

Digital Product Innovation:
Building Generative Capability through

Architectural Frames

Fredrik Svahn

Department of Informatics

Doctoral Dissertation

Umeå University

Umeå 2012

Department of Informatics

Umeå University

SE-90187 Umeå

fredrik.svahn@viktoria.se

Copyright© 2012 Fredrik Svahn

ISBN: 978-91-7459-458-4

ISSN: 1401-4572, RR-12.02

Printed by: Print & Media, Umeå University

Umeå, Sweden 2012

Abstract

Over the last decades we have witnessed a profound digitalization of tangible

products. While this shift offers great opportunities, it also exposes product

developing industries to significant challenges. In these industries

organizations, markets, and technologies are tuned for mass production,

providing competitive advantage through scale economics. Typically, firms

exercise modular strategies to deliver such scale benefits. Rooted in Herbert

Simon’s notion of near decomposability, modular product architectures

allow for production assets, such as tools, processes, and plants, to be

effectively reused across product variants and over generations of designs.

However, they come at a price; modularity requires overall design

specifications to be frozen well before production. In practice, this tends to

inscribe functional purpose in the structures of the system, effectively

preventing firms from taking advantage of the speed by which digitized

products can be developed and modified.

The main objective of this thesis is to investigate and explain how product

developing organizations adapt architectural thinking to balance the proven

benefits of modularity and the emerging opportunities provided by digital

technology. In doing so, it introduces a complementary architectural frame,

grounded in Christopher Alexander’s seminal work on patterns. This frame

associates the concept of architecture with generativity and reuse of ideas,

rather than scale economics and reuse of physical assets.

Sensitizing the theoretical framework through a longitudinal case study of

digital product innovation this thesis derives several implications for theory

and practice. Across four embedded cases in the automotive industry it

demonstrates that generative capability follows from a shared organizational

view on products as enablers and catalyzers of new, yet unknown

functionality. Such an emergence-centric view requires product developing

firms to rethink existing governance models. Rather than exercising control

through specific functionality, inscribed in modular product structures, it

offers the benefit of influencing innovation through general functional

patterns, serving as raw material in distributed and largely uncoordinated

innovation processes. This shift in focus, from specific functionality to

general functional patterns, enables a new strategic asset for product

developing firms. It opens up for proactive rather than reactive strategies,

where the architecture makes an instrument to cultivate new ideas and

business opportunities, rather than a tool for cost savings.

Keywords: digital innovation, product innovation, generativity,

modularity, patterns, architecture, architectural frames.

Acknowledgments

Writing a dissertation is an individual journey full of unexpected surprises

and deep challenges, but also of joy and great satisfaction. Perhaps my

journey has been particularly blurred in its contours for the simple reasons

that I have never had a PhD position. While some parts of a PhD process fit

well with an institute research practice, other parts tend to become spare-

time activities. Finding a working combination between applied research and

thesis writing takes some unconventional thinking, pragmatism, and a lot of

inspiration. I am deeply indebted to a whole range of people for supporting

me in this process. Without your constructive feedback, generous support,

and frequent encouragements my academic career would have been short.

First, I would like to express sincere gratitude to my colleague, research

manager, and supervisor Ola Henfridsson. You have offered me a tailored

path for uncovering some of the intellectual craftsmanship of social science

research. Acting as a mentor, rather than a formal supervisor you have

encouraged me to draw on my own unique experiences and interests instead

of following some predefined trail. In retrospect I can see that this attitude is

far from typical in an academic context. By listening you have always shown

interest in my ideas. By challenging them you have shown me respect.

I would also like to thank my co-supervisors, Jonny Holmström, Lars

Mathiassen, and Youngjin Yoo. You have contributed in different, yet equally

important ways. In particular, you have offered me different perspectives on

my own work, but also on the scientific discipline we all belong to. Further, I

would like to express my appreciation to Rikard Lindgren. Although we have

not explicitly worked together you have often taken your time to read and

listen. Thank you for constructive feedback and – not least – encouragement

and spirit. I am also forever indebted to my great colleagues at Viktoria

Institute, from researchers to administration and management. However, I

would like to express particular gratitude to Lisen, Lena, Magnus, Taline,

and Mats for being so patient with my ideas. It is a pleasure going to work

with such colleagues. I would also like to give attention to my new colleagues

in the IT Management group at Umeå University. Thank you for your open,

welcoming attitude and the time you have invested in my work. Finally, I

would like to thank my old friend and brother-in-law Per Wikman Svahn for

intense and rewarding late night discussions, always providing new

perspectives.

Taking a wider perspective on this thesis I am forever indebted to a few

persons. Hans Bjersing, without your encouragement and funding from

Guide Konsult I would not have approached Viktoria Institute in the first

place. Per-Åke Olsson, your support allowed me to back away from some

duties to focus on thesis writing. Kicki and Jan, your generosity in

supporting with child care made everyday family life a lot easier. However, I

would also like to express deep respect and great appreciation to my parents,

Lasse and Hjördis. You gave me strength to follow uncomfortable paths.

Finally, this would not have been possible without support and encourage-

ment from my beloved wife Annika. You have been by my side from the very

beginning of this process. You have listened, you have celebrated with me,

and you have encouraged me in times of doubt. I could not have done this

without you. Last of all, I would like to thank my wonderful children Elsa

and Oscar. Your curiosity, unlimited energy, and unconditional love cannot

be underestimated.

Frillesås, June 2012

Fredrik

Table of Contents

1 Introduction ...9

2 Related Work and Conceptual Foundation 19

2.1 Assessment of Innovation Regimes... 21

2.1.1 Organizing Logic ... 22

2.1.2 Market Dynamics .. 29

2.1.3 Architectural Design .. 33

2.2 Research Challenges in Digital Product Innovation 54

3 Theoretical Framework... 59

3.1 Digital Affordances ... 62

3.2 Programmability and Replicability ... 67

3.3 Architectural Frames.. 71

3.3.1 A Dialogue between Simon and Alexander 75

3.3.2 Hierarchy-of-Parts .. 87

3.3.3 Network-of-Patterns .. 88

3.3.4 Interaction between Frames ... 92

4 Methodology ... 97

4.1 Data Collection ...98

4.2 Data Analysis .. 103

5 Digital Product Innovation at CarCorp 107

5.1 MOST: The Recognition of a New Architectural Frame 108

5.2 SoftCluster: Rethinking Platforms .. 122

5.3 Nomadic Device Integration: Bridging Pace Barriers 132

5.4 Android: Designing for Generativity ... 144

6 Discussion: Generative Product Design161

6.1 Ontological Significance... 166

6.2 Organizational Support .. 170

6.3 Governance Models .. 177

6.4 Summary ... 185

7 Implications and Future Work 189

8 References .. 197

9

1 Introduction

Thursday January 21, 2010 Nokia launched free walk and drive navigation as

a part of their new version of Ovi Maps1. This aggressive move towards a

mobile service market was enabled by Nokia’s acquisition of the leading

digital map provider Navteq in July 2008. Consulting traditional business

logic, it simply does not make sense for a product developing firm to give

away an $8.1 billion investment, without any explicit revenue generation.

However, a press release from February 3 gives an indication of the rationale

behind Nokia’s strategy; in about one week the new Ovi Maps service was

downloaded by 1.4 million users. Anssi Vanjoki, executive vice president at

Nokia explains why these new users are so important to Nokia2:

This is great news for our 3rd party application developers.

Within a matter of days there is an installed base of more than

1 million active users all potentially hungry for new and

innovative location-aware apps. […] For the operators too

there is a growing opportunity to sell more data-plans and a

complete navigation package to existing and new customers.

As illustrated in Businessweek Online, August 2006, Nokia’s previous

success in the mobile handset business was tightly connected to its

1 Ovi Maps (now Nokia Maps) is a free mapping service provided by Nokia for its

mobile phones and smartphone multimedia devices.

2 http://press.nokia.com

Chapter 1

10

manufacturing machinery (Reinhardt 2006). A key element of this

machinery was the strong commitment to modular product architectures.

This architectural strategy allowed Nokia to offer product variation, while

transferring marginal cost to commoditized components. It served Nokia

well over several years, providing significant scale advantages and the

highest operating margins in the business. Against this backdrop Vanjoki’s

statement uncovers a new Nokian perspective on innovation and

technological progression. First, it suggests that Nokia is adopting a new

architectural philosophy with a clear distinction between platform and

services. Although the release of Ovi Maps attracted enormous attention at

the level of users thanks to the new functionality, the quote indicates that

Nokia looks upon navigation primarily as an important part of a platform.

Second, the statement denotes a new organizing logic, where functionality is

expected to emerge from the more or less independent work of 3rd party

application developers. This opens up for unconstrained creativity and

alternative modes of value generation. Third, it recognizes a new market

dynamic, breaking with traditional ways to do business. With end-user value

primarily supplied by 3rd party developers, Nokia customers will seek a

prospering service ecosystem, feeding multiplicity and heterogeneity.

Therefore, the decision to invest in a handset will correlate to the number of

developers engaged in the ecosystem. At the same time, developers seek an

outlet for their applications, making the number of potential customers a key

aspect in the decision to engage in the ecosystem. Obviously, the installed

base of mobile handset is an entry key for Nokia in their struggle to set up

and capitalize on this type of two-sided market.

Over the last decades we have witnessed a profound digitalization of tangible

products (Yoo et al. 2010b). Nokia’s Ovi Maps initiative is nothing but a

specific example of a general trend in product developing industries. Turning

to the automotive industry, as an example, a modern car embeds numerous

onboard computers, more than 10 million lines of code, and is increasingly

connected to mobile devices and telematics services (Barabba et al. 2002;

Broy et al. 2007; Henfridsson and Lindgren 2005). It is argued that as much

as 80% of all car innovations can be traced to digital technology (Leen and

Heffernan 2002). Given this wide adoption of software and digital

technology, product developing organizations are triggered to rethink

established models of innovation. Rather than centering on the corporate

R&D department, they acknowledge that innovation is an increasingly

distributed activity (Yoo et al. 2008), taking place in networks (Boland et al.

2007; Powell 1990; Tuomi 2002) or ecosystems (Basole 2009; Rosemann et

al. 2011; Selander et al. 2010; Selander et al. in review) rather than within

hierarchies. In turn, this calls for new forms of governance (Demil and

Lecocq 2006; Ghazawneh and Henfridsson 2011; Ghazawneh and

Introduction

11

Henfridsson forthcoming; Markus 2007), alternative business models

(Economides and Katsamakas 2006; Eisenmann et al. 2006), and generative

technologies (Remneland et al. 2011; Zittrain 2006), encouraging

spontaneous and uncoordinated innovation.

This thesis is rooted in the observation that product developing industries

need to combine different innovation regimes to tackle digitalization (Godoe

2000; Svahn and Henfridsson 2012; Svahn et al. 2009). On the one hand,

cars, heat pumps, and washing machines will remain physical products,

delivering tangible value – transportation, heating, and cleaning. On the

other hand, this value is increasingly enabled by software and digital

technology, calling for a new perspective on innovation.

In addressing the challenge of combining innovation regimes, this thesis

draws on an assessment of innovation literature (2.1). This is a large and

rather fuzzy body of literature, ranging from economics to entrepreneurship,

via technology management and organizational science. However, for this

particular purpose I have concentrated my efforts on two, relatively

homogeneous streams; product innovation and digital innovation. Product

innovation is an established branch that we can trace at least back to the

work of Schumpeter (cf. Schumpeter and Opie 1934). Although being a wide

body of literature, it is relatively sharp in its contours. Researchers

essentially refer to the same knowledge base when using the notion of

product innovation. Turning to software there is not yet such a clear body of

innovation literature. Software-enabled ERP3 systems have transformed

corporate governance, embedded software has revolutionized electronics,

and open source software has forever changed our view on the incentives

involved in innovation. Not surprisingly, the wide application of software has

translated into several fields of research. At the same time, researchers

generally recognize that software separates the meaning and functional

behavior of a product from the physical product in itself. As a consequence,

there is reasonable consensus that innovation processes, centered on

software, follow a different logic. I present this logic in under the notion of

digital innovation. The review suggests that these two streams of research

approach innovation with inherently different perspectives (Table 1):

Product innovation is essentially firm-centric. Innovation is shaped in

vertical industries where these firms develop new physical artifacts in a

teleological and reductionist manner. Applying waterfall models, value is

created in linear processes, governed by behavioral control mechanisms.

Markets are characterized by competition over price since significant

3 Enterprise Resource Planning

Chapter 1

12

marginal cost pushes for commoditization and economies of scale, eventually

making an influential force for dominant designs and homogeneity on

markets. When architecting tangible products, product developing firms

center on the physical structure. Modular designs allow for efficient reuse of

assets, such as production tools and machineries. A strictly hierarchical

decomposition of products preserves the overall functional setup, while

allowing for change at the level of details.

Digital innovation is largely network-centric. Innovation is shaped by

horizontal industrial structures, where essentially independent actors

together shape value in a non-linear and emergence-oriented manner.

Without centralized authority these processes are governed by output

control, rather than direct influence over processes. In practice, that makes

an evolutionary approach to innovation, providing variation and multiplicity

to markets that constitute an ultimate selection mechanism. In a digital

innovation regime, such markets normally take the form of two-sided

markets, centered on a shared platform. Rather than competition over price,

these markets are characterized by competition over attention. The

architectures of digital products are normally centered on the functional

structure of solutions and problems. An overall objective is to create

generative designs, encouraging reuse of general functional patterns in ever

new specific applications, not know at the time of platform design.

Product innovation and digital innovation make distinct regimes in the sense

that organizing logic, market dynamics, and architectural design principles

make sense together, as a whole. They manifest two consistent logics for

innovation, where a range of different forces are intertwined and largely

inseparable. To some extent it appears as if product innovation and digital

innovation seem incompatible; digital innovation is powered by multiplicity

and choice while product innovation is associated with commoditization and

dominant designs. Product innovation is teleological in the sense that value

is created linearly from an idea to a diffused product. Further, a product

innovation regime rewards the stability coming out of efficient reuse of

components, tools, and machineries, while digital innovation is centered on

the generative reuse of functional patterns to encourage novelty and change.

Contrasting product innovation literature and digital innovation literature

certainly reveals a range of more or less fundamental tensions between the

two regimes, but the literature is largely silent on theoretical as well as

empirical evidence on how to combine them.

Organizing logic, market structure, and architecture of products are certainly

deeply intertwined and cannot be studied in isolation. At the same time, it is

not a bold statement to say that the radical changes of today’s society are

pushed by technological change. Few people would argue that publishing is

Introduction

13

reforming in response to new organizational needs or customers desire for

new business models. There is overwhelming evidence suggesting that

publishing, photo, consumer electronics, and many other industries

primarily change as a consequence of internet, tablets, electronic payment,

etc.

This thesis addresses the gap in the literature by investigating how different

ways to conceptualize products resonate with innovation processes. The

introduction of digital technology in product developing organizations tends

to be dialectical (Henfridsson et al. 2009b). It is dialectical in the sense that

new paths are created in a tension between a familiar past and an uncertain

future. Therefore, this research is centered on how architecture and

architectural thinking defines change across generations of products. Being a

link between historical achievements and future potentialities, the

architecture is an instrument for path creation as well as a shackle of path

dependency. Whether product developing firms will be able to transform

innovation practices and leverage the opportunities of IT relies on their

capability to internalize the architectural thinking of a digital innovation

regime and combine it with the architectural perspective of product

innovation. Therefore, the research question of this thesis is: how do product

developing firms architect digitized products to leverage the generative

capability of IT?

As a lens to be applied in my study of digital innovation in product

developing organizations I have composed a theoretical framework centered

on the concept of architectural frames (see also Henfridsson et al. in

review). On a general level, architectural design is viewed as a way to manage

complexity. Management of complexity is a critical activity in that it has

implications on product change, product variety, standardization, and

product performance (Alexander 1999; Simon 1962), but it also allows for

division of labor, concurrent design, and accommodation of uncertainty

(Baldwin and Clark 2000; Kirsch 1996; Ouchi 1979). As emphasized by

Herbert Simon (1996, p. 215), complexity is not an invariant aspect of

technology. Rather, “how complex or simple a structure is depends critically

upon the way in which we describe it”. Anchored in this perspective, I see

architectural frames as schemas for thinking about and representing a

complex product’s architecture. Hence, I conceive of architectural frames as

cognitive processes crystallized as a particular way of managing complexity

in designing complex products. An architectural frame guides how complex

forms can arise from simpler ones. Using the language of Brian Arthur

(2009), it makes a distinct template for how technology is bootstrapped

upwards, from the few to the many and from the simple to the complex.

Chapter 1

14

Product innovation exercises modularity to handle complexity. This

architectural frame relies on what Simon referred to as near decomposability

(Simon 1962; Simon 1996; Simon 2002). A nearly decomposable system is a

hierarchy of parts, where any level of analysis reveal a system of parts where

each of those components is, in turn, a system of finer parts. Limited

coupling between parts result in stable subassemblies, essentially defined by

their respective interfaces. Such a stable subassembly makes a distinct

building block, which can be used without paying much attention to its inner

structure or legacy. As long as the interfaces are preserved an automaker can

reuse e.g. a specific navigation component in a range of different car models.

However, changing the interface of the navigation system is a major

decision, with system level implications on every product using the

component. Therefore, the original decomposition of a modular system is

critical. In fact, this decomposition is “the scheme by which the function of a

product is allocated to physical components” (Ulrich 1995, p. 419).

In practice, the hierarchical structure of a modular system emerges as

designers recurrently practice decomposition and aggregation in the design

of products. With the decomposition of products into parts designers seek to

establish and preserve stable, loosely coupled subassemblies. Such stable

subassemblies hide complexity and delivers functionality through well

defined interfaces. In the aggregation of parts into products designers take

the opposite perspective and seek different configurations of parts to create

product variability. From now I will label this architectural frame hierarchy-

of-parts.

We have seen that the increasing digitization of products call for innovation

practices where functionality is the output from a generative platform, rather

than the input to the decomposition of a modular system. This development

put into question the dominant position of modularity and its application of

Herbert Simon’s notion of near decomposability. In a modular system

coupling is low since every element has a well defined functional purpose,

complying with the overall system design. In contrast, a generative system

encourages coupling in that general functional building blocks are designed

to be easily reused in large amounts of specific, yet unknown applications.

Drawing on Christopher Alexander’s seminal work on patterns (Alexander

1964; Alexander 1979; Alexander 1999; Alexander 2002; Alexander et al.

1977) I propose a complementary architectural frame that is resilient to the

challenges of increasingly digitized products.

A cornerstone in Alexander’s writing as an architect is that sound and

harmonic environments show significant multiplicity and variation, not the

uniformity associated with standardized components and dominant designs.

According to Alexander, “the ‘elements’, which seem like elementary

Introduction

15

building blocks, keep varying, and are different every time that they occur”

(Alexander 1979, p. 84). On a general level, he offers a rather simple

explanation; good designs – that is designs which we perceive as “whole” and

“living” – are adapted to their contexts. People simply have to “shape their

surroundings for themselves” (Alexander 1979, p. 74). Therefore, we will not

find a deeper structure if we focus on the decomposition of physical artifacts.

Instead, we have to direct our attention to the processes generating these

artifacts. That is the common sense, shared legacy, and formal knowledge

that directs us in designing and producing things. We need to look for

standardized processes, not standardized components.

Patterns are the basic elements in Alexander’s perspective on architecture. A

pattern expresses “a relation between a certain context, a problem, and a

solution” (Alexander 1979, p. 247). Thereby, it can be viewed as an

instruction, which shows how a particular solution to a problem can be

reused, over and over again, wherever the particular context is relevant. We

find structure in the fact that individual patterns are not isolated. Every

pattern “depends both on the smaller patterns it contains, and on the larger

patterns within which it is contained” (Alexander 1979, p. 312). Together,

this network of interconnected patterns forms what Alexander refers to as a

“pattern language”.

In practice, these networks of patterns emerge as designers recurrently

practices generalization and specialization in the design of products.

Generalization is a way to manage complexity, where designers seek

increasingly generic representations of the functionality associated with an

artifact. These representations, or patterns, are distinct solutions for

particular problems, defined by a given context. In the process of

generalization patterns are repeatedly disassembled into increasingly generic

elements, relating to each other through inheritance. Exercising

specialization designers take a bottoms-up perspective, seeking to extend the

application of generic patterns by reusing them for new purposes. From now

I will label this architectural frame network-of-patterns.

Seeking a better understanding of how product developing firms architect

digitized products to leverage the generative capability of IT I have applied

the theoretical framework to digital product innovation practices at the

automaker CarCorp. The study is longitudinal in its character and spans a

period of approximately one decade. It contains four different, yet

temporally interlinked, embedded cases. Briefly, the objective of the study is

(1) to understand how architectural thinking in product innovation and

digital innovation can be conceptualized as architectural frames, how these

frames (2) relate to each other, how they (3) can be combined, and, finally,

how they (4) together influence innovation practices.

Chapter 1

16

Together, the four embedded cases demonstrate how architectural thinking

shifted in the automotive industry as a response to digital technology. The

first case describes the adoption and appropriation of media-oriented

systems transport (MOST), a radically new service-oriented and event-

driven architectural solution to infotainment4 system design. With MOST the

network-of-patterns frame was officially recognized, for the first time. With

the new frame automakers were offered the opportunity to exercise

generalization, resulting in a harmonized infotainment solution, sharing

many basic resources and functions. The second case is centered on the

emergence of a new architectural concept for commoditization of instrument

panel clusters - SoftCluster. The story explicates how CarCorp combined

architectural frames to leverage differentiation in software. The SoftCluster

platform was generative in the sense that it was not designed up-front for a

particular functional setup. Instead, it allowed for recurring specialization of

instrument cluster functionality across the full range of brands and models

in the portfolio of GlobalCarCorp, CarCorp’s owner. Third, I follow a range of

experimental setups for leveraging nomadic device integration in cars. This

story is primarily colored by the architectural challenges of introducing

leeway between automotive lifecycles and the faster rhythm of consumer

electronics. Finally, I study the emergence and consolidation of new

architectural solutions for open, in-car platforms in the automotive industry.

In this phase, network-of-patterns thinking had taken hold beyond R&D. To

reinforce the generativity of the new Android-based infotainment platform

CarCorp reconsidered their relationship to suppliers, their business models,

and the deep-rooted automotive perspective on market logic.

On the basis of this longitudinal case study of digital innovation practices in

the automotive industry I demonstrate the theoretical framework and

leverage differences between architectural frames. Largely, generative

capability is about encouraging creativity outside established processes,

organizations, and conventions. However, it is also about accessing and,

eventually, profiting from such creativity. The longitudinal case study of

CarCorp shows that as the network-of-patterns frame is assimilated, people

reassess their perspective on products. Rather than viewing their products as

carriers of pre-fabricated functionality, they increasingly see them as

enablers and catalyzers of new, yet unknown functionality. Further,

synthesizing the four embedded cases I also argue that unless such a view

informs all the different actions and decisions across the organization a

4 Infotainment refers to media providing a combination of information and

entertainment. In the automotive industry it includes navigation, telematics, rear-

seat entertainment, and similar systems.

Introduction

17

product developing firm has little chance to build permanent generative

capability. Finally, this thesis suggests that a product developing firm cannot

build generative capability unless adopting a distinctly different governance

model. Generative capability relies on unconstrained freedom to create new

specific functions. Such freedom clashes hard into established modular

governance models, where decomposition of products is guided by specific

functionality. Unless product developing firms find ways to govern

innovation through general patterns rather than specific they have little

chance to build permanent generative capability.

The thesis also derives theoretical and practical implications for technology

and innovation management. First, it is argued that the assimilation of

network-of-patterns thinking redefines the role of architecture; rather than

being a tool for cost savings, it turns into an instrument for cultivation of

new ideas, eventually building new business opportunities. Therefore, the

network-of-patterns frame opens up for proactive rather than reactive

architectural strategies. Second, the network-of-patterns frame turns the

spotlight from specific functionality to general functional patterns. Sensors,

actuators, data, and other low-level elements of a system are no longer

details that should be embedded in components and hidden to reduce

complexity. Instead, they have turned into valuable resources that should be

exposed to developers. Therefore, it can be argued that the network-of-

patterns frame enables a new type of strategic asset. Finally, network-of-

patterns thinking brings a new perspective on how products change. It

furthers a view where the meaning of a particular product is not up-front

defined, but can evolve over time. Specialization can occur independently of

hardware design, generating a constant flow of new functions. This

disconnects software-based functionality from hardware, not just in a

technical sense, but from an innovation perspective. As an important

consequence, the network-of-patterns frame allows for appropriation of

value across the product life cycle.

This work is concluded with a few notes on challenges for future research. In

particular, it identifies four distinct challenges for product developing

organizations when architecting hardware. Installed base is critical to

generative environments. To avoid breaking installed base apart, product

developing firms have to be careful when designing variants. They have to

ask; how can differentiation be achieved without exercising aggregation,

potentially generating incompatible hardware configurations? Further, an

urgent need to assist the reuse of functionality calls for a range of actions.

Producibility entails decomposition into largely independent components.

However, in modular practices low coupling is achieved by decomposing the

system from the perspective of functionality. This effectively inscribes

Chapter 1

18

functionality in the physical structure of the system, which prevents reuse for

new purposes. This raises several questions for future research. How can

physical products be decomposed for low coupling without inscribing

functionality in the structure? In this vein, it is relevant to ask; is it possible

to assist reuse by increasing hierarchic span? Such increased span would

result in less deep hierarchies, reducing recursive, nested encapsulation and

potentially expose more functionality to developers. Finally, product

developing firms need to question how they design interfaces. Applying

modularity interfaces are hard to reassess in retrospect. Therefore, they

make an important mechanism for product developing firms to exercise

control over innovation processes; the more specific interface, the more

detailed control. This makes a stark contrast to the principles of

generalization, exercising control from the perspective of general patterns,

rather than specific. Therefore, an important question for future research is;

what does best practice for general interface design look like?

The rest of this thesis is organized as follows. Section two explicates an

assessment of the innovation literature, drawing on the concept of

innovation regimes. From this assessment I identify a research gap which

centers on the lack of contributions elaborating how digital technology

influences innovation in product development. Next, I derive a theoretical

framework to understanding digital product innovation. In particular, this

framework is designed to explicate architectural thinking in traditional

product developing settings increasingly exposed to digital technology.

Following a description of my methods, I then provide an empirical analysis

of an automaker’s attempts to architect infotainment products in response to

technological change. Finally, I discuss how this research extends current

views on product architecture and contributes to the emerging literature on

innovation.

19

2 Related Work and Conceptual Foundation

Innovation is an old concept with many facets. As revealed by its Latin roots

– nova – innovation is centered on the notion of newness or novelty (see e.g.

Luecke et al. 2003). Although a significant body of literature approaches

innovation primarily as “new products and processes” (Tushman and Moore

1982), the distinction between invention and innovation (Schumpeter and

Opie 1934) suggests that it is something more than an act of intellectual

creativity generating new ideas and concepts. Innovation is also about the

“the production or emergence of a new idea” (Gupta et al. 2007, p. 886).

Essentially, this perspective recognizes the demanding journey towards

practical application of an idea as a central part of innovation. At the heart of

such reasoning is that a novel idea does not make an innovation until it is

changing practice. Therefore, in addition to ideas and their tangible

manifestations in products, processes, etc, innovation is about relevance and

value. Innovation is “the embodiment, combination, or synthesis of

knowledge in original, relevant, valued new products, processes, or services”

(Luecke et al. 2003, p. 2).

Synthesizing this brief walkthrough of definitions a few aspects stand out as

fundamental to innovation. First, innovation is obviously about ideas. Any

innovation process holds an element of creativity. However, most people

would argue that it is not primarily an artistic creativity, where the output

emerges in an open-ended manner. Instead, innovation is about the

capability to make abstractions of our everyday life and elaborate them for

Chapter 2

20

specific purposes. Second, innovation is about practice. It is about the

application of abstract concepts in real life. Therefore, innovation is a

phenomenon highly intertwined with the concept of practice. Given a

definition where practice is “a process by which we can experience the world

and engage with it as meaningful” (Wenger 1999, p. 51), it is also about

meanings. New meanings.

However, understanding the process of innovation, as we see it in

contemporary industrial practice and research, is largely about

understanding technology. Ideas are manifested as functions or services,

mediated and enabled by technology. New practices emerge through the

adoption and use of new technology. Since new technologies in one way or

the other is birthed from previous ones, innovation is intertwined with the

evolution of technology over time, in research often referred to as

technological change.

Clearly, technological change emanates from the interplay between people

and technology. New technology is often the source of inspiration in

innovation, subjecting new opportunities (Svahn 2009; Svahn et al. 2009).

At the same time technology may make a strong opposing force as innovators

seek new solutions. With technology making the backbone of many solid

structures in society, users and designers tend to inscribe meaning in it.

Established practices simply make efficient barriers for humans to rethink

technology and give it new meanings. As noted by Nelson and Winter (1982,

p. 258), some directions of progression “seem much more compelling of

attention than others. Particularly in industries where technological advance

is very rapid, advance seems to follow advance in a way that appears almost

inevitable”. Such path dependency (Arthur 1989; David 1985) makes

technology evolve according to an inherent logic that we cannot ignore.

At the same time existing research underlines that new technology may

disrupt this logic. Ultimately, it may inaugurate the emergence of a new

technological paradigm (Godoe 2000), seeding new paths of innovation.

Following the literature, such new paths are variously termed as

“technological regimes” (Nelson and Winter 1982), “technological

trajectories” (Dosi 1982), “pattern of evolution” (Hughes et al. 1987),

“technological guideposts and avenues” (Sahal 1985), and “basic designs”

(Rosenberg 1982). A new technological paradigm inevitably brings a shift in

“principles, norms and ideology, rules and decision-making procedures”,

recognized by Godoe (2000, p. 1034) as the transition to a new innovation

regime. Such regimes make a new foundation for actors to form

“expectations and actions in terms of the future development of a

technology”.

Related Work and Conceptual Foundation

21

This thesis is rooted in the observation that traditional product developing

industries need to rethink innovation to tackle digitalization. Cars, heat

pumps, and washing machines are physical products, delivering tangible

value – transportation, heating, and cleaning. Over the years practitioners

and technology have developed a relatively stable interplay – an innovation

regime – embracing established business models, organizational role

models, architectural standard solutions, and best practices (Svahn et al.

2009). However, digital technology is inherently different from tangible

products (cf. Yoo 2010). As transportation, heating, and cleaning is

increasingly enabled by software and digital technology the established

product innovation regime will be disrupted. New perspectives on

materiality will subject new opportunities to designers. At the same time,

designers implementing new technology will be hampered by the resistance

of traditional technology.

A new innovation regime will emerge as tangible products become

increasingly digitalized. Such a regime unfolds from a different set of rules or

fundamental mechanisms defining the elements and friction constituting the

interplay between technology and people.

In what follows, I distinguish and review two distinct streams of innovation

literature: product innovation and digital innovation. They represent

innovation regimes in the way they manifest a particular view on innovation.

At the heart of product innovation we find the tangible product, while digital

innovation is centered on information technology, software and the IT

artifact. As we shall see, these two streams deliver inherently different

theoretical explanations to the concept of innovation, underline different

challenges, and offer different architectural solutions to these challenges.

2.1 Assessment of Innovation Regimes

Product innovation literature is a well established research branch, with a

track record of at least one century. We find seminal contributions in a

variety of outlets, ranging from ASQ and Research Policy to AMR and

Management Science. Product innovation is studied by strategy theorists

(Porter 1985; Teece et al. 1997), economists (Nelson and Winter 1982;

Schumpeter and Opie 1934), organization theorists (Cohen and Levinthal

1990; Tushman and Anderson 1986), and technology management

researchers (Baldwin and Clark 2000; Van de Ven 1986).

Digital innovation is perhaps a less recognized label. Yet, this dynamic and

slightly fragmented stream of research is gaining momentum across

disciplines. While engineering-oriented outlets, such as IEEE journals, often

have tried to translate product innovation to software settings (Boehm 1976;

Parnas 1972; Royce 1970), we increasingly see recognition of the inherently

Chapter 2

22

different properties of IT (Alexander 1999; Allen 2006; Jackson 2000).

Similarly, outlets such as Organization Science show increasing interest in

digital innovation, illustrated by an upcoming special issue labeled

“Organizing for Innovation in the Digitized World” (Yoo et al. 2009). As

digitalization is playing out at different levels of society we also see a

translation of the information systems (IS) discipline. The traditional

management perspective is gradually complemented with a growing interest

in digital innovation. This is reflected in a range of special issues in premier

journals. Fall 2010 Information Systems Research (ISR) published a special

issue on digital systems and competition (Ferrier et al. 2007). The interest in

questions relating to digital innovation was confirmed by ISR’s 20th

anniversary special issue, dedicated to “forward-looking commentaries on

important topics and phenomena that are likely to frame a high-impact

research agenda in the next few years” (Sambamurthy 2010). In this issue, a

whole range out of totally 15 research commentaries are explicitly framed in

this direction (Brynjolfsson et al. 2010; El Sawy et al. 2010; Tilson et al.

2010; Tiwana et al. 2010; Yoo et al. 2010b). Let us also note two similar calls

for papers in MISQ on service innovation in the digital age (Barrett et al.

2010) and digital business strategy (Bharadwaj et al. 2010). We also see an

increasing number of conference tracks and dedicated workshops (cf. Yoo et

al. 2010c) centered on the rapid digitalization of society.

I will now turn to product innovation and digital innovation literature in an

attempt to incarnate the two innovation regimes and illustrate essential

differences between them. In particular, I will center my assessment on three

key dimensions. First, I will discuss the basic organizational arrangements

characterizing each regime. Next, I will elaborate the market dynamics

empowering innovation in product innovation and digital innovation.

Finally, I discuss similarities and differences in architectural perspectives,

reflecting how the two regimes approach technological progression over

time. While these three dimensions all together hopefully give life to the two

innovation regimes portrayed in this thesis, they also make a tool for me

rationalizing a focus on architecture. Together, they render a story that put

organizing logic and new market dynamics in causal connection with

architecture and architectural thinking.

2.1.1 Organizing Logic

IT and digital products largely seem to be incompatible with the firm-centric

organizational structures developed over a hundred years of manufacturing.

As one out of many examples, media industries are in the midst of a painful

reorientation towards more network-centric structures. In this context,

publishers and retailers desperately seek new organizational configurations

as the distinction between producers and consumers is increasingly blurred

Related Work and Conceptual Foundation

23

and fuzzy in the digital marketplace (Baudrillard 1998; Tapscott and

Williams 2006). Similarly, the standardization and diffusion of the third

generation (3G) mobile infrastructures have redefined innovation in the

telecommunication area (Yoo et al. 2005). Mediating interests and

motivations among a wide range of heterogeneous actors these standards

have turned innovation of broadband mobile services into a collective

achievement. Essentially, this put the once dominant operators in a new

situation as the content and meaning enabled by their infrastructure is

increasingly defined by networks out of their immediate control.

A product innovation regime seems to cultivate organizational

configurations that are distinctly different from the structures and logic

emerging in a digital innovation regime. Therefore, it is far from sure that

established organizing logic will allow firms to “manage the imperatives of

the business and technological environments in the digital economy”

(Sambamurthy and Zmud 2000, p. 106). Development practices seem to be

different as innovation essentially is an in-house activity, while IT

progression is distributed. Governance is different as the capability to

control innovation processes is inscribed in organization structure, while IT

relies on mutual benefit and symbiotic relationships to prosper. Finally,

industry structure is different since product innovation seems to develop

vertical organizations, while firms in an IT context tend to focus their

competences on particular layers in a value chain, eventually forming

horizontal industries. In an attempt to identify and uncover the basic

arguments behind these differences I now engage in a review of the

organizing logic linked to a product innovation regime and a digital

innovation regime respectively. Following Sambamurthy and Zmud (2000,

p. 107) I refer to organizing logic as the “managerial rationale for designing

and evolving specific organizational arrangements in response to an

enterprise’s environmental and strategic imperatives”.

2.1.1.1 Firm-Centricity and the Exercise of Formal Control

Although the product innovation literature may be sliced in different

directions and framed for different purposes two dimensions seem to be part

of any perspective. These two dimensions are critical drivers that cannot be

ignored when seeking explanations to technological progression in product

developing settings. On the one hand, an organization has to master the

transformation of captured knowledge into new products and diffuse these

products to remote practices, eventually increase market shares and secure

profit. Such capability calls for an incremental perspective on technological

progression, where new solutions are combinations of existing. On the other

hand, product innovation research recognizes that technological progression

may be born out of radical change processes, breaking with an established

Chapter 2

24

paradigm. To cope with such progression an organization has to be able to

internalize foreign knowledge and technology for in-house innovation.

In a product innovation regime the organization is the epicenter of

innovation activity and the natural container of innovation capability. A

significant part of the research is focusing on challenges facing incumbent

firms (Abernathy and Utterback 1978; Henderson and Clark 1990; Hill and

Rothaermel 2003; Tushman and Anderson 1986; Utterback and O'Neill

1994), manufacturing physical products of significant complexity. An

incumbent firm is already established in a market, occupying a central

position. The goods produced by different actors are homogenous, leaving

relatively low price differentiation. As markets are occupied with such

dominant designs (Abernathy and Utterback 1978; Rosenberg 1982; Sahal

1985; Teece 1986; Utterback and Abernathy 1975) it makes perfect sense to

view innovation as the fruit of incremental progression within organizations.

In settings where material supplies are unreliable, production costly, and

knowledge a scarcity, such incremental change is most efficiently managed

through hierarchical organization structures (Clark 1985; Williamson 1973),

hosting the development of modular products (Baldwin and Clark 2000;

Sanchez and Mahoney 1996; Simon 1962) under strictly linear development

processes (Godin 2006; Porter 1985; Takeuchi and Nonaka 1986). This

translates to vertically oriented industries (Chandler 1977) where

competitive advantage derives from an organization’s capability to enforce

absolute control over its entire value chain. Following transaction cost theory

(Coase 1937; Williamson 1971) the vertical integration we see in product

developing organizations illustrates that it is cheaper to administer

incremental innovation processes internally than outsource it to a market

(Carlton 1979; Klein et al. 1978). As a final remark, it is worth noting that

incremental innovation does not condition new ideas to derive from internal

processes. However, it prescribes a distinct way for organizations to absorb

new ideas; they are mangled through existing practices to align with

established knowledge, organizational structures, and products.

While incremental progression seems to be the dominant mode of

innovation in product developing settings, the literature pays substantial

attention to change processes where firms are forced to rethink established

knowledge, routines, and organizational structures. It acknowledges that

relatively stable periods of incremental innovation are recurrently

interrupted by technological breakthroughs or radical innovations,

overturning existing paradigms and, eventually, seeding new paths of

incremental change. Such disruptions are potentially lethal to organizations

tuned for incremental innovation. To maneuver in the uncertainty

introduced by radically new technology organizations have to build

Related Work and Conceptual Foundation

25

capability for creative destruction (Abernathy and Clark 1985; Schumpeter

1942). Essentially, such capability allows for the development of new

knowledge, coming at the expense of existing explanations to everyday

problems. Such destruction is particularly problematic when the innovation

changes the architecture of a product, since architectural knowledge tend to

be deeply embedded in organizational structures and information-

processing procedures (Andersson et al. 2008; Henderson and Clark 1990).

Cohen and Levinthal (1990) introduced the notion of absorptive capacity as a

measure of an organization’s ability to implement this transformation, where

new external knowledge is used to restructure established, internal

innovation processes.

Although research pays significant attention to various phenomena related

to radical progression of technology, established firms tend to be organized

for incremental innovation (e.g. Hill and Rothaermel 2003). Clearly,

technological discontinuities (Tushman and Anderson 1986) are hard to

predict and almost impossible to plan for. Although the literature is rich in

explaining phenomena such as creative destruction and absorptive capacity,

it is relatively weak in elaborating organizational implications. The theory on

absorptive capacity (Cohen and Levinthal 1990) comes with a model on how

to direct R&D expenditures, but without opposing traditional structures.

Similarly, Henderson and Clark (1990) suggest that organizations have to set

up communication channels, information filters, and problem-solving

strategies to build architectural knowledge, but without questioning the

basic organizational arrangements.

Hierarchical organizations, linear models of product development, and

vertical industry structures simply seem to be the dominant organizing logic

of a product innovation regime. One lens to understand this dominance is

offered by control theory, in turn deriving from ideas in transaction cost

economics. Incremental innovation practices are highly visible within firms

and, thereby, provide significant “knowledge of the transformation process”

(Ouchi 1979, p. 843). When organizations know in detail how behaviors and

processes will transform inputs into outputs it is cheaper to apply formal

behavioral control than informal outcome control. Therefore, incremental

innovation tends to feed such formal control modes, centered on authority

(Eisenhardt 1985; Kirsch 1996) and maintained by the various distinctive

properties of a product innovation regime.

2.1.1.2 Network-Centricity and the Creation of Digital Options

A salient distinction between traditional product innovation literature and

digital innovation is that the firm-centric view is largely shifted out.

Technological progression is not seen as a phenomenon deriving from linear

Chapter 2

26

development processes, hierarchical organizations, and vertical industry

structures. Instead, digital innovation research underlines that digital

technology destroys many barriers favoring incumbent innovation. Over

time this cultivates boundary-spanning practices (Levina and Vaast 2005;

Lindgren et al. 2008), involving an increasing variety of largely

uncoordinated innovation sources (von Hippel 1988). As a result, innovation

translates into a distributed activity (Yoo 2010; Yoo et al. 2008). Taking

place in networks (Boland et al. 2007; Powell 1990; Tuomi 2002; Van de Ven

2005; von Hippel 2007) or ecosystems (Basole 2009; Selander et al. 2010;

Selander et al. in review), rather than within hierarchies, such innovation

feeds significant multiplicity in functions and services.

Distributed value creation, scattered across networks and ecosystems, “leads

to the emergence of dynamic, non-linear patterns of digital innovation” (Yoo

et al. 2010c, p. 3). Such non-linear innovation provides value, not by

outperforming existing products, but through the establishment of genuinely

new value networks (Christensen 1997; Åkesson 2009). Although Clayton

Christensen’s (1997) concept of disruptive innovation is not originally coined

in response to digitalization, we can use it to understand how technology

emerges in a digital innovation regime. When discussing disruptive

technology he refers to the disruption of markets. Such disruptive technology

takes root in simple applications at the bottom of a market and then

relentlessly move ‘up market’, eventually displacing established competitors.

At the heart of his concept we find the idea that remote sources of

innovation, rooted at the bottom of a market, are able to break with

established norms of how we appreciate value and create new meanings. As

already discussed digital technology helps destroy many of the barriers that

hold back disruptive technologies in a product innovation regime. It is

simply significantly easier to reach an audience for a piece of new software

than it is to create a market for a new generation of hard drives, which is a

famous example from The Innovator’s Dilemma (Christensen 1997).

Obviously, this bottoms-up model of innovation makes a strong contrast to

traditional, firm-centric innovation, where value is created linearly (Godin

2006; Porter 1985; Takeuchi and Nonaka 1986) as the product is refined

from top to bottom using waterfall models (Boehm 1976; Royce 1970) in a

strict design hierarchy.

Navigating in a distributed innovation environment, where ideas and

knowledge derive from external sources at the bottom of a market, requires

firms to organize for agility (Sambamurthy et al. 2003). Agility, referring to

the ability to detect and seize market opportunities with speed and surprise,

is by many considered to be an imperative for success in a digital innovation

regime (Brown and Eisenhardt 1997; Christensen 1997). Referring to

Related Work and Conceptual Foundation

27

absorptive capacity (Cohen and Levinthal 1990) or creative destruction

(Schumpeter 1942) one can argue that the capability to identify and

internalize new knowledge and technology is a key part of any innovation

regime. However, in product innovation literature the argument for

openness towards external environments is rooted in reinforcement of

internal activity. Therefore, such openness is essentially inbound. Digital

innovation literature increasingly distances itself from such unilateral action

and emphasizes that it might be a better idea to share intellectual property

than keeping it hidden from competitors. Recently, this thinking has been

successfully framed through the concept of open innovation. The term was

popularized and promoted by Henry Chesbrough, defining it as the “use of

purposive inflows and outflows of knowledge to accelerate internal

innovation, and expand the markets for external use of innovation

respectively” (Chesbrough 2006, p. 1). Although relatively imprecise in its

contours, open innovation is increasingly adopted by practitioners. At the

same time, researchers try to carve out the distinctions of the concept to

identify future research agendas (cf. Huizingh 2011; Lichtenthaler 2011;

West and Gallagher 2006).

