternating current is 
measured. The voltage is phase-shifted between 0° and -90° compared to the 
current due to the resistive and capacitive properties of the material the gold 
electrodes are positioned on, in our case skin. Thus, phase shift (Ф) and the 
magnitude, |Z|, describe the impedance according to equation 1. 

ܼ ൌ |ܼ|݁௜Ф	     (1) 

Impedance can also be expressed in the complex impedance plane according 
to equation 2. 

ܼ ൌ ReZ ൅ ݅ImZ    (2) 

where ReZ and and ImZ are the real and imaginary components of Z, 
respectively. 

In Studies I to III complex impedance was used when analysing the acquired 
data. In Study IV we aimed to subtract background data from measurements 
on diseased skin. In order to compensate for a difference in the high 
frequency resistance due to different degrees of soaking a simple series RC-
circuit was assumed where: 

ReZ/ሾሺImZሻ2ߨf	RCሿ 	ൌ 	1    (3) 

in the high frequency limit. This ratio was calculated for all frequencies (f). 
The mean value of the ratio for the three highest frequencies was then used 
as a divider for all ratios for all the remaining frequencies. Hence the 
parameters obtained at the highest frequencies have values close to unity 
and lower frequencies describe the deviation from an ideal circuit (45, 46). 

The extracellular and intracellular electrochemical properties of a biological 
tissue, such as skin, vary depending on its characteristics. Different 
frequency regions are affected by the properties of the tissue (47). In bio-
impedance spectra three major dispersions can be identified: the α-, β-, and 
γ-dispersion. The α-dispersion (Hz to tens of kHz) reflects the extracellular 
ionic polarisation of the cells, β-dispersion (kHz to hundreds of MHz) is 
affected by structural membrane changes such as oedema or changes in 
membrane thickness, while the γ-dispersion (more than hundreds of MHz) 
reflects the relaxation of water and other small molecules (48). In our 
analyses of human skin, impedance was measured at frequencies 
logarithmically distributed between 100 Hz and 10 MHz, providing 
information on the α- and β- dispersions. 



 

10 

Impedance data are often interpreted using Cole-Cole approximation of the 
measurements in the complex impedance plane, i.e. ReZ is plotted against 
ImZ in a Nyquist plot, giving a semi-circle arc that displays deviations from 
an ideal circuit. Another interpretation method is to compare the relative 
permittivity and conductivity for each measurement. These methods require 
different theoretical, and sometimes erroneous, assumptions (43, 49) and 
will in the end still provide multivariate data sets. This is because the 
penetration depth of the currents in skin is correlated, among other factors, 
with the frequency. As described vide infra the skin has several layers and at 
different frequencies the different layers, each with a specific molecular 
characteristic, will be measured and analysed. Therefore, interpretation of 
impedance data using multivariate data analysis is more straightforward and 
does not require theoretical assumptions. 

 

3.3 Human subjects 

All studies that this thesis is based upon were approved by the Regional 
Ethical Review Board in Umeå, Sweden. In the first study however, no 
ethical approval was needed. The ratios of men/women among the subjects 
and their ages are shown in Table 1. 

 
Table	1	Numbers,	ages	and	genders	of	participants	in	each	of	the	studies	
    18‐31 years  32‐64 years  ≥65 years 

Study  Presented in  women  men  women  men  women  men 

Body location  Paper I  8*           

Age/gender  Paper II  8  7      9  9 

Coffee/alcohol  Paper III  8  7         

DNS  Paper III      1  3    1 

Skin tumour  Paper IV  7  4  17  11  3  3 

  This thesis  7  5  21  16  7  6 

*15 to 19 years old 

 

Persons to the first three studies listed in Table 1 volunteered to participate 
in response to advertisements on local billboards at Umeå University, Umeå, 
Sweden. Patients in the DNS study volunteered after being selected by a 
medical doctor at the Department of Dermatology and Venereology, Umeå 
University Hospital, Sweden. The patients included in the skin tumour study 
were enrolled at three clinical sites: the Department of Surgery, the 
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Department of Dermatology and Venereology, and the Department of Hand 
and Plastic Surgery at the Umeå University Hospital, Sweden. As in all of the 
studies, participation in the skin tumour study was voluntary. 
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4 Data Analysis 

In order to combine and analyse both NIR spectral data and impedance 
spectral data a matrix was constructed for each data set. The variances for 
the two matrices were calculated, and then combined into an NIRIMP 
matrix, after scaling the variance to give variations in the NIR and 
impedance data the same weight in the resulting models.  

Before any data pre-processing, each data set was briefly analysed by 
principal component analysis (PCA) to identify, and remove, outliers. 
Outliers were defined as observations falling outside a 95% Hotelling’s T2 
area in the score plot and/or those exceeding the critical distance (95%) in a 
distance-to-model plot, which shows the distances from the observations to 
the corresponding model (50). 

When appropriate, the number of measurements was reduced by averaging 
values of replicates. Where relevant, this was done before any other data pre-
processing. 

 

4.1 Data pre-processing 

Pre-processing of spectroscopic data is sometimes necessary since the 
baseline of the spectra might shift or the spectra might contain noise. The 
pre-processing most appropriate for particular data is evaluated by trial and 
error. A specific pre-processing method is suitable if it enhances 
separation/grouping of measurement scores in a score plot. 

In Study I each impedance spectrum was normalised with respect to the 
corresponding mean impedance spectrum by means of point-by-point 
division, to acquire unit-less spectra with less dependence on between-
individual variations. In Study II the NIR spectra were Standard Normal 
Variate (SNV)-corrected to diminish the effect of gender. 

SNV-correction is a pre-processing method that reduces scatter effects 
such as slope and baseline shifts in spectral data. The SNV-correction 
transformation is applied to individual spectra, centring each spectrum and 
then scaling it by its own standard deviation according to the formula: 

ௌܻே௏,୧ ൌ
௒೚೗೏,౟ି௠௘௔௡	ሺ௒೚೗೏ሻ

ୗୈ୧
																			i ൌ 1, 2, 3, ……… , I  (4) 
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where YSNV are the SNV spectral values calculated from the initial spectral 
values, Yold, at each wavenumber (51), and SD is the standard deviation. 
SNV-correction works well only if all spectra in the data set are uniform, i.e. 
all spectra have been acquired from similar material. 

 

4.2 Multivariate Data Analysis 

Principal component analysis (PCA) and partial least square discriminant 
analysis (PLS-DA) are multivariate data analysis techniques that are widely 
used to explore correlations and groupings in complex data sets obtained 
using techniques such as NIR and skin impedance spectrometry (50, 52-54).  