Taking an industry perspective rather than a firm perspective, a digital

innovation regime seems to feed horizontally segmented industries. To

survive in distributed innovation ecosystems, firms have to focus on building

their distinctive competences, outsource the rest, and become nodes in value

chain networks (Van de Ven 2005). As illustrated by the transformation of

computer industry (Chandler 1997), accelerating pace of technological

change and fierce competition forces product developing firms to focus on

horizontal segments, rather than remaining vertical organizations.

A key consequence of a transition towards horizontally structured industries,

networked collaboration forms, and largely non-linear, open innovation

processes is that once effective governance mechanisms are increasingly

useless. While product innovation cultivates detailed control over internal

behaviors and processes (Ouchi 1979), a prospering digital innovation

ecosystem seems to be characterized by extensive and unconstrained cross-

fertilization, spanning firm boundaries. Essentially, such loosely coupled

collaboration introduces uncertainty that prevents organizations from

exercising formal control over the innovation process. As pointed out by

Ouchi, it is pointless to enforce formal mechanisms to control the

transformation of input to output in such environments:

Under conditions of ambiguity, of loose coupling, and of
uncertainty, [behavior] measurement with reliability and with
precision is not possible. A control system based on such
measurements is likely to systematically reward a narrow

Chapter 2

28

range of maladaptive behavior, leading ultimately to
organizational decline (Ouchi 1979, p. 845).

With limited power to influence the details of innovation processes, firms

operating in digital innovation regimes are directed to informal governance,

controlling the output, rather than behavior. It is easy to argue that the

inability to get involved increases the risk for a given firm. As expressed by

Fichman (2004, p. 132) a digital innovation regime brings “uncertainty

about expected payoffs [of engagement] and irreversibilities in the costs of

implementation”. Uncertainty derives e.g. from unpredictable evolution of a

particular technology, potentially creating unwanted path dependencies.

Irreversibility may arise from high learning and adaptation cost, as well as

high switching cost, when phasing out a technology.

While recognizing that a given innovation process may hold significant risk

for an organization, a digital innovation regime at the same time offers a

powerful countermeasure. Open, distributed innovation “allows companies

to scan a much wider range of the available technologies or new market

developments” (Vanhaverbeke et al. 2008, p. 253), without mandatory

commitments. Therefore, it makes a complementary mechanism that

balances the risk of specific initiatives. A digital innovation regime gives a

firm access to options that do not have to be exercised. Such rights, without

obligations to take actions in the future are frequently discussed, across

scientific disciplines, under the notion of real options. This concept extends

from finance literature, where it is applied for decision-making processes

under uncertainty (Dixit et al. 1994). However, in the 90th it emerged as a

theoretical lens in strategic management (Amram et al. 1999), making a tool

for firms to build managerial flexibility (Trigeorgis 1996).

As demonstrated by Vanhaverbeke et al. (2008), real option theory makes a

excellent tool in understanding governance and organizing logic in digital

innovation. Many researchers have stressed the need to rethink the trade-off

between incentives and authority in governance (Demil and Lecocq 2006;

Markus 2007; O’Mahony 2007; Shah 2006). This argument is rooted in an

increasing awareness of coopetition, i.e. simultaneous competition and

cooperation (Walley 2007). Progressive digital innovation is built around

symbiotic relationships, formed to create mutual value for its members

(Basole 2009). Instead of elaborating rather fuzzy tensions between

informal, incentives-driven governance and formal, authority-based control,

one can argue that governance in digital innovation is about the creation,

maintenance, and, eventually, realization of options. Such options “create

value by generating future decision rights and, in this way, providing

strategic flexibility. This flexibility is more valuable the higher the level of

uncertainty” (Vanhaverbeke et al. 2008, p.252). With this perspective on

Related Work and Conceptual Foundation

29

governance in digital innovation, one can say that IT is a “digital options

generator” (Sambamurthy et al. 2003).

Taking a step back, it makes sense to say that the multiplicity we see at

digital markets is not primarily a measure of success, at least not in terms of

profit, but rather an inherent property of digital innovation, needed for such

distributed processes to work at all. While product innovation essentially

seek formal control modes, centered on authority, hierarchical organizations

and contractual agreements, the key to profitable digital innovation is found

in the capability to domesticate the multiplicity of ecosystems and networks.

To master such governance, firms have to organize for distributed rather

than centralized knowledge bases, non-linear rather than linear value

creation, and horizontal rather than vertical industries. Synthesizing the

literature such organizing logic seem better tailored to informal control

modes that ultimately aims for the creation of digital options.

2.1.2 Market Dynamics

The markets in contemporary western economies are flooded with products,

not only in terms of volume but also by offering an almost indefinite range of

options. However, zooming in on this reflection we can ask ourselves what

constitutes these options. In what sense do markets offer consumers a range

of alternatives? Tangible products are indeed offered in a wide range of

forms, brands, and models. Still it can be argued that the technology is

strikingly similar. The basic structure and functionality of a car, airplane, or

heat pump is essentially the same, irrespective of brand and model. They all

deliver transportation and heat, essentially using the same solutions.

In contrast, software-oriented markets seem to feed remarkable variety and

multiplicity (Anderson 2006; Brynjolfsson et al. 2010; Brynjolfsson and

Smith 2003), at least if we focus on functionality – the value delivered to

customers. This is particularly salient for innovation ecosystems built

around a shared platform, rather than an application area (Tiwana et al.

2010). The software offered at Apple’s AppStore or Android Market share

many fundamental properties, yet they serve an almost infinite range of

different purposes. Product innovation seems to feed relatively few solutions,

tailored and optimized for a particular purpose, while digital innovation

seems to be an open-ended process, allowing for a wide range of alternative

solutions to reach the market.

In order to shed some light on the differences in market offers and behavior I

now engage in a review of the market dynamics linked to a product

innovation regime and a digital innovation regime respectively. With the

notion of market dynamics I generally refer to the mechanisms defining the

forces of demand and supply at markets. While an economist is primarily

Chapter 2

30

interested in resulting pricing signals, I focus my attention on how tensions

are manifested and materialized. On a general level, the market dynamics

explains why a producer is prevented from giving the consumer what it

ultimately wants and vice versa. It defines an equilibrium at a market and

the rules for mowing this balance point.

2.1.2.1 Competition over Price under Dominant Designs

Largely, product innovation research explains the relative uniformity at the

level of markets through the concept of dominant design. At some point in

the evolution of a technology the industry is moving from a system of “made-

to-order” products to a standardized mass-market manufacturing system of

a complex assembled product (Abernathy and Utterback 1978; Abernathy

1978). This turning point between flexible and specialized production marks

the transition into a dominant design. The emergence of a dominant design

is a subtle process which can be recognized in retrospect, but is almost

impossible to appreciate in real time (Anderson and Tushman 1990). As

reflected by Murmann and Frenken (2006), Abernathy (1978) identifies

three distinct phases in the materialization of a dominant design. The first

step is characterized by the introduction of a solution that has broader

appeal in contrast to earlier product variants that focused on performance

dimensions valued by only a small number of users. In the second phase

attention is shifted away from performance and basic functionality towards

the details of design as increasing market shares impose imitative design

reactions among players competing at the same market. Finally, the

dominant design is established as imitative behavior eventually enforces

standardization throughout the industry and almost complete diffusion

across the market.

There are several perspectives in the literature discussing the causal

mechanisms behind dominant designs. One stream of research emphasizes

that a dominant design becomes dominant simply because it delivers the

best technological compromise among the different functional

characteristics of the technology (Abernathy and Utterback 1978;

Christensen et al. 1998; Suarez and Utterback 1995; Utterback and Suarez

1993). Other researchers focus on the self-reinforcing nature of dominant

designs and argue that those designs initially gaining the lead in market

share often will become dominant (Cusumano et al. 1992; Khazam and

Mowery 1994; Liebowitz and Margolis 1995). Another recurring perspective

on dominant design is based on the idea of network externalities (Baum et al.

1995; Frenken et al. 1999; Hagedoorn et al. 2001; Rosenkopf and Nerkar

1999; Wade 1995). The key point of this argument is that dominant designs

are encouraged if the value of a particular technology depends on the

number of other users who have adopted it (Arthur 1989; David 1985).

Related Work and Conceptual Foundation

31

Finally, the most straight forward explanation to dominant design in product

innovation literature derives from theories on economies of scale. On a

general level, this concept refers to cost advantages an organization can

achieve through expansion. Dominant designs simply are economies of scale

that can be realized with standardized products (Hounshell 1984; Klepper

1997). Therefore, as dominant designs emerge market competition is shifted

from functional performance to price (Teece 1986).

2.1.2.2 Competition over Attention through Shared Platforms

Since competition over price is inherently related to the concept of dominant

design it makes a stable point of departure when trying to distinguish

between our two innovation regimes. Producing tangible products entails

significant fixed and marginal cost, while producing software does not.

Tracing the cost of a car or airplane we will find that a majority is related to

production tools, supply chains, factories, and distribution, but also to the

marginal cost, such as materials making up the physical artifact. In contrast,

as stressed by Microsoft’s chairman Bill Gates, the cost of software derives

almost exclusively from design. Elaborating the nature of software business

in a Wall Street Journal article 2001 he underlines that the digital economy

is different. “Say a piece of software costs $10 million to create and the

marginal costs, because it’s going to be distributed electronically, are

basically zero.” Once the costs of development have been covered, “every

single additional unit is pure profit.”

An innovation regime characterized by the absence of marginal cost and

limited fixed cost induces new incentives and, therefore, gives rise to a new

market logic. At the heart of this new logic we find a story about an

abundance of critical resources. In digital innovation the bottlenecks

standing behind a demand-side and a supply side are inherently different

from the barriers in a product innovation regime. Software is realized,

shipped, and consumed electronically, without consuming scarce, physical

resources. Essentially, this eliminates price as a dominant force in

innovation. Ultimately this promotes markets of infinite choice.

A central argument in the “The Long Tail” (Anderson 2006) is that scarcity

of fundamental resources in product innovation enforces dominant designs,

here discussed in terms of “hits”. As one out of many examples, Anderson

narrates that “if there are only a few slots on the shelves or [broadcast]

airwaves, it’s only sensible to fill them with the titles that will sell best. And if

that’s all that’s available, that’s all people will buy” (Anderson 2006, p. 8). As

products are increasingly digitized such scarce resources are gradually

marginalized and “the mass market is turning into a mass of niches”. That

way digital technology has “unleashed an extraordinary possibility for many

Chapter 2

32

to participate in the process of building and cultivating a culture that reaches

far beyond local boundaries” (Lessig 2004, p. 9). Such power changes

markets and threatens established content industries.

Then, as multiplicity explodes in the wakes of digital technology, what drives

competition? Obviously, an unlimited multiplicity cannot feed unlimited

wealth. Not everyone can make money on digital products. What are the

scarce resources of digital innovation?

As pointed out by Bill Gates in the Wall Street Journal article, that scarce

resource is attention. On the one hand, profit may sky-rocket as soon as

design cost is covered. On the other hand, “your demand can literally almost

drop to zero” in the moment when someone comes up with a superior

solution and user attention is shifted away. Although this phenomenon is

frequently discussed in the literature (cf. Davenport and Beck 2001), it is

particularly well articulated by Herbert Simon (e.g. 1971, p. 40-41). What

information consumes, says Simon, is “the attention of its recipients. Hence

a wealth of information creates a poverty of attention and a need to allocate

that attention efficiently among the overabundance of information sources

that might consume it.” This translates well to digital markets. Multiplicity of

software applications creates poverty of attention and a strategic need to

allocate that attention efficiently across potential customers.

Trying to set up such strategies it is critical to take into account that digital

markets increasingly are taking the form of two-sided markets (Economides

and Katsamakas 2006; Eisenmann et al. 2006). Two groups – here end-

users and application developers – are attracted to each other through at

phenomenon identified by economists as the network effect (Katz and

Shapiro 1994; Rosenkopf and Nerkar 1999; Wade 1995). The value of a

particular network is largely depending on the number of users on the other

side of the network. Game developers will direct their attention towards a

community offering a critical mass of players. Similarly, players will favor

communities with great variety of games.

Clearly, the product is an essential ingredient and critical glue in these two-

sided markets. Sony’s Playstation may be a console where developers can

design high-quality games, but more important, the diffusion of it allows

them to get the attention of users. Equally valid, it guarantees a rich variety

of games at the level of end-users. As two-sided markets are increasingly

important, competition is shifted towards platform-centric ecosystems (Katz

and Shapiro 1994; Tiwana et al. 2010). In such ecosystems, platforms are

“products and services that bring together groups of users in two-sided

networks” (Eisenmann et al. 2006, p. 94). This perspective downplays the

tangible dimensions of the product and put attention on the “infrastructure

Related Work and Conceptual Foundation

33

and rules that facilitate the two groups’ transactions”. This marks a

distinction towards other perspectives on the concept of platforms, discussed

in marketing (Bagozzi 1986; Morein 1975), software engineering (Clements

and Northrop 2001; Pohl et al. 2005; Thiel and Hein 2002), or product

development (Karlsson and Sköld 2007; Robertson and Ulrich 1998).

Summing up this section, product innovation normally takes place in mature

markets, characterized of fierce competition over price and dominant

designs. In such environments it is essential to “meet the needs of diverse

market segments while [at the same time] conserving development and

production resources” (Robertson and Ulrich 1998, p. 20). With this view a

platform is a “collection of assets that are shared between a set of [known]

products”. In contrast, digital innovation increasingly faces the abundance of

two-sided digital markets, kept together through shared platforms. Rather

than competition over price, deriving from a dependence on scarce material

resources, such markets are characterized by a competition over attention.

For innovation to prosper the shared platform has to be able to facilitate the

two groups’ transactions, which at the end of the day requires substantial

diffusion across the market.

From the perspective of a product developing firm, experiencing increasing

digitalization of products and processes, it is reasonably highly frustrating to

face a new form of market, with an inherently new logic. However, causing

impact on design and production, a new perspective on the product is

significantly worse. Capitalizing on digital innovation simply requires them

to develop new a new approach to technology and a fundamentally new

perspective on design.

2.1.3 Architectural Design

The more expensive, complicated, and ephemeral a product or service is, the

more important it is to build on earlier achievements. Designing from

scratch is simply a bad idea in environments characterized by significant

pace of change. Such accelerating clockspeed (Fine 1999) is a distinguishing

feature of product developing industries as well as business environments

centered on IT. However, they adopt different approaches to the design

challenges coming with technological change. As we have seen, in a product

innovation regime such change emanates from the center of organizations

that exercise formal control to improve functionality and reduce cost of

products subject to dominant designs. Not surprisingly, product developing

organizations, such as an automotive manufacturer, aim for a core design

structure – often referred to as architecture – which is relatively stable in

time and allows for the depreciation of investments across a range of models

and several generations of the product. Essentially, this approach to

Chapter 2

34

architectural design is grounded in a need to identify the least common

denominator of a range of known, or at least anticipated, product variants.

Properly implemented such a strategy allows for extensive reuse of critical

assets while, eventually securing alternatives and attractive pricing at the

level of end-users.

We have also seen that digital innovations evolve in networks where a shared

platform makes a tool to orchestrate a variety of heterogeneous knowledge in

the harsh competition over attention. In such environments it is not

surprising that platform designers direct their attention to application

developers, rather than end-users. Google’s Android platform, as an

example, is largely designed to make life easy for developers by providing

generic building blocks and proven solutions at the architectural level. The

architecture cannot be viewed as the common parts of a range of known

products. Offering a collection of best practice tools and inherent support for

the reconfiguration and reuse of existing ideas it is rather a catalyzer for

open-ended innovation in ecosystems of rich and heterogeneous knowledge.

Architecture is a subtle concept with many facets and angles. It is often

described using notions such as abstraction, structure, and style (Garlan and

Shaw 1994; IEEE Std 610.12 1990; Kruchten 1995; Perry and Wolf 1992;

Ulrich 1995) and discussed in relation to concepts such as platforms

(Karlsson and Sköld 2007; Robertson and Ulrich 1998), product families (Du

et al. 2001; Jiao and Tseng 2000; Sanderson and Uzumeri 1995), and design

rules (Baldwin and Clark 2000). When it comes to the rationale behind

architectural investments and architectural thinking, it is argued that

product architecture is profoundly linked to product change, variety,

commoditization and standardization, performance, and product develop-

ment management (Ulrich 1995).

Briefly synthesizing this range of perspectives we can tell that architecture is

a more stable and broad concept than design. “Architecture is design, but not

all design is architecture” (Clements et al. 2003). Clearly, an architecture is

something that spans particular solutions, designers, and moments in time.

Although it is remarkably hard to make a clear-cut illustration of the

distinction, most people would agree that design is specific and concrete,

while architecture is universal and abstract. Design is forward-looking,

aiming for the solution of a particular problem or challenge, while

architecture, in some sense, can be described as retrospective, representing

some kind of best practice for how to solve a particular class of problems. An

architect searches for invariability, or timelessness as expressed by

Christopher Alexander in one of his seminal books, discussing the essence of

architecture in the context of buildings.

Related Work and Conceptual Foundation

35

There is one timeless way of building. It is a thousand years old,
and the same today as it has ever been. The great traditional
buildings of the past, the villages and tents and temples in which
man feels at home, have always been made by people who were
very close to the center of this way. It is not possible to make
great buildings, or great towns, beautiful places, places where
you feel yourself, places where you feel alive, except by following
this way. And, as you will see, this way will lead anyone who
looks for it to buildings which are themselves as ancient in their
form, as the trees and hills, and as our faces are (Alexander
1979, p. 7).

Although Alexander belongs to a different discipline, his reasoning captures

a fundamental aspect of architecture that I will focus particular attention on

in my attempt to distinguish between a product innovation regime and a

digital innovation regime; the magnitude of the concept architecture

becomes visible across generations of designs. While design work is directed

towards a particular problem, defined by its time, architecture is a structure-

preserving mechanism, passing sound solutions on from design to design

and generation to generation. In connecting historical achievements with

future potentialities, architecture is a key instrument for path creation,

helping firms to create competitive advantage over time. However, what

introduces inertia in change may, at the same time, transform into ballast,

preventing an organization to improve. Ideally, architectures are structure-

preserving and structure-enhancing (Alexander 2002) in the sense that they

allow for innovation processes to take advantage of, yet not being obstructed

by historical achievements. To some extent this is about the tricky balancing

of defensive, retrospective forces and aggressive, forward-looking forces.

We have now established a perspective where architecture is a key concept in

the continuous temporal transformation of technology. In order to

distinguish between the architectural design in product innovation and

digital innovation respectively, we now need to elaborate the basic

mechanisms for how technology evolves. What drives change? Let us, as a

first step, make use of the generally accepted idea that both natural and

artificial systems tend to evolve in response to changes in their context or

changes in their underlying components, seeking better “fitness” (cf. Holland

1992a; Holland 1996). Such fitness of a system is the degree to which the

system and its context are "mutually acceptable" (Alexander 1964).

According to Alexander this translates into an effort to achieve fitness

between two entities: the system in itself and the context within which it

exists. While the system is a solution to a problem, the context defines the

problem.

Chapter 2

36

In trying to achieve fitness with context, traditional engineering design

would prescribe a methodology of constrained optimizations. On a general

level, constrained optimization aims for “the highest level of product

performance within some cost constraint or the lowest cost for a product

meeting a minimum performance constraint” (Sanchez and Mahoney 1996,

p. 65). A major problem following from this methodology is that it typically

leads to highly integrated and tightly coupled designs. In turn, such

monolithic designs require tight coordination of work forces, since changes

in one component tend to trigger compensating changes on other

interrelated components. Interdependencies in product designs simply entail

isomorphic interdependencies in organizational structures (Andreasson and

Henfridsson 2009; Baldwin and Clark 2000; Sosa et al. 2004). “Product

designs composed of tightly coupled components will generally require

development processes carried out in a tightly coupled organization

structure coordinated by a managerial authority hierarchy” (Sanchez and

Mahoney 1996, p. 65). Such designs incur high communication cost (Brooks

1975; Langlois 2002), making an opposing force to change. It is simply very

hard to launch new ideas when a wide range of people have to be involved in

its implementation. Therefore, the tightly coupled, integral structures

produced by constrained optimization design may perform well when

context is relatively stable and solutions last over time. Yet, as I will

demonstrate in deeper detail, they are inappropriate for environments

characterized by significant change.

However, before dealing with the intricate issue of change, let us elaborate a

critical reflection on system design that can help us understand the nuances

of coupling; sooner or later any design process will end up discussing the

interplay between the whole and the parts. When changes in one component

diffuses across a system and translates to unexpected effects in other

components it is very difficult to understand the whole from its parts. This is

at the heart of the concept of complexity, at least as interpreted by Herbert

Simon:

Roughly, by a complex system I mean one made up of a large
number of parts that interact in a nonsimple way. In such
systems, the whole is more than the sum of the parts, at least in
the important pragmatic sense that, given the properties of the
parts and the laws of their interaction, it is not a trivial matter
to infer the properties of the whole (Simon 1962, p.468)

Simon emphasizes that complexity is not an invariant aspect of technology.

Rather, “how complex or simple a structure is depends critically upon the

way in which we describe it” (Simon 1996, p. 215). Extending such reasoning,

complexity can be reduced by finding new structural interpretations of how

systems as a whole relate to the parts of a system. There are indeed many

Related Work and Conceptual Foundation

37

perspectives on complexity and how to reduce complexity. However, most

researchers agree that complexity is most efficiently managed by reducing

the coupling between parts of a system. This is illustrated by concepts such

as information hiding (Parnas 1972) or Brooks’ (1975, p. 78) commentary

that programmers are “most effective if shielded from, rather than exposed

to the details of construction of system parts other than his own”.

Given a focus on architectural design and innovation, one aspect stands out

as particularly salient; the autonomous innovation following from division of

labor seems to outperform more cohesive approaches. Given that the overall

properties of the product as a whole can be satisfied, decentralized processes

“can have advantages in innovation to the extent that it involves the trying

out of many alternate approaches simultaneously, leading to rapid trial-and-

error learning” (Langlois and Richard 1992, p. 301). A decomposable

approach to design seems to release the creativity in people as they can focus

on distinct problems without continuously being obstructed by system level

constraints.

Still, the main advantage of decomposable systems is not found in superior

mechanisms for making abstractions in a given design process. Rather, we

find its key strength in its ability to support technological change in the form

of evolution. As demonstrated in his exemplary parable on the watchmakers

Hora and Tempus, Simon (1962, p. 473) shows that “complex systems will

evolve from simple systems much more rapidly if there are stable

intermediate forms than if there are not”. Langlois (2002) provides a

condensed, yet intuitive outline of the basic reasoning:

In a nondecomposable system, the successful operation of any
given part is likely to depend on the characteristics of many
other parts throughout the system. So when such a system is
missing parts (because it is not finished, for example, or because
some of the parts are damaged), the whole ceases to function
and the system becomes evolutionary shark bait. In a
decomposable system, by contrast, the proper working of a
given part will depend with high probability on the
characteristics of other parts within its subassembly—but will
depend with relatively lower probability on the characteristics
of parts outside of that subassembly. As a result, a
decomposable system may be able to limp along even if some
subsystems are damaged or incomplete (Langlois 2002, p. 21).

In its ultimate form, exercised by biological systems in nature,

decomposability paves the way for a perspective on change which “assumes

no teleological mechanism. The complex forms can arise from the simple

ones by purely random processes” (Simon 1962, p. 471). In his ambitious

work on the nature of technology Brian Arthur (2009) essentially adopts

Chapter 2

38

such Simonian thinking when he argues that technology “bootstraps itself

upwards from the few to the many and from the simple to the complex” (p.

21). Therefore, one can say that “technology creates itself out of itself”. With

this perspective systems are not designed, they emerge.

This far I have tried to portray a view of system design and complexity that

essentially is shared between product innovation and digital innovation

regimes. Competitive advantage over time is rooted in the ability to

domesticate technological change in path creating processes. Managing

technological change is largely about mastering complexity in design

processes, which at the end of the day enforce structural decomposability.

Finally, such decomposability opens up for evolutionary, rather than

teleological motors of innovation, radically increasing pace of change.

Let us now put attention on a distinguishing aspect that translates into

relatively different approaches to architectural design in product innovation

and digital innovation. Although recognizing the intricate interplay between

a system as a whole and the system in its parts, product developing firms

tend to apply a reductionist perspective on complexity. Existing in a highly

competitive environment where dominant designs make it largely impossible

to question the role and meaning of a product, they turn their attention to

the details. Making use of waterfall models (Boehm 1976; Royce 1970) these

centralized organizations put things under a finer and finer microscope in

order to make parts better or cheaper and then, eventually, put it together

again, into a whole. As we shall see modularity is a standard strategy for such

firms to handle complexity. It is an indispensable tool for making abstract

designs but, above all, it allows for efficient reuse of critical assets in an

evolutionary process of technological change. Properly applied modular

architectures open up for continuous progression of product performance

and cost, while at the same time reusing both components – “the part

designs of a product, the fixtures and tools needed to make them, the circuit

designs, and the programs burned into programmable chips or stored on

disks” – and processes – “the equipment used to make components or to

assemble components into products and the design of the associated

production process and supply chains” (Robertson and Ulrich 1998, p. 20).

In contrast to the reductionist perspective adopted by product developing

firms, designers operating in a digital innovation regime increasingly often

approach complexity by looking in the other direction. The key question is

not how the whole is to be described through its parts. Rather, they ask: how

things assemble themselves? How do new patterns emerge from existing

elements? Finding themselves in environments where attention is achieved

and maintained by continuous supply of novel functionality, these

distributed networks of innovators have to create architectural solutions that

Related Work and Conceptual Foundation

39

facilitate the materialization of new meanings. In contrast to a reductionist

view this makes an open-ended process, where the configuration of patterns

may never be finished.

While modularity completely dominates product innovation literature on

complex design, the significantly younger discipline of digital innovation is

more fragmented. A wide range of researchers have tried to translate ideas

from product innovation to fit a software context. Modular software design

(Parnas 1972), component-based software engineering (Heineman and

Councill 2001), and software product lines (Pohl et al. 2005) are prominent

examples of such contributions. However, contemporary research

increasingly downplays the usefulness of such direct translations. Digital

technology seems to offer properties that do not allow for such morphing to

work. As an example, pattern-oriented software design (Buschmann et al.

2008; Gamma et al. 1995) move focus from components, modules, and

processes to problems, functions, and ideas. Turning to Christopher

Alexander and his ideas on pattern languages, this stream of research argues

that the key challenge in software design is to reuse and refine sound ideas.

Representing key ingredients of “living structure” a pattern language will act

as a sifter in a sandbox as evolution gradually reinforces sound ideas in a

series of “structure-preserving and structure-enhancing transformations”

(Alexander 1999, p.79).

As we shall see, the increasingly popular concept of generativity (Zittrain

2006) is gaining momentum as a theoretical guide in the design of complex

digital systems. On a general level, the term generativity describes a

technology’s capacity to enable voluntaristic and spontaneous innovation

driven by large, heterogeneous an essentially uncoordinated crowds

(Remneland et al. 2011). Therefore, at the heart of generativity we find the

ability to get quick turnaround on ideas. In other words, generativity allows

for efficient reuse of ideas in an evolutionary process of technological

change. Properly applied generativity increases the leverage, adaptability,

ease of mastery, accessibility, and transferability of a product or service

(Zittrain 2006).

Let us now leave the general discussion on architecture behind and engage in

a specific review of literature relating to product architecture and software

architecture respectively.

2.1.3.1 Product Architecture: Modularity and the Reuse of Assets

Ever since the birth of mass production organizations have been forced to

spend significant effort on production processes. Although we see many

stances of mass production, a common denominator is found in the need to

set up concurrent and autonomous operations. An assembly line is built on a

Chapter 2

40

sequential organizational model, where tools, machines, and knowledge are

specialized for a given task. This requires loosely coupled organization

structures (Orton and Weick 1990; Weick 1976).

Over the years many researchers have noticed that the structure of product

developing organizations tend to match the structure of their products. This

“fundamental isomorphism” of design structure and task structure (Baldwin

and Clark 2000) suggests that decoupling between tasks at the process level

is reflected as decoupling between components at the product level. This

interplay between task structure and design structure certainly explains

some of the strategic interest in product architecture. As underlined by

Sanchez and Mahoney (1996, p. 64) a properly composed architecture may

provide a form of “embedded coordination that greatly reduces the need for

overt exercise of managerial authority to achieve coordination of develop-

ment processes, thereby making possible the concurrent and autonomous

development of components by loosely coupled organization structures”.

It can be argued that product developing firms originally engaged in product

architecture to improve production processes, eventually translating to

competitive pricing. Yet, contemporary research emphasizes its substantial

role also at the level of product design. Seeing product architecture as “the

scheme by which the function of a product is allocated to physical

components” (Ulrich 1995, p. 419), it largely defines how a particular

product can be changed and varied, not only how it is assembled.

Today an overwhelming majority of product developing firms develop their

products on the basis of modular architectures. There are voices reminding

of integral solutions and their merits (Fixson and Park 2008; Schilling

2000), but an inherent and successfully demonstrated capability to cope

with change has largely rendered this discourse obsolete in the context of

product development. The power of the concept is illustrated by its impact

on a wide range of disciplines. It has had significant influence in fields such

as organization studies (Orton and Weick 1990; Sturgeon 2002),

management (Baldwin and Clark 2003; Ethiraj and Levinthal 2004; Sanchez

and Mahoney 1996), innovation (Robertson and Langlois 1995; Ulrich 1995;

Von Hippel 1990), and various forms of design research (Baldwin and Clark

2000; Ulrich and Eppinger 2004). Although giving rise to such wide range of

theoretical angles, it is grounded in two relatively simple observations,

reflected in the concept of near decomposability (Simon 1962; Simon 2002).

First, Simon establishes that systems “produced by successive assemblies of

small numbers of components will emerge much more rapidly than systems

that are assembled in one step by uniting large numbers of components”

(Simon 2002, p. 598). Such systems form hierarchies in the sense that any

Related Work and Conceptual Foundation

41

level of analysis will reveal a system of components where each of those

components is, in turn, a system of finer components. This recursive

decomposition can continue until we reach some point at which the

components are "elementary particles" or until science constrains our

decomposition (Simon 1962). At the heart of this reasoning we find the idea

that stable intermediate forms assist bootstrapping processes, where simple

structures are recursively combined over time to form increasingly complex

ones (Arthur 2009). An off-the-shelf GPS receiver holds a remarkably

complex interior. Yet, it can be used as an elementary building block in a

navigation system, without actually paying attention to its hidden

complexity.

The second ingredient of near decomposability is that systems in which

efficiency of design of each component is relatively independent of the

designs of other components will increase their fitness much more rapidly

than systems where components are interdependent. Therefore, nearly

decomposable systems are manifested as “a hierarchy of components, such

that, at any level of the hierarchy, the rates of interaction within components

at that level are much higher than the rates of interaction between different

components” (Simon 2002, p. 587). In its simplest form, the GPS receiver

interface supplies position and time. That allows for satellite positioning

technology to evolve relatively independent from contemporary applications.

Similarly, applications development is unconstrained by GPS technology.

The idea of near decomposability is truly universal and can be applied in

order to understand phenomena ranging from biological systems to human

problem solving. Consequently, the notion of component may refer to many

different things. However, in a product innovation regime, discussing near

decomposability in terms of modularity, the notion of component generally

refers to the physical, tangible building blocks that together aggregate into a

product. Therefore, when talking about modular structures, the architect

normally refers to a hierarchy of such physical components. As a

consequence, this hierarchy of parts becomes the main lens to understand

complexity of products.

Taking a step back, how does modular product architectures play out in the

practice of a product innovation regime? In what sense does it allow

organizations to develop competitive advantage in a product innovation

regime? So far I have argued that product innovation unfolds from within

organizations that exercise formal control modes to improve functionality

and reduce cost of products subject to dominant designs. Reviewing

organizing logic and market dynamics, we have seen that fit with context,

making the primary force for change, is largely defined by the

price/performance ratio. Product developing firms continuously improve

Chapter 2

42

their products to keep up with technological progression and market

expectations on improved functionality. At the same time the price of a

product is a critical distinguishing factor when a dominant design makes the

range of offers at a market relatively homogeneous.

Let us then ask how organizations can change their products in order to

improve price/performance ratios when markets are characterized by

dominant designs. Turning to the literature, it is relatively straight-forward

to claim that dominant designs enforces change in the details, while

preserving structures of the system as a whole. As emphasized by several

researchers, a dominant design is characterized by a set of core design

concepts, corresponding to the major functions of a product (Clark 1985;

Henderson and Clark 1990; Marples 1961). It also comes with a general idea

of how these core design concepts are embodied in physical components and

eventually integrated into a product (Clark 1985; Henderson and Clark 1990;

Sahal 1985). “Once any dominant design is established, the initial set of

components is refined and elaborated, and progress takes the shape of

improvements in the components within the framework of a stable

architecture” (Henderson and Clark 1990, p. 14).

Hence, to stay competitive product developing organizations have to tune

their architectural strategies towards the details. Structuring the parts of a

system according to the principles of modularity allows them to focus their

design attention on the internal properties of components. With this

approach it is possible to feed markets with variety and change, while at the

same time trying to preserve stable system solutions to conserve

development and production resources for scale advantages (Robertson and

Ulrich 1998). It makes little sense for an automaker to question the overall

meaning, behavior, or structure of e.g. a navigation system. Instead, the fact

that basic elements – map, routing, and guidance – as well as the interplay

between these elements are defined by the dominant design allows for scale

advantages in production. At the same time it is crucial to continuously

improve fitness by a devotion to details. Response time in routing, level of

details in maps, or precision in guidance instructions may be the

distinguishing features directing the flow of customers from one brand to

another. Such reasoning is at the heart of product platform literature (cf.

Karlsson and Sköld 2007; Robertson and Ulrich 1998), arguing that a central

challenge of product innovation is to, on the one hand, take advantage of the

cost-saving potential in dominant designs and, on the other hand,

differentiate the functional offer to end-users in order to escape the grip of

price as the only discriminator between models and brands. Therefore,

competitive advantage on markets characterized by dominant designs grows

from the capability to continuously fine tune the fitness of a relatively stable

Related Work and Conceptual Foundation

43

overall system solution by adapting its different parts (Abernathy and

Utterback 1978; Clark 1985; Henderson and Clark 1990). Product innovation

regimes feed reductionist perspectives on complexity, normally addressed by

modular product architectures.

Then, let us try to uncover yet another layer of details in order to understand

the role of modularity in a product innovation regime. How do modular

architectures actually promote variety and change? Given that we see an

architecture as a structure-preserving and structure-enhancing mechanism,

how does it allow for the reuse of historical achievements in benefit of future

potentialities? Let us walk through, at least in some detail, how modularity

delivers variety and change in tangible products by reusing (1) production

assets and (2) existing components. As we shall see, these are critical aspects

when firms ask themselves “what product architecture should be used to

deliver the different products while sharing parts and production steps

across the products” (Robertson and Ulrich 1998, p. 21).

In order to achieve scale advantages in a product innovation regime

production needs to be nearly algorithmic, with a well defined assembling

process, enabling high-speed throughput (Chandler 1977). This push firms to

deploy specialized capital, such as assembly lines, tooling, equipment, and

various materials (Teece 1986). Such complementary assets make

considerable investments for an organization, but with an absolute majority

of fixed and marginal cost relating to production it pays off through lower

unit cost in an economy of scale (Chandler 1990).

In addition, these complementary assets make an appropriation regime,

“that governs an innovator’s ability to capture the profits generated by an

innovation” (Teece 1986, p. 287). When market competition requires

significant investments in a wide range of complementary assets it is simply

very hard for a newcomer to disrupt the barrier and translate a competing

design into a competitive product. It is argued that this mechanism ranges

beyond the stability of dominant designs and can help incumbent, product

developing organization to appropriate the value also of radically new

technology. At the heart of such reasoning we find the idea that “incumbent

industry performance improves if the new technology can be commercialized

through [existing] specialized complementary assets” (Rothaermel and Hill

2005, p. 52). Consequently, such assets make a valuable, strategic

instrument for most organizations in a product innovation regime.

Preserving this value over time is a key challenge for most product

developing organizations.

On the one hand, modularity can be viewed as an abstract and “very general

set of principles for managing complexity” (Langlois 2002, p. 19). However,

Chapter 2

44

applied to product architecture it becomes highly concrete as it defines how a

system can be separated and recombined (Schilling 2000). Properly

implemented a modular architecture opens up for a palette of variants, still

preserving the overall structure of the system and the interfaces between

components. The extent to which a product can be viewed as modular is

reflected in “the tightness of coupling between components and the degree to

which the ‘rules’ of the system architecture enable (or prohibit) the mixing

and matching of components” (Schilling 2000, p. 312). Properly exercised a

modular architecture allows an organization to increases the value of

complementary assets as products can be assembled at the same line, by the

same people, using the same tools and the same basic components. This

simply gives a manufacturer the opportunity to depreciate investments

across significantly larger volumes, eventually leaving larger margins and

higher profit. However, this leaves the manufacturer with an intricate

architectural challenge, inevitably enforcing a perspective on modularity

where the physical structures are in focus; a whole range of different

products have to be decomposed and aggregated on the same basic premises,

yet delivering variety. Modular architectures offer this, yet without exploding

in complexity. The capability to encapsulate information and functionality in

hierarchical structures of components, while serving simple external

interfaces, is a critical aspect of modular product architectures since complex

solutions are more difficult to assemble, require more expensive tools, and

tend to be weaker in terms of quality. Even more important, increasing

complexity may hamper product change over time. This is critical since the

value of complementary assets is not only relying on the generic capability to

support a range of products, but also on its resilience over time. The value of

tools, materials, and processes decreases dramatically if they continuously

have to be adjusted in order to align products with a changing market

context. Modularity allows for a range of variants and product generations to

share a temporally stable architecture. This offers “reduced uncertainty over

product design [which in turn] provides an opportunity to amortize

specialized long-lived investments” (Teece 1986, p. 288). Synthesizing our

discussion so far, one can argue that with a modular strategy to product

architecture organizations may reinforce and preserve the value of com-

plementary assets across specific product offers and generations of designs.

Let us now focus our attention on the role of modularity in reusing

components. Approaching this topic we need to make a slight detour,

discussing design processes. As we know, a product innovation regime

exercises linear models of product development. This prevailing model of

innovation can be traced to a strong need to reduce ambiguity about the

physical structure of the product (Godin 2006). Relying on formal control

modes and strictly linear development processes organizations have to

Related Work and Conceptual Foundation

45

change their locus, from functional design to physical design, at an early

stage. By the time a design is released for production functional properties

are inevitably frozen (Baldwin and Clark 2000). Clearly, the deployment of

functional structure to physical structure is a critical moment, defining how

a product can be changed both within the life cycle and across generations

(Ulrich 1995). As a consequence, the interplay between functional structure

and physical structure is highly visible in the architectural thinking in

product innovation literature. One of the most cited definitions of product

architecture is phrased by Karl Ulrich in a Research Policy paper from 1995.

He defines product architecture as “the scheme by which the function of the

product is allocated to physical components” (Ulrich 1995, p. 419).

Elaborating this condensed statement, he offers a detailed discussion on how

this overall definition translates into “the arrangement of functional

elements”, “the mapping from functional elements to physical components”,

and “the specification of the interfaces among interacting physical

components” (p. 420).

Ulrich’s definition of architecture is seemingly distant from the perspective I

have outlined in the introduction of this subsection. After all, he identifies

the architecture as a bridge between a functional domain and a physical

domain, rather than an evolutionary bridge between generations of designs.

However, let us recall that it is in the deployment of functional structure to

physical structure that coupling appears, at least the kind of coupling that

messes up the assembling of components into products. The product

architecture “determines which functional elements of the product will be

influenced by a change to a particular component, and which components

must be changed to achieve a desired change to a functional element of the

product” (Ulrich 1995, p. 426). Thereby, it defines evolutionary properties of

a product. “A modular architecture increases the likelihood that a

component will be commonly useful”. The ultimate modular architecture

maps functional elements to components one-to-one, meaning that “each

component implements one and only one function” (Ulrich 1995, p. 431). At

a practical level, such one-to-one mappings make improvement of a

particular functional property a lot more likely, since it does not requires

different component suppliers to synchronize and align their efforts.

Even more important in a context where functionality is frozen early in

design processes, the product architecture defines “the degree to which a

system's components can be separated and recombined” (Schilling 2000, p.

312). Loosely coupled components are simply significantly easier to reuse

and reconfiguration for new purposes. In fact, modularity exponentially

increases the number of possible configurations achievable from a given set

of inputs, which greatly increases the flexibility of a system (Arthur 2009;

Chapter 2

46

Schilling 2000). This makes an almost priceless capability for product

developing firms to moderate variation and change without redefining a

system solution or, ultimately, even the components of the system. As we

have discussed, coupling may favor functional performance in the short run,

but complicates change and adaptation over time. To what extent it is

desirable to reduce coupling by modularization is largely given by context.

However, product innovation regimes normally face markets with

substantial dynamics and harsh competition over price. In such an

environment, decoupling translates into vital strategic flexibility, facilitating

adaptation to context and, eventually, improving competitive advantage.

Concluding this section, a product innovation regime translates the reuse of

plants, production tools, processes, and components into competitive

advantage. The architecture of products has proved to be of significant

importance when building such capability. In general, product developing

organizations architect their products according to the principles of

modularity. The near decomposability of such architectures gives them

significant flexibility to differentiate products over a range of variants and

across generations of designs, yet commoditizing critical assets.

2.1.3.2 Software Architecture: Generative Designs and the Reuse of Ideas

Software engineering is a young discipline. So is the notion of architecture in

the context of software. A historical expose in a 2006 special issue of IEEE

Software (Kruchten et al. 2006) traced the concept of software architecture

back to an early conference on software engineering techniques in Rome

1969 (Buxton and Randell 1970). The conference hosted a whole range of

researchers, such as Tony Hoare, Edsger Dijkstra, Alan Perlis, Per Brinch

Hansen, Friedrich Bauer, and Niklaus Wirth, later making the backbone of

the upcoming software engineering discipline. In relation to the concept of

software architecture Ian P. Sharp made a statement which diverted from

established thinking and paved the way for deeper theoretical contributions

in this area. Arguing that “architecture is different from engineering”, he

wanted to point out that an architecture is not the same as a design and the

act of architecting is not the same thing as designing. Sharp wanted to put

attention to the consequences of seeing specifications of software purely as

functional specifications.

We only talk about what it is we want the program to do. It is
my belief that anybody who is responsible for the
implementation of a piece of software must specify more than
this. He must specify the design, the form; and within that
framework programmers or engineers must create something.
No engineer or programmer, no programming tools, are going

Related Work and Conceptual Foundation

47

to help us, or help the software business, to make up for a lousy
design (Buxton and Randell 1970, p. 9).

Although being ahead of his time, Sharp certainly helped seeding the idea

that architecture is relevant to the software industry and something that may

support the reinforcement of sound and coherent software systems over

time. Yet, over the coming two decades “the word ‘architecture’ was used

mostly in the sense of system architecture (meaning a computer system’s

physical structure) or sometimes in the narrower sense of a given family of

computers’ instruction set” (Kruchten et al. 2006, p. 23).

However, shifting into the 90th, the concept of software architecture

attracted enough attention to form a distinct discipline. In 1991 Royce and

Royce (1991) published a seminal paper positioning software architecture

explicitly between technology and process. This is also the period when it

became increasingly accepted to claim that this subtle concept could mean

different things, depending on the observer. In the “4+1 view model”

Philippe Kruchten (1995, p. 1) proposes a new way of “describing the

architecture of software-intensive systems, based on the use of multiple, con-

current views”. He argues that “the use of multiple views allows to address

separately the concerns of the various ‘stakeholders’ of the architecture: end-

user, developers, systems engineers, project managers, etc., and to handle

separately the functional and non functional requirements”.