 

4.2.1 Principal Component Analysis, PCA 

In PCA, each of N measurements, or ‘objects’, of K variables are arranged in 
a matrix, X, in a K-dimensional space. Since it is not generally easy to 
display more than three-dimensional data in a single plot PCA generates new 
“latent” variables, which are not directly observed but inferred by modelling 
from the observed variables, called principal components PC´s. The first 
component, PC1, lies in the direction that explains most of the variance in 
the data. The next component, PC2, is drawn orthogonal to the first in the 
direction that explains the greatest amount of the remaining variance and so 
on. Figure 5 presents a schematic diagram of PCA components in a 
multivariate space. Each component is comprised of a score vector, ta, and a 
loading vector, pa. The score vector describes the new coordinates of the 
objects projected onto the components, while the loading vectors describe 
the directions of the components. Grouping patterns of the objects are seen 
in score plots in which two or three loading vectors are plotted against each 
other. By plotting loading vectors against each other a loading plot is 
obtained, which can be used to investigate the importance of individual 
variables for the observed patterns. For spectral data, such as NIR and skin 
impedance spectra, loading line plots are often shown to aid the 
interpretation of the importance of the variables (50, 52-54). 
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Figure	5.	Schematic	diagram	of	the	first	two	PCA	components,	PC1	and	PC2,	 in	
a	 multivariate	 space	 described	 by	 three	 variables,	 K1,	 K2	 and	 K3.	 The	
multivariate	space	could	consist	of	any	number	of	variables.	

 

4.2.2 Partial least square regression, PLS 

PLS is a regression method used to find the relationship between two data 
matrices, e.g. a predictor matrix, X, used in PCA and a response matrix, Y. 
PLS can only be validly used it is possible to obtain a model capable of 
robustly predicting Y from X. A variant, PLS-Discriminant Analysis (PLS-
DA) can be used if the Y matrix consists of dummy variables defining classes 
of the objects in X. PLS-DA rotates the latent variables, variables to 
maximise the separation of classes of the objects. A common purpose of this 
procedure is to predict the probable classes of new/unknown observations. 
Observations that are not used to construct the original PLS-DA model can 
be predicted into the model, either to test the robustness of the model or to 
predict the classes of those objects (50, 52-54). 
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4.3 Scatter values 

Scatter values (SV) were introduced in Paper I to enable the evaluation of 
reproducibility of data from NIR and skin impedance measurements. The 
distance between replicates of measurements that are analysed and 
visualised in a PCA score space depend on the reproducibility of the 
measurement method. The replicates are less scattered if the reproducibility 
of the method is high and vice versa. Thus, by calculating scatter values we 
can compare the reproducibility of two or more measuring methods if the 
data are analysed by the same PCA model. How the SVs are calculated is 
described in detail in Paper I and shown in Figure 6. 

 
Figure	 6	 Visualization	 of	 the	 calculation	 of	 scatter	 values	 (SV).	 The	 ym	 and	 zm	 values	
were	calculated	using	the	same	formula	as	for	xm.	The	centroid	(black	circle)	is	the	mid‐
point	of	the	observation	points	(blue	circles),	hence	its	coordinates	are	(0,0,0)	in	a	three‐
dimensional	score	plot.	The	SV	of	a	specific	group	 is	a	measure	of	 the	deviation	of	 the	
distances,	I,	between	the	centroid	and	the	observation	points	of	that	group.	

	

The significance differences between two SVs can be determined by 
comparing the Euclidian distances, I, using Student´s t-test for normally 
distributed data or a Mann-Whitney test for data with a non-Gaussian 
distribution.  
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4.4 Intra-model distances 

It is sometime difficult, if not impossible, to interpret the significance of the 
separation between two overlapping groups in a score plot. Therefore, inter-
model distances were introduced in Paper II. By calculating intra-model 
distances, q, for each measurement/object in a group and comparing the q 
values of the groups, the significance of these separations can be determined 
by a Student´s t-test for normally distributed data or a Mann-Whitney test 
for data with a non-Gaussian distribution. How intra-model distances are 
calculated is described in detail in Paper II and shown in Figure 7. 

 

 
Figure	7	Score	plot	illustrating	intra‐model	distances.	A,	centroid	for	group	1	
(triangles);	B,	centroid	for	group	2	(circles);	C,	one	of	the	points	of	both	
groups	1	and	2.	The	intra‐model	distance,	q,	is	calculated	by	the	cosine	
formula:	a2	=b2+c2‐2bc*cos	(α),	where	cos	(α)=q/b	

In Studies II-IV and in the present thesis inter-model distances is used to 
determine the statistical significance of separation or differences between 
overlapping groups in score plots. In section 5.3.1, and in Study IV, a non-
paired NOPAPROD is used together with inter-model distances to determine 
the statistical significance. NOPAPROD is earlier described by Nyström et al. 
(55). 
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4.5 Simple manual planar discriminant analysis 

A classification rate can be determined using simple manual planar 
discriminant analysis. In this procedure, a line or plane is drawn though a 
score space, depending on its dimensions, between groups of measurements. 
In cases with overlapping groups the line or plane is tilted to obtain an equal 
number of scores with a wrong classification at each side of the line/plane. 
By this means a classification rate can be calculated, where 100% correct 
classification means no overlap of groups and 50% classification means a 
total overlap between the groups. This method was used in Studies I and II 
to determine and compare the classification rates of different models (16). 
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5 Results 

The overall aim of the studies this thesis is based upon was to develop non-
invasive NIR and skin impedance spectroscopic techniques with high 
specificity and sensitivity capable of providing quick, early and accurate 
diagnoses of suspected melanoma skin tumours. To achieve this goal we first 
compared the spectra of various melanoma skin tumours and non-
melanoma skin tumours, and the spectral relationships of non-melanoma 
skin tumours to one another. Secondly, various artefacts in skin 
characteristics that might influence the spectra were examined. Thirdly, the 
spectral characteristics of melanoma skin tumours, dysplastic naevi and 
naevi were compared to those of healthy reference skin. Finally, the value of 
combining NIR and impedance spectroscopy for these purposes was 
assessed. 

 

5.1 Diagnosing skin tumours 

NIR and skin impedance measurements were performed on a total of 71 
suspect skin tumours, and contralateral healthy reference skin, from 62 
voluntary patients, 27 men and 35 women, aged 16 to 93 years. The skin 
tumours were located at 24 different body locations: armpit, back, shoulder, 
back of the hand, behind the ear, stomach, breast, calf, cheek, foot, forearm, 
groin, hip, lower leg, neck, pubic area, ankle, soles, temples, thigh, thorax, 
toe, upper arm, and wishbone. 
	