I consider this a critical period in the history of software architecture. This is

when a wider audience accepts the idea that software architecture plays out

at many different levels, beyond pure technology. It is possible to see it as

“the structure or structures of a system, which comprise elements, their

externally visible properties, and the relationships among them” (Clements

et al. 2003, p. 471), yet discuss inherently different perspectives. Studying a

system from an end-user perspective, ‘elements’ and ‘structure’ may refer to

functional building blocks. For a programmer the architecture may be the

guide to sound real-time behavior and the hardware designers is primarily

interested in the deployment of code to physical components. However, the

key to sound and competitive products is found in the capability to combine

different perspectives.

In modern literature on software architecture we see several different

branches. I would argue that, on a general level, we can tell them apart by

the way they stress different architectural views. Some schools, in particular

the early ones, tend to approach architecture primarily from the perspective

of design processes and production of software systems. They are clearly

inspired by the engineering techniques that successfully improved flexibility

and efficiency in product development. Therefore, they emphasize structures

with impact on the realization of software systems, rather than on functional

Chapter 2

48

design. Modular software design (MSD) (Parnas 1972; Parnas et al. 1985), as

an example, offers a design technique where information hiding is reinforced

through a hierarchically structured code base, much similar to how

modularity is applied in product development. Another branch of software

engineering, highly intertwined with Parnas’ ideas on modular design, is

often labeled component-based software engineering (CBSE) (Crnkovic

2001; Heineman and Councill 2001). As for modular design, proponents of

CBSE underline the separation of concerns in a software system. Software

components are seen as autonomous, independent elements, defined by

their interfaces. The main idea is that software should be componentized –

that is built from prefabricated components – much similar to the fields of

electronics or mechanics. Further, software product lines (SPL) (Clements

and Northrop 2001; Pohl et al. 2005) is a contemporary movement also

inspired by manufacturing industries, where software systems are created

from a shared set of software assets using common methods, tools, and

techniques for production. On a general level, SPL takes the concept of mass

customization (Pine and Davis 1999) to the domain of software.

As illustrated, SPL, CBSE, and MSD approach architecture from the

perspective of software design. Investments in architecture pay off through

efficient work processes, flexible software systems, and reusable code bases.

However, with the emergence of object-oriented programming (OOP) and

object-oriented analysis (OOA) (Booch et al. 1991; Mathiassen et al. 2000)

we see a gradual shift in architectural thinking across the software

engineering discipline. Proponents of OOP/OOA stress the need to model

real-world phenomena. They argue that an artifact design has to emerge in

coherence with an improved understanding of context. They distance

themselves from a practice where context is squeezed into specifications at

an early stage, after which the whole attention is focused on the design of an

artifact. Instead, context and system has to be modeled together. This put

what is today widely recognized as the logical view more in center of

attention. In contrast to CBSE, OOP/OOA methodology seeks to create the

“verbs” and “nouns”, readable to humans, rather than structures of reusable

assemblages of software. This challenges the taken for granted distinction

between system and context applied in traditional product development. To

some extent, OOP/OOA includes the context in the design process, rather

than building on a static, pre-fabricated stance of it.

With architecture increasingly associated with the functional structures of

software in context, the concept was gradually loaded with a new meaning.

Over the last two decades service-oriented computing (Allen 2006;

Papazoglou and Georgakopoulos 2003), pattern-oriented software

architecture (Buschmann et al. 2008; Gamma et al. 1995), and other

Related Work and Conceptual Foundation

49

theoretical perspectives have reinforced the idea that architecture is not just

a set of tools for the structural transformation of the software system as an

artifact, but a strategic tool guiding the gradual transformation of

functionality.

Service-oriented computing (SOC) “uses services to support the development

of rapid, low-cost, interoperable, evolvable, and massively distributed

applications. Services are autonomous, platform-independent entities that

can be described, published, discovered, and loosely coupled in novel ways”

(Papazoglou et al. 2007, p. 38). Obviously, SOC does not approach software

or software systems as something that is up-front defined. Rather, services

are software functions that are reusable in new configurations, and for new

purposes. A Service-oriented architecture (SOA) is a set of flexible design

principles used for designers to navigate in a volatile and changing

environment. Therefore, in SOC, a software system is something that

emerges over time.

Pattern-oriented software design (POSD) (Buschmann et al. 2008; Gamma

et al. 1995) emphasizes similar values as SOC, although it does not to the

same extent engage in the realization of services or business processes.

Instead, this branch stresses that patterns “document existing best practices

built on tried and tested design experience. Patterns are not invented or

created artificially just to be patterns” (Buschmann et al. 2008, p. 8). Rather,

they “distill and provide a means to reuse the design knowledge gained by

experienced practitioners,” so that developers familiar with an adequate set

of patterns “can apply them immediately to design problems without having

to rediscover them” (Gamma et al. 1995, p. 1).

Most people argue that the concept of patterns, as applied in software

engineering, can be traced back to the work of Christopher Alexander

(Alexander 1964; Alexander 1979; Alexander 2002; Alexander et al. 1977). To

Alexander a pattern “describes a problem which occurs over and over again

in our environment […] and then describes the core of the solution to that

problem, in such a way that you can use this solution a million times over,

without ever doing it the same way twice” (Alexander et al. 1977, p. x).

However, Alexander did not stay with the pattern concept in isolation, but

argued that the potential in patterns is uncovered when studying how they

relate to each other. Much like the words of a language, patterns make sense

together through vocabulary, syntax and grammar. The vocabulary – a set of

patterns – is a collection of solutions to well defined problems. The syntax

show how a specific pattern fit with other patterns in a larger design. Finally,

the grammar describes in what way the pattern solves a problem.

Chapter 2

50

Alexander developed his ideas around pattern languages from observations

of “certain generative schemes” in the building of houses that exist in

traditional cultures. Trying to make sense of his work as an architect in the

eyes of software engineers, Alexander explains that:

These generative schemes are sets of instructions which, carried
out sequentially, will allow a person or a group of people to
create a coherent artifact, beautifully and simply. The number
of steps vary: there may be as few as half a dozen steps, or as
many as 20 or 50.When the generative scheme is carried out,
the results are always different, because the generative scheme
always generates structure that starts with the existing context,
and creates things which relate directly and specifically to that
context. Thus the beautiful organic variety which was
commonplace in traditional society could exist because these
generative schemes were used by thousands of different people,
and allowed people to create houses, or rooms, or windows,
unique to their circumstances (Alexander 1999, p. 81).

Obviously, Alexander does not seek structures that make software systems

(or in his case buildings) homogeneous and uniform. On the contrary, he

seeks the structures that allow for new solutions to emerge in harmony with

context, yet taking historical wisdom and best practice into account.

Representing key ingredients of “living structure” a pattern language will act

as a sifter in a sandbox as evolution gradually reinforces sound ideas in a

series of “structure-preserving and structure-enhancing transformations”

(Alexander 1999, p.79).

This detour into the details of pattern languages is relevant to illustrate a

slow and gradual, yet clear shift of perspective in the discipline of software

architecture over the last two decades. On the one hand, the different

perspectives I have reviewed agree that decoupling is a key property in

handling complexity in software systems. On the other hand, the locus of

attention seems to shift from the complexity of artifacts to the complexity of

problems. With a growing focus on problems, software architects

increasingly recognize that in order “to study and analyse a problem you

must focus on studying and analysing the problem world in some depth, and

in your investigations you must be willing to travel some distance away from

the computer” (Jackson 2000, p. 9). Distancing themselves from the

computer, many designers and architects see in software what Alexander

saw in buildings; good design is an emergent phenomena. Context is

certainly not static, neither are the problems defined by context. Therefore, it

is increasingly emphasized that architectural design is less about the

identification of generic structures of software systems per se, but rather a

matter of identifying, describing, and using the generative schemes helping

us to create what Alexander refers to as “living structure”, valid across

Related Work and Conceptual Foundation

51

contextual barriers. As our ideas evolve, an architecture has to allow for

designs to be re-factored and code to be reshaped and transformed. So

“rather than looking for complex design tools with the hope of creating the

ultimate design, we should continue to seek out practices, techniques, and

tools that support a sustainable software design process and adaptable,

habitable designs” (Wirfs-Brock 2009, p. 7).

Finally, seeing design as an emergent process is largely incompatible with a

reductionist perspective on complexity. In contrast to a traditional product

development setting, software architects increasingly find themselves not

knowing exactly what they are architecting for. A software platform, such as

Android, certainly offers a whole range of generic elements, yet we have no

clear idea of how these elements will be used and combined to form the

applications of tomorrow. Therefore, the question of how the whole is to be

described through its parts may be hard to answer, or ultimately

meaningless, for a software architect. Rather, they ask how things assemble

themselves. How do new patterns emerge from existing elements? Software

architecture seems to increasingly adopt a bottoms-up approach to

complexity, as it is described in complexity theory (Anderson 1999; Holland

1992a; Holland 1996), rather than the mechanistic, reductionist perspective

taken for granted in product development.

Then, how does this perspective on software architecture play out in

contemporary practice? How does an emergence-oriented stance, seeing

software as a complex adaptive system (Holland 1992b), resonate with the

many other aspects we have discussed of a digital innovation regime? So far,

I have argued that digital innovations evolve in networks, centered on a

shared platform that makes a tool to orchestrate a variety of heterogeneous

knowledge in the harsh competition over attention. Such networks – or

ecosystems – are generally not up-front assembled to support a specific

purpose or a given product. Rather they emerge in response to opportunities

offered by a general platform (Katz and Shapiro 1994; Selander et al. 2010;

Tiwana et al. 2010). Referring to the work of Zittrain (2006; 2008), we can

argue that a platform able to trigger “voluntaristic and spontaneous

innovation” in “large, heterogeneous and uncoordinated crowds of people”

(Remneland et al. 2011, p. 210) holds generative capacity. Obviously, such

generative capacity is a phenomenon playing out in the interplay between

technology and social structures. Still, there has to be some inherent

properties of the technology enabling generative practices. Can we identify

these properties? How does the shift in philosophy among software

architects favor the emergence of generative technology?

Approaching these questions, let us first note that digital technology is

inherently intertwined with the stored-program concept. In product

Chapter 2

52

innovation the physical artifact – the product – mediates value and

guarantees revenue for the innovator. In contrast, a digital innovation

regime feeds functionality which is not inscribed in products, but carried by

software, decoupled from the physical artifact. This fundamental separation

of hardware and software derives from the stored-program concept,

manifested as a processing unit, executing digitally encoded instructions,

and a storage unit holding both instructions and data. The programmability

following from such von Neumann architectures (Burks et al. 1963;

Goldstine and Von Neumann 1963) or Turing machines (Turing 1937) allows

for technological progression to occur without entering a new loop of artifact

design and production. Essentially, digital technology allows for new ideas to

materialize without marginal cost. This replicability dramatically reduces the

role of price in technological change. Progression is not constrained by a

need to cover the cost of plants, production tools, and supply chains across

product variants and generations. Reuse is not motivated by depreciation of

economic investments, at least not to the same extent as in traditional

product innovation.

Still, reuse is a central aspect in digital innovation. It is just not about the

reuse of material things, such as tools or physical components. If we listen to

the proponents of pattern-oriented design it is not even about the reuse of

software components or code, it is about the reuse of ideas. The shared

platforms, making a center of gravity in successful innovation ecosystems,

represent a pattern language. This pattern language offers both a way to

identify the core design problems of a particular application domain and

replicable rules and building blocks for their solutions (Steenson 2009). We

can see these shared platforms as a common framework for collaboration

and a set of axiomatic resources to be used in innovation. Obviously, the

platform is a manifestation of reuse. It offers a whole range of reusable

resources that make life easier for software designers. Yet, it can be argued

that its main advantage is not found in the capability to facilitate a given

work process by offering precompiled bodies of code, but in its capability to

shape applications – potentially a whole domain of applications – over time.

Following Alexander (1999), such platforms constitutes structure-preserving

and structure-enhancing elements, shaping coherent and sound, but

different designs over time. On the one hand, it facilitates unbounded

innovation and technological progression. On the other, it embodies an

innovation regime and may constrain and hamper change. A “thin” and too

general platform may be unable to hold an ecosystem together as it offers

minor support in innovation. A “thick” and too specific platform, on the

other hand, may prevent designers to realize ideas as it enforces predefined,

standard solutions to solve known problems.

Related Work and Conceptual Foundation

53

Although Christopher Alexander has not explicitly foregrounded the notion

of generativity per se, I think it is rather straight-forward to say that it is a

central concept in his work. I would even argue that his core message to

software engineering is that the creation of generative technology is one of

the main challenges for the discipline in general and for software

architecture in particular (Alexander 1999). Turning to recent writings on

generativity (Remneland et al. 2011; Zittrain 2006; Zittrain 2008), a

software platforms should be architected with five principle factors in mind;

capacity for leverage, adaptability, ease of mastery, accessibility, and

transferability.

Capacity to leverage denotes the degree to which a technology enables

“valuable accomplishments that otherwise would be either impossible or not

worth the effort to achieve” (Zittrain 2006, p. 1981). The more effort a

software platform saves, the more generative it is. Adaptability refers to “the

breadth of a technology’s use without change and the readiness with which it

might be modified to broaden its range of uses” (p. 1981). A software

platform allowing for hundreds of different applications to emerge is simply

more generative than a platform tailored to the needs of a particular branch.

Further, ease of mastery “reflects how easy it is for broad audiences both to

adopt and to adapt it” (p. 1981-1982). Essentially, it is a measure of the

magnitude of skills necessary for a designer when making use of a

technology’s leverage capacity. From this perspective a generative software

platform should offer low cognitive barriers of entrance for designers, while

at the same time being malleable in the sense that it does not prescribe a

specific use. Accessibility of a technology is a measure of how “readily people

can come to use and control a technology” (Zittrain 2006, p. 1982). Software

platform without economic barriers of entrance tend to be more generative

than those requiring significant up-front investments. Similarly, a limited

number of legal barriers tend to open a platform for a wider audience of

potential users. Finally, the level of transferability “indicates how easily and

accessible changes and updates in the technology are distributed among its

users” (Remneland et al. 2011, p. 210). As an illustration of this dimension, it

is suggested that an open source platform may be more generative than a

proprietary correspondence, simply since “contributions are open for a wide

community to modify and change”.

For product developing organizations it is crucial to design products so that

it is possible to reuse plants, production tools, processes, and organization

structures to meet future challenges. In general, they architect their products

according to the principles of modularity so that these massive investments

can be covered by a range of variants and across generations of designs. As a

contrast, a digital innovation regime increasingly recognizes ideas, solutions,

Chapter 2

54

patterns, and functions as key elements for reuse in a combinatorial

evolution of technology. Competitive advantage grows from the capability to

explore and exploit these elements internally as well as externally

(Chesbrough 2006). In a digital innovation regime this pushes organizations

to architect generative software systems, allowing essentially unrelated and

unaccredited audiences to build and distribute code and content (Zittrain

2006).

2.2 Research Challenges in Digital Product Innovation

Innovation is about change. More precisely, the technological change we

associate with innovation arises by combination of existing technologies. We

can view an innovation regime as the ground rules of this process. It defines

how technology over time “bootstraps itself upwards from the few to the

many and from the simple to the complex” (Arthur 2009, p. 21). As we have

seen, the literature offers distinctly different perspectives on product

innovation and digital innovation. As illustrated in Table 1, a digital

innovation regime emphasizes some elements, structures, and logics, while

product innovation emphasizes other. As digital technology is increasingly

integrated in tangible products we can expect these differences to translate

into tensions, making strong forces in the change of established innovation

practices.

Table 1. Salient dimensions of product innovation and digital innovation.

 Product Innovation Digital Innovation

O
rg

a
n

iz
in

g

lo
g

ic

Linear processes Non-linear processes

Behavioral control Output control

Vertical industries Horizontal industries

Teleology Evolution

Flexibility Agility

Firm-centricity Network-centricity

M
a

rk
et

D

y
n

a
m

ic
s

Direct sales Two-sided markets

Competition over price Competition over attention

Marginal cost Fixed cost

Economy of scale “a mass of niches”

Dominant Designs Shared Platforms

A
rc

h
it

ec
tu

ra
l

D
es

ig
n

 Physical structures Functional structures

Complexity of artifacts Complexity of problems

Reuse of assets Reuse of ideas

Hierarchy Network

Change at the level of details Change at the level of specifics

Reductionism Emergence

Modular designs Generative designs

Early binding Late binding

Related Work and Conceptual Foundation

55

Do we see these tensions? Can we even argue that digital technology is

widely integrated in tangible products? As an illustration of the increasing

importance of digital technology in product development, the software

content of a modern car now exceeds 10 million lines of code (Broy et al.

2007). Further, as much as 80% of all car innovations can be traced to digital

technology (Hardung et al. 2004; Leen and Heffernan 2002). No doubt, the

appropriation of new capabilities (King and Lyytinen 2005) following from

digital innovation has improved the functionality of cars significantly in

many application areas, ranging from climate control and infotainment to

engine, braking, and transmission systems.

Still, the momentum we see in digitization of complex manufactured

products seems to be powered by arguments from a product innovation

regime. The miniaturization of hardware, increasingly powerful

microprocessors, inexpensive and reliable memory, broadband

communication, and efficient power management simply offers extra-

ordinary opportunities to improve complex manufactured products (Yoo

2010; Yoo et al. 2010a). Searching for industry-related evidence, literature

offers a variety of explanations to the ongoing digitization of manufactured

products.

A recurring argument is that digital technology “is an important enabler of

new and increasingly complex functions. Using software and networking it is

today possible to create new functionality (italics added), such as an [in-car]

anti-skid system, that was considered unfeasible, both with respect to cost

and functionality, some ten years ago” (Axelsson et al. 2004). Further, it

offers new approaches to systems integration, moving complexity from a

physical domain to the logical domain of software elements, interconnected

over digital networks (Eklund et al. 2005; Racu et al. 2007). Such networks

allow manufacturers to “replace the numerous cables and harnesses and

thereby reduce the number of connection points, cost and weight” (Axelsson

et al. 2004). It is also stressed as a new opportunity to handle variability.

While such “variability has typically been addressed on a case-by-case basis

in late development phases” digital infrastructures now allow manufacturers

to adopt a more “systematic approach to the ever-increasing number of

variants” (Thiel and Hein 2002, p. 66). Furthermore, digitization of products

and processes has opened up for the adoption of model-based design

methods, making “a more rigorous approach to system development

compared to the current state of practice” (Cuenot et al. 2007).

Indeed, product developing organizations change in the wakes of

digitalization. Given the documented impact on functionality, systems

integration, variability, design methodology, etc, it is probably an

Chapter 2

56

understatement to say that these new technologies changes innovation

practices significantly. However, change largely seems to align with the path

prescribed by a product innovation regime. We see little change in

organizing logic and markets seem to remain relatively homogeneous,

centered on a few dominant designs. In short, the tensions of Table 1 do not

fully play out in practices. As illustrated well by today’s most salient

industry-wide software initiative in the automotive industry – the

AUTomotive Open System Architecture (AUTOSAR) – the ongoing

domestication of digital technology is essentially directed towards the

number one challenge of a product innovation regime; the balancing

between commoditization and diversification.

Reductions of hardware costs as well as implementations of new
innovative functions are the main drivers of today’s automotive
electronics. Indeed more and more resources are spent on
adapting existing solutions to different environments. At the
same time, due to the increasing number of networked
components, a level of complexity has been reached which is
difficult to handle using traditional development processes. […]
To achieve this, AUTOSAR defines a methodology that supports
a distributed, function-driven development process and
standardizes the software-architecture for each ECU in such a
system (Fennel et al. 2006).

Even though we can find digital technology essentially wherever we look in

product development, the industry seems to argue that tangible, complex

products are fundamentally different from IT. In a car context, “any software

architecture must first recognize the automobile industry’s myriad unique

pressure and ad hoc design practices” (Simonds 2003, p. 8). Therefore, ”one

should be very careful to uncritically apply technical solutions from one

industry in another”, even when they are closely related (Fröberg et al.

2005). The evidence reported in literature suggests that these organizations

approach digital technology with an ambition to shoehorn it into existing

models for innovation. Rather than seeing the generative aspects of digital

technology, it is made a tool to reinforce a traditional product innovation

regime. It simply seems as if they are using digital technology to solve

problems associated with former generations of technology, not as an

opportunity to identify new paths of innovation, exploiting novel angles on

product development practices, organizational configurations, or business

models.

Clearly, product developing industries need to develop new capabilities to

release the potential of digital technology (cf. Henfridsson et al. 2009a;

Jonsson 2010). Although mainstream innovation follows a well known trail,

Related Work and Conceptual Foundation

57

we see genuinely new initiatives, such as the GENIVI alliance5, and launches

of new concepts, such as Ford Sync, BMW ConnectedDrive, Saab IQon, and

Fiat Mio. It can be argued that these initiatives break with the logic of

established product innovation practices and are framed to benefit from the

generative capabilities of IT. Essentially, the literature is silent on this

ongoing adaptation of product innovation practices. At least, we do not see a

scholarly discussion on how to combine product innovation and digital

innovation, allowing software to be increasingly disconnected from

hardware, while at the same time recognizing that complexity keeps playing

out across both hardware and software.

Motivated by the upcoming initiatives in industrial practice and the apparent

gap in literature, I embark on a study of how product developing firms build

new innovation practices, combining the logics of product innovation and

digital innovation. In seeking a better understanding of how digital

technology shapes new innovation practices in product developing

organizations I focus my attention on a salient phenomenon, present all

throughout my distinction of product innovation and digital innovation;

software separates the meaning and functional behavior of a product from

the product in itself. Up until recently this basic property of IT has been

exploited at a technical level to leverage functional improvements, and

efficient design practices, but largely ignored outside R&D departments. To

benefit more widely from the decoupling of functionality and hardware

organizations have to develop new ground rules for how to moderate

technological change. Therefore, the main focus of this thesis is to study how

the two innovation regimes portrayed in this thesis are conceptualized and

combined in architectural designs and architectural thinking. The research

question is: how do product developing firms architect digitized products to

leverage the generative capability of IT?

This section has contrasted a product innovation regime and a digital

innovation regime. Such a portrait is not unambiguous and can be done from

many different perspectives. My compilation is done to illustrate the

challenges a product innovation regime faces when traditionally non-digital

products are increasingly digitized. However, it is also done to uncover a gap

in the literature, justifying this thesis. Next section explicates the theoretical

lenses used when approaching the empirical context. First, I outline a

perspective on digital materiality. I have no ambition to make a generally

applicable contribution to this extensive topic. Rather, this seeming detour is

motivated by a need to clarify some basic differences between digital and

5 http://www.genivi.org

Chapter 2

58

analog technology. This discussion is then applied in the development of two

distinct architectural frames, corresponding to the two innovation regimes.

59

3 Theoretical Framework

Product innovation and digital innovation represent different modes of

innovation. They bring forward different organizing logic, feed different

market dynamics, and cultivate different approaches to architectural design.

The notion of regime underlines that these different modes of innovation are

shaped by a whole range of different actors – human and material – together

forming a web of forces, pulling in different directions. An innovation regime

is constituted by a reasonably stable state – equilibrium – where the

different forces play in concert.

By viewing an innovation regime as a particular form of interplay between

humans and technology I align with a central discourse in the information

systems discipline; the continuous debate on the relationship between

information technology and organizations. As framed by Leonardi and

Barley (2008), technology is shaped by negotiations (Constantinides and

Barrett 2006; Howcroft and Wilson 2003; Orlikowski 1992), human agency

(Boudreau and Robey 2005; Poole and DeSanctis 2004; Vaast and Walsham

2005), and personal interest (Kling 1992; Markus and Benjamin 1996; Scott

and Wagner 2003). At the same time, it is widely recognized among

researchers that organizations emerge in an interaction between people and

machines (Mohr 1971; Thompson and Bates 1957), social and technical

subsystems (Barley 1990; Scott et al. 1998), or social and material practices

(Orlikowski 2002; Schatzki 2005). Essentially, information systems

researchers agree that “information technology and organizations both arise

at the intersection of social and material phenomena” (Leonardi and Barley

Chapter 3

60

2008, p. 160). Still, we see a wide range of different perspectives on the

epistemological and ontological nature of the relationship between the social

and the material. These perspectives range from techno-centric determinism

to human-centric relativism. The former extreme sees human action largely

as a response to technological change, while the latter emphasizes that

humans have free will and shape their environments to achieve particular

goals.

Although truly fascinated by the different facets of this discourse, my current

engagement is motivated by a rather precise observation; as tangible

products are increasingly digitalized, the relative stability of traditional

product innovation regimes is disrupted. Software, digital networks,

integration with external digital infrastructure, etc inject new opportunities

in innovation. At the same time, it challenges established processes,

structures, and logics, which introduces new tensions and, eventually, seeds

new paths of change in product innovation.

I will not engage in a deeper discussion on different socio-material

perspectives and their respective benefits. However, addressing the research

question I want to make two statements, positioning my research in the

continuum between hardcore determinists and extreme relativists. First, I

see digital technology as inherently different from the non-digital technology

of tangible products. It introduces material properties allowing people to do

what they already do in novel ways, but also to do things they could not do

before. Thereby, I distance myself towards the kind of research arguing that

technology holds a subordinate position in organizational change. By

illustrating tensions between somewhat idealized innovation regimes in

product development and IT settings I seek a demonstration of how digital

technology, in itself, constitutes a powerful force in shaping new practices.

At the same time, I reject the idea that a new technology superimposes an

inevitable path of change. Rather, an innovation regime is formed over time

by an intricate set of contradictory forces, gradually mangling out new

practices. This mangling is far from deterministic and can be seen as a

threesome dance of agency (Svahn et al. 2009) where the affordances of a

new technology are subjected to human agents, experiencing resistance from

established socio-technical structures. This model underlines that

technology is not a progressive force per se, but can make powerful

resistance to change when embedded in organizational structures, routines,

and practices. Consequently, we will not see automotive manufacturers and

other industrial actors translate from orthodox product innovation to digital

innovation, as we know it from software settings, as they assimilate digital

technology. Their unique path will emerge over time in reasonable concert

with existing practices.

Theoretical Framework

61

In summary, I advocate a perspective recognizing the transformative power

of technology, while at the same time not resorting to determinism. This

makes a realist perspective in that it recognizes that technology exists

independently from observers. At the same time, it recognizes that our

knowledge about the world is socially constructed. In addressing the

research question, this critical realist view makes a compass directing my

attention to material agency and affordances, but at the same time reminds

me of the need to understand and conceptualize human reasoning exercised

when people try to make sense of digital technology in an essentially non-

digital setting. Trying to be loyal to this perspective, I have compiled a

theoretical framework in three steps, explicating (1) how digital technology

subjects new opportunities, (2) implications on established innovation

practices as these opportunities are exercised, and (3) a perspective on how

to conceptualized digital products in order to bridge the gap between

product innovation and digital innovation.

First, I develop a perspective on materiality and material agency, grounded

in the concept of affordances. This perspective emphasizes the

performativity of a material. In doing so it turns our attention from physical

characteristics, such as weight, plasticity, and hardness, to qualities of an

object that allows an individual or organization to perform an action. It is a

general lens, widely applicable in innovation, yet seeing materiality through

the lens of affordances is particularly rewarding in context of digital

innovation. Such innovation environments largely play out in a virtual world

of representations, where physical characteristics are pointless. Without

shifting focus, from physical properties to subjected possibilities, the notion

of materiality is increasingly marginalized in context of digital technology.

The concept of affordances is simply a way to give material agency a concrete

face in digital innovation.

Second, I outline a model for understanding how novel affordances

associated with digital technology transform product innovation. The model

is centered on two key barriers that significantly contributes to the character

of traditional product innovation, but which are largely not present in digital

innovation. Essentially, the dismantling of these two barriers can be traced

to two specific digital affordances; programmability and replicability. The

programmability of digital products largely eliminates the rationale behind

early binding of functionality to physical artifacts, effectively destroying the

taken-for-granted barrier between functional design and physical design.

The replicability coming with digital technology, in turn, effectively destroys

the barrier between design and production as software essentially is a

manifestation of both.

Chapter 3

62

Third, I introduce the concept of architectural frames. This concept makes a

tool for understanding how designers approach complexity as product

innovation is increasingly digitalized. The theoretical model is manifested as

two idealized representations of a complex product’s architecture. The

hierarchy-of-parts frame is centered on the physical structure of

components and emphasizes decomposition with subsequent aggregation as

the core principle for managing complexity. It largely reflects the thinking of

Herbert Simon, or at least how his thinking is interpreted in the product

innovation domain. The network-of-patterns frame is centered on the

structure of problems and solutions, rather than the structure of artifacts. It

emphasizes generalization with subsequent specialization as a

complementary approach to complexity. This frame is derived from the work

of Christopher Alexander and his forward-looking, emergent, and open-

ended approach to design and architecture. The architectural frames model

contributes at several layers. It (1) helps us understand the complexity of

architecting digitized products in general. More specifically, it makes an

instrument I will apply in my empirical investigation to (2) analyze how the

introduction of digital technology makes impact on architectural design in

product developing organizations. It helps me explicating how the core ideas

of product innovation regimes and digital innovation regimes are

represented, combined, and realized in the architecture of digital products.

3.1 Digital Affordances

Material agency is an accepted concept in many scientific disciplines, but it is

particularly well discussed in the field of information systems (IS).

Generally, the idea of assigning agency to non-human elements is rooted in

the observation that technological change emerges from the interplay

between artifacts and people. Steel, glass, or plastics have distinct material

properties coloring artistic work and innovation. There are apparent reasons

behind their respective use in car chassis, windows, and bags. In fact, the

material properties of steel, glass, or plastics define how they can be used,

making a particular force of change in the complex interplay between people

and organizations. As pointed out by Paul Leonardi (2010) “it sounds rather

odd to say that digital artifacts – like software – have material properties

because people generally think of materials or materiality as physical

substances such as wood, steel, and stone”. Still, that is exactly what

researchers do when they increasingly talk about the materiality of digital

artifacts, thereby giving the concept a broader scope than just matter.

On the one hand, materiality plays out in “the world of things and objects”

(Pinch 2008). It is in this physical realm, where we hear, see, touch and

smell that the concept has an explicit meaning. At the same time, it is

Theoretical Framework

63

suggested that the physical matter out of which objects are constructed is not

all that important when defining materiality of digital artifacts (Leonardi

2010; Pinch 2008). Rather, the adjective “material” seems to refer to some

property of the technology that provides users with the capability to perform

some action. “The how” seems to be more relevant than “the what”

(Westergren 2011). Calling something material emphasizes its

performativity – the notion that it provides people with capabilities that

they can use to accomplish their goals (Pickering 2001).

With this perspective materiality seems to be more closely related to

affordances than matter. When introducing the notion of affordances James

Gibson (1979; 1977) wanted to put attention on qualities of an object (or an

environment) that allows an individual to perform an action. On a general

level, he defined affordances as “action possibilities”. A key argument

characterizing Gibson’s writings is that “the meaning is observed before the

substance and surface, the color and form, are seen as such” (Gibson 1979,

p.134). While he originally developed the concept of affordances in context of

visual perception, I find this reasoning applicable and highly relevant to the

broader context of innovation as well. Physical properties, such as plasticity,

elasticity, and hardness, certainly play an important role in everyday

engineering as they facilitate and constrain the realization of products. Still,

that is not what we see, as human beings, when elaborating an artifact or a

material for new purposes. We do not explicitly perceive the hardness of a

diamond, but we know it affords us the possibility to cut glass. Using the

words of Gibson (1979, p.134), “what we perceive when we look at objects are

their affordances, not their [physical] qualities”.

Affordances cannot be derived from an object in isolation. Rather,

“affordances are properties taken with reference to the observer” (Gibson

1979, p.143). A stroller affords sleeping to the baby and walking to the

parent. Thereby, “an affordance is neither an objective property nor a

subjective property; or it is both if you like” (Gibson 1979, p.129). It is

objective in that its existence does not depend on value, meaning, or

interpretation. Yet it is subjective in that an actor is needed as a frame of

reference (McGrenere and Ho 2000). Although unfolding in relation to an

observer, it is important to note that “the affordance of something does not

change as the need of the observer change” (Gibson 1979, p.138). Drawing

on situated knowledge the user of a navigation system exercises different

affordances in different contexts (Svahn 2004; Svahn and Henfridsson

2009). At some point, real-time traffic information allows for re-routing to

avoid jam, while another situation calls for precise guidance to reach an

unknown destination. However, the system affords routing and guidance

whether the user needs it in a given situation or not.

Chapter 3

64

Discussing materiality through the lens of affordances resolves a problem I

find increasingly critical as innovation turns digital; digital innovation

largely plays out in a virtual world of representations where physical

characteristics, such as length, weight, hardness, and plasticity fade into the

background. Without shifting focus, from physical properties to subjected

possibilities, the notion of materiality is increasingly marginalized in context

of digital technology. The concept of affordances is simply a way to give

material agency a concrete face in digital innovation.

Let me, as an illustration, contrast adaptive noise cancellation (ANC)

technology (cf. Widrow et al. 1975) with traditional solutions, based on

insulation materials. ANC uses a set of microphones to detect vibrations in

the body of e.g. an aircraft or car. It applies a digital model of the physical

vehicle to estimate how these vibrations propagate in the body and

eventually transforms into sound waves. Finally, these estimations are used

to generate inverted sound waves, transmitted through speakers, cancelling

out the noise. This example illustrates how the locus of innovation is shifted,

from the physical domain of insulation materials to a representational

domain of software and digital models of the physical world. Ideally, ANC

affords exactly the same thing as a traditional solution – noise reduction.

However, while the latter can be precisely characterized in terms of

attenuation6, the performance of the former follows from the capability to

model the propagation of sound in a particular vehicle body.

The ANC example illustrates that digital technology cannot be reduced to

material properties, measurable in the physical realm of our everyday lives.

Instead, the materiality of digital technology unfolds from the virtual world

of representations, where physical properties make no sense. The idea of

virtual materials is not new. Photos and texts are everyday examples of such

virtual materials, affording things to people that cannot be reduced to

physical properties of the particular book or picture. Following the view on

virtuality proposed by Deleuze and Guattari (1980), books and pictures are

artifacts carrying aspects of reality that it not material, but nonetheless real.

Inspired by Bergson, Deleuze later suggested that we can conceive of the

virtual as a kind of potentiality that eventually becomes fulfilled in the actual

(Deleuze 1988).

I find this Deleuzian angle generally interesting and useful in a conversation

about materiality. In fact, it resonates well with the idea of affordances –

action possibilities. When resolving an affordance, its potential is fulfilled in

6 Attenuation is the gradual loss in intensity of any kind of flux through a given

medium.

Theoretical Framework

65

the actual. This underlines that meaning is not created at the time of

production, but at the time of consumption and use. We perceive music

when playing a record, not when pressing discs. However, Deleuze’s view on

the virtual is particularly interesting in context of digital technology and

digitalization.

As we have seen in section 2, digital technology challenges the temporal

sequencing of design and production – the conceptual and the physical –

characterizing product innovation. When functionality is mediated by

software it is possible to cross this barrier, back and forth, returning to a

design state without being constrained by production processes that enforces

the product to be assembled as a whole. Consequently, the affordances of a

digital product can be readily changed, making it significantly more

malleable than a non-digital product. An ANC system originally built for an

Airbus can afford noise cancellation in a Boeing aircraft, given new digital

models of the aircraft body. In the words of Deleuze, new software opens up

for a new potentiality to be fulfilled in the actual, without changing any

physical properties of the ANC system.

Clearly, the possibility to reprogram a given product blurs taken-for-granted

boundaries between design and production. However, digital technology

does not only offer the opportunity to alter affordances of a product by giving

it new software. Digital products are often able to revise their affordances

autonomously in that they are adaptable. Turning back to the by now

familiar ANC example, a new aircraft engine will change the characteristics

of noise significantly. Still, the ANC system will be able to afford noise

cancellation by using the digital model of the aircraft to adapt its output in

response to measured noise characteristics. Similarly, mobile phone

infrastructure affords energy saving by continuous adaptation of terminal

transmission power to meet the specific needs at every moment. Another

example is the auto-break functionality afforded by modern cars, where

potential collisions are foreseen by an extrapolation of motion trajectories of

surrounding vehicles and pedestrians. Affording noise cancellation for

unforeseen sources of interference, power saving in unknown settings, and

auto-break in just any traffic context relies on a capability to represent and

adapt virtual models of the physical world hosting the system. Therefore,

digital technology does not only blur the boundaries between the

representational domain of abstractions and the physical domain of

concretions – it clearly displaces it. In context of digital technology, the

transition between design and production does not mark the scrapping of

abstractions. Rather, a key advantage of digital technology is its inherent

capability to draw on the representational realm in a use context, subjecting

novel affordances in the physical realm available to our senses.

Chapter 3

66

Then, why does digital technology to such a considerable extent redefine the

boundaries between the representational and the physical realm? What

explains that a digital product serves us, not one potentiality to be fulfilled in

the actual, but virtually an indefinite number of potentialities? Seeking the

answers on these questions it is necessary to elaborate the fundamental

differences between analog and digital.

The phrase analog refers to a specific property of the relation between an

original and a copy (cf. Poster 2001, p. 79). The density and distribution of

silver salt crystals in a photo resembles the characteristics of the original

scene. The same applies to the grooves on a vinyl record in relation to the air

waves of sound. An analog representation establishes an isomorphism

between real world objects and their representation, although manifested in

different material forms. As a consequence of this isomorphism, time and

space are inevitably inscribed in the representation. Separation of objects in

space is reflected in the photograph, and the causality of the music is

replicated on the record.

Digital representations do not hold this property of resemblance. The

microscopic pattern on a CD (representing zeros and ones) do not in any way

look like the sound it stands for. Instead an algorithm relates the zeros and

ones to the characteristics of the sound at discrete points in time. Without

knowing this algorithm (here embodying sampling time, resolution, coding,

etc) the numbers simply make no sense. Consequently, time and space

cannot be considered part of the data, but rather of the mechanism

generating it. This essential attribute of digital technology holds major

implications in that it fundamentally changes the representational form.

Algorithm and data are separated, yet deeply intertwined, making sense to

the representation only as a whole. Two printed posters of, let us say a car,

may differ substantially in terms of color, shading or pattern. Yet, the digital,

vectorized representations, used to produce the posters, differ only in terms

of a few parameters in a ray tracing algorithm. A digital representation is not

only one potentiality, fixed in space-time, but an infinite number of

potentialities. Space and time is essentially decoupled from the

representation.

Clearly, digital technology affords very different things to designers and

organizations. Representations decoupled from time and space can take a

new form without the physical constraints of analog technologies. They can

be moved, duplicated, refined, changed or combined with other

representations without “visiting” the physical realm. An increasing number

of papers discuss this new materiality of digital technology (cf. Jonsson et al.

2009; Leonardi and Barley 2008; Svahn et al. 2009; Yoo et al. 2010d). Some

even propose well defined sets of material properties (cf. Yoo 2010).

Theoretical Framework

67

In the next section, I elaborate two particular properties of digital technology

and their critical impact on product innovation. First, software allows for

instant replication, without fixed or marginal cost (Benkler 2006; Shapiro

and Varian 2000). In an environment where organizing logic, market

dynamics, and architectural designs largely have emerged as a response to

the efforts and costs of production, this property makes a significant force in

changing innovation practices. Since the design of software essentially is the

product, this unbounded replicability destroys the barrier between design

and production, giving a product innovation regime its distinct character.

Second, digital products are programmable, which largely detaches

functionality from physical artifact. To exercise the affordance

programmability organizations have to break with linear models of

development, prescribing temporal sequencing of functional design and

physical design. Similarly, they have to establish new business models,

allowing for recurring sales across the lifetime of a product. As software

separates the meaning and functional behavior of a product from the

product itself it destroys the barrier between functional design and physical

design.

3.2 Programmability and Replicability

The digitalization of tangible products can take different forms. Affordances

may be exercised so as to comply with an existing innovation regime and,

thereby, avoid many tensions calling for new practices. However, reaching a

point of digitalization where a product can be given inherently new

functional properties across its lifecycle by changing its software, established

innovation practices are confronted with massive pressure for change.

Supported by the literature review in section 2 I argue that the digitalization

of tangible products destroys, or at least challenges, two key barriers that

significantly contributes to the character of traditional product innovation,

but which are largely not present in a digital innovation regime.

First, product innovation is characterized by a considerable barrier between

a design and its realization as a physical product. Largely, we can trace this

barrier to the substantial fixed and marginal costs associated with the

production of tangible products. The production of cars or airplanes requires

massive investments in specialized assets, such as tools, supply chains, and

plants. To stay competitive a product developing firm has to depreciate these

fixed costs across large volumes of product, enforcing an economy of scale.

Similarly, every single unit is associated with a marginal cost of materials,

explicitly translating into product price.

As we have seen, yet not expressed in terms of barriers, a product innovation

regime is highly colored by production. Products are often architected for

Chapter 3

68

producibility, rather than functional supremacy. Markets are relatively

homogeneous as competition plays out across dominant designs. These

dominant designs allow firms to fine tune production processes, while

offering variation in the details. We can also trace the rationale behind

organizational forms to production. The centralized organization structures,

behavioral control modes, and linear development processes of a product

innovation regime all make sense in light of production. They are not

primarily instruments for the delivery of a particular functionality, but

ensure that different parts are at the same place at the same time, that they

fit together and can be easily assembled into a product.

As a whole, a product developing organization is a highly teleological

machinery. There is an up-front plan for design, sourcing of components,

systems integration, verification, assembly, and shipping. Competitive

advantage emerges out of a capability to make this machinery work in

concert. Inevitably, this enforces a temporal sequencing, normally

implemented as waterfall models of design and production (Boehm 1976;

Royce 1970). Such temporal sequencing raises another fundamental barrier

between functional designs and physical designs of the artifact mediating

functionality. When the teleological machinery has turned its design

attention to production aspects, functionality is largely frozen. It is simply

very hard and costly to override prescribed processes in order to reconsider

once agreed on functional specifications. When reaching the point of

production, functionality is inevitably inscribed in the artifact.

To illustrate the barriers and their implications on innovation I propose a

simple model (Figure 1), centered on the distinctions between abstractions

and observable phenomena, on the one hand, and technology and its

context, on the other hand. First, I argue that innovation is about the

continuous redefinition of meaning taking place in practice (right half-

plane). As artifacts evolve on open markets, they are filled with new

meanings, eventually resulting in new practices. Using the language of

Wenger (1999), designer reifications, making the foundation of specific

products, may be overridden by the participation of users, applying the

artifact for new purposes. What is pushed to the market for one particular

purpose may be pulled by users for another purpose.

Second, innovation is in general a matter of interplay between practice and

our capability to understand practice through models, theories, and various

abstractions (lower half-plane). Innovation is to a large extent an act of

creativity that relies on our capability to make such abstractions of everyday

life and elaborate them for specific purposes. Weather forecasting, as an

example, has improved in coherence with our theoretical understanding of

meteorological phenomena. To make sense in a product innovation context,

Theoretical Framework

69

I have described this as the interplay between functional design and practice.

Observe that this refers to the domain of problems, independently of

technological manifestation. As an illustration navigation functionality can

be captured in its details with a human co-driver in mind, rather than an in-

car device. Routing and guidance still make perfect sense and can be

understood independently of technology.

Third, we find innovation at the borderline between functional design and

physical design (left half-plane). On the one hand, designers have to be

skilled in the conceptualization of problems in context. At the same time,

they need a solid language for how to understand the technology they work

with and the opportunities and constraints coming with it. Successful

innovation grows from the overall capacity to mangle these perspectives

together. Essentially, this entails a genuine capability to rethink both the

domain of technology and problems, seeing them from different angles

where they make sense together. A one-sided approach may enrich our

thinking, but does not translate into innovation. Consider, as an example,

the case of teleportation7. From a philosophical point of view the idea is

highly intriguing and it is relatively straight forward to engage in its

functional design. However, when considering its manifestation in

contemporary technology it is reduced to a marginal curiosity, simply

because we cannot imagine the technology mediating teleporting

functionality and even less so envisioning a conceptual design of it. At the

level of designers, innovation is a process where the design of tangible

artifacts is guided by functional specifications, but at the same time guides

the conceptualization of these functions. This interplay injects new ideas in

the design process, exposes affordance, and identifies constraints.