Table	2	Numbers	of	each	kind	of	skin	tumour	examined	in	the	studies,	and	
terminology	used	in	this	thesis	and	appended	papers	
Melanoma skin tumours nodMM Nodular Malignant melanoma 3 

Mis Melanoma in situ 2 

LMM Lentigo malignant melanoma 1 

SSM Superficial spreading melanoma  6 

Non‐melanoma skin tumours N Benign naevi 19 

DN Dysplastic naevi 19 

SK Seborrhoic keratosis 10 

BCC Basal cell cancer 3 

DF Dermatofibroma 8 

The ways in which spectral measurements were acquired and compared to 
pathologic anatomic diagnosis (PAD) of the tumours is described in more 
detail in Paper IV. The numbers of each kind of skin tumour examined is 
shown in Table 2. 
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5.1.1 Separating different skin lesions from each other 

Four NIRIMP data sets were analysed multivariately to identify spectral 
differences between the investigated types of skin tumours. PCA and PLS-DA 
models of these data sets are described in Table 3. The data sets are as 
follows: 

 A1: spectra from melanoma skin tumours 

 A2: spectra from all melanoma skin tumours, DN, N, DF, SK, and 
BCC tumours 

 A3: spectra from all melanoma skin tumours, DN, and N (referred to 
as NIRIMP data set in paper IV) 

 A4: spectra from DN, DF, SK, and BCC tumours 

 
Table	3	PCA	and	PLS‐DA	models	
Data 
set 

N  K  PCA PLS‐DA

A* R2X R2X_cum Q2X‐
cum 

discriminant A* R2Y_ 
cum 

Q2Y_ 
cum NIR IMP NIR IMP

A1  12  2332 1 0.01 0.49 0.01 0.49 0.37

2 0.25 0.00 0.26 0.49 0.61

3 0.18 0.00 0.44 0.49 0.86

4 0.04 0.00 0.48 0.50 0.94

5 0.02 0.00 0.50 0.50 0.98

A2  71  2332 1 0.04 0.48 0.04 0.48 0.45 Diagnoses 3 0.12  0.01 

2 0.27 0.01 0.31 0.49 0.77 Melanoma/other** 2 0.52  0.35 

3 0.13 0.01 0.44 0.49 0.91

4 0.04 0.00 0.48 0.49 0.96

5 0.01 0.00 0.49 0.49 0.98

6 0.00 0.00 0.49 0.50 0.98

A3  50  2332 1 0.08 0.47 0.08 0.47 0.43 Diagnoses 2 0.18  0.08 

2 0.22 0.01 0.30 0.48 0.70 Melanoma/other** 2 0.55  0.47 

3 0.14 0.01 0.44 0.49 0.90

4 0.04 0.00 0.48 0.49 0.96

5 0.02 0.00 0.49 0.50 0.98

6 0.00 0.00 0.49 0.50 0.99

A4  40  2332 1 0.03 0.47 0.03 047 ‐0.09 Diagnoses 2 0.17  0.04 

2 0.37 0.02 0.40 0.49 0.76

3 0.07 0.00 0.47 0.49 0.91

4 0.01 0.00 0.48 0.49 0.93

*Number of components 
**Melanoma skin tumours vs. the other skin tumours, as discriminant variables 
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The PCA score plots in Figure 8 a, b and c, show a similar pattern of 
grouping of the different melanoma tumours, regardless of the data set used 
to construct the PCA models (Table 3). The melanoma tumours separate 
from the other tumours mostly in the first component and the melanomas 
give a lot of weights and contribute strongly to the models. The separation 
between the melanoma skin tumours and the other skin tumours is 
significant in both the A2 and A3 models, although the MM from patients 05 
and 64 (objects indicated by green and blue spheres in the bottom left corner 
in the figures, see arrows) do not separate from the other skin tumours. The 
predictive ability of the PLS-DA models with “melanoma tumours vs. the 
other skin tumours” as the discriminant variable is not satisfactory since the 
explained variation (R2Y_cum) was less than 0.65. In Paper IV it is stated 
that the low R2Y value is due to the large spread of the few melanoma 
tumours. The low R2Y value can also be explained of the MM of patients 05 
and 64; if their data are excluded from the data set the R2Y_cum is 0.78 and 
the Q2Y_cum is 0.70 for the A3 PLS-DA model.  

 

 
Figure	8	PCA	3‐D	score	plots,	for	the	first	three	components	of	the	PCA	models	
obtained	from	the	A1,	A2,	A3	and	A4	data	set	(a‐d,	respectively).	The	blue	
arrows	indicate	data	points	for	patients	05	and	64	(the	latter	are	partly	
hidden	in	the	figures).	

 

a) b) 

c) d) 
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When excluding the melanoma skin tumours and Ns from the data set, as in 
the A4 data set, significant separations between DN – SK and DN – DF can 
be seen (Figure 8d). As there were only three BCCs, their separation from 
other tumours could not be validly tested. The explained R2Y_cum (amount 
of explained variance) values of the PLS-DA models indicated that none on 
them provided robust predictions of “diagnoses” when this was used as the 
discriminant variable (Table 3). The groups of skin tumours tested in each 
PLS-DA model, with “diagnoses” as the discriminant variable, are shown in 
the figure legends in Figure 8. 

In Study IV the spread of the different groups was examined in terms of 
scatter values (SVs). As shown in Figure 8, the melanoma tumours scatter 
more in the PCA score plots than the other groups of skin tumours. In 
addition, the distances between the measurement points and the 
corresponding centroids in the model show that the melanoma tumours 
scatter significantly more than DN and N and the N scatters significantly 
more than the DN (Table 4). 

 

Table	4	Scatter	values	of	the	grouped	skin	tumours	in	the	A3	PCA	score	plot	
and	p‐values	of	the	differences	between	them	

SV   Melanoma tumours  16 

DN  4 

N  7 

p‐value*  Melanoma tumours vs. DN  2*10‐5 

Melanoma tumours vs. N  2*10‐4 

DN vs. N  2*10‐2 

*p‐value indicating the significance of the difference between the scatter values of 

the  tumour  types, obtained  from  a Mann‐Whitney  test of  the differences  in  the 

distances, “I”, to their respective centroids  

 

5.1.2 Sensitivity and specificity 

The sensitivity and specificity of the applied techniques were determined by 
a PLS-DA, with data acquired from malignant tumours and benign tumours 
as Y-variables of the A3 data set (Paper IV). In a PLS-DA some objects are 
excluded and their classes are predicted to test the predictive power of the 
model. Generally, if the calculated Y-value for an object is <0.5 it is predicted 
as a “0”-class member (here “malignant tumour”), and if its calculated Y-
value is >0.5 it is predicted as a “1”-class member (here “benign tumour”). 
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However, since the melanoma skin tumours had higher SVs and thus greater 
variation than DN and N tumours, the cut-off value was changed from 0.5 to 
0.67 in order to include more of the objects in the “malignant tumour” class. 
Using full cross-validation, i.e. excluding one object at a time from the 
modelling then predicting its Y-value, 10 of the 12 malignant tumours were 
found to be true positives and 36 of the 38 benign tumours to be true 
negatives. This gives a sensitivity of 83% and a specificity of 95%. The two 
false negatives were from patients 05 and 64. If the standard Y=0.5 cut-off 
was used the sensitivity was 75% and specificity 100%.  

 

5.2 Factors that might affect the results 

There is always a risk of incorrectly interpreting results of any kind of MM 
analyses due to potentially confounding effects on skin characteristics of 
factors such as age, gender and intake of coffee or alcohol. Results may also 
be affected by differences in time of analyses, especially if measurements are 
taken over timeframes of a year or more. Therefore, we examined the 
feasibility of using NIR and impedance spectroscopy to identify differences 
in skin characteristics due to such factors, and the possibility that they may 
affect the diagnostic outcome. 

 

5.2.1 Body location, age and gender 

NIRIMP spectra acquired from the skin of three groups of people were 
analysed and compared using multivariate methods with respect to body 
location, age and gender. These groups were: 

 B1, a very homogeneous group of eight young women aged 15 to 19 
(referred to as NIRIMPred data set in Paper I). In this data set the 
values of replicates were not averaged. 

 B2, a heterogeneous group of 33 people of both genders and from 
two different age groups: ≤31 years old and ≥65 years old (referred 
to as NIRIMP_A data set, Table 1 in Paper II). The NIR sub-set of 
this data set was SNV-corrected. 

 B3, the most heterogeneous group, consisted of 27 men and 41 
women aged 16 to 93 years, divided into three age groups: ≤31, 32-
64 and ≥65 years old. The people included in this third group were 



 

23 

the same as those in A2, except for three who were found to be 
outliers in a PCA score plot. Here though, only the measurements 
from healthy reference skin were included in a new model, not 
described earlier. The B3 PCA model consists of 68 objects and 2383 
variables. The NIR data were SNV-corrected. R2X-values for the 
first three components of the B3 PCA model were 0.43, 0.31 and 
0.18, respectively. 

Body location: In Studies I and II five body locations were chosen to 
benchmark the spectral characteristics of healthy skin: the cheek, inside 
upper arm and back of the hand (areas of thin skin), the calf (skin of medium 
thickness) and the back (thick skin). PCA-models of the three different data 
sets are shown in Figure 9. Groupings of the five skin locations are shown in 
score plots from multivariate models of the B1 and B2 data sets. The B3 data 
set contains measurements taken from 24 body locations, and its PCA score 
plot does not show any specific groupings related to body location (Figure 9 
c).  

	
Figure	9	PCA	models	of	the	a)	B1,	b)	B2	and	c)	B3	data	sets.	Each	colour	
represents	a	specific	body	location.	The	colour	code	for	a	and	b	is:	Back	of	the	
hand	(green),	Inner	upper	arm	(dark	blue),	Back	(Yellow),	Calf	(light	blue),	
and	Cheek	(purple).	

 

a) b) 

c) 



 

24 

After PLS-DA modelling of the three data sets, the B1 model had the highest 
explained variance (R2Y_cum) and predictive power (Q2Y_cum) values, 
while the B3 model had the lowest values (Table 5) when “Body location” 
was used as the discriminant variable.  

 
Table	5	Summary	statistics	of	the	PLS‐DA	models	of	the	B1,	B2,	and	B3	data	
sets	
Discriminant PLS‐DA model R2Y_cum Q2Y_cum Comp* 

Body 
location 

B1 0.54  0.27 8

B2 0.46  0.39 5

B3 0.06  0.005 2

Age group  B2 0.71  0.61 6

B3 0.17  0.04 3

Gender  B2 0.32  0.10 6

B3 0.11  ‐0.10 2

*The number of significant components for each model. 

The classification rate was determined by simple manual planar 
discriminant analysis of the PLS-DA score plots for the body locations 
represented in the B1 and B2 data sets. Correct classification rates for these 
data sets were 89% (90% if values for replicates were averaged, see Paper I) 
and 88% (Paper II), respectively  

 

Age: In the B1, B2 and B3 data sets, one, two and three age groups were 
represented, respectively. PCA score plots of the B2 and B3 models revealed 
significant separation between the ≤31 and ≥65 years old (Figure 10) and 
between the ≤31 and 32 - 64 years old age groups for B3. However, the 
middle age group, 32 - 64 years old, overlapped with both of the other two 
age groups in the B3 model, giving a very poor PLS-DA model compared 
with B2 when age group was used as a discriminant variable (Table 5).  

The reproducibility of the measurements was the same for age groups ≤31 
and ≥65 years old, i.e. there was no significant difference in the SVs for these 
groups (Table 4 in paper II). 
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Figure	10	PCA	score	plots	showing	age	groups	of	subjects	(≤31	years	old,	
green;	32‐64	years	old,	yellow;≥65	years	old,	blue)	for	the	a)	B2	and	b)	B3	
datasets.	

 

Gender: The B1 subjects were solely women, while the B2 and B3 subjects 
included both men and women. In PCA score plots from the B2 and B3 
models there is no obvious visual separation between genders (Figure 11). 
However, in the B2 PCA model separation between the genders is significant 
when considering one age group at a time, or using components 2, 4 and 5 
(Table 5 in Paper II). Significant separation between genders in the B3 data 
set was found using components 3, 4 and 5 of a PCA model. 

 
Figure	11	PCA	score	plots	showing	gender	of	subjects	(women,	blue;	men,	
green)	for	the	a)	B2	and	b)	B3	datasets.	

PLS-DA models with gender as the discriminant variable show significant 
separation between the genders for both the B2 and B3 data sets. However, 
the amount of variation explained by these two PLS-DA models was not 
sufficient for an adequate prediction model (Table 5). As for “age”, there was 
no difference in reproducibility of measurements between the genders (Table 
4 in Paper II). 

 

a) b) 

a) b) 
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5.2.2 The lack of measurable influence of coffee and alcohol 
consumption on skin characteristics  

Using the same methods and protocols two parallel studies were performed 
to decide whether it is possible to measure coffee- or alcohol-induced 
changes in skin characteristics using NIR and impedance spectroscopy. The 
first study is described in Paper III and focused on people aged 18 to 31 
years. NIR and skin impedance measurements were performed on eight 
women and seven men, prior to and after drinking 500 ml of strong brewed 
coffee or 50 ml of a 40% alcoholic beverage on two separate days. After 
drinking, measurements were repeated every 15 minutes for two hours. The 
measurements prior to intake were taken from five standard body locations 
(back of the hand, back, calf, inside upper arm and cheek) while the 
measurements repeated after intake were taken from only the back of the 
hand and the back. As a control the test persons came one additional day 
where measurements were repeated, but this time without drinking alcohol 
or coffee. The second, parallel study included people aged 65 to 80 years. 
Here NIR and skin impedance measurements were taken from nine women 
and nine men, prior to and after drinking 250 ml of strong brewed coffee on 
one occasion only. Measurements were repeated twice, at 15 and 30 minutes 
after intake. The second study gave a relatively small NIRIMP-data set of 54 
objects and 2383 variables after averaging of replicates since only 
measurements taken from the back of the hand were included.  

To compare results of the two studies with respect to age differences, the 
data from the back of the hand measurements in the coffee-part of the first 
study and the back of hand measurements in the second study were 
combined. This gave an NIRIMP data set with 99 objects and 2383 variables. 
Generally there was no significant difference between the outcomes of the 
two studies, although there was a clear separation of the two age groups 
(Figure 12). SVs were calculated from the first three components in a PCA 
model (R2X values for these components were 0.52, 0.39 and 0.04, 
respectively) showing that there was no significant difference in 
reproducibility of measurements between the two age groups after coffee 
intake. Nor was there a significant difference between the distances “prior – 
15 min” and “prior – 30 min” of the two age groups in a PCA score plot 
(Figure 12). 
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Figure	12	PCA	score	plot	of	NIRIMP	model	showing	times	after	consuming	
coffee	(o,	15	or	30	min).	Each	symbol	represents	one	person;	five	individuals	
from	each	age	group	are	visible.	