Finally, product innovation plays out in the transition from physical design

to product (upper half-plane). A blueprint represents a conceptual model of

a product, mediating a particular function. However, it is also the schema

guiding the assemblage of different parts into a product. Successful

innovation emerges from the simultaneous capability to produce artifacts for

particular functional purposes and architect products for the specific

processes of mass production. Reducing the number of different bolt types,

while preserving the functionality of a design offers larger volumes in

sourcing bolts and fewer tools in production. Reducing the total number of

bolts reduces the total cost and simplifies assembly as the number of

operations fall.

7 Teleportation normally refers to instantaneous transfer of matter over long

distances.

Chapter 3

70

Figure 1. A model of product innovation.

The separation of design and production, on the one hand, and functional

design and physical design, on the other, constitute barriers that are highly

characterizing for product innovation. However, my attention on these

barriers does not primarily serve the purpose of illustrating a product

innovation regime, but to make a basis for understanding digitalization of

tangible products. In fact, these barriers essentially do not exist in a digital

innovation regime. There is certainly fixed cost associated with software.

However, this cost derives from design and not production. As we have seen,

software affords instant replication, without fixed or marginal cost (Benkler

2006; Shapiro and Varian 2000). While the transition between design and

production is fundamental to a product innovation regime, it is largely

meaningless in digital innovation. Essentially, the design is the product.

Once a detailed design is in place, there is virtually no time lag before the

product can be distributed to users.

Similarly, the stored-program concept separates functional logic from the

physical hardware that executes it. Therefore, a physical artifact can perform

new functions across its life time if equipped with new instructions or

programs. There is certainly a dependency between software-enabled

functionality and the hardware executing it. Yet, the temporal sequencing of

product innovation, inscribing functionality in physical designs has no

correspondence in digital innovation. Digital technology affords

programmability, largely detaching functional design from the physical

design of artifacts.

Practice

Product

Functional
design

Physical
design

phenomenonabstraction
ar

ti
fa

ct
p

ro
b

le
m

III

III IV

i

ii

iii

iv

Theoretical Framework

71

Indeed, programmability and replicability are properties of digital

technology with the potential to radically transform product developing

organizations and industries. At the same time transportation, heating, lawn

mowing, etc, will remain highly physical values even as cars, heat pumps,

and mowers are increasingly digitized. Digital technology will not enforce a

digital innovation regime on product developing organizations, but clearly

we will see new forms of innovation emerge. How digitalization plays out in

established innovation processes is determined by the extent to which firms

and industries are prepared to rethink organizational forms, design

processes, governance frameworks, business models, etc. As demonstrated in

manufacturing over the last two decades, it is certainly possible to benefit

from digitization at the level of components, without really changing the

logic of innovation. Software and digital technology has proved successful in

reducing cost of components as well as improving functionality at the

margin. However, until now we have seen relatively few examples where

product developing organizations have used the programmability and

replicability of digital technology to set up an innovation practice with a

genuinely new flavor. In the following section I outline a theoretical

framework for how to conceptualize digital products at the boundary

between digital innovation and product innovation.

3.3 Architectural Frames

Whether studying biological or artificial systems, progression is about

combination (Alexander 2002; Arthur 2009; Simon 1996). In nature such

combinatorial progression “assumes no teleological mechanism. The

complex forms can arise from the simple ones by purely random processes”

(Simon 1962, p. 471). Artificial systems are clearly designed. Still, all novel

technologies arise by combination of existing technologies (Arthur 2009),

whether making incremental or radical impact on practice. Those

performing better are selected for future growth and development.

Technology simply “bootstraps itself upwards from the few to the many and

from the simple to the complex” (p.21).

In order to understand this bootstrapping process, shaping new paths of

innovation, we somehow need to appreciate the intricate interplay between

humans and technology. As product developing environments are

increasingly digitalized, we have to pay attention to the novel affordances of

digital technology that, exercised by humans, translate into new

opportunities (3.1). We also have to consider the impact of such new

affordance on established innovation practices. That is, to what extent these

affordances challenge established processes, structures, and logics (3.2).

Still, we will not be able to paint a credible portrait of digital product

Chapter 3

72

innovation unless we can explain how designers and managers conceptualize

digital products to mindfully combine new and old, digital and non-digital.

That is a theoretical perspective explaining how product developing

organizations exercise the opportunities of digital technology in reasonable

harmony with its legacy.

Organizations manifest their strategies for technological change in product

architectures. In contrast to design, which we often view as forward-looking,

aiming for the solution of a particular problem or challenge, architecture can

be described as retrospective. It represents some kind of guideline and best

practice for how to combine and reconfigure existing elements for new

purposes. Thereby, the magnitude of the concept becomes visible across

generations of designs. Architecture is structure-preserving and structure-

enhancing (Alexander 2002), passing sound solutions on from design to

design and generation to generation. In connecting historical achievements

with future potentialities, architecture is a key instrument for path creation,

helping firms to create competitive advantage over time.

As technology “bootstraps itself upwards” (Arthur 2009) it turns increasingly

complex. Combination inevitably feeds larger and larger systems, constituted

by a growing number of elements and rapidly increasing interaction between

elements. In a complex system, “the whole is more than the sum of the

parts”, meaning that “given the properties of the parts and the laws of their

interaction, it is not a trivial matter to infer the properties of the whole”

(Simon 1962, p.468).

Clearly, the management of complexity is a critical challenge in architecting

products. When designers do not understand how elements of a system form

a whole and make sense together they cannot work effectively with each

other. In the long run, they cannot mediate the evolution of the system as

they do not know the effects of restructuring it. When change in one part of

the system is likely to generate unexpected side-effects in another designers

will simply be very careful changing working solutions. Without a sound

architecture, giving access to key structures of the system while

backgrounding subordinate aspects, historical achievements are likely to

turn into ballast rather than assets.

The management of complexity is primarily a matter of identifying and

exercising appropriate representations. As underlined by Herbert Simon,

complexity is not an invariant aspect of technology. Rather, “how complex or

simple a structure is depends critically upon the way in which we describe it”

(Simon 1996, p. 215). Consequently, a given product can be complex in the

eyes of one observer and simple for another. To make a successful link

between historical achievements and future potentialities an architecture has

Theoretical Framework

73

to offer a perspective on a product or system that can be shared among a

wider audience. Therefore, at its most general level, an architecture is

constituted by a shared way of thinking.

As we have seen product innovation and digital innovation represent two

radically different forms of architectural thinking. In product innovation

change emanates from the center of organizations that exercise formal

control to improve functionality and reduce cost of products subject to

dominant designs. In this environment architectures are framed to

foreground physical structures shared between variants. This framing is

grounded in a need to depreciate substantial investments in plants, tools,

and processes across a range of planned models and several generations of

the product. Thereby, the architecture is an instrument offering reuse of

critical assets, eventually securing reasonable variability, change, and

attractive pricing at the level of end-users.

Digital innovations regimes exercise quite different architectural thinking. In

these software-centric environments, innovation takes place in loosely

coupled networks where a shared platform makes a tool to orchestrate a

variety of heterogeneous knowledge in the harsh competition over attention.

The architecture cannot be viewed as the common parts of a range of known

products. Rather, it is focused on the structure of functions or problems,

offering a collection of best practice tools and inherent support for the

reconfiguration and reuse of existing ideas. Making a catalyzer for open-

ended innovation in ecosystems of rich and heterogeneous knowledge the

architecture is a key instrument for firms building generative capability.

Clearly, product innovation and digital innovation represent two different

traditions of architectural thinking. To understand complexity in a context

where tangible products turn increasingly digital I will now present a

theoretical model, centered on the concept of architectural frames. This

model is designed to contribute at three different levels. First, it connects the

architectural practice of product innovation and digital innovation to two

different stream of intellectual thinking on complexity. Second, the model

helps explicating the distinctions and differences between the two regimes.

Finally, it makes a theoretical tool for understanding how architectural

thinking can be combined in digital product innovation.

On a general level, architectural frames are schemas for thinking about and

representing a complex product’s architecture. Thereby, architectural

frames can be conceived of as cognitive processes crystallizing as particular

ways of managing complexity in the design of products. It is worth noting

that this model uses the notion of frames somewhat differently than the

seminal works of Bijker (1987), Gioia (1986), and Orlikowski (Orlikowski

Chapter 3

74

and Gash 1994). Here frames do not refer to “built-up repertoire of tacit

knowledge” (Gioia 1986, p.56), or a “subset of members’ organizational

frames that concern the assumptions, expectations, and knowledge they use

to understand technology in organizations” (Orlikowski and Gash 1994,

p.178). Instead, the substance of respective frame is grounded in the history

of intellectual thinking on complexity, rather than in the everyday practice of

technology stakeholders. The frames can be seen as invariant and

theoretically grounded bases in a space of architectural thinking. Together,

the frames span this space and can be combined to inform practice in

different phases of digitalization.

The model distinguishes between two frames, the hierarchy-of-parts frame

based in the thinking of Herbert Simon (Simon 1962; Simon 1973; Simon

1996; Simon 2002) and the network-of-patterns frame based in the thinking

of Christopher Alexander (Alexander 1964; Alexander 1979; Alexander 1999;

Alexander 2002; Alexander et al. 1977). In what follows, I derive and

explicate the characteristic features of these frames (summarized in Table 2).

Reflecting the thinking of Herbert Simon and Christopher Alexander is, of

course, an almost impossible task. It is particularly challenging since they

belong to different disciplines and have different points of departure in their

respective work. To make reasonable justice to their ideas, yet focus my

attention where their lifetime achievements overlap or relate, I will now

engage them in a fictitious dialogue (3.3.1) on complexity, structure and

change. As far as possible this dialogue is compiled using direct quotes

(italic) from a few seminal writings. Drawing on the dialogue I then outline a

set of conceptual constructs, characterizing the hierarchy-of-parts frame

(3.3.2) and network-of-patterns frame (3.3.3) correspondingly. Rather than

giving literal justice to original intellectual sources, these constructs together

manifest an ideal frame, “formed by the one-sided accentuation of one or

more points of view” (Weber 1949, p. 90). Finally, I examine the relationship

between the frames and how they interact during design of digitized

products (3.3.4).

Table 2. Core dimensions of architectural frames.

Dimension Hierarchy-of-Parts Network-of-Patterns

Complexity Decomposition-
aggregation

Generalization-
specialization

Structure Hierarchy Network

Element Part Pattern

Relation Interface Inheritance

Theoretical Framework

75

3.3.1 A Dialogue between Simon and Alexander

Making a fair portrait of someone’s thinking is a challenging task. Trying to

contrast the legacy of two great thinkers is even more demanding. To give

life to the core ideas of Herbert Simon and Christopher Alexander, yet keep

attention on the concept of architecture, I have engaged them in a fictitious

dialogue. This dialogue is compiled on the basis of direct quotes, marked in

italic. As demonstrated in other settings (cf. Steiner 2009) this approach

enables original sources, while at the same time offering the reader a fast

track, designed for a particular purpose. To set up such a fast track, this

dialogue is moderated to center attention on topics of relevance for this

thesis. At the same time it is complicated to extract quotes from a lifetime

achievement to make certain points. To avoid a biased view this fictitious

dialogue is composed on the basis of a few seminal sources and specifically

designed to reflect Simon’s and Alexander’s views on complexity, structure

and change. This said, let us give the floor to the moderator.

 [Moderator] Today we are offered an exciting opportunity to plunge into

the ideas of two very influential thinkers. Herbert Simon is a Nobel laureate

in economics with seminal contributions in several scientific domains,

including artificial intelligence, decision-making, organization theory, and

complex systems. His work on nearly decomposable systems is generally

considered to be the core concept of modularity, being immensely influential

in modern mass production. Christopher Alexander is an architect who

devoted his career to the de-professionalization of design, trying to restore

users at the center of creative processes. His concept of pattern languages

was created to empower anyone to design and build at any scale. Being

somewhat an outsider in his own discipline, Alexander’s work has been

highly influential in software industries.

We are here today for something of a debate. It is grounded in the

observation that the works of these two gentlemen are sometimes put on par

and sometimes described as fundamentally different. The aim of this

dialogue is to bring light to the different perspectives from which our guests

have derived their frequently cited discussions on complexity, structure, and

change.

Let us warm up with a brief discussion on the concept of design. What is

design? And what major challenges do you see in contemporary design? Prof

Simon?

[Simon] Well, that is a very general question. Let me try to give you a

general answer. I use to say that everyone designs who devises courses of

action aimed at changing existing situations into preferred ones. That

makes design a very broad concept. The intellectual activity that produces

Chapter 3

76

material artifacts is no different fundamentally from the one that

prescribes remedies for a sick patient or the one that devises a new sales

plan for a company or a social welfare policy for a state. Design, so

construed, is the core of all professional training; it is the principle mark

that distinguishes the professions from the sciences (Simon 1996, p. 111).

[Moderator] Prof Alexander?

[Alexander] I think Prof Simon just made a very good point here; Design is

everywhere around us. We are all designers. In my work as an architect, I

have spent a lot of time studying traditional societies where people largely

created their own environment to meet their own particular needs. I think –

as a response to your question about challenges – this perspective, to some

extent, has disappeared. In our own time, the production of environment

has gone out of the hands of people who use the environment (Alexander

1999). The feeling that people have been robbed of their intuitions by

specialists (Alexander 1979, p. 246) has been an ever-present inspiration in

my work with patterns and pattern languages. Sorry, let us not drift away

from the topic.

[Moderator] No, please. Feel free to give us an introduction to patterns.

We have plenty of time.

[Alexander] Well, we originally derived the conceptual foundation of

pattern languages from certain generative schemes that exist in traditional

cultures. These generative schemes are sets of instructions which, carried

out sequentially, will allow a person or a group of people to create a

coherent artifact, beautifully and simply. The number of steps vary: there

may be as few as half a dozen steps, or as many as 20 or 50. When the

generative scheme is carried out, the results are always different, because

the generative scheme always generates structure that starts with the

existing context, and creates things which relate directly and specifically to

that context. Thus the beautiful organic variety which was commonplace in

traditional society could exist because these generative schemes were used

by thousands of different people, and allowed people to create houses, or

rooms, or windows, unique to their circumstances (Alexander 1999, p. 81).

[Moderator] So, to some extent, pattern languages empower the people?

[Alexander] Yes, that is way to frame it.

[Moderator] Would you then say that modern man is powerless? Do we

generally expect authorities and major corporations to design environments

for us?

[Alexander] Well, at least there was a time, not long ago, when people

believed that a town had to be planned by a planner who made a plan or a

Theoretical Framework

77

blueprint. It was said that if the order of the town is not created from

above, there will just not be an order in the town. And so, even in spite of

the most obvious evidence of all the beautiful towns and villages built in

traditional societies without master plans, this belief has taken hold, and

people have allowed themselves to give up their freedom. However, I think

we might witness the pendulum swinging back, to some extent. It is

increasingly accepted that the structure of a town can be woven much more

deeply, more intricately, from the interaction of its individual acts of

building within a common language, than it can from a blueprint or a

master plan - and that indeed, just like your hand, or like the bush outside

my window, it is best generated by the interaction of the rules which

govern the construction of the parts (Alexander 1979, p. 499).

[Simon] I like your examples and fully agree on your observations. I just

want to add that they are valid far beyond your professional discipline. Over

the last century, we have become accustomed to the idea that a natural

system like the human body or an ecosystem regulates itself. Following

Darwin and his disciples, we explain the regulation by feedback loops

rather than a central planning and directing body. But somehow,

untutored intuitions about self-regulation without central direction do not

carry over to the artificial systems of human society (Simon 1996, p. 33).

[Moderator] Now, you both emphasize that design is an emergent

phenomenon, something that evolves over time under the influence of

different people. How does that resonate with the empowerment of people?

[Simon] I am probably drifting away from your question, but, clearly, a

major strength of human kind is our capability to collaborate. That is our

capability to create – design if you want – things together. My actions are not

independent from yours. Neither are they independent from what people did

yesterday. They are not even independent from what people do tomorrow. I

think, the point we are trying to make here is that we generally tend to

underestimate how both our historical legacy and our expectations on the

future influences design. We are rational beings and are expected to act

rationally when engaging in design. However, since the consequences of

many actions extend well into the future, correct prediction is essential for

objectively rational choice. That is not always easy to achieve. In simple

cases uncertainty arising from exogenous events can be handled by

estimating the probabilities of these events, as insurance companies do -

but usually at a cost in computational and information gathering. An

alternative is to use feedback to correct for unexpected or incorrectly

predicted events. Even if events are imperfectly anticipated and the

response to them less than accurate, adaptive systems may remain stable in

the face of severe jolts, their feedback controls bringing them back on

Chapter 3

78

course after each shock that displaces them (Simon 1996, p. 35). Returning

to your question, one could of course argue that an adaptive perspective

allows for good ideas to be absorbed in the evolution of products or towns, as

they come, whether they derive from a firm’s internal R&D activities or the

man in the street. In that sense, an evolutionary perspective on design is

more efficient, simply since it is less likely to reject good ideas, just because

they do not match our original expectations and assumptions.

[Moderator] I guess the obvious question then is: How do we create

technology that is naturally adaptable?

[Simon] Indeed. How do we build technology which can be changed in its

parts without falling apart over time into something useless? To me this is,

first and foremost, about complexity and the management of complexity.

Roughly, by a complex system I mean one made up of a large number of

parts that have many interactions. In such systems the whole is more than

the sum of the parts in the weak but important pragmatic sense that, given

the properties of the parts and the laws of their interaction, it is not a trivial

matter to infer the properties of the whole (Simon 1996, p. 183-184).

Looking around in nature as well as our artificial environment, it is striking

how often complexity takes the form of hierarchy – the complex system

being composed of subsystems that, in turn, have their own subsystems,

and so on (Simon 1962, p. 468). Hierarchies are interesting for many

reasons, but, in particular, it offers very special conditions for evolution. The

time required for the evolution of a complex form from simple elements

depends critically on the numbers and distribution of potential

intermediate stable forms (Simon 1962, p. 471; Simon 1996, p. 190). In fact,

these stable intermediate forms exercise a powerful effect on the evolution

of complex forms that may be likened to the dramatic effect of catalysts

upon reaction rates and steady-state distribution of reaction products in

open systems (Simon 1996, p. 192).

[Moderator] But, what makes these stable intermediate forms of a

hierarchy so powerful in change processes? Could you elaborate a bit on

that?

[Simon] Let us consider human problem solving, as an illustration. Here, a

partial result that represents recognizable progress toward the goal plays

the role of a stable sub-assembly (Simon 1962, p. 472). If we can approach a

problem, piece by piece, we are much more likely to find a solution. When

our partial results are not overturned as we approach the next sub-problem,

we can benefit effectively from our historical achievements as we

interconnect intermediate solutions in a hierarchy, eventually forming a

solution for the overall problem. This example underlines that it is not

Theoretical Framework

79

assembly from components, per se, but hierarchic structure produced either

by assembly or specialization, that provides the potential for rapid

evolution. The claim is that the potential for rapid evolution exists in any

complex system that consists of a set of stable subsystems, each operating

nearly independently of the detailed processes going on within the other

subsystems, hence influenced mainly by the net inputs and outputs of the

other subsystems. If the near-decomposability condition is met, the

efficiency of one component (hence its contribution to the organism's

fitness) does not depend on the detailed structure of other components

(Simon 1996, p. 193).

[Moderator] Then, would you say that near decomposability is a

fundamental condition for stable intermediate forms to arise?

[Simon] Yes, I would say so, at least in the context of complex systems.

Hierarchies have the property of near decomposability. In such a nearly

decomposable system, intracomponent linkages are generally stronger

than intercomponent linkages. This fact has the effect of separating the

high-frequency dynamics of a hierarchy – involving the internal structure

of the components – from the low-frequency dynamics involving

interaction among components (Simon 1996, p. 204). Consequently, in a

nearly decomposable system the short-run behavior of each of the

component subsystems is approximately independent of the short-run

behavior of the other components (Simon 1996, p. 198). Such components

are stable intermediate forms in the sense that they perform relatively

independent of other components. Is that a reasonably clear illustration of

how hierarchy and stable intermediate forms play out in evolution? One way

to see it is that nearly decomposable systems are able of limping along, even

if some subsystems are incomplete or damaged. Therefore, among possible

complex forms, hierarchies are the ones that have the time to evolve (Simon

1996, p. 196).

[Moderator] If we turn to the literature, you are sometimes cited together,

to make the same argument. I think we find the most salient example in

different writings on modularity. Does that mean you essentially share the

same perspective on complexity and the structure of complexity? Prof

Alexander?

[Alexander] Well, first of all, I am an architect. I have never claimed broad

validity of my theories, beyond this domain. That is done by others. That

said, I can see both similarities and differences in our respective work. I

certainly approve of Prof Simon’s work. You have provided us with a whole

range of beautiful theories, allowing us to better understand processes of

change. At the same time, we clearly have adopted different perspectives. To

Chapter 3

80

use your words, I have found a lot of my inspiration in the simple

observation that we see so little of stable intermediate forms in our physical

environment. At least in those environments we see as whole and living. I

think it is very puzzling to realize that the ‘elements’, which seem like

elementary building blocks, keep varying, and are different every time that

they occur. For among the endless repetition of elements we see almost

endless variation. Each church has a slightly different nave, the aisles are

different, the west door is different … and in the nave, the various bays are

usually different, the individual columns are different; each vault has

slightly different ribs; each window has a slightly different tracery and

different glass. Still, we have no problems recognizing a church. I find this

truly fascinating. If the elements are different every time that they occur,

evidently, then, it cannot be the elements themselves which are repeating in

a building or a town: these so-called elements cannot be the ultimate

“atomic” constituents of space. Since every church is different, the so-called

element we call “church” is not constant at all. Giving it a name only

deepens the puzzle. If every church is different, what is it that remains the

same, from church to church that we call ‘church’? (Alexander 1979, p. 84-

91). If there are stable intermediate forms, where do we find them?

Let us look more carefully at the structure of the space from which a

building or a town is made, to find out what it really is that is repeating

there. We may notice first that over and above the elements, there are

relationships between the elements which keep repeating too, just as the

elements themselves repeat. Beyond its elements each building is defined by

certain patterns of relationships among the elements. For example, in a

gothic cathedral, the nave is flanked by aisles which run parallel to it. The

transept is at right angles to the nave and aisles; the ambulatory is

wrapped around the outside of the apse, and so on. There are countless

examples illustrating that our ability to recognize a gothic cathedral is

hidden in the arrangement of elements – how they relate to each other –

rather than the elements in themselves. Evidently, then, a large part of the

‘structure’ of a building or a town consists of patterns of relationships.

Medieval churches as well as cities get their characters from these repeating

patterns of relationships (Alexander 1979, p. 85-87).

When we look closer, we realize that these relationships are not extra, but

necessary to the elements, indeed a part of them. The aisle is constituted by

its relationships to the nave and other elements around it. As an element in

isolation it is pointless and empty. Once we recognize that much of what we

think of as an ‘element’ in fact lies in the pattern of relationships between

this thing and the things in the world around it, we then come to the second

even greater realization, that the so-called elements is itself nothing but a

Theoretical Framework

81

myth, and that indeed, the element itself is not just embedded in a pattern of

relationships, but is itself entirely a pattern of relationships, and nothing

else. I hope this detour makes some sense to you? That it, to some extent,

illustrates my view on evolution and change. Whatever object or system we

study, it cannot be described in isolation. To get a grip of the structures

repeating themselves over time, we need to capture the relations between

systems and context. We need to refocus our minds – tune in for

relationships, rather than element. Given this, the things which seem like

elements dissolve, and leave a fabric of relationships behind, which is the

stuff that actually repeats itself, and gives the structure to a building or

town (Alexander 1979, p. 88-89).

Finally, to conclude this monologue, the patterns are not just patterns of

relationships, but patterns of relationships among other smaller patterns,

which themselves have still other patterns hooking them together - and we

see finally, that the world is entirely made of all these interhooking,

interlocking nonmaterial patterns (Alexander 1979, p. 91).

[Moderator] And this is where the pattern language comes in? The

structure you refer to is a web of interlinked patterns?

[Alexander] Yes, that is right. Let us focus on a particular pattern, labeled

A. Let us say it is the aisles of a gothic church. If we make a picture of all the

patterns which are connected to the pattern A, we see that the pattern A sits

at the center of a whole network of patterns, some above it, some below it.

Each pattern sits at the center of a similar network. And it is the network of

these connections between patterns which creates the language. It is worth

noting that the links between the patterns are almost as much part of the

language as the patterns themselves (Alexander 1979, p. 313-314).

Therefore, the structure of the language is created by the network of

connections among individual patterns: and the language lives, or not, as a

totality, to the degree these patterns form a whole (Alexander 1979, p. 305).

[Moderator] So, this structure – the pattern language – is a knowledge

base, guiding, for example, the construction of a gothic cathedral to be

characteristic, yet unique?

[Alexander] Yes, if you like. Ultimately, a person with a pattern language

can design any part of the environment. He does not need to be an ‘expert’.

The expertise is in the language. He can equally well contribute to the

planning of a city, design his own house, or remodel a single room, because

in each case he knows the relevant patterns, knows how to combine them,

and knows how the particular piece he is working on fits into the larger

whole. And it is essential that the people shape their surroundings for

themselves (Alexander 1979, p. 353-354). As you probably have noticed this

Chapter 3

82

is a cornerstone in my approach to design and architecture. Wholeness

cannot be achieved by remote specialists, detached from the local

environments. That is why I would prefer another twist of your original

question; I do not think the challenge is to create technology that is naturally

adaptable. We do not just want new technology, at an increasing pace of

change, do we? We want technology creating wholeness and harmony in our

everyday life, right? So, to me a central challenge is how to create such living

structure. That is structure, allowing for variety, yet preserving the

wholeness across generations of designs. It turns out that these living

structures can only be produced by an unfolding wholeness. That it, there is

a condition in which you have space in a certain state. You operate on it

through things that I have come to call ‘structure-preserving

transformations’, maintaining the whole at each step, but gradually

introducing differentiations one after the other. And if these

transformations are truly structure-preserving and structure-enhancing,

then you will come out at the end with living structure (Alexander 1999, p.

78-79).

[Moderator] It strikes me that structure is a central concept in your

respective writings, yet you refer to quite different things, do you not? When

you talk about structure, Prof Simon, you seem to refer to the configuration

of a well defined system, an observable phenomenon. It may be a church, a

car, or an organization, yet it is something quite concrete. It is the schema

interconnecting the whole and the parts. Some structural forms allow for the

system to be changed and manipulated more easily than others. Therefore,

seen across generations, the structure makes a basic condition, deciding the

pace of change. In contrast, the structures we find in Prof Alexander’s

pattern languages refer to something quite different. With your discussions

in mind, I see it is a map, defining how different solutions – patterns – make

sense together. A pattern language does not capture the structure of a

particular gothic church, yet it holds the soul of any gothic church. When

applying a pattern language in a design process, the designer is gradually

carving out a path through the network of interconnected patterns making

up the language. It does not reflect the decomposition of a system into parts,

but rather how general patterns can form specific solutions in an indefinite

number of ways.

[Simon] I think I see the distinction you want to make. In my work, I have

been theorizing on the relation between the structure of a complex system

and the time required for it to emerge through evolutionary processes.

Specifically, I have been arguing that hierarchic systems will evolve far

more quickly than non-hierarchic systems of comparable size (Simon 1962,

p. 468). Thereby, the system is at the center of attention in my writings. I

Theoretical Framework

83

know it is easy to associate ‘system’ with hard things – cars and airplanes –

but, keep in mind; the idea on near decomposability is equally valid for social

systems and human problem solving.

[Moderator] Still, the hierarchy of a nearly decomposable system – social

or technical – is a structure of a real, concrete system, while a networked

pattern language is an abstract structure, used to generate such specific

instances. They play out at different levels. Am I wrong? Drawing inspiration

from nature and biological systems, Prof Simon serves us with a perspective

where historical legacy is carried from generation to generation by the

system in itself. You, Prof Alexander, serve us a perspective, where legacy is

embedded in our collective mental models for how to solve problems.

[Alexander] Well, clearly a building is an instance. Ultimately, each

building is unique, tailored for its particular context. Yet, there is a

relationship between buildings, unfolding over time. To me it is rather clear

that we will never understand this relationship – and thereby not the basic

forces of evolution – if we try to dismantle the buildings. The blueprints of

every church ever built will not help us understand why they are all

churches, yet very different. Rather, we have to understand that every place

is given its character by certain patterns of events that keep on happening

there (Alexander 1979, p. 55). That is where to look for structure. To me the

world does have a structure just because these patterns of events which

repeat themselves are always anchored in the space. You do certain things

in a church. The structures of a church will not unfold, unless you

understand why and how people practice their different ceremonies. I

cannot imagine any pattern of events without imagining a place where it is

happening. I cannot think of sleeping, without imagining myself sleeping

somewhere. Of course, I can imagine myself sleeping in many different

kinds of places – but these places all have at least certain physical

geometrical characteristics in common (Alexander 1979, p. 69). What I

mean is that the structure we look for is found at the level of problems and

solutions, rather than at the level of physical objects. That is at the level of

actions and processes. What seems at first sight like a static thing is in fact a

constant flux of processes (Alexander 1979, p. 356). This is where we need to

focus our attention. It is the processes we need to understand. And this is

where the pattern language comes in. Every act which helps to shape the

buildings and the towns and their activities is governed by the pattern

language people share – and governed above all by just that portion of the

language which is especially relevant to that especial act (Alexander 1979,

p. 358).

[Moderator] You might find me obsessed with the idea of distinguishing

your work, but I simply find it intriguing that you from certain angles seem

Chapter 3

84

to say the same thing, while from other angles show remarkable difference.

One early observation I did when first trying to get familiar with your work

was that you, Prof Simon, obviously have found a lot of inspiration in nature

and biological evolution, while Prof Alexander, being an architect, is very

design oriented. That first led me to believe that hierarchic structures and

near decomposability are dominant in change processes where path

dependency is strong and short-term, human agency is weak, while patterns

languages prosper in design-centric change, characterized by human will. I

can see now that this is a very narrow view and essentially incorrect. As we

know, modularity is a key concept in product design that has radically

transformed industrial productivity.

[Alexander] With respect for your observations, but I think it would be

quite misleading to distinguish between us by attributing evolutionism to

Prof Simon and design centrism to me. I would argue that we have both

adopted an emergence-centric perspective on change. The role model of such

a perspective is, of course, nature and the change processes we see in nature.

As a collective, humans are exceptionally successful. Yet, compared to nature

we are mediocre designers in some respects. Why? Nature makes use of

time. It does not create things in a single act of mindful creativity. At least to

this date, the great complexity of an organic system which is essential to its

life cannot be created from above directly; it can only be generated

indirectly (Alexander 1979, p. 162). In my work, I have argued that the same

basic mechanisms apply to artificial system, meaning that towns cannot be

made, but only generated, indirectly, by the ordinary actions of the people,

just as a flower cannot be made, but only generated from the seed

(Alexander 1979, p. 162). I truly believe that this applies to any complex

system which we would see as living and whole. This is actually the

theoretical underpinning of our work with pattern languages – we wanted to

generate the environment indirectly, just as biological organisms are

generated, indirectly, by a genetic code (Alexander 1999, p. 73).

 [Simon] Listening to Prof Alexander I can only agree. At this level we have

a very similar approach to change. I have seldom used the notions of indirect

generation or generativity, but I have often said that among possible

complex forms, hierarchies are the ones that have the time to evolve (Simon

1996, p. 196). Near decomposability, unfolding from hierarchy and stable

subassemblies, simply makes a powerful and efficient bridge between

generations. Nature clearly shows that this architectural feature accelerates

the rate at which the fitness of organisms possessing it increases over time

through the standard processes of genome change and natural selection

(Simon 2002, p. 588). It applies to artificial systems as well. Using the

language of Prof Alexander, near decomposability allows a designer to

Theoretical Framework

85

generate new systems from proven building blocks, working together in a

proven configuration, without being exposed to its full complexity.

[Moderator] You certainly do not make life easy for me, trying to find

areas of disagreement! Let me try a different angle, before closing down this

very rewarding session. You are both turning to biological evolution and

genetics when demonstrating your views on change. I know it is a

metaphoric use, yet it illustrates well the crucial role of an unbroken,

common thread across generations. That is what genes do; they carry a

legacy from generation to generation. Progression is about exploiting this

legacy in a beneficial way, yet not being a hostage of it. Although you largely

share the same view on the overall mechanisms behind change processes, I

would say that you suggest quite different manifestations of this thread.

[Simon] Could you elaborate that a bit more? I am not sure I follow.

[Moderator] Well, as you have both pointed out, time is a key aspect when

it comes to complexity and the management of complexity. Modular

architectures and pattern languages are containers of knowledge, experience,

insights, wisdom – whatever we want call it – sparing us the full complexity

of a system up-front. They are instruments interconnecting generations of

designs in a particular way. Thereby, they define a particular perspective on

path dependency. It just strikes me that you promote rather different

structures and, thereby, different models for understanding path

dependency.

Let us take the automotive industry as an example. Here, modularity is a

central concept, present from the first sketches, through design and

development, to the final car. In practice, this means that the entire

organization is shaped to fit a representation of the final product – the

outcome of the design process. In these modular design practices it is

primarily the decomposition of the car that is documented, not the rationale

behind that decomposition. The function of a particular component is largely

described in terms of interfaces, telling us how it relates to other

components. When I listen to you, Prof Simon, I can see that this is a key

point, explaining why nearly decomposable systems evolve faster; when we

have learnt how to produce a particular component it makes a stable

subassembly. As long as we can continue producing this subassembly we can

focus our full attention on other issues. The history behind it is, to some

extent, expendable.

[Simon] Indeed, that is certainly true.

[Moderator] As a result, these stable subassemblies cause rather strong

path dependency. If you like, historical legacy is carried from generation to

generation by the artifacts – components and car. A designer responsible for

Chapter 3

86

the navigation system knows the decomposition of his components in deep

detail, but he knows very little about the original problems facing the original

designers. In this context, it is a rather bold decision to make significant

changes. With a modular system designers can predict how changes translate

through the hierarchic system, i.e. how other components are influenced, but

blueprints and component specification give little support in understanding

how these changes play out at a social or practical level.

[Simon] OK, I think I see where you are going.

[Moderator] Prof Alexander argues that wholeness cannot be achieved by

standard components. To create living structure every building has to be

designed uniquely in harmony with its local context. Therefore, beyond an

elementary level, you see few stable subassemblies, shared between all

buildings of a class. However, you underline that there are standardized

processes, able to generate such coherent and morally sound buildings.

Pattern languages, whether formalized or tacit, are the structures passing

knowledge about these processes on from one generation of carpenter or

architects to another. Seeking inspiration in the design of a new house it is a

waste of time trying to decompose an existing building in its different

physical parts. Instead, we have to see through the physical structures to

understand the problems addressed and solutions offered by a particular

design. This way, path dependency manifests itself as structure-preserving

and structure-enhancing transformations, generating buildings which offer

solutions to generic, shared human needs, yet in harmony with local context.

[Simon] You certainly have a point in that we discuss structure at different

levels. I am just not sure these discussions are incompatible.

[Moderator] Oh, that is not what I am suggesting. I just seek to clarify the

distinctions in your respective writings.

[Simon] OK. Let me then suggest that these related, but still slightly

different discussions follow from different initial questions. Maybe it is that

simple? After all, I have studied the structure of a complex system and the

time required for it to emerge through evolutionary processes (Simon

1962, p. 468). Clearly, this is not what has motivated Prof Alexander in his

work with pattern languages. You have sought the evolutionary roots of

wholeness and living structure.

[Alexander] True.

[Simon] I have used nature as a source of inspiration to understand the

basic premises of change in artificial system. I have studied pace of change,

but I have not engaged in a discussion on whether change is appropriate or

desirable. That is, on the other hand, what your pattern language is all about,

Theoretical Framework

87

Prof Alexander. You have used nature as a role-model to understand how

sound designs, offering value to people in different context, can be preserved

and enhanced over time.

 [Moderator] That was an excellent closing of this dialogue. Rather than

seeing Simon’s nearly decomposable hierarchy and Alexander’s pattern

language as competing views we can see them as complementary approaches

to the complexity of artificial systems. That is indeed a very encouraging

perspective. I think we all have learned a lot and will walk out of this room

with a lot of inspiration. Thank you all for coming here today.

3.3.2 Hierarchy-of-Parts

In his seminal work on complex systems, Herbert Simon has studied “the

relation between the structure of a complex system and the time required for

it to emerge through evolutionary processes” (Simon 1962, p. 468).

Specifically, he argued that “hierarchic systems will evolve far more quickly

than non-hierarchic systems of comparable size”. The “potential for rapid

evolution”, coming with such hierarchic systems can be explained in that it

“consists of a set of stable subsystems, each operating nearly independently

of the detailed processes going on within the other subsystems, hence

influenced mainly by the net inputs and outputs of the other subsystems”

(Simon 1996, p. 193). If this so called “near-decomposability condition is

met, the efficiency of one component (hence its contribution to the

organism's fitness) does not depend on the detailed structure of other

components”.

Simon’s work is centered on the structure of systems. It identifies such

structures as the link between generations of the system. The stable

subassemblies of a hierarchy allows for historical efforts and investments to

be efficiently reused and managed across generations. In the moment an in-

car navigation system or a kidney proves functional, its genesis turns

irrelevant. As long as it remains functional, the subassembly can be pushed

to the background, and forces of change can be directed elsewhere.

As suggested by the name, the hierarchy-of-parts frame draws on this

Simonian thinking by prescribing hierarchy as the core structure of design.

Such hierarchic structure emerge as designers recurrently practice

decomposition and aggregation in the design of products. With the

decomposition of products into parts designers seek to establish and

preserve stable, loosely coupled subassemblies. Such stable subassemblies

hide complexity and delivers functionality through well defined interfaces.

In the aggregation of parts into products designers take the opposite

perspective and seek new configurations of parts. This is a bootstrapping

process, where simpler structures are recursively combined over time to

Chapter 3

88

form increasingly complex ones. This process allows for new value to

emerge, yet while preserving parts and configurations of parts to take full

advantage of design legacy.

Thereby, the hierarchy-of-parts frame makes a distinct architectural

approach to path dependency. On a general level, when decomposing a

product, designers seek to maximize the pay-off on investments. A smart

decomposition makes an asset for coming generations of the product. It is an

investment in the future. Aggregation, on the other hand, seeks to leverage

existing designs for new purposes. It is a way to exercise opportunities in

design legacy. Drawing on this I suggest following definition of the

hierarchy-of-parts frame:

Definition: The hierarchy-of-parts frame views a product’s

architecture as a hierarchy of loosely coupled parts, emerging

from the recursive application of decomposition and

aggregation as designers seek to connect historical

achievements with future potentialities.

As a scheme for allocating product functionality to physical components

(Ulrich 1995, p. 419), the hierarchy-of-parts frame relies on early binding of

functionality to physical configurations. The advantage of relying on this

principle during the design process is that it encourages designers to develop

architectures that support subsequent production. Some flexibility is

achieved during the design process by assigning design parameters that can

take on different values within a particular range to individual parts

(Baldwin and Clark 2000). This allows the designer to distribute

functionality to specific physical components while still defining generic

conceptions of a product. Later, the designer can then freeze a specific

solution by selecting particular values for each design parameter (Iansiti

1995). These considerations motivate the following:

The hierarchy-of-parts frame helps designers of digitized

products converge towards a physical product through

separation of concerns and early binding of functionality to

physical components.

3.3.3 Network-of-Patterns

Christopher Alexander has devoted a long and successful career “trying to

learn how to produce living structure in the world”. From the perspective of

an architect “that means towns, streets, buildings, rooms, gardens, places

which are themselves living or alive” (Alexander 1999, p. 73). Two aspects

seem particularly important to Alexander when seeking to explain the

formation of living structure. First, he underlines that we cannot create

Theoretical Framework

89

coherent, morally sound objects, unless we do it in deep harmony with the

local environment. “The characteristics of any good environment is that

every part of it is extremely highly adapted to its particularities” (Alexander

1999, p. 74). Therefore, in environments which we perceive as whole and

living, many of “the ‘elements’, which seem like elementary building blocks,

keep varying, and are different every time that they occur” (Alexander 1979,

p. 84). To produce such living structure, “it is essential that the people do

shape their surroundings for themselves” (cf. Alexander 1979, p. 74). Clearly,

this breaks with the mass-production/mass-consumption logic of our

contemporary world. In our time “the production of environment has gone

out of the hands of people who use the environment” (Alexander 1999, p.

74). Alexander even argues “people have been robbed of their intuitions by

specialists” (Alexander 1979, p. 246).

Second, Alexander states that “that life cannot be made, but only generated

by a process” (Alexander 1979, p. 74). He argues that it is highly misleading

to “think of works of art as ‘creations’ conceived in the minds of their

creators” (Alexander 1979, p. 160). The great complexity characterizing

living structure “cannot be created from above directly; it can only be

generated indirectly” (Alexander 1979, p. 162). Following this line of

reasoning, the main asset of a successful artist or engineer is not the

capability to make detailed up-front constructions, but rather the application

of generic and relatively simple skills in a responsive dialogue with materials

and context. “The brush stroke becomes beautiful, when it is visible only as

the end product of a process – when the force of the process takes over the

cramped will of the maker” (Alexander 1979, p. 160). This is when “the

maker lets go of his will, and lets the process take over”.

The legacy of Christopher Alexander is embodied by the concepts of patterns

and pattern languages. A pattern “is a three-part rule, which expresses a

relation between a certain context, a problem, and a solution” (Alexander

1979, p. 247). As an example, the star-shaped torx pattern for screw heads

addresses the problem of cam-out8 in assembly processes and offers a more

precise application of torque and increasing life-span of tools. It is widely

adopted in manufacturing settings, but largely inadequate in consumer

contexts, simply because the tool is not part of standard household

equipment.

“As an element in the world, each pattern is a relationship
between a certain context, a certain system of forces which

8 Cam-out is the process by which a screwdriver slips out of the head of a screw, once

the torque required to turn the screw exceeds a certain limit.

Chapter 3

90

occurs repeatedly in that context, and a certain spatial
configuration which allows these forces to resolve themselves.
As an element of language, a pattern is an instruction, which
shows how this spatial configuration can be used, over and over
again, to resolve the given system of forces, wherever the
context makes it relevant. The pattern is, in short, at the same
time a thing, which happens in the world, and the rule which
tells us how to create that thing, and when we must create it. It
is both a process and a thing; both a description of a thing which
is alive, and a description of the process which will generate that
thing” (Alexander 1979, p. 247).

As indicated, “the structure of a pattern language is created by the fact that

individual patterns are not isolated” (Alexander 1979, p. 311). The torx

pattern comes with significant material strain, stressing driver bits.

Therefore, it relies on subordinate patterns, solving the problem of material

damage in this particular context. When realized, such a subordinate pattern

may be manifested as an appropriate alloy. Consequently, “each pattern

then, depends both on the smaller patterns it contains, and on the larger

patterns within which it is contained” (Alexander 1979, p. 312). In fact, “each

pattern sits at the center of a network of connections which connect it to

certain other patterns that help to complete it” (Alexander 1979, p. 313). “It

is the network of these connections between patterns which creates the

language” (Alexander 1979, p. 313).

Clearly, a pattern language can be viewed from different perspectives. On the

one hand, it gives an alternative angle on “some of the physical structures

that make the environment nurturing for human beings” (Alexander 1999, p.

73). A pattern langue helps us capture and describe the character of a place

“by certain patterns of events that keep on happening there (Alexander 1979,

p. 55). It is a formal representation, telling us why a church is a church, even

though we cannot find two instances looking the same. However, a pattern

language can also be viewed as a way to describe sound design practices in a

particular field. Representing key ingredients of “living structure” a pattern

language will act as a sifter in a sandbox as evolution gradually reinforces

sound ideas in a series of “structure-preserving and structure-enhancing

transformations” (Alexander 1999, p.79). The language is a generative

scheme of instructions which, “carried out sequentially, will allow a person

or a group of people to create a coherent artifact, beautifully and simply”

(Alexander 1999, p. 81). Ultimately, “a person with a pattern language can

design any part of the environment. He does not need to be an ‘expert’. The

expertise is in the language” (Alexander 1979, p. 353). Thereby, a pattern

language makes a link, interconnecting contemporary design activities with

yesterday’s experiences and efforts. Together a network of patterns,

constituting a pattern language, allows for historical problem solving to be

Theoretical Framework

91

reused and managed by laymen as they design artifacts adapted to their own

local environment, unique in time and space.

As suggested by the name, the network-of-patterns frame draws on this

Alexandrian thinking by prescribing network as the core structure of

design. That is a network spanning a problem-solution space, rather than the

structure of a particular artifact. Such network structure emerges as

designers recurrently practices generalization and specialization in the

design of products. Generalization is a way to manage complexity, where

designers seek increasingly generic representations of the functionality

associated with an artifact. These representations, or patterns, are distinct

solutions for particular problems, defined by a given context. In the process

of generalization patterns are repeatedly disassembled into increasingly

generic elements, relating to each other through inheritance. We can view

inheritance as a barrier, hiding complexity as it separates the more general

aspects of a solution from the more specific. Thereby, the resulting web of

patterns makes a map of a problem space, simultaneously offering different

levels of granularity. Exercising specialization designers take a bottoms-up

perspective, seeking to extend the application of generic patterns by reusing

them for new purposes. While generalization largely is a matter of increasing

granularity, this process extends the problem space in that it generates new

specialized patterns from existing, more general ones. It is the process of

specialization that produces network structure. While generalization largely

generates hierarchy, as patterns are gradually broken down, the multiple

reuse of patterns produces many-to-many relationships, forming network

structure.

The network-of-patterns frame makes a distinct architectural approach to

path dependency. When exercising generalization, designers seek to identify

and describe principal elements9 of a given function. This time-consuming

work can seldom be motivated in context of an isolated product, mediating

well defined functionality. Rather, the increasingly generic patterns

emerging from generalization of high-level functionality has to be viewed as

an asset for coming generations. To a significant extent, generalization is an

investment in the future. Largely, these investments are exercised in the act

of specialization. This is when designers reuse general patterns to shape new

specialized patterns, resulting in new functions, products, and, eventually,

revenue. Specialization is about exercising the embedded opportunities in

design legacy. In this vein, specialization is associated with generativity.

Drawing on this I suggest following definition of the network-of-patterns

frame:

9 Compare principal component analysis in mathematics.

Chapter 3

92

Definition: The network-of-patterns frame views a product’s

architecture as a network of interrelated patterns,

representing functionality at different levels of granularity.

This network emerges from the iterative application of

generalization and specialization as designers seek to connect

historical achievements with future potentialities.

 As a scheme for maintaining functional fit between a product and its use

environment, the network-of-patterns frame relies on delayed, or fluid,

binding of functionality to physical configurations. The advantage of relying

on this frame during the design process is that it encourages designers to

develop architectures that support “living structures” or generativity

(Alexander 1999; Zittrain 2006). Flexibility is achieved by adopting a pattern

language that allows connections to other patterns specified by other

designers, making the space of possible solutions profound over time. These

considerations motivate the following:

The network-of-patterns frame helps designers of digitized

products share design ideas through general solution patterns

and delayed binding of functionality to physical components.

3.3.4 Interaction between Frames

The hierarchy-of-parts frame and network-of-patterns frame are not

disparate or incompatible perspectives. To some extent all designers have to

shape structures allowing them to reuse pre-existing components as

products evolve. Modern cars apply standard engines across variants and

generations. Ancient villagers used the same standard bricks, from the local

brickyard, to build all the different houses in a village. Although playing out

at completely different levels of abstraction and complexity engines and

bricks are both examples of stable physical subassemblies, possible to

combine with other parts, given strict compliance with some overall

principles. Similarly, all designers have to shape structures allowing them to

reuse the knowledge embedded in existing processes for new purposes. The

star-shaped torx pattern for screw heads has been adopted to solve a

countless number of problems and has improved assembly and reliability of

cars substantially. Once again turning to ancient builders, the diffusions of

half-timbering technique10 allowed 16th century builders to improve strength,

material consumption, construction time, and insulation of houses.

Therefore I suggest that:

10 Half-timbering – or timber framing - is the method of creating structures using

heavy timbers jointed by pegged mortise and tenon joints (Wikipedia).

Theoretical Framework

93

The hierarchy-of-parts frame and the network-of-patterns

frame are both represented when ever organizations architect

digitized products.

Although operating on different levels, the two frames complement each

other and contribute in distinct ways to reduce design complexity. The

hierarchy-of-parts frame creates concepts and structures centering on the

standardization and reuse of components, allowing for streamlined

production of related, yet differentiated artifacts. The network-of-pattern

frame creates concepts and structures zooming in on the standardization and

reuse of solution patterns, allowing for novel functionality to emerge from

the knowledge embedded in existing processes. Therefore:

The hierarchy-of-parts frame and the network-of-patterns

frame offer complementary schemes to architect digitized

products.

As tangible products are digitized, the network-of-patterns frame is

increasingly relevant in architectural practices. It is not just anecdotal

evidence, such as the immense popularity of Alexander’s pattern theory in

the software engineering community, suggesting that product developing

firms have to complement traditional approaches. This increasing relevance

can be traced to the generative capability of digital technology, where

programmability enables artifacts to perform new functions after production

and replicability support inexpensive production. With its focus on general

solutions to problems, the network-of-pattern frame leverages these

capabilities of digital technology, concentrating on the product’s

functionality rather than its production. In this regard, the two frames

complement each other, enabling the product-developing firm to exploit its

tangible products as platforms for a recurring digital business. This

seemingly minor change opens up for a completely different model, where

revenue is distributed across the lifecycle of the product.

In short, it can be argued that firms need to stay focused on the hierarchy-of-

parts frame to produce cheap, powerful, and scalable hardware, creating

significant installed base. At the same time, they have to cater for the

network-of-patterns frame to make this hardware an attractive, generative

platform, representing unlimited opportunities in the eyes of external actors.

The network-of-patterns view is essential to mobilize external creativity and

innovation, while the hierarchy-of-parts perspective allows for reasonable

control over the innovation process and appropriation of some of the value

created outside the boundary of the firm. Therefore:

By exercising the network-of-patterns frame when

architecting digital products organizations build capability to

Chapter 3

94

leverage the generative capability of digital technology across

the entire product lifecycle.

By exercising the hierarchy-of-parts frame when architecting

digital products organizations reinforce control over

hardware, in turn, allowing them to appropriate value from

largely uncoordinated innovation processes.

Although the two architectural frames are represented in any design process,

there is no doubt that the emphasis differ with the context. The ideas behind

near decomposability have transformed manufacturing industries

dramatically. Cars, airplanes, and home appliances are inherently modular,

using near decomposability to create variety and rapid pace of change. At the

same time patterns and pattern languages have influenced the software

industry significantly over the last two decades. Today software designers

find themselves spending more time on logical modeling of problems than

on coding. How can we explain this obvious difference? How do product-

developing organizations, with stakes in hardware as well as software,

combine frames?

Addressing this question I suggest that we focus our attention on the barrier

between a design and its realization as a physical product, derived in section

3.2. Clearly, the production of tangible products is associated with

substantial fixed and marginal costs, while software products are not. The

production of cars or airplanes requires massive investments in specialized

assets, such as tools, supply chains, and plants. To stay competitive a

product developing firm has to depreciate these costs across large volumes of

the product, enforcing an economy of scale. Relying on the hierarchy-of-

parts frame, product developing firms bridge the barrier between design and

production by a shared product structure, allowing specialized assets to be

reused across variants and generations of products. One can argue that

physical products tend to be architected for producibility.

If we think about it, this reasoning applies also to biological systems, so

frequently used as role models by Herbert Simon. Nature has spent billions

of years shaping sophisticated production machineries able to form living

organisms out of genetic blueprints. These specialized production assets,

shaped since the beginning of time at earth, are invaluable. The hierarchic

structure we find in living organisms allows for these assets to be reused, yet

opens up for adaptation at the level of parts. Any change in nature that

renders reproduction mechanisms useless is destined to become a dead end

in evolution. Living organisms are also primarily architected for

producibility.

Theoretical Framework

95

In software engineering the transition between design and production is

relatively uninteresting. To some extent, we can argue that the design is the

product. There are few specialized assets involved in the production,

enforcing a shared structure across variants and generations. Therefore, the

structure of a software product is not colored by production. There is simply

little pressure for uniformity in the realization of a software product. Instead,

competitive advantage emerges from the capability to reuse general ideas of

a design to constantly spinoff new products to the market. We can argue that

software products tend to be architected for generativity.

If we turn to the many examples from traditional societies, used by

Christopher Alexander in his writings, we will find that these settings are

characterized by moderate barriers between design and production as well.

Alexander keeps coming back to this setting since it is distinguished by a

layman practice, where buildings were designed and constructed by the man

at the street. It was not conditioned by expensive machines, exotic materials,

or extreme skills. A house was reasonably associated with significant cost,

but it was built using highly generic tools, such as saw, hammer, screwdriver,

etc. It did not require specialized assets, enforcing uniformity between

different buildings.

In summary, design-production barriers determine the locus of architectural

frames. Innovation environments characterized by substantial barriers –

involving a lot of costly, specialized assets – view product architecture as a

hierarchy of parts. In contrast, settings with low design-production barriers

favor practices centered on the network-of patterns frame. Therefore:

Inherent design-production barriers determine how the

hierarchy-of-parts frame and network-of-patterns frame can

be combined when architecting digital products

Seeking generative capability, organizations need to reduce

design-production barriers, allowing for an increased

emphasis on the network-of-patterns frame when architecting

digital products.

97

4 Methodology

Digitalization is an ongoing, contemporary phenomenon. History gives

limited advice in understanding how digital technology irreversibly changes

our lives. Moreover, we have limited opportunities to test and elaborate in

controlled environments. Digitalization is an emergent phenomenon which

unfolds in a complex interplay between social structures and technology.

Often we have no option but to study it in real-world settings and in real-

time. Therefore, in researching how “product developing firms architect

digitized products to leverage the generative capability of IT” (p. 57) I have

used qualitative in-depth case study as a basis of inquiry (Eisenhardt 1989;

George and Bennett 2005; Gerring 2007). The case study “is preferred in

examining contemporary events, but when the relevant behaviors cannot be

manipulated” (Yin 2003, p. 7). Further, the case study offers a unique

strength in its “ability to deal with a full variety of evidence – documents,

artifacts, interviews, and observations” (p. 8).

As discussed in section 3, the philosophical underpinning of this research

has a critical realist stance (Archer et al. 1998; Bhaskar 1998; Easton 2010;

Sayer 1992). It adopts a realist view in that it assumes observable, material

properties of technology which exist independently from observers. Such

properties translate into affordances, allowing designers, managers, and

organizations to perform different actions. At the same time, it recognizes

that our knowledge about the world is socially constructed. How people

exercise affordances cannot be understood by studying technology in

isolation. Instead, the assimilation of a new technology in an established

practice has to be viewed in light of existing, socially constructed frames of

Chapter 4

98

reference. With such a critical realist outlook this thesis approaches digital

product innovation by combining realist ontology with interpretive

epistemology (Archer et al. 1998). While this philosophical perspective

resonates well with my personal character it is also suggested by several

researchers as an important method to enrich IS research in general

(Bygstad 2010; Mingers 2004; Smith 2006) and longitudinal case studies in

particular (Dobson 2001; Easton 2010).

Seeking to explain how product developing organization build generative

capability the case study was tuned to uncover new cognitive frames for

thinking about and representing digital technology. In that sense the

research was interpretive (Klein and Myers 1999; Walsham 1993) in nature.

At the same time, the critical realist outlook suggests that some ways of

conceptualizing digital technology make more accurate representations of

external objects than others. The assumption is simply that some schemas

for thinking about and representing a complex product’s architecture are

better off in delivering generative capability than others. Seeking to identify

and represent such schemas the case study was specifically tuned to capture

the interplay between actors and technology over time (Langley 1999;

Markus and Robey 1988). This framing was supported in that the case study

was longitudinal in its character, spanning a timeframe of approximately one

decade. Even more important, it covered four different projects in four

different phases of digitalization. The four projects were centered on

different technologies, making it an embedded case study (Scholz and Tietje

2002; Yin 2003), involving different units of analysis within the same case.

The case study was conducted at CarCorp, a product developing firm in the

automotive industry that develops, produces, markets, and sells cars on the

global market. CarCorp is known for its eccentric designs and innovative

features, resulting in a small but devoted customer base primarily in Europe

and the US. At the turn of the century, CarCorp became fully owned by

GlobalCarCorp, a major global automaker. Seeking scale advantages

GlobalCarCorp enforced shared product platforms across its different

brands, causing CarCorp’s product innovation to be tightly integrated with

its parent’s global organization. In this integration CarCorp was given a

leading role in designing in-car infotainment systems for the different

brands in GlobalCarCorp’s palette of global automakers.

4.1 Data Collection

The empirical study, used as a basis for this thesis, was not originally framed

towards architecture. Rather, the process started as a business model and

value chain analysis of nomadic device integration. In a collaborative project,

involving three major automotive manufacturers, consultant firms, and

Methodology

99

content suppliers, the first phase of this research initially aimed to identify

and describe complementary business strategies for an infotainment system

based on nomadic device integration. As the study unfolded, however, it

became increasingly clear that each identified strategy was tightly connected

to a distinct architectural view on the system. Launching a new research

project with CarCorp, explicitly framed towards architecture, the study was

reoriented to investigate the relationship between design flexibility and

architecture. As CarCorp gradually adopted an open perspective on

infotainment, encouraging external development of applications, the study

focus was slightly shifted again. Rather than centering on design flexibility it

unfolded as a research study of architectural implications on generativity.

Eventually, the study spanned four different CarCorp projects, making up

four embedded cases (Figure 2). Each project focused on a distinct

technology; MOST, SoftCluster, nomadic device integration, and the Android

platform. Together, these projects extend over a period of approximately one

decade. Data was collected in three phases. The first phase (January 2007 –

November 2007) centered on contemporary nomadic device integration and

its historical roots at CarCorp. The primary data sources were interviews

(29) and project meetings (16). However, the phase also included focus

groups (4) at the three automakers and one content supplier. The second

data collection phase (October 2007 – December 2008) was part of a

smaller, architecture-centric research initiative, largely implemented on site

at CarCorp. Over the most intensive period I spent 2 full days a week making

participant observations as an embedded researcher in different

infotainment projects. Being on site at CarCorp opened up for access to a

wide range of documents (37), such as technical specifications and project

descriptions, but also gave access to internal project meetings (47). As a

complement to these in-practice data sources the study included a range of

interviews (27) and a few focus groups (5). Finally, the third phase (April

2008 – March 2011) was carried out in tight connection with CarCorp’s open

platform initiative. In particular, this phase was framed towards the intricate

interplay between ecosystems and platforms. The primary data source was

project meetings (39), but the phase also included interviews (11),

documents (6), and one focus group.

All together, the three data collection phases embraced five different data

sources; interviews, project meetings, focus groups, participant observations,

and documents. First, the study includes 67 interviews. The scope of these

interviews amounted to a total recorded time of 76 hours and a transcription

word count of 697.170 words. All in all, 102 project meetings were attended

at an estimated total time of 316 hours. That makes a mean length of

approximately three hours, although they varied from less than an hour to a

Chapter 4

100

full working day (σ=1 hours 55 min). Moreover, 10 different focus groups

were completed, with a total time of more than 15 hours. Finally, the three

phases included approximately 250 hours of on-site participant observation

and 37 selected documents.

In distinguishing between different styles of researcher involvement in case

studies, the data of this thesis was collected by an “involved researcher”

rather than an “outside researcher” (Walsham 2006). Although close

involvement comes with certain risks, I find it highly unlikely that this

research could have been conducted on the basis of a more distanced

approached. Automakers are considerable organizations. Technology is

developed in a collaborative manner, on a global scene. Tasks are

distributed, not only across buildings and departments, but across nations

and continents. In such a setting it is very difficult to study the interplay

between technology and people as an outsider. There is no local, well defined

practice to examine. Therefore, to make sense of events and actions in a local

project team or design group it is of outmost importance to understand the

bigger picture in which these people exist. Unless the researcher is able to

adopt their perspective, in-depth access to that picture will slip between his

fingers.

Figure 2. Timeline of empirical setting.

Rejection
of OPN

concept

Market
introduction

Platform
selection

Market
introduction

Launch of
business

model
study

CarCorp
assigned

global lead
for clusters

Public
release

MOST

SoftCluster

Android

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 20111996

First
internal
cluster
project

Selection
of MOST

Launch of
the Nokia

project

Bluetooth hands-free OPN

Market
introduction

Replacement
of MOST

Phase I

Phase II

Phase III

Data collection

Target of data collection phase II

Target of data collection phase I

Target of data
collection phase III

Chapter 4

102

Table 3. Data collection statistics.

Data Source Ph. I Ph. II Ph. III Total Comments

Interviews 29 27 11 67

µ: 1:08:33

σ: 0:23:15

word count: 697.170

Focus groups 4 5 1 10
µ: 1:40:25

σ: 0:34:08

Project

meetings
16 47 39 102

µ: 3:06:08

σ: 1:55:18

Participant

observation

(hours)

 248 248

Documents 37 6 43

Project descriptions

Technical specifications

Sales forecasts

Press releases

Figure 3. Overview of data collection activities.

0

2

4

6

8

10

12

14

2006

2007

2008

2009

2010

fr
eq

u
en

cy

Data Collection process

Focus Groups [#/month]

Interviews [#/month]

Participant Obs. [days/month]

Project Meetings [#/month]

Methodology

103

4.2 Data Analysis

The analysis of empirical data was conducted to create distance to the

research setting I had been so deeply involved with over a longer period of

time. Therefore, in order to reduce the effects of biased judgment the initial

coding process was conducted in a highly open-ended manner (Strauss and

Corbin 1998), aiming to construct “analytic codes and categories from data,

not from preconceived logically deduced hypotheses” (Charmaz 2006, p. 5).

The various data sources were repeatedly read and coded to identify key

themes from major events, activities, and technology choices that emerged

over time (Langley 1999). The open coding process was organized using the

ATLAS.ti software for qualitative data analysis. All in all, the open coding

process generated 181 primary documents, 1217 unique quotes, and 327

codes.

Next, to reduce overlap and weed out clearly irrelevant concepts, the code

base was reviewed again, in a more reflective manner. In the process of

comparing the concepts generated by the open coding, preliminary

definitions of properties and dimensions were inferred. This eventually

resulted in a reduced list of 273 mutually exclusive concepts and 41

descriptive memos, interlinked with the code base.

Up until this point the analysis had been conducted bottoms-up, with

deliberate distance to the practice generating the data, but also disconnected

from the selected theoretical framework. To filter out the data resonating

with the framework, the identified categories were mangled with the key

concepts of architectural frames. Experimenting with different approaches

co-occurrence analysis turned out to be an effective technique for mapping

underlying structure of the data material to the framework. Co-occurrences

reveal links between codes in that they share the same quotes. This analysis

was conducted by frequent application of the Query Tool in ATLAS.ti,

combined with the network view. This phase of the data analysis can be

viewed as focused coding in that the objective was to “synthesize and explain

larger segments of data” (Charmaz 2006, p. 57).

In particular, co-occurrence analysis provided a relevant angle on the data

material. It traced concepts such as reuse, modularity, and complexity to

data sources and organizational settings. However, it also resulted in four

distinct high-level categories that emerged out of this process; platform,

architecture, organization, and software development practice. Together,

these categories (Figure 4), weeded out codes and quotes of particular

importance when analyzing the application of architectural frames in

digitalization at CarCorp.

Chapter 4

104

At the same time, the analysis of data turned out to be a challenge in that the

different concepts of architectural frames are not explicitly used in industrial

practice. In other words; the distance between theoretical constructs and the

applied language used by practitioners was considerable. Further

engagement in more or less instrumental coding of the data material seemed

difficult and not particularly rewarding. Instead, to widen the scope and

apply the broad lines of the framework, without resigning precision, the

refined model of the data material was repeatedly revisited from three well-

defined angles. These angles aimed to:

1. Identify, describe, and contrast network-of-patterns thinking and

hierarchy-of-parts thinking at CarCorp. Since concepts such as

specialization, generalization, or aggregation were not explicitly

represented, this phase was directed to single out representative,

implicit patterns in the data material. Eventually, this analysis

resulted in a validation of the theoretical framework and a

demonstration of its ontological significance (6.1).

2. Review the locus of architectural frames in respective embedded

case and shifts in architectural thinking across cases. Largely, the

purpose of this phase was to derive evidence for the proposition that

generative capability follows from the cultivation of network-of-

patterns thinking. Given this point of departure, temporal shifts in

architectural thinking across the four embedded cases were at center

of attention. This phase eventually resulted in a detailed portrait of

how network-of-patterns thinking propagates across an organization

(6.2).

3. Identify tensions and contradictions between architectural frames.

In particular, this part of the analysis was conducted with a

dialectical stance to uncover incompatible aspects of the frames and

their consequences in innovation practice. In synthesizing the four

embedded cases I finally derived a theoretical perspective which

explains why the governance model entailed by traditional

hierarchy-of-parts practices is fundamentally incompatible with the

governance prescribed by network-of-patterns (6.3).

Approximately ten years ago CarCorp started a journey characterized by

gradual assimilation of a new kind of architectural thinking, which I have

referred to as network-of-patterns. This journey was paved by challenges and

disappointments, but also by radical advancement and great success. In what

follows I present the story of digital product innovation at CarCorp over the

period of the period of 1998 to 2011.

Methodology

105

Figure 4. Illustration of high-level categories and their underlying codes
(MapEquation.org).

107

5 Digital Product Innovation at CarCorp

At the turn of the century, the automotive industry could look back on an

exceptional growth of infotainment-related functions. In just a few years

rapid digitalization had opened up for in-car phones, navigation, telematics,

TV, CD, and rear-seat entertainment where there used to be just a radio.

However, while enabling such exceptional growth, digitalization had now

reached a point where it seemed to challenge established innovation

practices. It was more and more obvious to designers at CarCorp that

complexity increased dramatically as coupling between components

skyrocketed. Speakers, displays, controls, and various sensors simply had to

be shared over the full range of infotainment applications to support

coherent and progressive end-user functionality as well as leveraging

economy of scale. However, the dominant architectural frame did not offer

proper structures to handle this complexity. While seeing the system as a

modular hierarchy of parts, with well defined interfaces in between, the

design practice remained centered on components. Functionality was

specified at the level of components and suppliers were contracted to deliver

components. At the same time, intensified coupling between amplifiers,

radios, CD players, and navigation systems made infotainment ambiguous

for designers as well as customers as functionality could simply not be fully

understood at the level of components.

Following the deep-rooted logic of modularity CarCorp responded to this

increasing complexity by defining groups of components to hide the

increasing interdependence within sub-systems. In retrospect, we can see

Chapter 5

108

this as a first step towards recognition of a new architectural frame in that it

accepted that the structure of functionality did not match the structure of

components. Sub-systems were explicitly defined to encapsulate

functionality, distributed over several components. While initially boosting

functional growth, this strategy soon turned into a serious burden for the

automakers. With modularity being a central element in enforcing

hierarchical control over suppliers and sub-contractors, CarCorp and its

competitors largely found themselves being in the hands of the suppliers.

Amplifiers, radios, CD players, etc, remained separate physical entities, but

highly intertwined through various proprietary and, from the automakers’

perspective, largely unknown networks, protocols, and harnesses from a few

major suppliers. In practice, this created monolithic, highly static solutions,

hard to change after the time of production since functionality was bounded

not only to a component, but to a particular configuration of components.

R&D staff perceived decreasing control of system design, product planners of

upcoming functionality, and purchasers of the sourcing process. The rapidly

increasing coupling simply had to be addressed in a new way to reclaim

control and secure future growth; CarCorp had to develop new fundamental

principles for how to architect infotainment products.

In what follows, I present CarCorp’s struggle with the identification and

domestication of such a new architectural frame over a period of

approximately ten years. The story covers four embedded cases, together

making up a detailed narrative of how CarCorp transformed architectural

thinking in response to digital technology.

5.1 MOST: The Recognition of a New Architectural Frame

Studying the automotive frontier as well as other manufacturing industries,

infotainment designers at CarCorp realized that the unconditional

encapsulation of software in hardware components was at the heart of their

problems. To some extent, software afforded suppliers the opportunity to

quickly change functionality at the component level, while this advantage did

not play out at all at the system level. Specialized and complex interfaces

effectively prevented reorganization of the system or redeployment of

functionality. Somehow they had to build infotainment systems where

software-enable functionality could exist without being forever inscribed in

particular components. Such decoupling between hardware and software

was expected to bring much needed flexibility to change functionality and, at

the same time, increase the freedom when decompose the system. At the

turn of the century there was one automotive initiative with enough

Digital Product Innovation at CarCorp

109

momentum to be hailed as a solution to this challenge: MOST11. A senior

systems architect at one of CarCorp’s competitors, later consultant for

CarCorp, recall the early discussions promoting MOST as an interesting

general purpose network concept, supporting the domain specific

requirements and thereby further growth:

We all saw the transformation of infotainment. It was a
remarkable change, and growth, and new lifecycles of the
products. We needed an infrastructure to support this. MOST
was [already] selected by BMW, with others talking about it.
Somehow it should support this domain, with needs beyond
body [electronics] and powertrain.

At a physical level, the MOST architecture was constituted by a fiber-optical

bus network, providing bandwidth far beyond hitherto established solutions.

This network interconnected the different components through a generic,

non-functional interface in a ring topology. In such a ring topology

components are not nested to hide complexity. Instead, all components are

found at the same level, whether functionally interconnected or not. Seen as

a layer in a higher-level hierarchy – e.g. a car – such a system is flat, having a

wide span (Simon 1962) at that level. However, the MOST architecture was

also constituted by an object-oriented, event-driven application framework –

the so called function blocks. These blocks could be viewed as instantiations

of functional patterns at different levels of specificity. As an example,

navigation core functionality, such as routing and guidance could be

associated to one block, while traffic information, GPS positioning, and map

data access could be associated to other. A pattern could be inherited by one

or several other patterns, forming a network of patterns. Since MOST do not

enforce any particular deployment strategies, the network of patterns can be

reconfigured without touching the hardware setup.

Clearly, MOST offered two complementary architectural views on an

infotainment system. On the one hand, it offered a new way to structure and

interconnect physical components. The ring network encouraged a flat

structure, with many components. This would allow engineers to mount

components just about anywhere in a car, as long as it was possible to

connect a tiny fiber-optical wire. Further, it offered a new way to

interconnect physical components. As illustrated by another external MOST

specialist, with experience from CarCorp and other automakers, the generic

interface was a key argument behind MOST:

 [With MOST] we saw an opportunity to bring things together.
To get control [data], signals, audio, and, as we expected, also

11 Media Oriented Systems Transport.

Chapter 5

110

video into the same bus concept. This in contrast to a mess of
different harnesses and cables. MOST would simplify the
[physical] system dramatically for us. You can compare it to a
computer that you are plugging into the wall; you don’t have
one network for control signals, one for streaming audio, and
one for streaming video. You’ve got ONE Ethernet connector.
MOST takes this kind of thinking to the car.

In addition to this generic interface, the fiber optics used in MOST

technology offered significant communication bandwidth compared to

established solutions. Extrapolating the functional growth of the 90th, this

was standing out as a critical issue, partly contributing to increasingly

monolithic systems. Demanding applications, involving streaming audio or

video, could not be distributed across several components unless supported

by a separate interface. The MOST architecture seemed to remove

bandwidth requirements as a constraint in the decomposition of systems.

CarCorp's former MOST project manager recalls that:

We had remarkable ambitions. We planned for video screens in
the back seat and support for external video sources, delivering
services such as park assistance. It should be a pretty high level
of functionality. And when we looked at the different things
customers should be able to do concurrently – it was a concept
work I guess – we found that CAN12 wouldn’t do. We needed a
really powerful bus concept to survive that. It should be able to
support graphics, while simultaneously transmitting a burst of
navigation data. These were key arguments [behind the
selection of MOST].

However, with the function block framework MOST foregrounded the

network-of-patterns frame, offering a new way to conceptualize functionality

independently from the hardware structure. In the past, the different

functions of the infotainment system had been specified in relation to a

component. An interface specification defined the functional relationship

between components and a functional requirement specification all the

details guiding the inner design of components. In contrast, the MOST

architecture was largely centered on the so called “MOST Function Catalog”.

This specification identified and described all the functional patterns

available in the systems, without any assumptions on where these functions

eventually should be deployed. More specifically, it described how patterns

were to be instantiated in software, including all the details on how to call a

12 The Controller Area Network is a standardized vehicle bus network, designed to

allow microcontrollers and devices to communicate with each other within a vehicle

without a host computer.

Digital Product Innovation at CarCorp

111

particular function. Complementary specifications described how different

functional patterns related to each other, i.e. how general functions were

iteratively combined to form more specific functionality. A senior systems

architect reflects back on the early impressions of MOST’s approach to

functional architecture:

I think we all realized – at least the people involved in
[architecting] infotainment – that somehow this was the future.
We needed to focus on the system, solving problems at the
system level. We could not remain in the hands of suppliers,
making stand-alone components. Instead, we had to make these
suppliers part of a larger whole. […] I think, at the heart of
MOST, we find a kind of system level thinking that is not
component-oriented. Instead, it centers on the structure of
logical elements or functionality.

The architect underlines that the separation of functionality and

components, applied in the MOST’ architecture, was necessary to address

the challenges of increasing interdependencies between infotainment

components. After all, these problems were rooted in an inability to

rebalance the system over time, as new functional requirements emerged.

We had to prepare ourselves in order to get access to that kind
of flexibility [offered by MOST]. That is probably an interesting
concept here – flexibility to produce information anywhere in
the car and consume it somewhere else, in a simple way.

This flexibility derives from the fact that MOST introduced a formalized

network-of-patterns frame that remained relevant across generations of

product design. As new functional requirements emerged, MOST promised

the opportunity to deploy function blocks differently to physical

infotainment components. The MOST architecture simply offered the

automakers increasing freedom in combining architectural frames. In

practice, this translated to a whole new freedom in decomposing systems.

Deeply rooted in component-based innovation, most people outside the R&D

departments saw this freedom as a way to reinforce modularity. With

frustration CarCorp product planners had observed how increasingly

monolithic hardware structures destroyed attractive business models.

Instead of an attractive list of options, enabling customer unique

combinations, these interdependent systems had forced the automakers to

bundle functionality in a few predefined offerings. This did not just cripple

the new sales, but complicated the lucrative aftermarket business. The chief

systems architect at CarCorp recalls that MOST’s inherent capability to

support a distributed system, opening up for a wide range of combinations,

was recognized and highly appreciated.

Chapter 5

112

The aftermarket business was a key concern at the time when
we decided for MOST. We saw an opportunity to change and
modify components on the aftermarket, at a low customer cost.
It would be possible to add components over time and it would
be possible to upgrade systems. […] With a distributed
architecture [made up of more but smaller components] you get
a cost penalty on the system, but you can still argue that ‘it is so
important to be able to offer customers the opportunity to
extend their audio system with new amplifiers or additional
speakers’. Then, he doesn’t have to throw something away that
he has already paid for.

Rooted in the hierarchy-of-parts view, automotive organizations saw another

great opportunity in extensive decomposition of infotainment systems,

supported by MOST: standardization. Significant adoption of a standardized

technology was considered a great potential. With the traditional,

proprietary system solutions CarCorp could possibly benefit from

competition at the time of sourcing, but not over the product life cycle. Major

investments in systems integration effectively prevented re-sourcing of

components, causing lock-in effects where the manufacturer had no option

but to stick with existing suppliers. Considering another reflection from the

external MOST specialist, it is clear that standardization was an important

argument in promoting MOST. With standardized components CarCorp and

other automakers saw a potential to dramatically increase competition, with

lower thresholds for re-sourcing.

This idea about common specifications on functions and
interfaces, that’s a major benefit. More or less being able to buy
a component [off the shelf], like a radio tuner, developed for one
manufacturer, but applicable to another since it’s a common
interface specification.

Clearly, the freedom to decompose infotainment in relatively independent

physical components made MOST an attractive opportunity to increase

revenue as well as reduce cost. Still, architects and designers could see that

complexity would not disappear just because software-enabled infotainment

functionality could be distributed across components. Inherent emphasis on

the network-of-patterns frame would certainly facilitate change by

transferring complexity to a digital domain, but it would not per se address

the accelerating interaction between components. Somehow, the new

infrastructure also had to address the root cause of increasing

interdependency between components: reuse. At the time, there was neither

technical nor organizational support for the reuse of resources or functions.

As prescribed by the logic of modularity, problems were solved at the

component level, by component engineers having the specific functional

requirements of this component in mind. Consequently, sensors, displays, or

Digital Product Innovation at CarCorp

113

control buttons were designed as solutions to specific problems associated

with the component. Appropriating such solutions for other purposes was

time consuming, expensive, and unnecessarily complicated. A new

infotainment architecture also had to support the idea of generalization,

where reuse is an integral part of creative processes. It had to support

designers and engineers in creating generic solutions that could be easily

inherited by colleagues working with similar problems. This would not just

reduce complexity of the system, it would also translate to a much needed

alignment of infotainment functionality. Reflecting back, a senior systems

architect at one of CarCorp’s competitors, later consultant at CarCorp, argue

that this opportunity to create a shared platform of common functional

resources was – and still is – a key argument in favor of MOST.

There are many reasons to question a lot when it comes to
MOST, but its fundamental principles remain sound and viable.
That’s what I think. It brings an object-oriented approach to
“standardization” of [elements in] systems.

I tend to see the logical perspective in the original MOST
philosophy. I see some kind of elements that you reuse in
different configurations. These [functional] elements can [for
example] be a media player or GPS. They are not supposed to be
too specific, with manufacturer unique information, related to
HMI13 or something. They should be pretty basic, to take care of
well-defined tasks. On top of this you build your system,
defining how these elements are used in different [specific]
applications.

As we shall see next, CarCorp’s appropriation of the MOST architecture

provided little change in business practices, marginal benefit from

standardization, but a radically different infotainment system. In this MOST-

based infotainment system the structure of every function was visible and

well described in UML14. However, it was not just described, but generalized

in the sense that general elements were up-front designed to be shared

among specific functions. As a consequence, the new infotainment system

offered functional alignment and coherence far beyond what earlier systems

had been able to provide.

Appropriating MOST

With the decisions to adopt MOST for the coming generations of

infotainment CarCorp entered a rather painful path, unfolding in the clash of

13 Human-Machine Interface

14 Unified Modeling Language

Chapter 5

114

two architectural frames. MOST’s service-oriented approach, largely dealing

with functionality decoupled from hardware, reinforced the network-of-

patterns frame significantly. Where the specification of functionality had

been a relatively informal activity, at most supported by a shared word

document template, MOST prescribed a seemingly unambiguous way to

create, structure, and maintain the different functional patterns of the

infotainment system. However, this frame was about to be applied in a

domain deeply characterized by the component-based modularity of a

product innovation regime. With innovation processes, organization

structures, and products shaped by the architectural thinking of a hierarchy-

of-parts frame the automakers had a difficult journey ahead, trying to set up

a new interplay between frames.

The new way to structure components in a ring topology, implemented as a

fiber-optical network, caused considerable concerns to CarCorp. At the same

time, these troubles largely played out at a rather practical level. As an

example, the novel integrated circuits that enable access to the optical

network were not yet stable, thus causing major trouble to most

manufacturers. Although learning how to manage fiber optics in an

automotive context was demanding, these challenges had little to do with the

conceptual principles behind MOST and, therefore, did not translate beyond

the engineering level. Instead, the long term challenges related to MOST’s

new architectural perspective. With MOST, the notion of architecture

became blurred in the eyes of designers, and gradually loaded with new

meaning. The traditional rationale behind architectural work – hiding

complexity, division of labor, etc – was extended with a new, partly

incompatible logic. With software-based functionality distributed over a

range of physical components, other properties became salient. The new

infotainment architecture became an enabler of functionality, largely

defining the shape and form of this distributed computing environment.

Systems architects turned into platform designers. The architecture came to

manifest a design philosophy and generic system level services, rather than a

structure of components.

Although this transition was highlighted in the original MOST concept, the

automakers underestimated the challenges of discovering, understanding,

and implementing this design philosophy. It was simply far from obvious

how specific infotainment functionality should be composed from general

functional elements. A senior systems architect at CarCorp remembers his

disappointment, when discovering that the architectural concept was far

from solid:

They [MOST cooperation] promoted MOST as a new system-
level model, a new kind of thinking, a new philosophy for

Digital Product Innovation at CarCorp

115

design. But this model was never written down. It was BMW
and Becker running it, but not in public. […] we could see how it
was designed, I mean the result of the MOST interface
definition, but we never understood the [deeper] thinking, and
how they intended to evolve it. That made many of us,
implementing at the time, doing extensions of our own,
tweaking around, and creating solutions which probably did not
align with the visions.

On a general level, systems architects and designers were trapped between

two architectural frames, without solid ideas on how to combine them. On

the one hand, they had to reinforce the network-of-patterns frame to launch

a more service-oriented approach to infotainment development. There was

consensus among systems architects that the established component-based

modularity would not be able to secure future growth for this family of

increasingly changing applications. On the other hand, they were still

embedded in a product development context that is tightly entangled with

hardware-centric component-based modularity. A massive body of existing

requirements was derived from the architectural thinking associated with a

hierarchy-of-parts frame. Further, both suppliers and the automakers’ own

purchasing were reluctant to adopt software-driven business models. So

were the product planners, showing marginal interest in software as a future

revenue generator. The component seemed to remain the center of gravity

for everyone, except designers and architects trying to reform infotainment.

With such a range of path-dependent forces, the lack of clear and

unambiguous design vision became highly problematic.

The automotive industry’s component-based modularity, refined over a

hundred years, is tightly intertwined with strict hierarchies both in product

and organization structures. Product structures are hierarchical, with

horizontal independency between components. In the same way,

organizations are hierarchical, dividing relatively independent branches of

labor. In order to govern such design hierarchies CarCorp followed strictly

linear innovation processes, with a dynamics powered by waterfall models

(Boehm 1976; Royce 1970) of product development. In practice,

requirements were gradually broken down alongside the design hierarchy.

Business objectives, general system topics, and overall functional properties

were managed by the manufacturers, while the design of components and

detailed functionality was assigned to highly autonomous suppliers, further

down the hierarchy. As witnessed by a consultant, deeply involved in

CarCorp’s MOST project as systems engineer, this traditional hierarchy-of-

parts approach did not change when sourcing the new infotainment system.

They thought the traditional model would work, where each
[supplier] had responsibility for his own function, embedded in

Chapter 5

116

his own component. […] Down the road, they saw the flip side. It
didn’t work since the whole system – end-to-end – was so
incredibly distributed.

Attracted by the opportunities of a distributed system, CarCorp had

decomposed their systems widely, resulting in significantly more

components than earlier solutions. At the same time, they had invested

considerable efforts in generalization, trying to build a solid infotainment

platform where shared functional patterns were consistently reused by

higher level, more specific functions. At the time of deployment, when

functional patterns were allocated to physical components, the clash

between the two architectural frames became obvious; functions and

components did not match anymore. The remote “islands of innovation” did

not perform anymore, when a specific function, such as navigation, was

distributed across several components in that it inherited general

functionality deployed to other components. Suppliers were contracted to

design and produce components, not software. However, relying on the deep

rooted practices of component-based modularity, these suppliers were

formally made liable to functionality that was distributed across a range of

other components, outside their immediate control.

Neither suppliers nor manufacturers were comfortable with this situation.

Without dedicated software suppliers, taking full responsibility for

component-spanning functions, innovation would most likely slow down.

CarCorp saw no other option than bridging the gap between suppliers

themselves by specifying not only interfaces between components, but also

the system level behavior of all component-spanning functions. As

illustrated by a project manager at CarCorp, this transition of responsibility

increased the automakers’ stakes in functional design dramatically.

You are taking a [new] responsibility as a manufacturer, when
specifying this stuff. It becomes… I mean, they [suppliers]
CANNOT even do anything! When I think about it, it’s not them
rejecting responsibility; it’s us taking it from them. Yes, that’s
what it is. We are telling them that “the only thing you’re about
to do is to support this [our solution]. […] Earlier, when things
were more component-oriented, they had an opinion of their
own on things, they had tested it – possibly with other
manufacturers – and knew what was good and what was bad.
With this approach [MOST] we more or less lost such feedback.

Clearly, these problems were grounded in an emerging and fundamental

mismatch between the existing organizational structures and MOST’s

approach in conceptualizing software-enabled functionality. Taking the

network-of-patterns frame seriously, designers had to increasingly

Digital Product Innovation at CarCorp

117

background the physical hardware. At the same time, these designers

remained organized to match the hardware structure of the system.

Knowing that this mismatch could not be easily resolved, the automaker

initiated two different measures to smooth the implementation of a MOST-

based infotainment solution. First, they reorganized the workforces at a local

level to meet the new commission. The management realized that the notion

of component was less important with the new technology and architecture.

Therefore, the local organizational unit, related to infotainment, where tuned

for an increased need to exercise system level control and specify overall

functionality. The acting project manager for MOST industrialization

reflected on this topic:

Originally, it was a component-oriented group. They were
expected to work with functional specifications as well. Later on,
this didn’t work out, so they invited some people working with
functions only. They needed more and more such people and,
eventually they were a group of their own. Probably 10-12
[persons], maybe even more. Most of them were consultant since
it was running so fast, and we wanted it implemented. We
underestimated the efforts significantly.

Rather than obliterating the hierarchical structure, the manufacturer

rebalanced the workforce, with old roles and levels of the hierarchy

essentially remaining the same, while the locus of design activities moved

upwards in the waterfall model, from the component level to the functional

level.

Second, as designers reinforced the network-of-patterns frame, they had to

break with the strictly linear models of innovation associated with

component-based modularity. The new situation pushed new forms for

collaboration and new relations – some temporary and some more

permanent – between actors that were not supported by the official

hierarchy. Moreover, with functionality becoming a system-level issue, it was

necessary to adopt iterative approaches to innovation. While the official

development processes stated very few recursions, each resulting in the

production of a pre-series car, the new way of designing infotainment

seemed to call for an endless series of iterations. While the reorganization

was formally approved by management, solutions to these challenges

emerged bottom-up, from designers’ daily need to make progress. When

specifications were ambiguous to suppliers, workshops were initiated with

relevant stakeholders. When supplier implementations failed due to various

misconceptions, the automakers built extensive system-level test

environments to identify and solve problems collectively. When progress was

too slow, the number of iterations increased dramatically, sometimes

Chapter 5

118

exceeding one software release a week for individual components. Such

figures are in stark contrast to the official development process, stating just a

handful of releases for an entire 3-4 year car project.

Struggling with an appropriate model to combine architectural frames,

CarCorp gradually found a reasonably stable way forward. On the one hand,

the product innovation regime associated with component-based modularity

remained. Formal specifications were written, broken down to a component

level and, eventually, sourced to various suppliers according to existing

principles. On the other hand, much of the critical system level and

functional work was performed in a fluid structure of more or less

temporary, cross-organizational design teams. Relations between actors and

arenas for collaboration were established and destroyed according to project

needs. Together these informal teams and processes made up a network-

based model for innovation, augmented to the formal hierarchy.

Balancing these two, partly incompatible forms of collaboration was highly

challenging to designers and architects. To support the network-oriented

daily work, the automakers had to create new design practices, improving

the collaborative visibility. At the same time, to enforce the formal

hierarchies they had to find new practices for the deployment of the growing

functional designs to physical components.