 

 
Figure	13	PCA	score	plot	of	the	NIRIMP_A	data	set	of	young	people	≤31	years	
old	(Paper	III)	showing	the	first	component,	t1,	versus	time	point	after	intake	
of	coffee	(blue),	alcohol	(green)	or	neither/control	(yellow).	

≤31 years old

≥65 years old
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The first of these studies, described in Paper III, gave no indications of 
differences in variations of score values; neither before vs. after drinking 
coffee or alcohol, nor between the different treatments, i.e. alcohol 
consumption, coffee consumption, and control (Figure 13). The spread of the 
score values in the first component was the same for all time points, 
regardless of treatment. This is also valid for the following components in 
the PCA model of the NIRIMP_A data set (Paper III). A shift of the score 
values for any time point compared with the controls would indicate an 
effect on skin characteristics due to the intake of coffee or alcohol. However, 
no such shift was detected.  

Minor effects of both coffee and alcohol could be seen 15 minutes after intake 
when comparing the arithmetic distances between time points before and 
after intake. After 30 minutes this effect had disappeared (Paper III). 

 

5.2.3 Differences in measurements over time, or due to season 

In a longitudinal DNS-study, every three to four months for nearly two years 
NIR and impedance measurements were made of five DN and healthy 
reference skin of each of five patients diagnosed with dysplastic naevi 
syndrome (DNS). This resulted in two data sets: NIRIMP_DNS1 and 
NIRIMP_DNS2 (Paper III). The NIRIMP_DNS1 data set includes 
measurements for all patients while the NIRIMP_DNS2 data set includes 
measurements on Patient B solely. 

In Study III intra-individual shifts were observed in measurements acquired 
on three different days. Day to day differences were also seen for the DNS 
patients. However, the repeated DN measurements remained constant over 
time (Figure 14a, and Paper III). Since these patients came to the clinic every 
three to four months the intra-individual shifts were thought to be due to 
seasonal changes. However, no effect of season was detected in either a PCA 
or a PLS-DA model (Figure 14b). The grouping of scores, seen in Figure 14b, 
was due to intra-individual differences at the measurement occasions rather 
than differences in environmental conditions at those occasions. The 
explained variation of a PLS-DA model with “season” as discriminant 
variable was just 0.07, showing it to have negligible predictive power. 
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Figure	14	PCA	score	plots	of	a)	stability	over	time:	first	component	vs.	
occasion	of	NIRIMP_DNS2	patient	B,	only	DN2	is	visible	in	the	plot.	b)	effect	of	
season:	first	component	vs.	second	component	of	NIRIMP_DNS2.	Symbols	and	
colours	are	the	same	for	both	figures,	c	=	reference	skin,	m=DN	

 

5.3 Separating skin tumours from healthy reference skin 

In score plots of the NIRIMP_DNS PCA and PLS-DA models, DN and 
healthy skin (C) are significantly separated, regardless of the DN body 
location, age or gender (Figure 15 and Paper III).  

When data for one patient at a time were excluded from the data set and 
used as an internal test set, the correct DN prediction rate in a PLS-DA was 
84.8% (Paper III).  

 
Figure	15	PLS‐DA	score	plot	of	the	NIRIMP_DNS1	data	set	showing	separation	
of	DN	(blue)	and	control	skin	(green).	

a) b) 
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5.3.1 Subtraction of background information 

As shown earlier, between-individual differences in factors such as age, 
gender, as well as body location, might affect the measurement results. As in 
the DNS-study, reference measurements on healthy skin were taken 
contralateral to each suspect skin tumour measured. In order to examine 
whether the individual differences could be excluded from the measurement 
results, leaving solely information about the skin tumours, each spectrum 
from the reference skin was subtracted from the spectrum of the 
corresponding skin tumour. Two data sets were multivariately analysed 
(Table 6): 

 C1 contains all spectra of the melanoma skin tumours, DN, N and C 

 C2 contains spectra obtained by subtracting the C spectra from the 
corresponding melanoma DN and N skin tumour spectra  

 
Table	6	Summary	statistics	of	the	PCA	and	PLS‐DA	models	of	the	C1	and	C2	
data	sets	
Data set  N  K PCA PLS‐DA

A* R2X R2X_cum Q2X‐
cum 

Discriminant
variable 

A* R2Y_
cum 

Q2Y_
cum NIR IMP NIR IMP

C1  99  2332 1 0.58 0.02 0.58 0.02 0.58 Diagnoses 3 0.38  0.34 

2 0.20 0.01 0.78 0.03 0.77 Melanoma/other** 2 0.57  0.53 

3 0.06 0.03 0.83 0.06 0.84

4 0.03 0.03 0.86 0.09 0.93

5 0.03 0.00 0.89 0.09 0.98

6 0.00 0.00 0.90 0.09 0.98

C2  49  2332 1 0.53 0.00 0.53 0.00 0.52 Diagnoses 2 0.27  0.13 

2 0.34 0.01 0.88 0.01 0.85 Melanoma/other** 2 0.51  0.42 

3 0.05 0.02 0.93 0.04 0.94

4 0.01 0.01 0.94 0.05 0.97

5 0.01 0.00 0.94 0.05 0.98

*Number	of	components	
**“Melanoma	skin	tumours	vs.	DN,	N,	and	C”	for	C1	and	“melanoma	skin	tumours	vs.	DN	
and	N”	for	C2.	

PCA score plots of C1 and C2 are similar to those of the A3 data set (Figure 
16). As in the latter these models have a significant separation between the 
malignant tumours and DN and N, and significant separations between DN 
and N are found in the three models. In C1 the reference skin measurements 
are significantly separated from all skin tumours. 

The explained variations and predictive variations of the C2 PLS-DA models 
were lower than for both C1 and A3 models when “melanoma/Other” were 
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set as discriminant variables (Table 3 and Table 6) In addition, the C2 model 
showed lower sensitivity to melanoma skin tumours; 45%, compared to 75% 
and 67% for the A3 and C1 models, respectively. The specificity for all three 
models was 100%. If the calculated Y cut-off value was raised to 0.67, instead 
of 0.5, the sensitivity to melanoma became the same for all three data sets, 
83%, while the specificity became marginally higher, 97%, for the C1 and C2 
models compared with 95% for the A3 model. 

 

 
Figure	16	a)	PCA	score	plot	of	C1	with	b)	corresponding	loading	plot.	c)	PCA	
score	plot	of	C2	with	d)	corresponding	loading	plot	

 

5.4 Combining NIR and impedance spectroscopic data  

In Study I we found that there was less overlap between groups of body 
locations in a PLS-DA score space of the combined NIRIMP model than in 
corresponding plots of the separate impedance and NIR models (Figure 17). 
Thus, the classification capacity, using simple manual planar discriminant 
analysis, was improved from 88% to 93% correct classification when 
combining the two techniques.  

 

a) b) 

c) d) 
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Figure	17	Three‐dimensional	score	plots	of	PLS‐DA	models	for	the	a)	IMPred	
model,	b)	NIRred	model	and	c)	combined	NIRIMPred	model.	Each	colour	
represents	measurements	from	a	specific	body	location:	back	of	the	hand	
(green),	inner	upper	arm	(dark	blue),	back	(yellow),	calf	(light	blue),	cheek	
(purple).	d)	loading	plot	of	the	NIRIMPred	PLS‐DA	model.	

 

Data for each person (one at a time) in the study were excluded from the 
data sets, used as a test set for the PLS-DA models, and the predictability of 
body locations was found to be improved by combining the impedance 
(IMPred) and NIRred data sets. (Paper I and Table 5). 

 
Table	7	PLS‐DA‐predicted	Body	locations	in	the	NIRIMPred	and	NIRred	data	
sets.	
  Body location  hand  arm  back  calf  cheek  All  

No. predicted  40  39  40  39  39  197 

NIRIMP  No. correct pred  39  30  33  11  30  143 

% correct pred  98  77  83  28  77  73 

NIR  No. correct pred  38  34  35  2  33  142 

% correct pred  95  87  88  5  85  72 

a) b) 

c) d) 
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Most PLS-DA models of the combined NIRIMP-data sets mentioned in this 
thesis had higher explained variation (R2Y_cum) and predicted variation 
(Q2Y_cum) values than the non-combined NIR and IMP data sets. As 
examples, summary statistics of the NIRIMP C1, NIR C1 and impedance C1 
PLS-DA models are shown Table 8. The discriminant variable for these PLS-
DA models was “Melanoma skin tumours vs. DN, N and C”. Further, in cases 
where the R2Y_cum of the combined (NIRIMP) PLS-DA model was not 
higher than those of the non-combined NIR or impedance models, it still 
yielded higher classification rates. An example is the NIRmIMPm model 
presented in Paper I. 

 
Table	8	Summary	statistics	of	PLS‐DA	models	with	“Melanoma	skin	tumours	
vs.	benign	skin	tumours	(DN,	N	and	C)”	as	the	discriminant	variable	
Data set  No. components  R2Y_cum  Q2Y_cum  N  K 

C1 (NIRIMP)  2  0.57  0.53  99  2332 

IMP C1  2  0.29  0.19  99  51 

NIR C1  2  0.49  0.46  99  2281 
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6 Discussion 

This thesis is based on investigations of the feasibility and utility of 
combining NIR and skin impedance spectroscopy techniques for in vivo, 
non-invasive measurements on human skin to diagnose disorders such as 
skin cancer. In this section the first discussion is about the analytical 
techniques and methods applied, the second on ways in which they can be 
used to diagnose skin tumours, and potentially confounding factors that may 
affect the measurement results. Finally, the challenges associated with the 
“Black Box” nature of the techniques are discussed. 

 

6.1 Measurement techniques and methods 

Development of an instrument for clinical use is a challenging task. Not only 
must the theory behind the instrument be accurate, but the instrument itself 
has to be manageable and the results it provides have to be easy to interpret. 
Basically, the results should be reliable whoever uses the instrument. 

In attempts to fulfil these requirements, a probe head for simultaneous NIR 
and skin impedance measurements was developed by our group (Paper II 
and (41)). This novel probe head enabled us to perform simultaneous 
measurements at precisely the same spots on subjects’ skin. A vacuum pump 
connected to the probe provided constant pressure against the skin during 
all measurements. It also ensured close contact with the skin, even if the 
probe was tilted during measurements. Several parameters such as soaking 
time and temperature, pressure, winding of the fibre optic cables and tilting 
of the probe were tested (data not shown) and a standardised measurement 
method was recommended in Paper II. 

Spectroscopic data often contain a lot of noise and systematic disorders. In 
order to deal with the noise and to improve multivariate models based on the 
data, genetic algorithms (56) or orthogonal projections to latent structures 
(OPLS) (57) or many other tricks can be used. All multivariate methods are 
noise reduction methods. There is, however, a difference between methods 
for noise reduction, linearization, and easier interpretation of spectral data. 
Genetic algorithms and spectral transformations (pre-processing 
techniques) are linearization of data, while OPLS is interpretation. Since we 
did not know, a priori, the spectroscopic characteristics of skin tumours, and 
a diagnostic method should be as straightforward as possible, we chose to 
use PCA and PLS-DA in our investigations, together with a minimum of pre-
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processing techniques and other noise reduction methods. However, various 
data pre-processing techniques, such as base-line correction, 
derivativisation, Multiplicative Scatter Correction, SNV-correction and 
Savitzky-Golay filtration (42), were tested on the NIR sub-set of the spectra 
by trial and error. When the pre-processing techniques did enhance the 
results they were used, but otherwise they were omitted. In the studies 
presented in this thesis, the only consistently result-improving pre-
processing technique tested was SNV-correction. In Study II the NIR spectra 
were SNV-corrected to diminish the spectral differences between men and 
women, and thereby enhance the differences between body locations in a 
PCA score plot. In Study IV no pre-processing was used since neither of the 
methods tested enhanced the separation between malignant and benign skin 
tumours. However, the melanoma skin tumour data set then available (and 
at the time of writing) was relatively small and a robust prediction model for 
melanoma skin tumours remains to be developed. 

 

6.2 Diagnosing skin tumours  

Development of a non-invasive diagnostic method for early, fast and reliable 
detection of suspect melanoma skin tumours is crucial (13). However, 
despite numerous attempts, no methods developed as yet have provided 
adequate sufficient sensitivity and specificity. A trained dermatologist using 
a dermatoscope generally achieves a correct prediction rate of 93% for 
melanomas (4). A non-invasive diagnostic method has to be at least as good 
as a trained dermatologist for practical application in melanoma diagnostics. 
Notably, McIntosh and co-workers presented a NIR method that reportedly 
provided 72% specificity and 92% sensitivity for malignant lesions (29), 
while using impedance spectrometry Åberg and co-workers achieved a 
reported sensitivity for malignant melanoma of 95%, although the observed 
specificity was only 49% (23). By using our combined NIR and skin 
impedance instrument and methods we obtained a sensitivity of 83% and a 
specificity of 95% for differentiating between melanoma and benign skin 
tumours.  

In the present study 12 melanoma skin tumours were included (Paper IV). 
Two of these, the melanoma skin tumours from patients 05 and 64, were 
characterised by our methods as DN rather than as a melanoma. The 
melanoma skin tumour of patient 05 was the largest of all, with a diameter of 
30 mm. It was also the thinnest of all of the melanoma skin tumours. Large 
parts of this melanoma had a more dysplastic than melanomic character and 
it is very likely that measurements were made over such a part of the 
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melanoma. False negatives are unacceptable but difficult to avoid. However, 
false negatives due to erroneous measurements could be avoided by, for 
instance, performing several measurements at different locations of large 
melanomas. If one of the measurements, after averaging replicates, indicates 
malignancy the lesion should be considered as a melanoma skin tumour.  