Systems architects at CarCorp had studied new design practices from the

software industry even before the introduction of MOST. Since they had

already seen increasing interdependencies with the low bandwidth CAN

networks, they were attracted by the ideas of service-orientation and the

ontological separation between software and hardware. With the decision to

adopt MOST technology, bringing object-orientation and event-driven

design, such ideas became legitimate and apparently useful.

As a first step to reinforce the new architectural frame CarCorp revised the

definition of architecture. In the architecture specification for the new

MOST-based infotainment system, they revised the notion of components,

now referring to them as either logical entities or physical nodes. On the

basis of this extended notion, they defined architecture as

the structures of the components of the system, their
interrelationships, and principles and guidelines governing the
design and evolution over time.

In contrast to prior architectural approaches which more or less addressed

the decomposition of systems in independent parts, this definition

significantly changed the locus of architectural work. In including the

dynamics of interconnected components and principles for development, it

made system architecture a matter for designers in their daily work.

Digital Product Innovation at CarCorp

119

Further, with the network-of-patterns view on systems design in place,

CarCorp adopted new CASE15 tools supporting a model-based approach to

functional design. They decided to use the unified modeling language (UML)

as a basis for modeling. These new tools provided significant support in the

process of deployment. Linking functional designs to physical design, they

allowed for smooth generation of component level specifications and

interface specifications. Clearly, this model-based approach played an

important role in shaping how CarCorp combined architectural frames. As

the new practices emerged, the role of component engineers transformed

radically. Their prior role, interpreting information and compiling

specifications, was essentially reduced to editorial work, including various

non-functional requirements. Therefore, this approach supported not only

the cognitive aspects of system design, but also the more organizational

challenges of rebalancing the workforces.

Over time CarCorp realized that the mismatch between hierarchy-of-parts

thinking, reflected in established organizations, and network-of-patterns

thinking, reinforced by MOST, materialized at the time of deployment. It was

the allocation of functional elements to different components that, in the

end, enforced new relationships between component suppliers, without

proper support in traditional processes. Therefore, it became increasingly

clear that deployment could not be done on technological premises alone.

Consequences on organizations and innovation processes were equally

important when deciding how to distribute functionality across different

components.

In response to this challenge CarCorp tried to allocate functionality

characterized by high pace of change to just a few components. This strategy

was expected to give a malleable infotainment system that could be

effectively changed, without exercising the intricate tensions between

different suppliers. As described in CarCorp’s architecture specification, this

strategy was centered on user interfaces, considered to be the most volatile

part of infotainment.

The infotainment system is a user interactive and user intensive
system (application) with continuously changes in the user
interface but with core functionality that in some degree is
defined as stable. Therefore it is a good idea to split the core
functionality from the user interface.

However, splitting the more general and durable “core functionality” from

specific user interface functionality was not just a matter of making

15 Computer-aided software engineering

Chapter 5

120

appropriate deployment; it required an up-front conceptualization of

functionality that allowed for such deployment to take place. It was simply

necessary to have this strategy in mind when deriving general functions from

specific. Further, it called for a shared approach to generalization. A scenario

where navigation, telematics, and media player derived generic functional

patterns on different premises would not just increase complexity; it would

most likely result in different user interface logics and, eventually, confusion

at the level of end-users. Therefore, as described in CarCorp’s architectural

specification, all designers had to adopt the same strategy when applying

generalization to their respective functionality.

In many cases there exist design issues that does not map onto a
single component, neither physical nor logical. These issues are
more general in nature and must be addressed and expressed in
form of strategies that must be followed by all designers
involved in the design of the infotainment system family.

Specifically, CarCorp had to set up a strategy addressing the imminent need

to separate changing interface functionality from more stable base functions.

Based on this insight the decomposition of the infotainment
system is based on the well-known architectural pattern Model-
View-Controller.

With the model-view-control (MVC) pattern guiding generalization,

designers were encouraged to break functionality apart in a very precise way;

the so called model objects corresponded to basic functionality, such as

navigation routing or digital music decoding. View objects implemented the

user interface, while control captured the dynamic properties. Further, the

automaker implemented the observer pattern (sometimes labeled publisher-

subscriber) to facilitate event-driven interaction between increasing amounts

of distributed objects. Basically, this pattern identified controllers and views

as subscribers of events at the models, creating a hierarchy between objects.

Summary and Epilogue

MOST introduced a new architectural frame at CarCorp. This new

architectural thinking allowed them to structure physical and functional

parts of the infotainment system more independently from each other. In

order to reinforce the logic of modularity the automakers decomposed the

physical system quite extensively, resulting in a wide range of components.

Guided by hierarchy-of-parts thinking, the general, non-functional interface

promised unbounded configuration of these components, translating to rich

business opportunities. At the same time the automaker invested

considerable efforts in generalization of infotainment system functionality.

Released from the grip of components, systems architects and designers

Digital Product Innovation at CarCorp

121

inferred a range of general elements, to be reused for different specific

functions. As a result MOST brought coherence between functions and,

therefore, significant harmonization of the infotainment system.

However, facing an organizing logic fully defined by hierarchy-of-parts

thinking, CarCorp found that the new architecture destroyed established

innovation logic. With specific functionality intertwined through shared,

general functional elements infotainment became ambiguous from the

perspective of suppliers. Still responsible for physical components, they

largely rejected responsibility for functionality with the valid argument that

it was outside their control. Distributing a specific function across several

components, delivered by different suppliers, essentially prevented any of

these suppliers from taking over all responsibility. The only way to resolve

this problem was for the automakers to increase their stakes in functional

design. As a result, the locus of innovation moved upstream, from suppliers

to the manufacturers. CarCorp had to specify functionality in detail, deploy it

to components and derive concrete component-level requirements for each

supplier. In practice, this resulted in earlier binding of functionality and

even less opportunities to adapt to changing needs.

Addressing this weakness the automaker tried to deploy functionality to

physical components so that expected changes would be isolated to just a few

components. Knowing that a vast majority of infotainment change requests

were related to user interfaces it was reasonable to direct attention to HMI.

Therefore, the infotainment system was deployed to concentrate specific

user interface functionality to one or two components, while the underlying

functionality was distributed across the system. As noted by CarCorp’s

MOST project manager, this had some brutal consequences for the system as

a whole; it accelerated the coupling between components dramatically.

Well, we did not make the ideal MOST implementation – it was
hyper interactive. […] There was massive communication
between the user interface and [e.g.] the audio manager, who
needed to be involved. Then, when it had decided how to
respond, it resulted in massive communication with the
connection master and, then, the connection master with
everyone else to set up new channels. So, yes, it was hyper
interactive.

In retrospect, CarCorp domesticated the network-of-patterns frame with

MOST. The organization learned to use this complementary frame to engage

in generalization, resulting in much needed and appreciated harmonization

of infotainment functionality. At the same time, the attempts to combine

architectural frames did not match established innovation logic and forced

them to take full responsibility for functional design. With limited supplier

Chapter 5

122

innovation, even earlier binding of functionality, and little focus on

specialization of general functional patterns for new purposes the new,

sophisticated MOST systems offered essentially no new specific

functionality. On top of this, extensive distribution of functionality caused

strong coupling between components, largely preventing low-end

implementations of the MOST system. Whether configuring the system for

base functionality or high-end application, most components turned

mandatory. As expressed by CarCorp’s former MOST project manager, this

made the infotainment system far too expensive and, in particular, very hard

to scale for a range of car models.

Considering our different levels... For high-end, with navigation,
MOST was competitive. It delivered more functionality to a
lower cost than any other solution within GlobalCarCorp.
Unfortunately the low-end system became more expensive than
corresponding GlobalCarCorp solutions.

At CarCorp this eventually resulted in the rather remarkable decision to

abandon MOST and turn back to existing solutions.

It happened fast and I think it had to do with the fact that
GlobalCarCorp had a solution we could use. If we had been on
our own, we might have given it another chance. Then we might
have designed a cheaper, more centralized, and simpler system.

Although few automakers followed CarCorp’s quite dramatic decision to

abandon MOST, it was generally questioned and criticized. As witnessed by a

senior systems architect at one of CarCorp’s competitors, the introduction of

MOST systems at markets was painful for managers and designers at most

automakers.

MOST was associated with failure. Then, it obviously was very
costly. […] It is not an easy thing to stand up and defend a
solution that just drained the wallet and caused a lot of trouble.
It is not an easy thing for a manager to do. I know several
manager who got a lot of blame, some were even close to losing
their job.

5.2 SoftCluster: Rethinking Platforms

The MOST architecture and other related projects in the late 90th had

opened up a Pandora’s Box in the automotive industry. These projects had

introduced a radically new architectural thinking, foregrounding the

structure of functionality, rather than the structure of physical artifacts. The

new architectural frame had encouraged designers and architects to identify

and reinforce functional patterns that were or could be shared within the

system. When reusing such patterns for different purposes this

generalization paid off as coherence between specialized infotainment

Digital Product Innovation at CarCorp

123

functions and, as a whole, a significantly more harmonized system. No

doubt, the new frame was there to stay. At the same time, designers and

architects were painfully aware that they had accomplished little progress in

terms of new, specialized end-user functionality. Despite substantial

investments they had simply not delivered anything new and exciting in the

eyes of the vast majority, not seeing the system from the inside.

One legitimate explanation to this lack of novelty is of course that CarCorp

had to focus their attention on short term challenges. They had to learn a

radically new technology and find new ways of collaborating with suppliers.

They simply did not have the time and energy to push end-user functionality.

However, as indicated by CarCorp’s chief systems architect there was a

significantly more important challenge to tackle – a challenge that would not

disappear as technology matured. Being a manifestation of the network-of-

patterns frame, MOST’s function block framework offered more or less

unlimited freedom in designing functionality, without being constrained by

the established logic of modularity. At the same time, this freedom

disappeared at the moment when the functional designs were deployed to

physical components. At this point in time the hierarchy-of-parts frame took

over and suppliers considered specifications frozen.

I would say the main challenge was to handle this variability
from an aftermarket and production perspective. We created
[design-time] flexibility, but it was a problem to preserve this
flexibility [...] That’s often where we end; resolving technical
challenges is one thing, to resolve all the different organizational
challenges, about infrastructure and maintenance and support,
that’s a lot worse.

As illustrated by CarCorp’s architect, the inability to preserve the network-

of-patterns frame could be explicitly inferred from a mismatch between the

new architectural thinking and established organizational structures.

Infotainment was about to be a matter of software. With software

increasingly disconnected from hardware and powerful communication

infrastructures in the cars, the new digital technology aligned well with the

new architectural frame. There were simply few technological arguments to

cut functionality into pieces and deport these pieces to isolated components.

However, the organization, with its embedded routines, practices, and other

structures, was built around the design and production of well defined

components, with minor dependencies to other parts. These structures

essentially forced CarCorp to background the network-of-patterns frame

when leaving the implementation of specifications in the hands of suppliers.

Suppliers were still contracted to deliver components. Purchasers were

scanning the domain of components to locate the best offer. Quality

assurance was centered on the testing of components.

Chapter 5

124

CarCorp could see that the established product innovation regime did not

bring proper incentives for suppliers to engage in software-centric

innovation. At the bottom line, they would be accounted for a component,

not a piece of software. Still, they were expected to design and deliver the

increasingly important software, making up the infotainment system. In

addition, the clash between a new architectural frame and established

organizational structures largely had transferred responsibility for functional

design from suppliers to CarCorp. In summary, suppliers cared for

components, CarCorp for functionality, but no one really cared for the

software.

At the end of the 90th CarCorp started to see that software was at risk of

falling through the cracks. Although unclear how it would affect the

organization, it seemed necessary to reinforce competence in this area. As

narrated by today’s software manager, it was more or less insignificant at the

time:

From a software perspective CarCorp was a disaster when I
came here 1998. You can’t even imagine. I was offered a position
as software engineer, but realized that I, more or less, was the
only one with software competence. Coming from Ericsson, it
made a huge contrast. Over there, software was at the heart of
what we did.

Lost in this hardware-oriented organization he struggled a lot with how to

contribute in the new organization. In contrast to his earlier positions, he

ended up quite far from the practice of software design and implementation.

I had major problems understanding what they wanted me for
– what are their intentions? I spent a lot of time working with
processes. You know, what does a software process look like at
CarCorp? What is our role and what is the role of suppliers?

However, while working in frustration with these high-level questions, pretty

far from hands-on software development, coincidence played him in the

hands. A new car model was in a critical phase of development when the

supplier of the instrument cluster proved alarmingly weak on software

competence. For several reasons CarCorp was stuck with the supplier and in

a highly unorthodox manner, management decided to offer the relatively

new software engineer to put together a small team and make the software

in-house.

This supplier proved to be weak on software. Really weak. They
were excellent on mechanical things, on hardware, but they
couldn’t handle software. So we said, OK, let’s make the
software. We had backing from management, although I doubt
they understood what we were about to do. With this support we

Digital Product Innovation at CarCorp

125

put together a group of 4-5 [designers]. We did the software on
the basis of a platform that we had made ourselves and
[eventually] we were able to take it to production. […] It was
very successful. We did it fast and with quality.

Looking back on this period the software manager sees a milestone. These

achievements brought the issue of software up on CarCorp’s public agenda

and indicated that it could be rewarding to engage in the actual production

of it. With in-house development of software the automaker did not have to

rely on the linear innovation processes where specifications were frozen too

early, for deployment in different components. Instead, software

development and functional design could co-evolve, essentially keeping the

network-of-patterns frame alive and relevant across the entire development

cycle. With in-house development of software, it suddenly seemed possible

to achieve variability that was not grounded in the reconfiguration of

components. As pointed out by the chief systems architect, such variability

was particularly valuable for HMI-related functionality.

By tradition, suppliers offered a low [component] price,
knowing that change orders would feed them down the road.
These changes always turned out to be ‘small and simple’ HMI
changes.

As CarCorp’s successful initiative raised attention at its owner, the rationale

behind internal development of instrument cluster software was further

reinforced. With several brands and a lot of different car models,

GlobalCarCorp also saw an opportunity to commoditize hardware. With the

traditional hierarchy-of-parts perspective on products, differentiation tended

to drive cost, simply since it manifested itself as new component variants.

More variants gave lower volumes and less opportunity to benefit from an

economy of scale. Commoditization, on the other hand, tended to make

designs inflexible. Making a component fit in the design hierarchy of several

different cars was a challenging task, even with minor dependency to other

parts. Changes would trigger re-validation across the entire range of vehicles.

Therefore, commoditization came with no less than tough compromises

between the values of different market segments and brands. Ripping up a

settled deal to introduce new functionality would trigger a new round of

painful negotiation. GlobalCarCorp now saw an opportunity to escape from

this seemingly unavoidable contradiction; CarCorp’s approach promised one

shared cluster hardware, powered by unique and easily changeable software

for each model.

2005 GlobalCarCorp launched a new strategy, where instrument cluster

software was classified as ‘strategic software’ to be developed in-house. The

task of developing this software for GlobalCarCorp’s all brands and models

Chapter 5

126

was assigned to CarCorp. The official acknowledgment of software

competence opened up for a new organizational setup. Above all, this

allowed for significant professionalization and growth. CarCorp’s software

manager remembers that:

[2005], about three years ago, the first [real] software team was
put together. That was when the organization started to see
software. The team was approved and people with dedicated
software skills were hired. This is also when we were trusted
with the software development for all [instrument] clusters
within GlobalCarCorp. […] Down the road we have hired more
people working with structure and architecture and all the
different aspects making a software organization.

Developing the SoftCluster platform

Over a relatively short period of time, the new team put together what was

later recognized as the SoftCluster platform. Designing the architecture of

this new platform, CarCorp had one primary objective; to destroy barriers of

change. It was increasingly obvious that software-centric innovation was an

emergent phenomenon, where functionality could not be designed up-front,

as prescribed by established processes and structures. As underlined by one

of the HMI designers, later using the software platform, it was designed for

recurring specialization, where general elements were reused and

recombined to form genuinely new functionality.

Well, flexibility was a key argument. To be able to implement
[new] HMIs down the road and modify them quite extensively.

It’s like playing with LEGO. You’ve got a particular set of bricks.
They’ve got their limitations, but you can build a whole lot of
different things with them. And it’s simple.

To make the SoftCluster platform a truly flexible toolbox of such LEGO-like

bricks, the software team had to find a solution to an intricate challenge. On

the one hand, instrument cluster functionality is inherently distributed. A

display in the cockpit mediates information on average speed, fuel

consumption, outdoor temperature, radio station frequency, and many other

things. The instrument cluster system collects, aggregates, and presents all

this rich information deriving from remote sensors, encapsulated in a whole

range of different components. No doubt, these remote components had to

remain stand-alone components, primarily for cost reasons. A low-end car

would have a radically different setup compared to a high-end car. In that

sense, the SoftCluster platform had to recognize the hierarchy-of-parts frame

and support the decomposition of the system into different components.

Digital Product Innovation at CarCorp

127

On the other hand, the legacy of MOST projected strong arguments not to

distribute instrument cluster software across different components. In order

to take the network-of-patterns frame seriously it was necessary to avoid the

destructive clash between frames that had eventually caused the exit of

MOST technology at CarCorp. The only reasonable way to achieve this in an

organization dominated by hierarchy-of-parts thinking was to deploy the

SoftCluster platform to one key component. If change could be isolated to

one physical node there would be little need for continuous synchronization

of different parties through static component specifications that, eventually,

would prevent variability.

Trying to set up an architecture resolving this inherent contradiction

between the hierarchy-of-parts frame and the network-of-patterns frame,

the new software team concentrated their effort on three distinct measures:

First, they agreed on a specific design rule to be applied when making

functional designs; the system should be generalized in such a way that all

information sources could be handled as independent, simple, and general

patterns, logically decoupled from more specialized functions. As described

in one of the specification for the SoftCluster platform, such a “functional

unit (FU) defines what [information] content it is able to display”, but

essentially nothing more. This would allow for a decomposition of the system

in one master component, hosting all specialized functionality, and a range

of slave units that could be configured to meet particular model

requirements. On the whole, this design rule was introduced to assist the

combination of architectural frames. It would help preserving some of the

flexibility offered by modularity, while at the same time allowing for

functionality to evolve as software could be easily changed at the master

component, with minor implication at the slave nodes.

Second, to cater for changes in FUs that after all would occur, the SoftCluster

platform architecture introduced a new end-to-end communication strategy.

This strategy was manifested as an XML interface – the OpenXMLInterface

(OXL) – allowing for retrospective changes in communication between the

master component and remote information providers without impact on the

system level. As described in one of the system specifications the general

CAN network in the car, used by the SoftCluster platform, allowed for

restructuring of bus messages. However, such changes entailed modification

of the central signaling database, essentially enforcing revalidation of the

entire electrical system in the car.

The [network] handler architecture allows architecture
designers to change both parameter IDs and message framing
[…], but this ambiguity is in conflict with the component sharing
and interoperability strategy for components using the OXI

Chapter 5

128

interface […] Therefore, all OXI messages shall have fixed
parameter IDs, startbyte, and startbit relationships.

With OXL instrument cluster designers could rely on fixed CAN network

messages, while augmenting an XML structure on top. Changes could be

rapidly introduced in the ends, without involving the rest of the organization.

In practice, the system could evolve at the network-of-patterns frame, while

preserving the hierarchy-of-parts frame intact. OXL was an important

measure to avoid the lethal clash between architectural frames, causing so

much damage to the former MOST-based infotainment system.

Third, with the SoftCluster platform CarCorp introduced a macro-oriented

approach to HMI development. Similar to the logic of a web browser, the

new concept made use of a markup language to specify layout and look-and-

feel. The macro was stored in a database and interpreted in real-time by a

standardized software component – the so-called HMI engine.

Consequently, the new concept commoditized not only the hardware, but

also considerable pieces of the software. Reflecting on the long-term

consequences of architectural work, a senior engineer at the consultant firm

co-developing the SoftCluster platform with CarCorp touches on the main

rationale behind this radical approach; the architecture is explicitly reflected

in processes and, therefore, it defines how a product can be changed over

time.

In some sense, it’s when you break the system into pieces that
you really see the architecture. That’s when it is most important.
It defines the processes for distribution, purchasing, verification,
and things like that.

Even though CarCorp had decided to develop instrument cluster

functionality in-house, the design team feared that software would be

inscribed in hardware at the time of production. The macro-oriented HMI

(MOH) reinforced the separation between functionality and the tangible

product one step further. With MOH CarCorp saw an opportunity to create

and, in particular, maintain truly differentiated HMI solutions for the full

range of vehicles within GlobalCarCorp, without being constrained by part

number administration, system re-verifications, or other organizational

burdens, hampering change. Specifications clearly state that the MOH is

grounded in:

…a need to support vehicle brand differences within the
GlobalCarCorp family such as difference in graphics, layout and
menu structures without having to change operational software
in any ECU.

Digital Product Innovation at CarCorp

129

This reasoning is developed in some detail by the chief systems architect,

when trying to summarize the rationale behind the selected architecture of

the SoftCluster platform:

With the new generation [instrument clusters] we wanted it to
be perceived as uniquely designed for each market, with its
language and culture, still relying on a shared [HMI] engine,
handling everything. With this solution we wouldn’t have to
verify the software for every market. The code was shared, it
was decoupled from the look-and-feel. So, we truly separated
presentation from logic and [general software] application.

Summary and Epilogue

With the SoftCluster platform CarCorp reinforced the network-of-patterns

frame significantly. Earlier initiatives, such as the MOST project, had

focused on generalization, providing coherence between functionality and

increasing harmony in using in-car systems. With the new cluster project

CarCorp shifted focus, from generalization to specialization, launching an

architecture with one overall objective; to assist rapid and smooth evolution

of instrument cluster HMIs. This architecture was grounded on three

distinct elements:

1. It separated volatile and specialized HMI functionality from

relatively stable and generic functional units, collecting and

aggregating basic information. With this separation CarCorp could

combine architectural frames in a new way. Modular strategies could

be exercised to vary hardware setup between car models, while at the

same time concentrating the evolution of software-centric HMI

functionality to one component.

2. It introduced end-to-end communication capability, allowing for

distributed functionality to change with insignificant implications on

the system level.

3. It introduced a macro approach to build specialized functionality.

This allowed designers to launch new functionality without

recompiling software, which reduced risk, validation efforts, end

eventually cost.

As illustrated by an excited HMI designer, the SoftCluster platform was

exceptionally successful in reducing barriers for change. He argues that the

platform completely dissolved the gap between design and product. In

principle, a new idea could be pushed all the way to customers, without

involving suppliers, software engineers, or even test teams.

You know, lead times are usually very long in this industry. But
it’s fascinating [with this new concept], because now I can be

Chapter 5

130

part of a design discussion, trying to plan for a change that feels
pretty challenging, and people ask me “how long does it take to
implement it?” And I can tell them “it’s already done.” With this
architecture I can make some design changes really, really fast.
But I think there are very few realizing it.

The designer underlines that the MOH concept introduced a set of

fundamental limitations for creative work, but given compliance with the

offered framework it provided substantial freedom in designing new

specialized solutions:

There are restrictions [in the SoftCluster platform], but as long
as you follow them I see no problems. I could put something
together, like… I mean now we are in the automotive industry,
[working] with radios and phones, but give me two hours and I
have designed a solution for a washing machine. Give me
another two hours and I have the HMI ready. I don’t know
[right now] what it’s going to look like, but give me a few
sketches and it’s done. And then I mean up and running.

Although many designers did not think the new instrument cluster solution

was used to its full potential, the SoftCluster platform has to be described as

a success. It entered production 2008 and is still a strategic tool in

GlobalCarCorp’s maintenance of instrument cluster functionality. It is

applied to 5 different families of clusters, spanning 23 different languages.

All in all, GlobalCarCorp have shipped more than 10 million cars using the

SoftCluster platform.

Given this success, the software team at CarCorp was requested by

GlobalCarCorp management to study how their experiences could be applied

in a new infotainment platform. Fall 2007 the software manager put together

a review team of employed engineers and external specialists to set up the

guidelines for such a new software-centric infotainment platform, intended

to be shared by all the brands within GlobalCarCorp. After several months of

intensive brainstorming, technology reviews, and state-of-the-art analysis it

was clear that the SoftCluster concept could not be transferred to

infotainment unless it was extensively modified. The main reason was that

infotainment evolves according to a logic which is substantially different

from an instrument cluster.

The SoftCluster concept was based on the assumption that variety and

change plays out on the most specialized level, while the underlying, more

general functionality is static. HMI design ideas which complied with the

markup language, defined by MOH, could be realized with minor efforts.

However, ideas that could not be implemented on the basis of these pre-

defined, general building blocks were destined for rejection. Similarly, ideas

reusing and recombining existing FUs could be set up with little trouble,

Digital Product Innovation at CarCorp

131

while the need for new information sources would trigger painstaking

development of new physical components.

The review team found that the rigid SoftCluster platform, essentially relying

on fixed general patterns, was unrealistic for infotainment. Somehow, an

upcoming infotainment platform had to be adaptable also at the level of

general patterns; generalization could not be seen as a one-off activity,

performed at the time of original platform design, but had to be considered a

recurring activity. Moreover, it was increasingly clear that the pace of

recurring generalization and specialization could not be defined by the

automotive industry. Over a few years engineers at CarCorp and other

manufacturers had witnessed how infotainment was increasingly colored by

the rapid progression in consumer electronics. Customer expectations were

more and more defined by standards of mobile phones, handheld computers,

and PNDs16 As illustrated by CarCorp’s software manager, it seemed

inevitable to involve external parties to cope with this challenge.

[For example] We don’t see these [increasingly important]
advanced graphic engines as a core competence at software &
control. We simply don’t think we can get state-of-the-art user
interfaces if we decide to do them ourselves.

With consumer electronics actors engaged in the development of an

infotainment platform, CarCorp saw an opportunity to share general

functional patterns across industry boundaries, eventually assisting them to

keep up with its higher pace. The software managers emphasized that such

strategic collaboration would not just have implications on HMI, but play out

more widely and give:

…the opportunity to actually offer marketing, product portfolio,
and design what they really want. […] Requirements we get
from design are very inspired by the iPod and the iPhone. That’s
the kind of functionality they would like to see in our
infotainment system. And we can’t do that in-house.

So, what is new here? Well, I think we need to focus a whole lot
more on flexibility and pace of change. We need [for example] to
keep up with new trends for connectivity. Seeing WiFi
connectivity coming for iPod we need meet that quickly with a
new solution. So, by being in control of software, we can be fast
and make sure there are [general] software functions
supporting whatever it is we see coming. I think that’s the main
challenge here.

16 Portable Navigation Device.

Chapter 5

132

The overall challenge for CarCorp and other automakers was how to find an

appropriate way to combine architectural frames so that infotainment could,

on the one hand, exist in a hierarchy of parts characterized by one pace of

change, while, on the other hand, allow for functionality to evolve at pace

defined by consumer electronics. As we shall see, CarCorp addressed this

challenge by two different initiatives; nomadic device integration (5.3) and

the open Android platform (5.4).

5.3 Nomadic Device Integration: Bridging Pace Barriers

While the MOST-enabled infotainment system and the SoftCluster platform

largely were responses to internal technological progression and accelerating

functional growth, the automotive industry also faced increasing external

pressure for change. Between 1998 and 2002 the number of mobile phone

subscribers in the developed world increased from 25% to 65%17. Similarly,

portable navigation devices had a remarkable commercial breakthrough a

few years later, illustrated by TomTom’s 375% increase of sales between

2004 and 200518. The roll-out pattern of portable music players is similar to

navigation, although diffusion figures are even more overwhelming. In

September 2009 Apple announced that the cumulative sales of iPods

exceeded 220 million units19, with a significant breakthrough at the end of

2004.

Over just a few years the design challenge in vehicle infotainment changed

dramatically as an emerging consumer electronics market offered an

attractive alternative to integrated systems under the control of auto

manufacturers. Whether CarCorp liked it or not, they had to relate their own

products to the new competing systems. Every new release of in-car

infotainment products would be measured by consumer electronics

standards. Even more problematic, the high pace of change in consumer

electronics made CarCorp’s in-car infotainment systems seem outdated in

months or years, while the car, hosting these systems, had a significantly

longer life time. Over time designers feared that the long development cycles

in the automotive industry would turn these systems obsolete from the first

day of sales.

On the one hand, new initiatives for systems design and new perspectives on

architecture had introduced technology and knowledge, allowing CarCorp to

17 ICT statistics from the International Telecommunication Union (ITU).

18 TomTom press release February 14, 2006

19 Apple press release September 9, 2009.

Digital Product Innovation at CarCorp

133

decouple software from hardware. The network-of-patterns frame,

reinforced with MOST and the SoftCluster concept, had offered significant

design-time flexibility. At the same time, this flexibility had vanished at the

time of production, when architectural frames were irreversibly combined.

With supplier revenue streams triggered by the delivery of high quality

components, not superior design processes, the distribution of functionality

across several components created unpleasant ambiguity. Similarly, the

automaker centered its verification and quality assurance on component

tests, not design reviews, further reinforcing a component-centric view on

the products. Finally, the hierarchy-of-parts frame was made permanent as

suppliers were made liable for components over time on the basis of

warranties. Retrospective introduction of new software would not just bring

additional properties to a system; it would potentially disrupt the stability of

the system.

One can argue that the MOST project introduced generalization at CarCorp,

while the SoftCluster initiative established specialization. However, the

automaker had not been able to close the loop, allowing the two mechanisms

to survive beyond the time of production. No doubt, this would be necessary

in order to keep in-car infotainment up-to-date with the progression in

consumer electronics. However, a more software-centric perspective, where

the network-of-patterns frame could survive the transition between design

and production pushed for a radically new perspective on products as well as

business models and seemed distant. It would come with no less than the

dissolution of inherent institutional structures.

Seeing the massive challenges in this, designers and managers working with

infotainment saw an option in direct integration with mobile phones, PDAs,

navigation systems, and other nomadic devices20. With this approach

infotainment functionality could still be viewed through the lens of a

component, included in the overall hierarchy making up a car. However, for

a simple reason this functionality would not be restrained by the hierarchy-

of-parts thinking dominating the automotive industry; nomadic devices were

designed in another industry and intended for a different market. Over time

they would change at a pace defined by the consumer electronics industry,

not the automotive industry. Nomadic device integration seemed to offer a

combination of architectural frames where automakers could keep

considering the product as a hierarchy of parts, while the consumer

electronics industry would ensure that functionality was not forever

20 Nomadic device is a term used widely to refer to a handheld wireless device, such

as a PDA or smartphone.

Chapter 5

134

inscribed at the time of production. Nomadic device integration (NDI) would

enforce consumer electronics life cycles on the automotive industry.

As early as 1996 CarCorp initiated collaboration with the mobile phone

manufacturer Nokia. The initiative rested on a cradle-based vision, enabling

convenient use of at least one of Nokia’s phone models in the car setting. In-

car resources, such as speakers, microphones, and controls would give new

opportunities to adapt the off-the-shelf phone to a driving context. The

functional design of the phone would be untouched, while CarCorp planned

to introduce more specialized patterns, inheriting general nomadic

functionality to deliver a dedicated in-car user experience. However, the

project was terminated in early stages as Nokia changed the interface for

accessing the phone several times during the project. Nokia did not consider

the potential gain in car-related cell phone sales attractive enough to stay

with the initial interface. It would have slowed down its own product

innovation. Sales of cell phones exceeded that of cars many times, making

cooperation with CarCorp marginal to Nokia’s business proposition. The

Nokia project had, once again, demonstrated that the hierarchy-of-parts

frame relies on a stable structure, with fixed interfaces. Functionality can

evolve within components, but the decomposition of the product is unlikely

to change.

Despite these discouraging experiences CarCorp renewed the efforts to

create a system for nomadic device integration 2002. The sales of integrated

phones would not take off and it was now recognized as a dead end. It was

simply too expensive for most users and the solution was hopelessly out-of-

date in that it did not support the functionality offered by a typical cell

phone. In addition, it was costly to maintain and modify. It was time for

CarCorp to reconsider the idea of nomadic device integration.

With the Nokia project in mind, designers realized that nomadic device

integration would remain nothing but a vision unless they found a solution

that allowed phone functionality to evolve, without impact on the in-car

system. Addressing this issue, they formulated two guiding principles for the

upcoming NDI initiative. First, it had to overcome interoperability problems

caused by ever-changing physical characteristics. Instead of a cradle, tightly

connected to phone designs, the new solution would make use of a wireless

interface. Second, integration between vehicles and nomadic devices should

not rely on vendor-specific, proprietary technology. Stability would come

with no less than a public standard, not controlled by a specific actor.

Although there were a few interface options available at the time, the

escalating momentum of Bluetooth technology draw most of CarCorp’s

attention. The fact that Bluetooth was not created by or for the automotive

Digital Product Innovation at CarCorp

135

industry complicated the process. Yet, it seemed to resolve the problem

causing the Nokia project to fail. As illustrated by the infotainment product

manager, Bluetooth was seen as the missing link, allowing nomadic

functionality to evolve, while preserving the critical interfaces in the overall

hierarchy of parts.

We have overcome the barriers associated with proprietary
standards in mechanics, electronics, buses, and so on. General
standards such as the Bluetooth protocol now exist, making us
believe that this will actually work, also beyond a particular
phone model’s lifecycle.

One of the engineers made a similar statement:

Using a standardized interface means that we can both lower
our development costs and increase customer value. […] It is
much easier when you follow a standard rather than trying to
develop a standard or a proprietary technology as we have done
up to now.

2004 CarCorp launched the first solution for nomadic device integration,

based on Bluetooth technology. It was a handsfree-kit, allowing seamless

transfer of phone calls between mobile and automotive contexts. Without the

need for docking cradle, the user could leave the phone in the pocket or a

bag, while interacting on the basis of dashboard controls and in-car audio

resources.

From a functional perspective the new system performed well. However, as a

means of handling the inherent life cycle differences between consumer

electronics and automotive industries the selected solution confronted

significant and unanticipated challenges. First, the Bluetooth standard

proved not to be a standard, at least not up to CarCorp’s expectations. Cell

phone manufacturers interpreted and implemented the Bluetooth protocols

differently, leaving significant interoperability problems for CarCorp. As a

result, the NDI solution could only be developed, certified, and tested for a

limited range of cell phones. This was a major disappointment for the people

involved in the project. An infotainment manager ironically reflected upon

the unanticipated problems:

If you were an early adopter, you ran into troubles. CarCorp
was a really early adopter [of Bluetooth] in automotive.…
Standard proved not to be standard. There was a very complex
relationship between devices across brands and models, which
made the process rather tricky.

Second, the Bluetooth standard proved not to be stable in time, at least not

up to automotive norms. Instead, it evolved in harmony with new phones

entering the market. With a repurchase time of less than 18 months

Chapter 5

136

Bluetooth enhancements were pushed to consumers through new devices.

With vehicle life cycles of approximately 25 years, this strategy was

inherently closed for CarCorp. Suddenly, the idea of keeping the system up-

to-date over time, as customers bought new cell phones seemed hopeless. As

illustrated by one of the infotainment designers, the fundamental differences

in product life cycles turned out as the key challenge in creating a sustainable

solution to nomadic device integration:

Sadly, we don’t support the latest cell phones. We are working
on it but we are facing a tough automotive reality. We have not
been able to change our processes. It takes very long time to
introduce software updates. The software has to be validated as
part of a system. This is related to safety, and the fact that we
must guarantee the endurance and quality of our systems over
time. Getting a component into a car takes one year. When it is
supposed to talk to another system in the car, it involves a major
validation process. At CarCorp today, a new piece of software
means a new validation process of the entire system. That’s why
we can’t keep pace with new devices coming.

At this point the NDI proponents were lost and frustrated. They gradually

realized that Bluetooth would not be the solution to their vision. It did not

allow them to support a wide range of mobile devices and, more important, it

did not allow them to support future devices, not yet designed at the

production of the car. Despite exceptional efforts they had not been able to

appropriate Bluetooth to bridge the gap between architectural frames. In

practice, functionality was still inscribed in the system solution.

At the same time, the rapid consumer uptake of cell phones, portable music

players, and navigation devices kept building up pressure from the consumer

electronics industry. As illustrated by an infotainment project manager, NDI

proponents expected CarCorp’s traditional business cases to break down as a

consequence of this external pressure:

We are a couple of people who think that [selling embedded
navigation and CD-changers] won’t be possible in the future.…
When you have navigation in your pocket, why have an
integrated navigation system in the car? You will not have a
CD-changer in the car AND an mp3-player in your pocket. We
believe that this type of car equipment won’t be there in the
future – that the market will disappear for us.

At the same time he underlines the underdog situation by noting that:

Now, I should not presume that this is the company’s official
stance. I get a lot of shit for saying this, especially from our
marketing people… they don’t believe in this, they don’t think it’s
reasonable to think like this. They still believe that it’s going to

Digital Product Innovation at CarCorp

137

be possible to sell integrated navigation in large volumes, and
that it still will be possible to sell CD changers.

Consequently, the infotainment group faced not only a significant

technological challenge, but also minor support from management and the

rest of the organization. On the one hand, the absence of management

attention was problematic. On the other hand, it nurtured a skunkwork

attitude within the increasingly tight group. Reflecting back on this period

one of the strongest NDI proponents noted that:

We were rebels. We have always worked on ideas and solutions
that have been difficult to appreciate from an automotive
perspective. We have always seen ourselves as outsiders in view
of the mainstream automotive designer.

In this tolerant environment the design team approached the life cycle

dilemma again. They realized that the NDI vision would remain a vision

unless they were able to shift their mindset. As one designer commented, the

idea of a fixed interface had proven fundamentally misleading:

The car has a long life cycle and a slow development life cycle.
We therefore need a flexible software-based connection for
nomadic devices that can adapt the car to modern technology
after the point of sale. We need this in order to offer new
applications in a flexible and agile way

Another designer noted that:

What we should try to do is to introduce leeway in the interface
between our slow cycle and a much faster cycle, and still create
customer value. So, the objective must be to identify the magical
interface that enables us to adapt to a world that moves so much
faster

Synthesizing previous experiences they abandoned the idea of enforcing the

pace of one industry on another, which essentially was the idea behind using

a standardized interface. Instead, they started to promote the idea that

integration between in-car resources and nomadic device could be enabled

and maintained through a gateway component. This solution would allow for

interoperability between a static vehicle environment and evolving

functionality on nomadic devices. With a simple software patch the CarCorp

customer would be able to buy a new cell phone or music player, while

preserving in-car support of the new device.

This approach reinforced the network-of-patterns frame. Although

seemingly simple at the level of technology, the idea represented a major

deviation from established architectural thinking. Following the traditional

logic of manufacturing, CarCorp applied a “fire-and-forget strategy” across

its whole range of development. In practice, functionality was mangled out in

Chapter 5

138

the design phase, but fixed at the moment of production. New ideas and

solutions, born after start of production had to wait for a facelift or a new car

model. Therefore, the new gateway concept for NDI had to challenge the

traditional design-production barrier. It would keep the network-of-patterns

frame alive and relevant beyond the time of production. This would be

particularly problematic without a solid management support.

2006 CarCorp launched an advanced engineering project to demonstrate

these new ideas. The gateway was framed as an open platform for interaction

with nomadic devices (OPN). At this point the notion of openness essentially

reflected the envisioned capability to stay tuned with external consumer

electronics, while platform emphasized the hardware-software distinction –

the gateway would be malleable to external environmental changes through

software updates only. The former manager of the Nokia project, now

appointed project manager for the gateway project, reflected upon the new

concept and the road ahead:

We are envisioning a software design that boosts the car’s
capacity to handle the digital world. The solution must enable us
to follow the technical development in telecommunications
during both the construction and production time of the car,
which, taken together, is around seven years.

With a vision calling for device-independency and the idea of standardized

interfaces left behind, infotainment designers had to identify new

mechanisms for the integration of vehicle and nomadic devices. Following

traditional product innovation logic it would be CarCorp’s responsibility to

identify new interfaces, specify them, and make sure the corresponding

software was designed and installed on the gateway. Consulting earlier

experiences they saw the absurdity in such a practice. CarCorp did not have

intelligence capability to indentify proper candidates for integration. It

simply did not know consumer electronics and telecommunication industries

well enough. Further, automotive pace would effectively prevent quick

turnaround of software drivers. Rigid automotive processes would delay the

introduction of a new interface to the point where it was no longer

interesting. Struggling with this challenge designers turned their attention to

the successful USB technology. A senior software architect argued that:

We should mimic the plug-in flexibility offered by USB. It is the
device that is responsible for providing the relevant driver. This
enables an end-to-end architecture for making the systems
operate together… As a third-party vendor, you’ll supply this
opportunity by installing the driver on our open platform.

At this point the concept of openness was filled with a slightly different

meaning in the eyes of designers. With this new perspective ‘open’ did not

Digital Product Innovation at CarCorp

139

just refer to the flexibility enabled by technological integration with external

devices. Instead, it recognized integration between the vehicle and nomadic

software, essentially disconnected from the device. A third-party developer

would be able to provide software, relevant for in-car usage, without being in

the hands of device manufacturers. At this moment, the architectural locus

shifted significantly in favor of the network-of-patterns frame. It became

increasingly clear that the functional structure of the infotainment system

could change independently from the physical hierarchy of parts. Third party

actors could introduce or revise general functional patterns, allocated to

nomadic devices, for use in specialized in-car functions, allocated to in-car

components under CarCorp’s direct control.

With enthusiasm the NDI proponents saw the potential and beauty in this

new perspective. With a general API21, the functionality of nomadic devices

could evolve at its own pace, without being constrained by the physical

decomposition of the infotainment system. Essentially, it would be up to

external, third party actors to secure compliance with the car. Nomadic

device software would not be accessible in the car unless it could be inherited

by these specific patterns, adapting functionality to a car context. This

seemed to be an extraordinary opportunity to resolve the life cycle problem.

With the mobile navigation provider Appello as partner in the project, the

first benchmark was more or less given. The NDI gateway should

demonstrate how Appello’s mobile phone-based off-board navigation22

solution could be enabled for specialized use in CarCorp’s cars. From an

architectural point of view Appello’s existing solution represented a network

of patterns, hosted by the nomadic device. This network had to be extended

with a new layer of specialized functional patterns, solving problems that

were unique to the car environment. In order to preserve Appello’s existing

solution as much as possible these specialized patterns had to be deployed to

the NDI gateway. In practice, the software designers approached the

challenge by looking upon the car as an extended interface to the cell phone.

Audio, video, and control signals were directed to the vehicle for

presentation according to car-specific requirements.

The role model for this approach was found in the almost forgotten work of

AMI-C23, completed a few years earlier (cf. Guglielmetti 2003). Although the

21 Application Programming Interface

22 In off-board navigation key features (e.g. map data access and routing) are remote

services, deployed at a server, while other features (typically guidance and HMI) are

deployed to the mobile client.

23 Automotive Multimedia Interface Collaboration.

Chapter 5

140

original AMI-C protocol had to be complemented (e.g. to support the vector

graphics needed for the transfer of moving images), the solution performed

virtually as expected. With this so called “streaming approach” Appello’s

base functionality was preserved untouched, while the HMI was adapted to

the car context.

The validation of the streaming approach revealed a few technical

weaknesses. The transmission of vector graphics across a wireless serial

interface was a weak link. The solution faced an inherent latency issue that

could not be easily resolved. Further, it effectively prevented customizations

for the vehicle environment, using in car resources. However, the most

important conclusion drawn from the demonstrator was not technical to its

nature; it was increasingly clear to everyone involved that a non-functional

interface, of the type used in the streaming approach, would transfer

responsibility unconditionally to external actors. On the one hand, this was

at the heart of the original idea; external actors would keep up pace of

change. At the same time, the AMI-C-based interface would gladly relay any

information for presentation in the car, as long as it complied with some

basic specifications. Without influence over the nomadic device there would

be no technical barriers, whatsoever, preventing a third party vendor from

introducing functionality disapproved by CarCorp. In some sense, it would

be possible to hijack the car.

Such an aggressive strategy would be exceptionally provocative to a

conservative automaker. For several reasons the automotive industry is

centered on explicit control for governance. One motive is related to

production – the act of assembling components. Significant control of

component interfaces ensures compatibility at the time of production. This

aspect would not be compromised by the new perspective on openness.