Adding more melanoma skin tumour, DN, and N measurements to the 
model, in the same proportions as those currently included, i.e. 3:4:4, would 
probably improve its predictions and sensitivity for malignancy. Indeed, a 
partial PLS-DA model (with excluded objects evenly spread in the model for 
seven rounds) had somewhat lower power than another with twice as many 
objects classified as “reference skin or benign lesion”, showing that the larger 
data set provided higher power for discriminating between malignant and 
benign skin tumours/reference skin. The reference skin or benign skin 
tumours measurements are key determinants of the model’s accuracy, 
explaining why increases in their number improve its prediction ability. 
However, following one-by-one exclusion of the observations from the 
modelling and their subsequent prediction, the PLS-DA model for the 
smaller data set became more sensitive to malignancy than that of the larger 
data set with more reference/benign lesions. Thus, the proportion of 
melanoma skin tumour/DN/N might also be of importance for prediction 
models. 

We initially hypothesized that ulcerated melanoma skin tumours would be 
outliers in the multivariate models, since they have a broken stratum 
corneum, which we expected to affect the NIR light scattering and the 
impedance measurement circuits. However, this was not the case. Neither 
did the ulcerated melanoma skin tumours group together in a PCA score 
plot. Melanoma skin tumours are categorised by depth (Breslow depth) and 
level of anatomical invasion (Clark level); higher values of either give a 
poorer prognosis for the skin cancer. Both the depth of the cancer in the skin 
and the anatomical invasion are factors that could potentially affect NIR or 
impedance spectra, and could thus theoretically be discerned in a score plot. 
Considering 12 melanoma skin tumours, as we have in our study, it is always 
possible to find grouping due to shared classes of Clark level, Breslow depth, 
ulceration or other variables in a score plot, especially when turning and 
twisting data in a 3D score plot. It is therefore irrelevant to search for such 
tendencies in our present data set. A larger data set would give higher 
statistical accuracy. 
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6.3 Individual differences have little or no impact on the spectra 
of diseased skin 

Results presented in Papers III and IV clearly show that body location and 
between-individual differences in age and gender have very little or no 
impact on the spectra of diseased skin. In the analysis presented in Paper III 
we obtained 84.4% correct classification of DN versus healthy reference skin. 
Given the heterogeneity of the data set this should be considered a good 
outcome. 

Neither the separation between measurement scores for malignant skin 
tumours and benign lesions in a PCA score plot, nor the model’s predictive 
ability for malignant tumours was improved by subtracting spectra of 
reference skin from the spectra of diseased skin. This was somewhat 
surprising, but shows that the individual differences considered have little 
effect on the spectral measurements of diseased skin. We detected 
differences in spectral characteristics of the skin between individuals, but the 
information from a skin lesion clearly has greater weight in the modelling 
than the individual characteristics. 

Minor day to day shifts in the data acquired from measurements on the skin 
of subjects who participated on more than occasion were observed. The 
reason for these small shifts can only be speculative, but a possibility is that 
they were due to changes in irrelevant variables, such as normal fluctuations 
in body temperature or general health. 

Taken together, these findings indicate that it would be possible to develop a 
robust model for diagnosing skin tumours without considering the body 
location of the skin tumour or individual differences. 

 

6.3.1 Skin characteristics related to body location, age, gender, 
coffee or alcohol intake, and time 

Measurements on three groups of individuals were tested to assess the 
ability of our methodology to differentiate spectral characteristics of skin 
related to body location, age or gender. Clearly, the predictive ability of any 
model in these respects is dependent on the homogeneity of the analysed 
data set (the more homogeneous the data set, the more information about 
individuals it will provide). Accordingly, the most heterogeneous data set 
appeared to contain little readily extractable information related to body 
location or subjects’ age and gender. Further, clearer grouping of body 
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locations and separation of the groups can be seen in a PCA score plot for a 
data set with only young women than in a similar plot for a data set 
including both men and women of two age groups. Nevertheless, the facts 
that there are significant differences between people ≥65 years old and ≤31 
years old in a PCA score plot of a highly heterogeneous data set, and that the 
incidence of MM increases with age, should be taken into consideration 
when developing a diagnostic method for melanoma. The predictive ability 
of a diagnostic model depends on the objects in the model. It is very likely 
that the majority of the melanomas building the model will come from 
individuals ≥65 years old which then will direct the locations of the 
melanoma measurements in a score space. Therefore, a MM on a young 
person might have a higher probability of a false negative diagnosis since the 
measurement will locate differently in a score space, compared to 
measurements on the MMs building the model, if age is not accounted for.  

In order to mimic a real diagnostic situation, in which a patient may come to 
the clinic for an examination of her/his moles and has a cup of coffee or a 
glass of wine or a beer before the examination, we let a group of test 
participants drink coffee and alcohol prior to measurements. These 
measurements were then compared to measurements performed before 
drinking. Only the volume of coffee and alcohol consumed was controlled, 
not the relative blood content of alcohol or caffeine. In a real situation a 
person drinks “a cup of coffee” and the volume is independent of gender, age 
or body mass index of the person. If a general effect of coffee and alcohol 
could be seen we should have to ask patients coming for diagnostics to not 
drink coffee or alcohol before the examination. However, although the 
alcohol content in the body is measureable using NIR spectroscopic methods 
(31), we did not detect any reliable changes in the skin’s spectral 
characteristics related to an acute intake of either alcohol or coffee. We did 
observe minor effects of drinking these substances after 15 minutes, but they 
were probably due to a rise in blood flow or the participant moving around 
for a while before measurements. 

Since skin characteristics change with age due to changes, inter alia, in the 
skin’s barrier function (58, 59), and basal metabolism (60), we tested for 
differences in the reproducibility of measurements of subjects of two age 
groups (≥65 and ≤31 years old) after coffee intake. Whether they drank 
coffee or not, both tested age groups had the same measurement 
reproducibility, based on estimation of scatter values as described in Paper I. 

We found that seasonal changes and long-time intervals did not affect the 
measurement results, which is important since measurement stability over 
time is crucial for longitudinal controls of DN on patients diagnosed with 
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DNS. These patients have multiple DN all over the body and each of these 
DN has a 10% risk of developing into a MM. This means that almost every 
person diagnosed with DNS will suffer from MM at some time during 
his/her life. Using our technique it is possible to monitor each DN on a 
regular basis to detect when a DN develops into a MM. At present, patients 
diagnosed with DNS have regular check-ups at clinics with trained 
dermatologists. A trained dermatologist has >95% sensitivity for MM, but 
often not all DN are examined because of time constraints. With our 
instrument more DN could be examined at each occasion and the 
examination could be performed by any trained nursing staff at a health 
facility. 