Another strong argument behind the dominant control agenda in the

automotive industry is related to liability. Although a car is assembled of

components from a wide range of suppliers, customers look upon it as a

coherent product. Distinct hierarchy-of-parts thinking, manifested as

modularity, is the established way to exercise control over this organizational

hierarchy. To implement the new perspective on openness CarCorp simply

had to give up this kind of architecturally enforced control and identify other

mechanisms to govern largely independent actors. From this moment in

time, the openness-control dilemma made a dominant discussion in the

project. The ambivalence is demonstrated by the project manager:

We see great promise in the idea of developing a general API
that gives third-party developers the opportunity to develop in-
car applications. By definition, the problem is that we won’t
know what will happen. What applications will be developed?

Digital Product Innovation at CarCorp

141

There are major stakes involved in openness; they involve huge
uncertainty, ignorance, and some fear about which direction
this will take.

The idea of giving up control of the design process was obviously highly

challenging to CarCorp. By tradition, suppliers are influential in the design of

in-car functionality. Still, the automakers exercise significant control

through architecture. Together, the decomposition of systems into

components and interfaces between components define how products can

evolve over time. Functionality may be designed at Denso, Delphi, and

Harman Becker24, but according to CarCorp’s overall agenda. Opponents

argued that the proposed model for openness would put CarCorp in a

reactive position, rather than a proactive.

However, while losing control of design was problematic to CarCorp, losing

control over the product was highly alarming. It was obvious to proponents

as well as opponents that application software residing at an external device

would be completely outside of CarCorp’s control. Furthermore, the nomadic

device would be malleable across the vehicle life time, while the car was

essentially fixed. Consequently, there was no mechanism binding a

particular configuration of nomadic software to a particular vehicle.

Consequently, functionality would evolve over time and seek new meanings.

Meanings over which CarCorp had no influence, what so ever. As reflected in

a later discussion with GlobalCarCorp’s top infotainment managers, this

kind of openness was largely unthinkable:

At least in the United State we have something called product
liability and, if we think that people could create something that
they’re gonna put in our vehicle and that is a distracting or
somehow interferes with the primary task, then to some extent
we are, we’re liable because we’ve kind of opened the door to
that.

This reasoning suggests that customers would make CarCorp liable for any

disloyal functionality developed after time of production. Again, a promising

idea to solve the life cycle problem seemed to fail.

Summary and Epilogue

Nomadic device integration posed a new challenge to CarCorp; the product

had to be architected for change, not just between generations of the

product, but across the lifecycle of products. Architectural frames had to be

combined in such a way that in-car infotainment functionality could evolve

at a pace defined by the consumer electronics industry. Up until now,

24 Major suppliers of automotive infotainment systems.

Chapter 5

142

CarCorp had approached the network-of-patterns frame with the intention

to generalize (MOST) and specialize (SoftCluster), but without closing the

loop from the perspective of a given product. With NDI they envisioned an

infotainment system where general functional patterns were continuously

supplied by consumer electronics and easily provided to in-car users in a

specialized form. With NDI infotainment would be able to evolve

continuously, not just at discrete occasions constituted by the release of new

car models.

In an early attempt, CarCorp experimented with an accessory-like approach

to this new challenge. A state-of-the-art Nokia mobile phone was integrated

with a car on the basis of existing physical and electrical interfaces. This

hierarchy-of-parts approach to NDI relied on the same basic idea used when

customers buy new wheels; given a fixed, modular decomposition of the

system and permanent interfaces between parts the end-user is free to pick

the wheels of his or her own choice and upgrade when appropriate. However,

the experimental setup demonstrated to CarCorp that nomadic device did

not offer stable interfaces. Manufacturers used different solutions and, even

more problematic, these manufacturers continuously changed these

interfaces.

Wide adoption of Bluetooth technology in consumer electronics injected new

hope in CarCorp’s NDI vision. With a standardized, well diffused, and non-

physical interface, it once again seemed possible to approach nomadic

devices as accessory parts that could be changed at personal preference.

Bluetooth promised that general functionality, hosted by nomadic devices,

could be inherited for specialized in-car usage. However, once again the idea

of rigid structure of physical parts, preserved by stable interfaces turned out

to be naïve. Bluetooth was a standard. Still, whether CarCorp liked it or not,

it evolved at a pace defined by the consumer electronics industry. CarCorp

was able to ship NDI solutions to customers, but after just a few years it

could not support the latest devices.

CarCorp designers realized that modularity did not offer a durable solution

for nomadic device integration. In perspective of automotive lifecycles,

mobile phones, portable navigation devices, and other nomadic devices

turned out to be far from the stable subassemblies prescribed by a hierarchy-

of-parts frame. Further, such stability could not be enforced through

standards, such as Bluetooth. Change could simply not be isolated to

nomadic devices. In order to make use of the momentum in consumer

electronics CarCorp had to find a way to deal with changing interfaces, not

defined by them. With OPN, specialized functional patterns, hosted by the

cars, would be able to evolve in harmony with generic functionality at the

Digital Product Innovation at CarCorp

143

nomadic devices. In practice, this meant that OPN software had to be

updated across the life time of the vehicles.

In a hierarchy-of-parts frame stable parts are bootstrapped into ever more

complex configurations. Decomposition defines interfaces between parts

and, in turn, how parts can be aggregated into new products. To some extent,

the original setup of specific patterns is preserved in the interfaces.

Therefore, in a hierarchy-of-parts frame, the physical break-down of a

product is a manifestation of control. In context of NDI, CarCorp was

inherently deprived of this traditional mechanism to exercise control. In a

network-of-patterns frame generic functional patterns are bootstrapped into

ever more complex configurations. Generalization defines how patterns can

be inherited and, in turn, how these general patterns can be reused in

increasingly specific functions. In this architectural frame, control is

exercised through general patterns. Performance improvements in

positioning will translate to the more specific navigation function, while the

opposite is false. Suddenly, CarCorp designers found themselves in a

situation where they neither had control over interfaces nor over general

functional patterns. It became increasingly obvious that the OPN solution

would be rejected for security and safety reasons, but also since it clearly

lacked governance mechanisms allowing CarCorp to capitalize on its

investment.

Triggered by these insights, Appello’s software designers highlighted that

porting could be accomplished simply by running their cell phone

application at the gateway. At the time, cell phones were open to third-party

software under the limited premises given by the Java sandbox25, provided

by most manufacturers. Appello had successfully exploited this opportunity

to leverage a device independent navigation solution. A similar Java

environment at the gateway would offer a solution to CarCorp’s problems.

Smooth porting of existing applications, originally developed for cell phones

and other devices, would allow CarCorp to appropriate value from consumer

electronics. At the same time, it would give reasonable control over

innovation processes. Hosting the Java platform in cars, rather than

nomadic devices, would give CarCorp control over general functional

patterns. Such control would not just reduce liability issues by bring

influence over specific application software, but also allow for efficient

integration with the rich set of resources offered by the car. It would make an

opportunity to govern external innovation, rather than just follow it.

25 In computer security the sandbox metaphor refers to a mechanism for separating

running programs.

Chapter 5

144

At this moment, CarCorp designers started to rethink the role of the gateway.

They had used the notion of platform when discussing the gateway for a

longer period of time, but essentially to point out that it would support a

range of different nomadic devices. From now, they started to see it as a

coherent enabler of hardware and software resources allowing for the

execution of a wide range of applications.

Consequently, they complemented the original demonstrator, turning the

gateway into a full blown Java platform. What emerged as the “host solution”

successfully demonstrated a high-performing port of Appello’s navigation,

executed at CarCorp’s in-car platform. Latency issues vanished and software

designers easily modified the software to align with the interaction resources

provided by the car.

When at the end of the project reflecting upon the transition between

gateway and software platform, project members saw both opportunities and

challenges. On the one hand, running the software at CarCorp’s platform

enabled a set of new tools to handle the intricate liability issue. While

controlling the platform, it suddenly seemed possible to dissolve the hitherto

distinct boundary between wide open and closed. A smart platform strategy

could reasonably be used to enforce CarCorp’s agenda, while still not

internalizing the process of developing applications. As one of the

consultants involved in the project noted, it would allow for a gradual

transition between the traditionally closed model and a truly open one.

CarCorp must start by offering services and applications that
they control. It’ll be extremely difficult to open up the system to
everything.… The first step will be to release some of the control
and to work with third-party application providers that can
offer some new services.

At the same time, the NDI proponents began to see that this new

combination of architectural frames would pose a whole range of new

challenges to the organization. An open platform under CarCorp’s control

would enforce new perspectives on product planning, purchasing,

production, marketing, and sales. It would come with new product offers,

new forms for supplier collaboration, and new business models. Shortly, it

would disrupt the existing organization structure. At this time no one could

see a way to implement this transition smoothly. In the next section (5.4) we

follow CarCorp’s progress in seeking novel solutions to these substantial

challenges.

5.4 Android: Designing for Generativity

2007 CarCorp had reached a point in its transition of innovation practices

where the concept of open innovation was recognized and to some extent

Digital Product Innovation at CarCorp

145

accepted as a solution to the challenges facing infotainment. This journey

can be viewed as a gradual uncovering of the network-of-patterns frame.

Projects such as MOST had introduced generalization (5.1). By identifying,

specifying, and reusing a range of general functional elements, across

different components, CarCorp had designed an infotainment system where

applications made better sense together and offered significantly more

harmonized functionality. Later, the SoftCluster initiative demonstrated that

such general and reusable elements, when released from the grip of

components, had impact on innovation far beyond streamlining of

functionality (5.2). It turned out that a platform making general functionality

available and accessible accelerated creativity in design teams. In an act of

recurring specialization new functions could be generated continuously, as

general patterns were easily combined in new ways. Finally, CarCorp’s

commitment in nomadic device integration showed that generalization and

specialization are intertwined phenomena (5.3). Unless the general patterns

of the platform and the many specialized applications using it evolve

together the generative capability will inevitably decline. Drawing on the

many experiences from nomadic device integration CarCorp started to see

how such evolution could be governed; it was critical to take control of the

platform. The general patterns of a platform are inherited by specific

applications. This inheritance creates a unilateral relationship, where

specific patterns rely on general, while general patterns can be described

independently of specific. In practice, this translates to an opportunity for

platform owners to exercise control over application development. Although

seemingly evident, this offered a distinctly different perspective on

governance. Traditionally, CarCorp and other automakers specified specific

functionality, while leaving the functional breakdown in the hands of

suppliers. Largely, they governed innovation processes through the

structural decomposition of the system into components.

As illustrated by a statement of the director of controls and software

engineering at GlobalCarCorp, designers and engineers considered

traditional linear innovation processes outdated for infotainment:

This idea of being five years ahead to predict what future our
customers are going to be in only means [that] what we deliver
is irrelevant.

The only way to keep up with consumer electronics would be to actually get

involved, reduce existing barriers, and encourage the consumer electronics

community to keep the car up-to-date on their own premises. Coming

infotainment systems could not be up-front designed; they had to emerge in

a continuous interplay between CarCorp and external actors. An open

platform, under the control of CarCorp seemed to be a way forward. Given a

Chapter 5

146

capability to draw attention, it could take the creativity and multiplicity of

consumer electronics to an automotive setting. The only thing was that the

notion of openness and the concept open platform were fuzzy phenomena.

Neither the software team nor the organization as a whole shared a view on

them or a language to discuss them. Although blurred in its contours most

people agreed that the value of an open platform was largely manifested in

its capability to boost uncoordinated, creative processes. As underlined by a

GlobalCarCorp strategist, such value is tightly connected to multiplicity and

diversity. Unless an open platform is able to generate such multiplicity it is

essentially useless.

the way you establish value for this open platform is this idea
that you have to be able to look at hundreds of ideas, and then
you’re going to see the value. The minute you limit what you’re
going to look at, by the nature of the beast, you have basically
eliminated your value.

With brutal precision the statement emphasizes that the purpose of an open

platform is to generate options – digital options. Unless platform owner,

developers, and end-users could find a way to do this together, an open

platform approach would fail. To succeed they had to find a model where

designers’ creative leeway could be balanced towards CarCorp’s need for

influence and control.

Despite the many promises it was increasingly clear to managers and

designers that an open innovation approach to infotainment would require

not only R&D staff to reconsider the hierarchy-of-parts frame, but essentially

the whole company. Rather than placing well defined orders on tier-1

suppliers, CarCorp would make offers to independent developers. This

would enforce new perspectives on product planning, purchasing,

production, marketing, and sales. It would come with new product offers,

new forms for supplier collaboration, and new business models. Shortly, it

would disrupt the existing organization structure.

Although CarCorp did not know how to address all these challenges, it was

increasingly clear that an open innovation practice would require them to

close the loop between generalization and specialization. The platform and

its wide range of applications had to evolve together, in reasonable harmony,

while at the same time preserving revenue generation for GlobalCarCorp. In

architecting such an infotainment system they predicted two main

challenges. First, generalization could not be seen as one-off activity, taking

place in isolation from application development. Instead, the platform had to

be architected for continuous adaptation to developers’ shifting needs.

Second, application development would not occur out of nowhere; it would

be necessary to set up an attractive innovation ecosystem, hosting

Digital Product Innovation at CarCorp

147

specialization of infotainment functionality on CarCorp’s platform.

Consequently, CarCorp launched two advanced engineering initiatives; one

project to identify and specify the next generation infotainment platform and

another to delve into the non-technical aspects of the open innovation

concept, with particular focus on business models and developer ecosystems.

Designing the “Next Generation Infotainment Platform”

The task to identify and design a new infotainment platform was formally

assigned to CarCorp by its parent, GlobalCarCorp. Originally, it was framed

as a study of how to apply the successful SoftCluster platform to

infotainment (see p. 130). Fall 2007 the software manager put together a

review team of employed engineers and external specialists to set up the

guidelines for such a new software-centric infotainment platform, intended

to be shared by all the brands within GlobalCarCorp. It soon turned out that

the SoftCluster concept could not be transferred to infotainment unless it

was extensively modified. It allowed for easy modification of the specific

look-and-feel in instruments clusters, but only given the fundamental rules

defined by the platform. It turned out that the macro-oriented approach to

HMI development was far too rigid for an infotainment context. Inheriting

the SoftCluster architecture would essentially prevent the platform from

evolving over time. Therefore, the team found themselves facing the

challenge to develop a whole new platform concept, with little possibility to

reuse existing solutions. This new platform had to be malleable to the

changing functional requirements in automotive as well as consumer

electronics far beyond what could be offered by SoftCluster. It soon became

clear that this process would be both painful and difficult.

To define the limits of CarCorp’s assignment, systems architects at

GlobalCarCorp made an outline of how the new infotainment system would

fit with the rest of the car. With some dismay the team found out that

GlobalCarCorp’s architectural outline was a traditional, modular breakdown

of the system. It assumed a hierarchy of components, allowing the

automaker to scale the infotainment system, from the most basic low-end

solution to premium configurations in the high-end segment.

In a first workshop, trying to understand and make sense of the architectural

outline, one of the team’s hired software specialists underlined that

flexibility to adapt functionality does not resonate well with a distributed

solution, where functionality is inscribed in components. With such a

hierarchic setup of the system retrospective adaptation of functionality tends

to increase coupling between components, inevitably making the system

increasingly monolithic.

Chapter 5

148

When you make drawings it makes sense using many
components. That’s how you make architecture – by drawing.
That’s how we all do. But we must not fool ourselves. It is
tempting to distribute systems until you have a whole range of
[physical] components, consuming huge amounts of resources.
Then, suddenly you find yourself in a situation where even low-
end cars require a full configuration for things to work out.
Then you’re screwed.

This problem is a lot easier to handle [with a software solution].
How do we most effectively handle variants? By hardware or by
software? That’s an important question [for GlobalCarCorp].
We need to keep in mind that this [document] is a draft. It makes
a set of more or less spontaneous ideas.

CarCorp’s team leader makes a similar statement, underlining that the new

infotainment system must be architected on new premises.

Scalability can cause a lot of damage to software architecture if
we end up with a lot of variants. […] Scalability and cost
optimizations will not give us the best architecture. It is
something different. I’m not sure these criteria [at all] apply to
software architecture.

Over time it became increasingly clear to the new software team that a

traditional hierarchy-of-parts thinking stood in opposition to the kind of

malleability they envisioned. GlobalCarCorp’s hierarchy-of-parts approach

would give them a range of well-defined, stable subassemblies, each

streamlined for a specific functional purpose. While this would allow them to

differentiate the offer across a range of different car models and brands, it

would effectively prevent the system from changing over time. Given the

overall vision to make infotainment increasingly open to external innovation

it was increasingly clear that CarCorp had to give up some of the advantages

offered by a hierarchy-of-parts frame in order to benefit from network-of-

patterns thinking. In practice that meant a position against distribution of

the system. As far as possible the functionality of the new infotainment

system had to be deployed to one component – a component hosting the

software platform.

Redefining the Scope

With GlobalCarCorp’s attempt to define the scope of the project in mind, the

software team decided to make an aggressive move and define the limits of

the project themselves. In order make up a solid guide in their work, without

damaging creativity and bold ideas, they developed a “project one-pager”.

This brief project outline summarized a vision, critical aspects, and key

enablers. From an architectural perspective there are several statements

worth mentioning. First, the team established that the mission was to “build

Digital Product Innovation at CarCorp

149

a platform, not an implementation.” This seemingly uncontroversial

statement marked that the project did not focus on the development of

specific infotainment functionality. Instead, the objective was to engage in

generalization and build generative capability that, in the hands of internal

and external designers, could make the basis for independent and relatively

unconstrained innovation. From an automotive perspective that was a major

break with traditional, linear processes, always starting with functional

specifications. Being careful about using the notion of openness to describe

envisioned innovation practices, the team established that the platform

should offer “support for plug-in software”. Such so called plug-in software

was defined rather broadly, ranging from “CarCorp managed” to “3rd party

aftermarket developed software”.

It is worth emphasizing that although CarCorp had engaged in generalization

before (e.g. the MOST project) it was now done on different premises. The

objective was not primarily to build a coherent and harmonized system.

Instead, as described, the upcoming infotainment platform aimed for

innovation practices, where internal and external designers could engage in

specialization independently from infotainment experts at CarCorp. To

reinforce this position the one-pager declared that “[design] decisions and

[project] focus should be business-case driven, not technology driven.”

Thereby, it was critical to design a platform that allowed for CarCorp to

appropriate value from increasingly independent innovation practices.

Drawing on recent failures (the open platform for nomadic devices was

eventually turned down) CarCorp had arrived at the conclusion that

distributed, software-centric innovation, of the kind they envisioned for

infotainment, could not be governed with less than significant influence over

the general elements of a system. Therefore, they argued; “To be in control of

[platform] SW is and will be very important”. To once again emphasize that

such control did refer to the enforcement of a functional agenda, the one-

pager stated that “control does not mean doing-it-all-yourself”.

Finally, it is important to show that the software team, from the beginning of

the project, recognized that generalization had to be a recurring,

continuously ongoing activity. Envisioned innovation practices would

neither emerge nor persist without a living and fertile interplay between

generalization and specialization. As described in the one-pager, the

platform had to evolve in reasonable harmony with innovation practices.

To be able to match and to interface to quickly developing
consumer electronics, the system must be able to mature, both
between model updates and in the after-market.

Chapter 5

150

Searching for Platform Concepts

In relative agreement on the task ahead the software team initiated what

they referred to as a concept selection process. On a general level, they

expected this process to result in an open platform strategy. In a first phase

they agreed on a range of evaluation criteria; cost, technical challenge,

business challenge, quality, liability and responsibility, flexibility and

malleability, incentives and motivation, finally, what they labeled suitability

for automotive applications. Second, they initiated a long discussion on how

to identify and describe credible and realistic concept alternatives to evaluate

towards each other. It was clear that the critical axis of tension would be

found in the interplay between openness and control. The platform had to

make an attractive offer, allowing for relatively unconstrained innovation to

take place. At the same time, GlobalCarCorp would require influence and,

ultimately, the right to veto inappropriate applications. It was also clear that

control had to be exercised through the platform, since the opportunities to

set up legal agreements would decline in an open environment.

Over time the team found two dimensions, guiding the work to identify

concept alternatives. First, they discussed intensively whether the platform

should be “public” or not. Being programmers they used the notion of public

(in contrast to private) to identify whether a platform was unconditionally

open to external parties or not. In practice, such a public platform would

allow for external actors to get full access to the platform to develop software

application without CarCorp’s approval. From an architectural perspective

this translates to the question of exercising hierarchy-of-parts control or not.

With the software platform deployed to a physical component in the car

CarCorp had, in a very practical sense, the key needed to unlock the software

platform for external development. Therefore, the hot topic was whether

they should make use of this opportunity, keep the key, and actively gate

keeping introduction of new applications or release the key in public and

allow for functional evolution outside GlobalCarCorp control.

Second, the team argued intensively whether the upcoming infotainment

system should be grounded on a GlobalCarCorp platform or an established

off-the-shelf platform. Designing the platform internally would offer great

opportunities to exercise network-of-patterns control as the process of

generalization then would be in their own hands. With control over the

general functional elements offered by the platform, CarCorp would preserve

influence over applications, even though development went increasingly

public. On the other hand, such a strategy would leave CarCorp with the task

to continuously align with volatile requirements of the consumer electronics

community. In addition, it was increasingly clear to the team that installed

base was a critical concept in open innovation environments. The only way

Digital Product Innovation at CarCorp

151

to build multiplicity and generate digital options would be to offer a well

diffused platform. Whether GlobalCarCorp would be able to build such a

significant installed base on its own was a major question mark.

Given these two dimensions, the software team singled out four concept

alternatives (Figure 5), described in the document “Next Generation

Infotainment Platform: Proposals for Concept Selection”; A “GlobalCarCorp

‘open’ API platform”, an “industry standard ‘open’ integration platform”, an

“industry standard ‘open’ public platform”, a GlobalCarCorp specific ‘open’

public platform”.

Figure 5. Key dimensions in platform benchmarking.

1. The “GlobalCarCorp ‘open’ API platform” would enable a fast follower

approach, where the automaker could domesticate successful consumer

electronics initiatives and make them fit with a platform essentially

designed for automotive industry needs. It would allow CarCorp e.g. to

give the platform APIs “to a navigation engine supplier and source them

for delivering an adopted [and diffused] navigation engine ready to

integrate in the GM infotainment platform”.

2. The “industry standard ‘open’ integration platform” would take the

follower approach a number of steps further by actually adopting an

established platform, frequently used by consumer electronics

communities. It would allow CarCorp to “buy and integrate off-the-shelf

software components”.

3. The “GlobalCarCorp specific ‘open’ public platform” would enforce

another stance on openness. Essentially, this approach was grounded in

the idea that a public platform would trigger new, external innovation

processes, feeding GlobalCarCorp with novel applications. In practice,

they would “create a public and open GlobalCarCorp-specific run-time

environment similar but different to Symbian, MIDP and .NET

environments”. With this approach the automaker would “rely on and

encourage software module suppliers to develop and create [automotive

1. “GlobalCarCorp

‘open’ API platform”

2. “industry standard

‘open’ integration

platform”

3. “GlobalCarCorp

specific ‘open’ public

platform”

4. “industry standard

‘open’ public

platform”

off-the-

shelf

platform

Proprietary

platform

Private

access

Public

access

Chapter 5

152

related] business on this GlobalCarCorp platform”. Consequently, this

class of platforms was not just a tool in a follower approach, but a way to

inject new momentum in automotive innovation.

4. Finally, the “industry standard ‘open’ public platform” was seen as an

initiative to merge automotive and consumer electronics innovation. It

was “a platform approach aiming for adoption of widespread consumer

electronics frameworks”. In this vein, the main purpose was “to minimize

entrance barriers for CE actors, interested in porting their applications to

the automotive environment”. The team envisioned two different models

for such innovation; either the platform would be used to “support co-

branding under competition, where partnership with a strong brand is

used to strengthen the vehicle brand”. In such a scenario GlobalCarCorp

would be in control of the partners invited to competition. In the other,

more aggressive approach GlobalCarCorp would agree “to fully open the

platform for third party development and distribution of software”. In

practice, it would mean that “the customer can download standard SW

modules with minimum or no integration work”.

Getting Management Support

The four concept alternatives can be viewed as a way to maneuver in the

minefield of tensions unfolding as the team started the demanding process of

translating ideas into practice. On the one hand, they were committed to

implement an architecture that could support more open innovation

practices. On the other hand, they were embedded in an organization that

would resist attempts to introduce openness in many different ways.

Launching the four concept alternatives was an attempt to balance the

different aspects and opinions that would inevitably materialize in the wakes

of an open platform. In order to accomplish any change at all it would be

critical to build support in the organization.

Although the project had started in minor, with GlobalCarCorp’s attempts to

enforce a hierarchy-of-parts perspective, it suddenly took an unexpected

turn and continued in major. Unexpectedly, the director of controls and

software engineering at GlobalCarCorp showed great personal commitment

to the project. He gave his full support to the idea of rejecting decomposition

of the system and focus on a software platform, deployed to one component.

However, he also recognized other aspects with explicit implications on how

to exercise and balance architectural frames. In particular, he could see and

articulate the tensions between the automaker’s internal need for control,

grounded in hierarchies-of-parts thinking, and the need to create

deregulated, open, innovation environments, able to attract creative people

and organizations, seeking to realize their ideas and dreams. On the one

Digital Product Innovation at CarCorp

153

hand, CarCorp had to reinforce control over the software platform to

exercise influence over innovation processes. On the other hand, a

proprietary CarCorp platform would draw little attention and build limited

installed base, offering little chance to accommodate the changes in

consumer electronics. The platform had to be open, yet, at the same time,

making the basis for the automaker’s influence over external application

development. The director of controls and software engineering argued that

the only credible way to resolve this contradiction would be to adopt an

existing open source platform.

I would say we need to take control through an open source
[platform] initiative and by our contribution to it, approve it.
Because I think take control of it in a proprietary sense is still
not going to create the crowd.

No doubt, this position was exceptionally controversial and provocative in an

automotive setting. To most people in the industry open source was an

almost bizarre phenomenon. How would a relationship with an open source

community be manifested? Clearly, traditional governance logic would not

apply. As anticipated by the director, this kind of movement would trigger

strong reactions by established institutional structures.

…we have standard terms and conditions that everybody signs,
because those are readily acceptable in the industry. They are
fair terms, right. Those terms do not apply here, and the fact
there is no really readily acceptable standard terms in the
software industry, so everything is a negotiation. You have to
start from a decent place, and then you got to negotiate teeth-to-
teeth, and our legal guys don’t even get that concept. We have
our standard ones – you sign it or go away. That’s not going to
work. You have to have different ones that you start with and
negotiate, so take that, that’s just buying commercial
proprietary cuts, and tell these guys we want go open source.
You’ve totally ripped the foundation that they are standing on
from underneath them, but it is exactly what we need to do.

Although anticipating rock-solid opposition, in particular from legal

departments, GlobalCarCorp’s director of controls and software engineering

injected hope and commitment in an open source agenda.

in the end – here’s the kicker – in the end, the lawyers don’t run
the company, right, they only make recommendations.

In an attempt to clarify and reinforce his position, the director identified an

open source platform as the only credible alternative for an automaker to

engage with community-based innovation, being increasingly important to

contemporary consumer electronics.

Chapter 5

154

I absolutely believe this is where we have to go – this is the game
changer. And this is the thing that solves the problem of how do
you stay relevant in infotainment telematics in a company that
fundamentally operates at a speed that will make you
irrelevant, right. And that is, you have to separate it, right. I
mean you’ve got to get out to the communities that moves fast,
which is open source, and you got to install a platform in the
vehicle that can accommodate that innovation, and you got to
kind of separate the life cycles, right.

By repeatedly returning to and elaborating the role and meaning of the

platform in practice, rather than its technical properties, the director

increased the attention on a question that CarCorp had just started to study

in another project; how could an automaker initiate, moderate and maintain

a productive developer community, centered on the platform?

Forming a Platform Ecosystem

In parallel with the platform assignment, CarCorp had initiated a project

with specific focus on new business and innovation practices. This project

was rooted in the late experiences of integrating nomadic devices (5.3). In

retrospect, managers and designers could see a breakthrough in the struggle

with nomadic devices, although the open platform for nomadic devices did

not translate into a commercial product. First, they had internalized a totally

new view on governance, where the general patterns of a platform unfolded

as critical elements in governing application development. However, they

had also realized that such a platform would be essentially useless unless it

would draw attention and collect crowds of developers. Without diffusion of

the platform there would be little multiplicity and, eventually a limited range

of digital options for GlobalCarCorp to capitalize on.

Therefore, a new project was initiated late 2007, with an explicit ambition to

study the business conditions in more open innovation environments. As

illustrated by a senior consultant it was increasingly clear to the inner circle

of infotainment designers and managers that the major challenges of

launching an open platform would be “organizational and on the business

side”. The critical questions would be:

How should we sell this? How do we market our applications?
How do we earn money? This is the fundamental issue!

The original project application, presented to get internal funding, declared

in a somewhat vague manner that:

a business strategy for Open Source Software/open API and
open innovation for automotive applications will be developed.
This would require an open platform, probably the infotainment
system should be targeted.

Digital Product Innovation at CarCorp

155

According to the project descriptions, the main motivation behind such a

business strategy related to two critical questions:

How can we increase the speed and flexibility of implementing
new functionality and features?

How can we increase the capability of detecting, exploiting, and
developing new use cases?

Largely, the participants of this exploratory project spent their limited time

to figure out how an open innovation approach could help them address

these questions in an automotive context. In order to provide concrete

illustrations, they derived and described four alternative strategies (Table 4).

Table 4. Proposed strategies for open innovation at CarCorp.

Strategy Description

Enhanced
Crowdsourcing

This approach was framed as a way to reduce burdens of
R&D. By balanced involvement in open source projects
CarCorp had a potential to leverage the possibility of
mass collaboration for reducing cost and improve
software quality.

Software
Accessories

The “software accessories” approach referred to a
strategy focusing on building an aftermarket business
around infotainment software for connectivity
personalization, and new functionality. Rather than
creating new revenue streams, this strategy aimed to
reinforce existing ones. Therefore, the primary objective
of this strategy was to generate rich and potentially free
complements, increasing the value of the core business –
selling infotainment systems.

Maintenance
through Open
Source

This strategy suggested that proprietary application
software should be donated for open source governance
as new generations emerged. It would allow CarCorp to
focus resources on core development and capitalize on
investments, while securing customer satisfaction over
time. In its ambition to reduce cost and, at the same
time, preserve customer loyalty it can be view as a mix of
the two former.

Semi-Open
Competition

Finally, the “semi-open competition” was launched as a
strategy to assign development of core applications to
external 3rd party suppliers. Rather than reinforcing the
CarCorp brand by offering proprietary infotainment
applications this approach recognized that that the value
of established and acknowledged brands, owned by
external actors, could be leverage through strategic
partnerships. In other words, these strategic

Chapter 5

156

partnerships would be used to reinforce the CarCorp
brand. As the project emerged, it became increasingly
clear that this approach would redefine the automaker’s
core business and force them to capitalize on
complementary assets, rather than core applications.

Together, the four strategies made clear to CarCorp that open innovation was

not a well defined phenomenon, ready to be uncovered in different advanced

engineering projects. Instead, it was a concept with margin for

interpretation. The tricky thing would be to identify a strategy which

successfully could exploit external creativity to expand horizons and

generate a wide range of applications, but without challenging established

innovation practices too much. It would simply be a bad idea to create too

many enemies by questioning the rationale of the organization.

Trying to launch a reasonably aggressive but realistic agenda, the project

foregrounded the potential in partnering with new actors, deeply anchored

in consumer electrics. Such partnerships would enable critical competence,

in a reasonably controlled form. It would be controlled in the sense that it

would be possible to apply traditional and familiar governance instruments,

such as legal contracts. However, the project team could not overlook the

potential in a more radical approach to open innovation. Therefore, as

described by the project manager, the team agreed to propose a

complementary strategy, aiming for novelty and originality.

We foresee two models for how to introduce new applications.
One option is to actively seek partnerships where brands and
products reinforce each other [without cannibalizing]. The other
one is [unconstrained] open innovation, where you do not really
know what is going to happen, where you allow yourself to be
surprised by people and their ideas. Together, these two models
will pave the way for great products.

Clearly, the more unconstrained view on open innovation called for a new

playing field. Studying other successful initiatives, it was rather obvious that

developers would not just gather around a platform. As underlined by

GlobalCarCorp’s director of controls and software engineering, being

interview by project members, the platform would not deliver open

innovation on its own. The aggregate potential in platform and developers

would not unfold without a community.

We [also] need a community that is willing to develop on it,
right. We need to be part of that community, and in some cases
try to out-innovate, and we need to be attractive [enough] for
the innovators to come to us and say we would like to get this in
your vehicle and we have a more predictable, guaranteed safe

Digital Product Innovation at CarCorp

157

distribution mechanism than just downloading of the open
source.

At this point, the locus of the project changed as resources were redirected to

delve deeper into the concept of developer communities, later recognized as

innovation ecosystems. Developer incentives became top priority as well as

trying to understand the interplay between developers and platforms.

Almost reluctantly CarCorp started to realize that ecosystems would feed a

quite different perspective on platforms, at least compared to the view

adopted by their own engineers. Engaging in specialization independent

developers would interact with the platform through a software development

kit (SDK), consisting of a whole range of tools allowing for the creation of

software applications. Further, they would draw on application

programming interfaces (API) to reuse and recombine general patterns

offered by the platform. Largely, the complex software stack, making up the

platform in the eyes of CarCorp’s designers, would be invisible to external

developers. Suddenly, the disconnection between platform and applications

became very real; it would be fully possible to design infotainment

applications to CarCorp without real-life contact with car or its different

physical parts. Specialization and generalization would be interlinked

through a few critical boundary resources.

These findings played an important role when CarCorp 2008 pushed the

project into a new phase, aiming for industrial implementation of the ideas

in practice. Leaving the exploratory character behind, the team adjusted and

refined the objectives of the project to focus on a few critical issues; the

constitution of a developer program and the identification of critical

boundary resources. In short, the objective of the second phase of the

project was:

To develop an open innovation concept for next generation
infotainment systems including a developer program, platform-
community boundary resources, and process innovation.

While the first phase was implemented on a skunkwork basis, involving a

very limited group of people, the second phase was rolled-out widely across

the entire organization. To get maximum support the project manager

engaged people from different parts of R&D, marketing, sales, product

planning, and aftermarket. In addition, she involved two key players from

Sony Ericsson with long term experience from partnerships programs and

community management.

Over a period of approximately one year CarCorp’s conceptual studies of

innovation ecosystems and open innovation platforms continued side by

side, while eventually merging as the company made a bold decision; the

Chapter 5

158

next generation infotainment system – including in-car platform and

innovation ecosystem – should be based on Android26.

Platform Selection

In February 2010 CarCorp’s executive management board decided to adopt

Android as a basis for infotainment in the upcoming mid-sized car, with an

ambition to apply it for all models in the longer run. It was indeed a bold

decision, with many unresolved question marks in the margin. Still, it was

not a reluctant or doubtful board approving a major investment in Android –

a platform they did not control. On the contrary, these executive managers

expressed their enthusiasm and strong support. In retrospect, the

infotainment people could see that this massive support followed from the

simple fact that although the proposed solution was flawed by lack of

precision it gave credible answers to a whole range of critical questions. Top

management could see through weaknesses and shortcomings since the

proposal offered a coherent solution to a whole range of management and

business challenges. It made sense together, as a whole.

Judging by retrospective statements (see Table 5), CarCorp management

paid particular attention to Android’s capability to:

 Enable a recurring infotainment business in the form of

aftermarket applications. In practice, this opportunity was grounded

in a decoupled relationship between the car, hosting the Android

platform, and application development. Infotainment functionality

would be able to evolution continuously, without considering car

lifecycles.

 Generate multiplicity and diversity by drawing on an

established developer community and an exceptional installed base

in various consumer electronics devices.

 Secure sense-and-respond capability, allowing for quick turn-

around on ideas and, thereby, enable state-of-the-art infotainment

to CarCorp customers.

 Support domain-specific extensions, being a basic condition for

car-specific innovation. In fact, the capability to extend the platform

with car-specific, general patterns would be crucial for CarCorp to

appropriate value from an Android community and, therefore,

necessary to secure revenue streams and profitability.

26 Android is a Linux-based operating system for mobile devices such as smartphones

and tablet computers. It is developed by the Open Handset Alliance led by Google

(Wikipedia).

Digital Product Innovation at CarCorp

159

 Support a versatile governance model, where CarCorp could

balance between openness and control in a pragmatic way. Without

a clear strategy for how to address fundamental security and safety

threats open innovation would stay a beautiful vision in the

automotive industry.

While reflecting back on the long process that eventually made CarCorp go

for broke on Android, the two main protagonists emphasized the same

aspect; without combining the business oriented ecosystem project and the

techno-centric platform project they would have followed a different path.

Without understanding the interplay between community-based

specialization and platform-based, continuous generalization of functionality

the promises of open innovation would have remained a distant, unreachable

vision.

I think the ecosystem project made a huge difference. It changed
our way of thinking. That kind of thinking has to be around for
a while to understand. You need to hear it over a longer period
of time to craft a clear vision. If not, it is easy to do what we first
did; pick a platform [on technical premises] and see what
happens. Without the ecosystem project I’m pretty sure we
wouldn’t have taken the step to go for Android. Then, we would
have had some other kind of open source platform, with a vague
idea that such platforms can handle reuse. I think it is pretty
interesting. I mean, how it actually influenced our way of
thinking. […] Now, we have rock-solid support for this. This is it!

The project manager for the ecosystem project agreed with her colleague, but

underlined that the new model for how to view infotainment was not just an

outcome of these two contemporary projects, but had emerged from many

different projects, implemented over several years.

I think this journey has been incredibly important for our
company. We have now sanctioned the project throughout the
organization and received a great response... This wouldn’t have
happened without the early efforts. I don’t think that the
company has been mentally prepared to make this journey until
now... It’s fantastic. Sometimes I have to pinch my arm,
confirming that I’m not dreaming. So many years, so much
fighting, and suddenly it happens and everything works out - it
feels very strange!

Table 5. Key argument behind the selection of Android at CarCorp.

Recurring business Multiplicity and Diversity Sense-and-respond Domain-specific
extension

Governance

“[This solution] will
allow infotainment
services to con-
stantly evolve during
the lifetime of a car’s
product cycle, unlike
current in-car sys-
tems which are fixed
some years before a
car goes on sale and
then remain
static.”27

“The number of already
existing [Android] app-
lications is a huge
advantage. It’s extremely
efficient in terms of
development effort. It takes
the focus away from
technical development to
business development.”28

“[With our Android-based
system] there are no limits
to the potential for
innovation. […] We will be
inviting the global Android
developer community to
use their imagination and
ingenuity.”27

“[This solution] pro-
vides a faster, more
efficient and more
flexible alternative to
the conventional, in-
house development of
vehicle infotainment
services.”29

“Our open innovation
strategy, using the
Android operating sys-
tem, will keep the
provision of in-car
infotainment up to
date.”27

“CarCorp will issue third-
party developers with a
vehicle application pro-
gramming interface (API)
providing access to more
than 500 signals from
different sensors in the
vehicle.”29

“CarCorp’s ‘open
innovation’ strategy offers
the global developer
community access to the
full bandwidth of car
communications —
infotainment, telematics,
systems monitoring and
diagnostics.”29

“To ensure [that]
high driving
safety and quality
standards are
maintained, pro-
grams from soft-
ware developers
and application
providers will be
evaluated and
approved by
CarCorp before
they are made
available to
customers.”29

27 Director at CarCorp Aftersales.
28 Infotainment project manager.
29 Written press material

161

6 Discussion: Generative Product Design

In this thesis I set out to explore how product developing firms build new

innovation practices to leverage the generative capability of digital

technology. I have approached this task from a technological change

perspective. In one way or the other new technologies arise from

combination of existing technologies. While this process of combination is

powered by forward-looking visions and a desire to accomplish new goals, it

is also highly characterized by its legacy – the genesis of a particular

technology largely defines how it can be reused for new purposes. The legacy

simply makes some directions of progression “much more compelling of

attention than others”. Often “advance seems to follow advance in a way that

appears almost inevitable” (Nelson and Winter 1982, p. 258). I have used the

concept of innovation regime to give a concrete face to the inherent logics

defining how a physical component, a piece of software, or an algorithm can

be reused and recombined with other artifacts. The “ground rules” of an

innovation regime defines how a particular technology over time “bootstraps

itself upwards from the few to the many and from the simple to the complex”

(Arthur 2009, p. 21).

Existing literature gives solid evidence for the idea that physical products

and digital technology change according to different logics. Therefore, as

tangible products are increasingly digitized, distinct innovation regimes

clash into each other. In reality, this clash is manifested as tensions between

the legacy of established practices and existing technology, on the one hand,

and the potential in upcoming digital solutions, on the other. To leverage the

Chapter 6

162

generative capability of IT organizations have to resolve or at least manage

these tensions.

In this thesis I have studied how product developing organizations use and

develop architecture and architectural thinking to cope with these tensions.

Broadly, organizations engage in architectural design to manage complexity.

It is worth pointing out that complexity is not an invariant aspect of

technology. Rather, “how complex or simple a structure is depends critically

upon the way in which we describe it” (Simon 1996, p. 215). Still, such

descriptions make rigid templates for how technology can be combined.

Thereby, the architecture makes a link between historical achievements and

future potentialities. Architecture is a strategic tool that, properly exercised,

can be used to gradually reinforce sound ideas in a series of “structure-

preserving and structure-enhancing transformations” (Alexander 1999,

p.79). In other words, architecture is an instrument for path creation, but, at

the same time, a shackle of path dependency. Whether product developing

firms will be able to transform innovation practices and leverage the

opportunities of IT relies, to a significant extent, on their capability to

fertilize new architectural perspectives, resonating with the opportunities of

digital technology.

To give a distinct perspective on how product developing firms architect

digital products, I have developed and applied a theoretical framework that

culminates in the concept of architectural frames. First, this framework takes

off from the assumption that digital innovation cannot be understood unless

we shift focus from physical properties to affordances. While the potter’s

creative leeway is defined by the plasticity of his clay, the creative work of a

software designer plays out in a virtual realm of representations. An

algorithm affords the designer to solve a particular problem, but cannot be

traced to physical quantities in any form.

Second, the framework offers a model for understanding the implications of

digitalization on product development through two distinct affordances;

programmability and replicability. Replicability affords instant replication,

without exercising marginal cost, while programmability affords separation

of meaning and functional characteristics from the physical artifact. The

presented model put emphasis on two distinguishing barriers in product

innovation, largely destroyed by programmability and replicability; the

transition between functional design and physical design and the transition

between design and production.

In product innovation, the transition between design and production triggers

substantial marginal cost. Harsh competition over price force product

developing firms to develop economies of scale, where massive investments

Discussion: Generative Product Design

163

in specialized assets, such as tools, supply chains, plants, etc, pays off in

terms of low unit cost. At the same time, these firms have to differentiate

their products to stay competitive. Consequently, it is critical to architect

products in such a way that all these specialized assets can be reused across

variants and generations of the products. Products have to be architected for

producibility. Modularity offers a solution, based on well-defined, highly

autonomous components, forming scalable systems on the basis of a

predefined, hierarchical template. This template prescribes how to

recombine these components to leverage functional variation. As a

consequence, this architectural strategy causes a barrier between functional

design and physical design since modularity requires the overall

functionality to be defined at an early stage for deployment to dedicated

components. The critical task to design components cannot be initiated

unless the whole picture is acknowledged. In practice, this unidirectional

transition marks an irreversible shift in focus, from solving functional

problems to the challenge of designing an artifact that can realize and

mediate that functionality in a competitive manner.

To some extent, programmability and replicability pull the rug from under

the feet of traditional product innovation. The opportunity to design and

produce functionality without considering the physical wrapping or the cost

of implementing it opens up for genuinely new paths of technological

change. With functionality increasingly detached from the artifact in itself,

complexity does not primarily play out in the structure of products, being at

the same time functional and producible. The architectural challenge is

increasingly less a matter of reusing assets for new configurations of a

product. As a consequence the introduction of digital technology in product

development redefines the role of architecture and triggers a shift in

architectural thinking.