 

6.4 Combining NIR and impedance spectroscopic data  

As stated earlier in this thesis several attempts have been made to find a 
non-invasive method for diagnosing skin disorders or for characterising skin 
in vivo. However, there have been no previous attempts to combine two 
already successful methods. By combining the NIR and skin impedance 
techniques it is possible to gather more information about the skin condition 
than when using only one of the techniques. NIR and skin impedance 
measures different features in the tissue, in our case skin. After performing a 
measurement the received NIR and skin impedance spectra are weighted to 
the same variance and combined to one spectrum. The information received 
from both techniques will thereby equally contribute to the analysis model. 
Different parts of the spectrum give information of different features of the 
tissue characteristics. This means that depending on the physiological 
structures different variables in the analysis model will contribute more to 
the explained variation (expressed as R2X in PCA models) than other and 
thereby have more impact on how objects group/separate in a score space. 
As can be seen in the tables summarising the PCA models, NIR and skin 
impedance give different contributions to the explained variation of the 
various components of the analysis model. In the case of melanoma 
diagnostics in the first component skin impedance has high leverage on the 
model while in the second component NIR has the highest leverage (Paper 
IV). Thus, both techniques provide information about skin characteristics, 
and combining the measurement results of the two techniques improves the 
resulting diagnostic models. Which technique has the highest leverage in 
which component, and how a synergy effect is achieved, depends on the 
tissue measured. Some of the features measured by each technique are 
discussed in the next section. 



 

40 

However, there are other and maybe more successful methods to weight the 
NIR and skin impedance data sets together. By giving them the same 
variance the impedance data might have stronger leverage on the first 
principal component since there are less skin impedance frequencies than 
NIR wavenumbers in the respective spectra. This can be further investigated 
in future studies. 

 

6.5 The challenge of the Black Box  

It is crucial to understand the molecular and histological aspects behind the 
spectra of NIR and skin impedance measurements. It is convenient to 
interpret obtained data by correlating them to known values, such as a 
pathologic diagnosis. An adequate training set, or the use of different 
algorithms, would probably give satisfactory results for the prediction of 
unknown skin tumours. However, wrongly chosen variables might give 
distorted results as the training set grows over time. This can be avoided by 
choosing only the variables important for distinguishing melanoma skin 
tumours from benign tumours. 

A clear gradient related to skin thickness can be seen in the score plots 
presented in Figure 5 of Paper I. Since the skin layers differ throughout the 
body the skin characteristics also differ. When comparing skin thickness in 
multivariate models of more heterogeneous data acquired from 
measurements of subjects of both genders with a wide age span, no gradients 
related to skin thickness were detected. In this case many more body 
locations were represented, each assigned a number from 1 to 5, where 1 
indicates very thin skin (<3 mm) and 5 indicates very thick skin, such as on 
the sole of the foot.  

To assess how much information the NIR and impedance techniques 
provide, we calculated their respective contributions to the amount of 
explained variation, expressed in R2X, of each significant component of the 
PCA models. The loading line plots reveal more precisely the parts of the 
spectra that provide the most important information. When considering the 
melanoma skin tumour data we see that most of the information in the first 
component comes from impedance (Paper IV), and the loading plot reveals 
that the lower frequencies of the impedance spectra give most weight to the 
model. This is consistent with expectations, since the skin is assumed to act 
as a component of an ideal RC circuit during the impedance measurements, 
and the impedance is assumed to be unity at high frequencies, regardless of 
the measured object. Paper II also shows that most information from the 
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impedance measurements originates from the lower frequencies. This part of 
the impedance spectra is dominated by the α-dispersion, which provides 
information about the extracellular ionic polarisation of the cells. Thus, the 
ionic movements in the extracellular matrix differ in some respect among the 
different melanoma skin tumours. The precise nature of these differences 
should be investigated in the future. However, there are differences in the 
extracellular matrix in a cancerous tumour compared to a corresponding 
healthy tissue. These differences are different angiogenic factors and matrix 
metalloproteinases to mention a few (61, 62). 

In order to identify the specific skin characteristics that most strongly 
influence NIR spectra, loading plots or loading line plots can be analysed. 
The literature reports that at higher wavenumbers, 14700 cm-1 to 9090 cm-1, 
oxyhemoglobin, deoxyhemoglobin, myoglobin (the heme proteins) and 
cytochromes contribute most strongly to the NIR spectra. The absorption of 
these compounds is indicative of regional blood flow and oxygen 
consumption. At lower wavenumbers, 9090 cm-1 to 4000 cm-1, the 
absorption results largely from overtones and combination bands of C-H, N-
H and O-H groups. This gives information on tissue composition, e.g. lipid, 
protein and water contents (27, 42). Generally, NIR spectra acquired by our 
instrument begin at 12793 cm-1. Therefore, most of the information 
regarding the heme proteins is truncated. In a spectral plot of a data set in 
which the spectra of the different melanoma skin tumours are averaged, it is 
clear that the major differences between the melanoma skin tumours are in 
the higher wavenumber area (Figure 18a). In a loading line plot of the three 
first components of the corresponding PCA model it seems that all 
wavenumbers add information to the model. However, the most informative 
peak is at approximately 7000 cm-1, which corresponds to the first overtone 
of O-H bonds in water (42) (Figure 18b). The scattering effect of the NIR 
light also provides information about the different melanoma skin tumours.  

Accordingly, application of a scattering reducing pre-processing technique, 
such as SNV-correction, to the spectra reduces the separation of malignant 
and benign skin tumours in the PCA model. Differences in the scattering of 
NIR light are due to surface differences of the measured media, and different 
skin tumours such as AKs have markedly specific surfaces compared to other 
skin tumours (10). A skin tumour that has become ulcerated also has a 
different surface. Thus, the scattering of NIR radiation should not be 
neglected. 
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Figure	 18	 a)	 Averaged	 NIR	 spectra	 of	 different	 melanoma	 skin	 tumours	
included	 in	 the	 A3	 data	 set.	 The	 LMM	 spectrum	 is	 however	 from	 only	 one	
lesion.	 b)	 Loading	 lines	 of	 the	 first	 three	 components	 of	 the	 A3	 PCA	 model.	
The	loadings	from	impedance	variables	are	not	shown	in	the	loading	line.	

Different cancer tumours have different metabolic profiles, and it is even 
possible to diagnose certain cancers by examining their metabolites (63). 
Using liquid chromatography–mass spectrometry (LC/MS) it is possible to 
fingerprint the metabolic pattern of a certain sample of malignant cells (64). 
By performing LC/MS on biopsies of suspect malignant skin tumours that 
had been measured pre-surgery with NIR and skin impedance, it would be 
possible to compare the observed “fingerprints” with the measurement 
results, advancing understanding of what is actually measured. 
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7 Concluding remarks 

We have shown that it is possible to differentiate healthy skins at various 
body locations using impedance and NIR spectroscopy, and demonstrated 
the added value of combining the two methods.  

Scatter values (SVs) and intra-model distances have been introduced. By 
analysing scatter values we have compared the reproducibility of different 
measurement techniques, and estimated the statistical significance of 
separations of overlapping groups of measurement scores in score plots by 
analysing intra-model distances. 

A new combined probe head for simultaneous NIR and impedance 
measurements has been introduced and a measurement protocol developed. 
Our measurement methods are not sensitive to acute coffee or alcohol-
related effects on skin characteristics, and our instrument provides 
measurements that are stable over time. 

Combined NIR and skin impedance spectroscopy of skin, in vivo, 
measurements appears to be a highly promising tool for diagnosing 
malignant skin tumours. Our instrument and method provide 83% 
sensitivity and 95% specificity for malignant skin tumours. 
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