The third part of the framework introduces the concept of architectural

frames as a way to view architecture in digital product innovation. With this

theoretical model, making up two idealized representations of a complex

product’s architecture, I suggest that digital product innovation rests on two

architectural pillars. On the one hand, cars, airplanes, and washing machines

will remain physical artifacts that have to be architected for reuse of assets,

with producibility in mind. At the same time, accelerating digitalization blurs

the functional boundaries of these artifacts; meanings and perceived

experiences are not inscribed in the products, but can emerge over time. To

reinforce such generativity digital products have to be architected for reuse

of ideas.

To shed light on this duality, the architectural frames model extends the

established architectural thinking in product innovation, largely grounded in

Chapter 6

164

Herbert Simon’s near decomposability, with a complementary view, based

on the legacy of Christopher Alexander. In perspective of technological

change, Alexander takes a position which assumes that progression cannot

be fully understood if we seek to explain the genesis of an artifact through its

predecessors. He rejects the idea that price/performance ratio is a dominant

selection mechanism. Cheap, mass-produced products fulfilling a set of

market-standard requirements do not always win in the sense that they

make basis for coming generations. If they did, the world would be a lot

more repetitive, uniform, and dull. Instead he argues that “the

characteristics of any good environment is that every part of it is extremely

highly adapted to its particularities” (Alexander 1999, p. 74). Following

Alexander, it is not stable subassemblies, manifested as physical artifacts,

that translate from generation to generation, but the ideas generating these

adapted artifacts. When solving a particular problem, in a given context, our

first question is; how did others solve similar problems in other settings? We

do not start looking for existing building blocks to play with.

According to Alexander, technological change has to be understood from the

perspective of processes. The genesis of an artifact unfolds when we zoom in

on the processes, generating the palette of highly adapted artifacts we can

see around us. The task of architecture is to map, represent, and enable our

problem solving heritage to designers, creating new artifacts. Thereby,

architecture plays out in a problem-solving domain, rather than in a domain

of physical things. Architecture is about the structure of problems and

solutions, not about the structure of artifacts. Following this reasoning, we

can argue that legacy is not carried from generation to generation by artifacts

in themselves, but by the functionality they deliver.

The architectural frames model makes an analytical tool for understanding

and articulating a shift in architectural thinking; digitalization push product

developing organizations from a product-centric to a process-centric

perspective. However, the model does not assume a transition from one end

to the other. Instead it makes a tool for reasoning about a new balance point,

where product developing organizations can identify a sound and rewarding

interplay between producibility and generativity.

Specifically, the model consists of two idealized frames; hierarchy-of-parts

and network-of patterns. The hierarchy-of-parts frame, derived from the

legacy of Herbert Simon, is centered on the physical structure of components

and emphasizes decomposition with subsequent aggregation as the core

principle for managing complexity. Drawing on the concept of near

decomposability and stable subassemblies, this frame resonates well with the

incentives of traditional product innovation, with strong focus on the reuse

of assets. The network-of-patterns frame is derived from Christopher

Discussion: Generative Product Design

165

Alexander’s work in architecture, also frequently applied in contemporary

software engineering practices. This frame is centered on the structure of

problems and solutions, rather than the structure of artifacts. It emphasizes

generalization with subsequent specialization as a complementary approach

to complexity. Drawing on the concepts of patterns and pattern languages,

this frame resonates with software-centric innovation practices, focusing on

reuse of ideas.

Addressing the research question of this thesis I have applied the theoretical

framework to digital product innovation practices at CarCorp over

approximately one decade. This longitudinal case story ranges from the

automaker’s first staggering attempt to generalize infotainment with MOST,

to the adoption and integration of Android, recognized as a highly generative

platform in contemporary consumer electronics. In applying the

architectural frames model to digital product innovation I have been able to:

1) Demonstrate the ontological significance of the architectural

frames model. Although being a theoretical model, with the

ambition to explain digital product innovation at an abstract,

aggregate level, the concepts forming the two frames have proven

deeply anchored in observable real-world phenomena. The model

offers a language for understanding people’s view on technology and

thereby their rationale for engagement.

2) Show that permanent generative capability relies on extensive

organizational support for the network-of patterns frame. With

the assimilations of this frame people increasingly view products as

enablers and catalyzers of new, yet unknown functionality, rather

than carriers of pre-fabricated functions.

3) Show that inherent tensions and contradictions between

architectural frames force organizations to develop new

governance models. The CarCorp case story bears significant

evidence of such tensions, unfolding when a product developing

organization seeks to leverage the generative capability of IT. To

develop practices based on a sound and effective interplay between

architectural frames these inherent tensions have to be avoided.

As demonstrated in this thesis a product developing firm faces several

challenges when appropriating the network-of-patterns frame. These

challenges become particularly salient when reaching a point where the new

frame is exercised to build generative capability, rather than just internal

design flexibility. Largely, generative capability is about encouraging

external creativity, but also about benefiting from such creativity. This calls

for a new perspective on products. Rather than viewing their products as

carriers of pre-fabricated functionality, the organization has to embrace a

Chapter 6

166

view where products are enablers and catalyzers of new, yet unknown

functionality (6.1). Unless such a view informs all the different actions and

decisions across the organization a product developing firm has little chance

to build permanent generative capability (6.2). Further, this thesis suggests

that a product developing firm cannot build generative capability unless

adopting a distinctly different governance model. Generative capability relies

on unconstrained freedom to create new specific functions. Such freedom

clashes hard into established modular governance models, where

decomposition of products is guided by specific functionality. Unless product

developing firms find ways to govern innovation through general patterns

rather than specific they have little chance to build permanent generative

capability (6.3).

6.1 Ontological Significance

Hierarchy-of-parts and network-of-patterns are theoretical constructs,

derived with an epistemological concern. At the same time, the application of

these architectural frames to digital product innovation practices has

disclosed a strong ontological significance of the model; the different

concepts constituting architectural frames translate well into observable

phenomena. The model does not just help us theorize digital product

innovation, but makes a concrete language for representing, describing and

discussing different perspectives on technology present in digital product

innovation. Therefore, an architectural frame is an ontology in the sense that

it offers a distinct model for understanding the different mechanisms

powering an innovation regime.

I argue that a significant strength of the architectural frames model is its

capability to bridge the gap between micro level and macro level, concrete

and abstract, ontological issues and epistemological concerns. It is valuable

at an abstract level not despite of, but because it makes a lot of sense at the

concrete level. As summarized below, the four embedded cases show that the

architectural frames model offers a language for understanding how people

view technology and thereby their rationale for engagement. In some sense,

this makes an entry ticket for theory development.

MOST. The MOST architecture was adopted as a response to

accelerating complexity of infotainment systems. To meet future

challenges in a progressive manner CarCorp had to make these

systems more malleable. It had to be significantly easier to adapt the

system to new premises without entering a new loop of artifact design

and production. MOST offered an answer to this challenge. However,

as summarized in Box 1, there were two distinctly different outlooks

on how the MOST architecture would enable such malleability.

Discussion: Generative Product Design

167

Box 1. Hierarchy-of-parts and network-of-patterns as distinct perspectives
on the adoption of MOST.

Hierarchy-of-parts

With MOST fiber optics entered the car.
This new technology made an
exceptionally simple interface. In fact,
the same, standardized interface would
apply to all the different components
constituting the system. With such a
clean and simple template for how to
build the physical structure of an
infotainment system CarCorp saw a
great opportunity to reinforce modul-
arity. MOST promised exceptionally
flexible decomposition of the system into
a wide range of components, each
enabling a well defined piece of
functionality. This would not just pre-
serve the existing hierarchy of tier-1 and
tier-2 suppliers, but would also allow
them to aggregate the system aggressiv-
ely to differentiate the product portfolio
and launch a range of new, attractive
offers.

Network-of-patterns

MOST introduced the concept of
function blocks. These function blocks
are concrete solution patterns for how to
solve different problems in the context
of infotainment. This new concept
opened up for functional structure to be
designed independently from the
physical realization of the system.
Drawing on this capability, CarCorp saw
an opportunity to engage in general-
ization of the system. Such general-
ization would enable a whole range of
shared general patterns that could be
inherited by specific applications. Con-
sequently, it would pay off in the act of
specialization, when functions such as
navigation, telematics, and audio play-
back could reuse the same general so-
lutions for volume control or positioning
to deliver a coherent and more harmon-
ized end-user experience.

SoftCluster. The SoftCluster initiative was triggered by a need to

reinforce commoditization while, at the same, allowing for flexible

functional design and competitive functional diversity. Serving a range

of brands, CarCorp had to find a way to share instrument clusters

across car models while, at the same time, avoiding the rigidity and

uniformity associated with standard solutions. The SoftCluster

architecture was designed as a response to these challenges. An

important property of this solution was its underlying assumptions on

functional deployment; specific functionality, with high likelihood for

change, was concentrated to one key component. Still, as outlined in

Box 2, there were two different perspectives on how SoftCluster would

enable a better balance between commoditization and differentiation.

Chapter 6

168

Box 2. Hierarchy-of-parts and network-of-patterns as distinct perspectives
on SoftCluster.

Hierarchy-of-parts

The SoftCluster architecture rested on
two key concepts; the open XML
interface (OXI) connecting the cluster
hardware with remote components and
a macro-oriented approach to HMI
design (MOH). Together, these two
concepts promised a competitive
approach to commoditization. It allowed
CarCorp to decompose the system into a
hierarchy where the top-level cluster
component hosted most of the
functionality, while remote components
turned functionally trivial data
suppliers. Thanks to MOH the cluster
could be commoditized in hardware as
well as software, since functional designs
were defined by macros, interpreted in
run-time. Further, this top-loaded
modularity allowed for smooth
aggregation of the system in that the
shared cluster could be easily configured
to support just any combination of slave
nodes, from low-end cars to extreme
high-end.

Network-of-patterns

SoftCluster offered a condensed and well
defined platform for specialization of
cluster functionality. This platform was
defined in a careful act of
generalization, defining all general
patterns of an instrument cluster. These
patterns were then offered to designers
in the form of a macro language, making
a template for how to reuse and
recombine general patterns. By applying
the language in a specific macro,
designers could inherit functional
patters at a relatively detailed level to
realize end-user applications with minor
efforts. In practice, this new functional
structure of an instrument cluster
allowed for exceptional turn-around on
ideas. As long as the macro language
remained untouched, designers could
engage in recurring specialization
without paying attention to underlying
hardware or software.

Nomadic device integration. The automotive industry is generally

characterized by linear development processes, where functionality is

defined up-front. At some point, such processes could not provide for

competitive infotainment solutions, keeping up with the clockspeed

demonstrated by consumer electronics. Portable navigation devices

and mobile phones simply outperformed in-car solutions far too early

in their long car lifecycles. Nomadic device integration seemed to offer

an answer to this challenge. However, as summarized in Box 3, there

were two distinctly different outlooks on how it would address this

lifecycle problem.

Discussion: Generative Product Design

169

Box 3. Hierarchy-of-parts and network-of-patterns as distinct perspectives
on nomadic device integration.

Hierarchy-of-parts

Nomadic device integration seemed to
offer CarCorp the opportunity to solve
the painful lifecycle dilemma by
exercising an aftermarket approach to
infotainment. Properly decomposed, the
system could be designed to allow for an
external component to fit with the
established hierarchy of internally
developed parts. Given an accepted and
diffused interface this solution would
offer customers the opportunity to
upgrade the system simply by replacing
their nomadic devices. Such aggre-
gation, leaving a new configuration of
components, could be done in-
dependently of the car lifecycle and at
customer expenses.

Network-of-patterns

With nomadic device integration
CarCorp saw an opportunity to draw on
the largely uncoordinated creativity in
consumer electronics. The creation of a
layered architecture, where nomadic
functionality could be enabled as
general services, promised a process
focus where functionality could emerge
independently from car lifecycles. By
engaging in a process of specialization
such general services could be inherited
and continuously adapted to car specific
use. Besides enabling new tools for
CarCorp’s designers, this new approach
was expected to bring interest for
external, non-automotive developers to
engage in infotainment design.

Android. At a general level, Android was launched as a way for

CarCorp to get access to rich, distributed innovation without

becoming passive followers. Over almost a decade of experimentation

with nomadic device integration they had identified a set of critical

challenges. In particular, NDI did not allow an automaker to influence

design processes. In practice, such solutions left for CarCorp and other

car makers to be followers, adapting application already in place. By

taking control over the software platform they saw an opportunity to

reinforce their own influence over design processes. Still, as outlined

in Box 4, there were two different perspectives on how the Android

platform would allow for such influence.

Chapter 6

170

Box 4. Hierarchy-of-parts and network-of-patterns as distinct perspectives
on the adoption of Android as a basis for infotainment.

Hierarchy-of-parts

Android had the potential to provide
CarCorp with unprecedented variety.
However, to get access to such variety it
was critical to build significant installed
base. The traditional approach to break
installed base apart in different hard-
ware configurations, adapted to different
carlines, would not work well. Therefore,
CarCorp decomposed the system
carefully and planned for one standard-
ized infotainment component, to be
mounted in all models. Although
Android was a software platform
ultimately controlled by Google, the new
infotainment system offered an import-
ant advantage compared to previous
NDI solutions; the hardware would be in
the hands of CarCorp. Being in control
of a physical component ultimately
seemed to offer power of access to that
component. It would offer the oppor-
tunity to govern software development
by certification, providing necessary
rights to install and run software at a
given hardware.

Network-of-patterns

With Android CarCorp had access to a
developer community of substantial
proportions. This community made a
huge innovation resource, waiting to be
explored by progressive automakers. In
such a context, the launch of car-specific
services and API:s made an invitation
for Android developers to engage in
specialization of the rich automotive
environment. From a technical point of
view, such extensions seemed relatively
smooth. Android offered not only a rich
network of pre-existing patterns, but
also an established model for how to
extend the platform with new, reusable
services. In contrast to NDI, reliance on
Android would allow CarCorp to engage
in generalization. As a key ingredient of
a new governance strategy, explicit
power to define general patterns made a
template for how these patterns could be
inherited when independent developers
engaged in specialization. Ultimately,
this made a bottoms-up strategy, leaving
for unbounded innovation within a
marked path.

6.2 Organizational Support

The application of architectural frames to digital product innovation at

CarCorp has provided evidence for the idea that digitalization causes a shift

in architectural locus. In its different parts the case story illustrates such a

shift at an individual level, where people gradually reconsider their

perspective on infotainment in light of new, digital technology. However,

together the four embedded cases also provide rich evidence on how new

architectural thinking propagates across an organization. Table 6 is a

snapshot of selected quotes, illustrating how the network-of-patterns frame

rolled out across CarCorp.

With MOST CarCorp uncovered and learned the basics of generalization.

This had major impact on systems architecture. MOST provided tools for

architects to reason about an infotainment system in terms of logical or

functional elements, rather than components (i). It allowed them to focus

their attention on detailed functional problems and, eventually to architect a

Discussion: Generative Product Design

171

coherent system hosting increasingly harmonized functionality. At the same

time, specialization has a minor role in the story about MOST. The reason is

simple; CarCorp stayed with a traditional component-based approach to

distribute design assignments. Rather than inviting to development of

software-based infotainment functionality, CarCorp engaged existing tier-1

suppliers to design and produce components according to a traditional

hierarchy-of-parts template. Purchasing expected that MOST would bring

off-the-shelf components (xx), introducing much need competition between

automotive suppliers. Similarly, product planning saw an opportunity to

draw on the simple physical interface in MOST and break the infotainment

system apart in a wide range of components. This would open up for

differentiation and better business cases (xii). However, the conservation of

traditional hierarchy-of-parts logic in design practices created problems,

when generalized functionality should be deployed to a highly distributed

system (vi). The clash between architectural frames became obvious, when

suppliers found out that their components were not functionally

independent anymore, but deeply intertwined with other components,

outside their control. In making commitments on the basis of components,

suppliers had no option but to reject much of the functional responsibility

they normally had. Rather than designing components on the basis of

overall property requirements, they needed complete interface

specifications, falling out of the deployment of generalized functionality on

distributed components. In summary, MOST introduced generalization at

CarCorp and brought a radically new perspective on architecture, but seeded

little new thinking outside the inner circle of systems architects. Without

proper organizational support for this new thinking MOST turned yet

another illustration that “implementation of technology intended to

reinforce organizational control can instead cause organizational disorder

and drift from intended purposes” (Sandberg 2010).

With SoftCluster CarCorp discovered specialization. The new macro-oriented

approach disconnected functional design from platform software as well as

physical properties of the system. Making a precise and clear template for

how to reuse general patterns the macro language defined the creative

leeway offered to designers (viii). It paid off quickly in exceptionally fast

turn-around on ideas (vii). Rather than making a tool for smooth realization

of existing ideas, SoftCluster turned into a generative platform. In the hands

of designers, it produced novel functionality that no one had planned for up-

front. These new design practices rested on a successful generalization of

cluster functionality. By taking in-house control over platform design (ii)

CarCorp was able to set up a macro language that gave structure and support

in design processes, while at the same time allowing designers to exercise

creativity. While network-of-patterns thinking had now changed design

Chapter 6

172

practices at CarCorp, this new perspective was far from rooted outside R&D.

Product planning, purchasing and many other actors recognized that

SoftCluster brought different design practices, but largely they understood

its potential from a hierarchy-of-parts perspective. Rather than seeing its

generative capability they emphasized the unique opportunity to exercise

functional differentiation while, at the same time, capitalizing on scale

advantages of both commoditized hardware and software (xiii). Similarly,

SoftCluster’s well defined, straight-forward and relatively simple design

process was attractive from a purchasing perspective. It seemed to make a

solution to recurring and expensive change requests on component

functionality, which tended to ruin project budgets (xxi). In summary, the

SoftCluster story gives evidence on significant assimilation of generalization

(platform design) as well as specialization (functional design). However, the

many people not explicitly involved in technology largely understood

SoftCluster from a hierarchy-of-parts perspective.

Nomadic device integration was triggered by the increasingly obvious

difference in clock speed between the automotive industry and consumer

electronics. Somehow the comparatively slow automakers had to bridge this

gap not to be marginalized in infotainment (xiv), (xv). Nomadic device

integration seemed to offer a solution where the automotive industry could

tap in to the prospering developer communities forming around consumer

electronics. Seeking architectural solutions for nomadic device integration

CarCorp gradually understood that generalization and specialization are

intertwined phenomena that cannot be disconnected from each other. As

illustrated by their early Bluetooth enabled phones, specialization will

inevitably decline and eventually stop if general patterns are not

continuously adapted to new premises of application development. In

response to this challenge CarCorp and its project partners researched many

different concepts for how to make the car malleable to changes in consumer

electronics (iii). At the R&D department engineers and designers were aware

that a nomadic device strategy, grounded in a dynamic interplay between

platform development and external application development would

challenge established hierarchy-of-parts logic. Down the road, services

would be a matter for external actors rather than tier-1 suppliers, delivering

on CarCorp specifications (ix). However, the obvious threat to existing

business models also pushed product planners to reconsider their view on

infotainment. Although making an extraordinary idea with unclear

implications, they started to accept that it would be possible to capitalize on

such externally created functions and services (xvi). Slowly they recognized

the logic of two-sided markets, where specialization materializes in the

interplay between developers and end-users, powered by a platform that

offers attractive and continuously revised general patterns. It was not clear

Discussion: Generative Product Design

173

exactly how, but it seemed be possible to make money on these kinds of

solutions. While this new position made a bridgehead for network-of-

patterns thinking outside R&D, most people at CarCorp still tended to apply

hierarchy-of-parts thinking to make sense of nomadic device integration.

With this perspective, a nomadic device made an accessory that could be

added to an existing solution. It was a component that, like a trailer hitch,

could be added at a pre-defined position in a design hierarchy to improve

end-user functionality. From a cost perspective, however, this accessory

perspective made sense; these components would not be associated with any

cost for CarCorp, even though it made a key part of the infotainment system.

Customers would buy phones and other nomadic devices independently

from car investments. This opened up for a new segment of low cost

infotainment solutions which CarCorp had not been able to offer before

(xxii). In brief, the work with nomadic device integration furthered network-

of-patterns thinking at CarCorp. Generalization and specialization were

increasingly seen as intertwined phenomena which, at its most concrete

level, mean that platform development is a recurring activity that has to be

exercised in harmony with application development. Even though this

perspective was largely accepted at R&D and slowly taking root in product

planning practices, the organization as a whole understood nomadic device

integration from a hierarchy-of-parts perspective.

With Android the network-of-patterns view on infotainment had its

breakthrough at CarCorp. A smaller group of people at R&D had worked for

many years on new architectural solutions in order to benefit from the

digitization of infotainment. Their efforts now made a solid foundation for a

new perspective on infotainment. Still, the generative capability of these

solutions largely remained unresolved, since the organization consistently

put emphasis on benefits making sense with a traditional hierarchy-of-parts

lens. With Android this changed. There was simply no rationale for adopting

this platform under a hierarchy-of-parts paradigm. To make this bold idea

fly it was necessary to get unconditional support from top management. It

would prove surprisingly simple to get that support. With a long track

record, credibility, and solid arguments, the core infotainment group got

Android sanctioned by the executive management team and in a couple of

weeks supported by the organization as a whole (xxiv). Now supported by

top management, network-of-patterns thinking spread across the

organization. Aftermarket saw great opportunities in a recurring

infotainment business, decoupled from car sales (xxiii). Marketing, product

planning, and other sales oriented parts of the organization suddenly

accepted that developers were to be considered a new type of customer and

thereby in their interest. The car became an offer, not just addressing

traditional end-users, but also independent developers (xix). This offer

Chapter 6

174

would be delivered through different APIs, enabling rich and interesting

content to third party developers (xviii). With this perspective, CarCorp

slowly transformed its view on value. Rather than associating value with the

embedded functionality of a component, the decision to adopt Android

helped people to see that the value of a generic software platform is found in

its capability to generate rich and varied content (xvii). A rich and

continuously changing functional offer also stood out as a solution to the

lifecycle dilemma, where cars always tended to be outdated (x). Drawing on

an open community, CarCorp would be able to respond quickly to external

change. While it was not fully clear what such a community would look like,

managers at infotainment outlined different approaches. These approaches

made complementary, but coexisting models for open innovation (xi). One of

the main arguments behind Android was its tight connection to established

communities. With Android CarCorp would have an architecture which

adapted continuously to specialization practices (iv). At the same time, an

open source solution would break significantly with established governance

models. The idea to rely on public source code, which could not be modified

unilaterally, seemed awkward and confusing. Slowly, CarCorp understood

that influence would require engagement. In order to avoid being passive

observers they had to get actively involved in the open source community

maintaining the platform. Influence over the platform would be related to

contributions (v). To take reasonable control over an automotive fork of

Android CarCorp would have to give away valuable things. Being one of the

first automotive actors showing interest in Android, there was a window of

opportunity – an opportunity with the potential to make CarCorp a leading

actor in automotive.

Together, the four embedded cases provide a detailed narrative of how

network-of-patterns thinking may propagate across an organization. Starting

with systems architects and designers CarCorp gradually rolled-out a new

perspective on their infotainment products over the studied period of

approximately one decade. At the end of this period the organization viewed

these products as enablers and catalyzers of new, yet unknown functionality,

rather than carriers of pre-fabricated functionality. Although this study does

not cover a commercial introduction of the Android platform it suggests that

this view on digital products is a basic premise for generativity. Unless such a

view informs all the different actions and decisions across the organization a

product developing firm has little chance to break with traditional

innovation logic to build permanent generative capability.

Table 6. The propagation of network-of-patterns thinking at CarCrop, illustrated by selected quotes from the case stories. A few quotes
are not represented in the case stories and therefore marked with formal positions.

 MOST [1999-2003] SoftCluster[2002-] Nomadic Device Integration [2004-2007] Android [2008-]

S
y

st
e
m

s
A

r
c
h

it
e
c
tu

re

(i) “I think we all realized – at least
the people involved in

[architecting] infotainment – that

somehow this was the future. We

needed to focus on the system,

solving problems at the system

level. […] I think, at the heart of
MOST, we find a kind of system

level thinking that is not

component-oriented. Instead, it
centers on the structure of logical

elements or functionality.”

(ii) “by being in control of
software, we can be fast

and make sure there are

[general] software

functions supporting

whatever it is we see

coming. I think that’s the
main challenge here.”

(iii) “We should mimic the plug-in flexibility
offered by USB. It is the device that is

responsible for providing the relevant

driver. This enables an end-to-end

architecture for making the systems operate

together.[…] As a third-party vendor, you’ll

supply this opportunity by installing the
driver on our open platform.”

(iv) “you’ve got to get out to the
communities that move fast, which is

open source, and you got to install a

platform in the vehicle that can

accommodate that innovation.”

(v) “we need to take control through an

open source [platform] initiative and by
our contribution to it, approve it.

Because I think take control of it in a

proprietary sense is still not going to
create the crowd.”

D
e
si

g
n

(vi) “They thought the traditional
model would work, where each

[supplier] had responsibility for

his own function, embedded in his
own component. […] Down the

road, they saw the flip side. It

didn’t work since the whole system
– end-to-end – was so incredibly

distributed.”

(vii) “With this architecture I
can make some design

changes really, really

fast. But I think there are
very few realizing it.”

(viii) “It’s like playing with

LEGO. You’ve got a
particular set of bricks.

They’ve got their

limitations, but you can
build a whole lot of

different things with

them. And it’s simple.”

(ix) “We have realized that we don’t have the
capability to define all those upcoming

services, to understand what people want. It

might not even be our job anymore. [...] The
pace of telecom is at the heart of this. The

automotive industry can’t handle this rapid

pace. Things are too old when they come to
the car! […] At some point we decided not

to care about services. They can emerge on

their own premises. Our task is to offer
connectivity [between nomadic device and

car].” (project manager, CarCorp)

(x) “[This solution] provides a faster, more
efficient and more flexible alternative to

the conventional, in-house development

of vehicle infotainment services.”
(xi) “We foresee two models for how to

introduce new applications. One option

is to actively seek partnerships where
brands and products reinforce each

other [without cannibalizing]. The other

one is [unconstrained] open innovation,
where you do not really know what is

going to happen, where you allow

yourself to be surprised by people and
their ideas. Together, these two models

will pave the way for great products.”

P
r
o

d
u

c
t

P
la

n
n

in
g

(xii) “We saw an opportunity to change

and modify components […] It

would be possible to add
components over time and it

would be possible to upgrade

systems.”

(xiii) “a need to support

vehicle brand differences

within the
GlobalCarCorp family

such as difference in

graphics, layout and
menu structures without

having to change

operational software in

any ECU”.

(xiv) “We are a couple of people who think that

[selling embedded navigation and CD-

changers] won’t be possible in the future.”
(xv) [Today] we make money off of our current

portfolio of entertainment products, and

pretty soon we won’t, because none of them
are gonna be viable, you know.” (product

manager, GlobalCarCorp)

(xvi) “It is not easy to get acceptance for the

ideas that we are going to develop

something that other actors may capitalize

on or that we may generate revenue [on
services] at the aftermarket. We might see a

breakthrough here.” (product manager,

CarCorp)

(xvii) “the way you establish value for this

open platform is this idea that you have

to be able to look at hundreds of ideas,
and then you’re going to see the value.”

(xviii) “CarCorp will issue third-party

developers with a vehicle application
programming interface (API) providing

access to more than 500 signals from

different sensors in the vehicle.”

(xix) “CarCorp’s ‘open innovation’ strategy

offers the global developer community

access to the full bandwidth of car
communications — infotainment,

telematics, systems monitoring and

diagnostics.”

P
u

rc
h

a
si

n
g

,
A

ft
er

sa
le

s

(xx) “This idea about common

specifications on functions and

interfaces, that’s a major benefit.
More or less being able to buy a

component [off the shelf], like a

radio tuner, developed for one
manufacturer, but applicable to

another since it’s a common

interface specification.”

(xxi) “By tradition, suppliers

offered a low

[component] price,
knowing that change

orders would feed them

down the road. These
changes always turned

out to be ‘small and

simple’ HMI changes.”

(xxii) “According to customer surveys we have

done regarding this kind of connectivity

[with nomadic devices] a 300 dollar option,
including a connected ‘color screen radio’

would attract almost 85% [of our

customers]. If we can make such a system
cheap enough – which we can – it’ll

increase our margins. And if we stay down

there [in the low-end segment] we won’t
cannibalize on the premium products. It’

makes a complement, which is good. So

from a techno-strategical, but also

commercial perspective, this is going to be

important!” (senior manager,

GlobalCarCorp)

(xxiii) “[This solution] will allow infotainment

services to constantly evolve during the

lifetime of a car’s product cycle”
(xxiv) “We have now sanctioned the project

throughout the organization and

received a great response”

Discussion: Generative Product Design

177

6.3 Governance Models

As we have discussed, architectural frames are not mutually exclusive. An

innovation practice is not based on either hierarchy-of-parts or network-of-

patterns. On the contrary, both frames are represented in any innovation

regime. Still, this thesis has demonstrated that it is not an easy task to shift

architectural locus. Tensions and contradictions always play an important

role in the introduction and assimilation of new information technology (cf.

Wimelius 2011). Such tensions and contradictions are particularly salient as

organizations seek new combinations of architectural frames to release the

generative capability of IT. Some of these tensions are easily resolvable while

others turn out to be more fundamental contradictions of dialectical

character. They are dialectical in the sense that they uncover incompatible

applications of the two frames. Such contradictions identify areas where the

they offer different “possibilities and one of them has to be made” (Benson

1977, p. 18).

In seeking a better understanding of how to build generative capability in

product developing firms, contradictions between architectural frames play a

critical role. Not surprisingly, it is a lot easier to extend a familiar way of

doing something with new ideas, than replacing it. Dialectical tensions are

not easily resolved and hold the potential of radical change. They enforce a

new path, which makes them difficult for practitioners and interesting for

researchers. Although the empirical study of this thesis demonstrates that

CarCorp developed new approaches to combine architectural frames, each

embedded case also bare witness of significant tension between frames. Let

us, in an attempt to derive a useful theoretical perspective on this, zoom in

on the most prominent contradictions of each embedded case.

MOST. Drawing on net-work-of patterns thinking the MOST

architecture afforded CarCorp a new innovation practice, where

general function blocks and specific infotainment applications could

emerge together in a productive manner, relatively disconnected from

hardware. At the same time, its exceptionally simple physical interface

afforded extensive decomposition of the system, reinforcing a

hierarchy-of-parts practice. While commanding absolute compliance

with an interface, such practices engage suppliers in relatively

unbounded component innovation.

Trying to exercise both perspectives CarCorp uncovered a strong

tension between the two frames at the point when function blocks

were deployed to physical components. In some sense, one can argue

that suppliers were denied the creative leeway they had traditionally

had by CarCorp’s intervention in design of general functionality, but

Chapter 6

178

without being offered something in exchange. As a consequence, this

contradiction pushed them to adopt a defensive strategy, largely

leaving for CarCorp to define how to improve navigation, radio, and

other infotainment functions. As we know, CarCorp’s MOST-based

infotainment system had a lot of potential. The problem was that this

potential was largely unresolved. Traditional applications, such as

navigation, telematics, and media playback, could be repackaged in a

coherent and more harmonized manner, but the substantial

investment in MOST did not pay off in any new end-user functionality.

Network-of-patterns thinking had offered the automaker new

opportunities, but to the price of a crashed innovation model.

SoftCluster. In creating the SoftCluster platform CarCorp exercised

network-of-patterns thinking. The macro language made a rich

network of patterns that could be reused for new specific applications,

not planned for up-front. At the same time, SoftCluster was a response

to a strong need for commoditization. Therefore the SoftCluster

architecture was designed to allow the wide range of components

feeding the instrument cluster with information to evolve according to

the hierarchy-of-parts logic. Petrol fuel measurement, speed, or

cockpit temperature made well defined, relatively simple functions

that could fit a traditional hierarchy-of-parts practice. The macro-

oriented approach to cluster HMI design seemed to offer a working

combination of a network-of-patterns practice, where specific

functionality could emerge in an open-ended manner, and a

hierarchy-of-parts practice, where underlying components could be

incrementally improved, given the constraints of fixed system

decomposition and rigid interfaces.

The SoftCluster project did not experience serious contradiction

between architectural frames until designers tried to adapt the

concept. For several reasons it turned out to be a hopeless mission.

The established interplay between a hierarchy-of-parts practice and a

network-of-patterns practice rested hard on the invariability of the

macro language. Applying SoftCluster more widely, as a basis for the

entire domain of infotainment, turned out to be very challenging.

Apparently, the rigidity of SoftCluster would be increasingly

problematic to cluster design as well. In practice, specialization would

decline as it could not be supported by recurring generalization.

Discussion: Generative Product Design

179

Nomadic device integration. Nomadic device integration was for

many years viewed from a pure hierarchy-of-parts perspective, where

mobile phones and handheld computers could be easily integrated

with the car, using standardized interfaces. This would afford

automakers tremendous design flexibility and give direct access to

innovation in consumer electronics communities. At the same time,

several years of experience with nomadic device integration had

fostered a complementary view. Rather than centering on

components, this network-of-patterns perspective recognized the

functionality offered by nomadic devices. It viewed mobile phones as

platforms, offering general patterns available for specialization in a car

context.

Being relatively close to industrialization of an open platform for

nomadic devices, CarCorp uncovered a fundamental contradiction

that was rooted in a clash between the two perspectives. On the one

hand, they recognized and encouraged the innovation taking place in

nomadic components. The problem was that they had little influence

over this process, since they could not unilaterally define interfaces. At

the same time, they recognized and encouraged innovation associated

with specialization, i.e. adaptation of nomadic functionality to an

automotive context. Gradually they understood that this process was

governed by general patterns, hosted by nomadic devices. CarCorp

was about to launch an infotainment system where they had very few

tools for governing the innovation process.

Android. The adoption of Android was grounded in a wide-spread

belief that network-of-patterns thinking would be better off in

providing rich infotainment experiences than a traditional hierarchy-

of-parts practice. By extending the well diffused platform with

complementary general patterns, offered as car-specific API:s,

CarCorp saw an opportunity to exercise significant influence over

distributed and uncoordinated innovation processes. At the same time

security issues and driving safety remained critical topics. Leaving the

platform wide open for any kind of software was not an option.

Drawing on hierarchy-of-parts thinking strong voices promoted the

idea that CarCorp should use its unlimited control over the hardware,

hosting the Android platform, to weed out undesirable applications.

Trying to predict how an upcoming development community would

act, CarCorp could see a significant contradiction between the two

perspectives. Launching an Android-based infotainment solution

Chapter 6

180

would most likely force them to exercise both, but unless it was done

with extreme care and vigilance the whole initiative would fail. An

open innovation environment would not survive without multiplicity

and niche applications. Enforced CarCorp control would most likely

drive important actors away from the ecosystem. Practicing lock-out

of applications would send such a message to the community.

Let us, when reflecting on the four embedded cases, recall that innovation is

about combination. It plays out in a continuous interplay between existing

building blocks and upcoming visions. Successful innovation practices offer

predefined building blocks that assist production of new ideas, rather than

enforce old ideas. Therefore, they are characterized by a sound and

rewarding balance between creative leeway and rigid support for realizing

new ideas. They offer, at the same time, freedom to design and well defined,

solid structures supporting such design.

Synthesizing the four embedded cases of this thesis I argue that practices

with an architectural locus on hierarchy-of-parts offer one template for this

balancing, while a network-of-patterns-centric practice offers another. These

templates are not always compatible. As the cases demonstrate, a product

developing organization cannot enjoy the benefits of both.

 Hierarchy-of-parts, as we know it from modular practices in product

development, requires specific functionality to be up-front defined,

while enabling significant freedom for independent creation of new

general functionality at the level of components.

 An architectural locus on network-of-patterns hampers change of

general patterns, reused across a wide range of applications, while

allowing for an almost unbounded freedom to create new specific

functionality.

Not surprisingly, the predefined building blocks, paving way for creative

leeway, also defines how an innovation process can be governed. With a

hierarchy-of-parts perspective technological progression is primarily an

outcome of the interplay between decomposition and aggregation. Applying

modularity, as exercised at CarCorp and other product developing industries,

the decomposition of systems is governed by specific patterns – the agreed

overall functionality of the different products expected to be realized by the

system. Such decomposition recursively brings a rigid and visible hierarchy

of physical parts that makes a shared view on system characteristics, division

of labor, production, etc. At the same time, this recursive process reduces

complexity by hiding functional structure. Largely, the functional structure

behind an interface is hidden at the system level. By detaching the functional

Discussion: Generative Product Design

181

interior of different components a manufacturer builds remote islands of

innovation. Suppliers are given significant freedom to design the interior of

components as long as they obey the constraints defined by the system

decomposition and, ultimately, the interfaces falling out of this

decomposition.

In contrast, an innovation practice centered on network-of-patterns thinking

is defined by the interplay between generalization and specialization. As

practiced e.g. in the Android community, such innovation is open-ended in

that there is no up-front plan for specific functionality to be delivered.

Instead, such specific functionality emerges over time in a never-ending,

iterative process, continuously extending and enriching a network of publicly

available patterns. Still, this iteration does not make a random walk. The

process is governed by general patterns – the different resources offered to

developers by a platform owner. By offering a complementary Android API,

giving access to diagnostic data, CarCorp will seed one path of innovation,

while access to break data will seed another. Therefore, in a network-of-

patterns-centric innovation practice creative leeway follows from direct

access to the full functional structure of a system, allowing ideas to be

iteratively reused for every new specific function. At the same time, it applies

a layered architecture where designers can select the level of granularity. In

particular, a layered software platform reduces complexity by hiding physical

structure. In practice, it allows developers to implement applications on the

basis of general software services, drawing on sensors and actuators, without

ever seeing or working with the underlying hardware.

Again, a hierarchy-of-parts practice offers creative leeway at the level of

components by defining specific functionality, while a network-of-patterns

practice offers unbounded freedom to create new specific functions by

defining general functionality of the system. A product developing

organization cannot foster innovation practices extracting the benefits of

both. Specifying both specific and general functionality will inevitably kill

creativity, while specifying none leaves the manufacturer without influence.

One way to illustrate this inherent contradiction between architectural

frames is to present a hierarchy-of-parts practice as recursive, while a

network-of-patterns practice is iterative. These concepts are seemingly

equivalent, both referring to a repetitive behavior. However, with this

distinction I want to emphasize that decomposition-aggregation generates

nested functional structure, hidden to an external observer, while

generalization-specialization generates visible functional structure,

Chapter 6

182

observable as a whole30. Recursion is not easily represented. As an example,

a flow chart is able to illustrate loops, but not the logic of recursion, where a

function calls itself over multiple instances. Therefore, in an attempt to make

a simple illustration of why hierarchy-of-parts practices generate nested

functional structure that cannot be unfolded and studied as a whole I have

composed a few lines of pseudo code (Box 5 and Box 6). Although excessively

simplified Box 5 demonstrates that hierarchy-of-parts practices generate

hierarchical structure by repeated inscription of functionality in physical

components. Typically, a product developing firm defines a first level of

components, critical to production (03-06). Next, tier-1 suppliers are

contracted to make the detailed designs of components. This involves a

mapping and break-down of the component’s specific functionality into

more general functional elements (11-13), followed by an assignment of these

elements to sub-components, potentially provided by tier-2 suppliers (15-

18).

Box 5. Pseudo code demonstrating the recursive materialization of
hierarchic structure in hierarchy-of-parts practice.

01 main ()

02 (

03 for each specific-function(i) of product

04 define component(i)

05 decompose(component(i),specific-function(i))

06 loop

07)

08

09 decompose(component-to-decompose,function-to-instantiate)

10 (

11 do

12 define general-function(i) from function-to-instantiate

13 loop

14

15 for each general-function(i)

16 define component(i)

17 decompose(component(i),general-function(i))

18 loop

19)

The purpose of the equally simplified pseudo code in Box 6 is to demonstrate

that network-of-patterns practices do not embed functionality in

components. Instead, functionality – the network of patterns – is a visible

and available structure, evolving over time as different stakeholders extend

30 Network-of-patterns do not enforce open source practice, where publicly available

software code represents functional structure. However, to remain relevant over time

it has to include mechanisms for making good solutions available beyond original

settings.

Discussion: Generative Product Design

183

its boundaries. Let us see the network of patterns as the different software

elements of a digital product, from the lowest layers of a platform to end-

user applications. When the product is launched this network of patterns is

given an initial state (01). However, it evolves in an asynchronous, yet

interdependent mangle between specialization and generalization. Typically,

developers extend the network as they repeatedly reuse existing functional

patterns of the platform to create new, specific applications (07-09). At the

same time, platform owners seek to extend the platform by continuously

developing new general functions with wide application across different

contexts (11-13).

Box 6. Pseudo code demonstrating the iterative evolution of networked
structure in network-of-patterns practice.

01 #define network-of-patterns

02

03 main()

04 (

05 do in parallel

06 A:

07 do

08 specialize(network-of-patterns)

09 loop

10 B:

11 do

12 generalize(network-of-patterns)

13 loop

14 end-do

15)

Given that the governance model associated with hierarchy-of-parts seems to

be largely incompatible with a network-of-patterns practice, how did

CarCorp resolve this conflict as products turned increasingly digital? The

short answer is that they did not resolve it. With MOST, the deployment of

functional patterns to physical components marks a point in time when

architectural locus shifted rapidly from network-of-patterns to hierarchy-of-

parts. In the early phase designers exercised generalization to build coherent

an aligned functionality. This functional design was performed largely

independently from physical dimensions. However, in the later phase this

perspective was marginalized and progression was guided by the structural

constraints defined when allocating patterns to components.

In contrast to MOST, it can be argued that the other three embedded cases

preserved network-of-patterns thinking, at different levels, beyond

deployment and production. The two frames seem to have coexisted. All

three cases account for software-based innovation practice which existed

relatively independent from the processes of designing and developing

hardware. At the same time, these innovation practices were embedded

Chapter 6

184

within a traditional hierarchy-of-parts practice. Functionality of clusters and

nomadic devices was allowed to emerge according to a new logic, but only

within well defined boundaries. This “sandbox” was defined in an act of

decomposition, when making the overall systems architecture of cars.

Cluster development, nomadic functionality, and Android-based

infotainment could be changed on new premises, but only within a given

component. The rest of the car evolved according to a hierarchy-of-parts

logic. Therefore, the two architectural frames co-existed, but largely without

interaction.

The problem with this approach is that physical structure is created on the

basis of an assumption of the functionality of the system. That assumption

will forever constrain innovation and prevent the firm from releasing the full

potential in generative capability. Generalization can be exercised for

functionality associated with a given component, but all remote

functionality, residing at other components, is created for specific purposes,

beyond range for generalization. In practice, all the sensors, actuators and

data sources of cars and other complex products hold enormous innovation

potential which is very hard to release since they all make pieces in a pre-

defined puzzle.

A question that remains unanswered is why product developing firms have

not left hierarchy-of-parts thinking behind? Given that innovation processes

cannot combine recursive, top-down governance and bottoms-up

governance, powered by control over general patterns, what prevents them

from releasing their grip of specific functionality? After all, architecture is

not an inherent property of technology, but “a shared way of thinking” (p.

73) and architectural frames are “schemas for thinking about and

representing a complex product’s architecture” (p. 73). Would it not be

possible for these firms to concentrate their efforts on network-of-patterns

thinking, which does not per se hide new ideas deep down in nested

hierarchies? Instead, such a network of patterns, manifested as platform

services, APIs, tools in an SDK, code examples, community discussions,

documentation, etc, represents an open and accessible pool of best practice.

It makes a generative scheme of instructions which, “carried out

sequentially, will allow a person or a group of people to create a coherent

artifact, beautifully and simply” (Alexander 1999, p. 81).

Together, the embedded cases give a clear indication that the answer is no.

Product developing firms cannot abandon hierarchy-of-parts in their

struggle to build generative capability. Although increasingly digitalized,

physical products have to be architected for producibility (see section 3.2).

The production of all the different systems making up a car remains

associated with substantial fixed and marginal costs. This insists on massive

Discussion: Generative Product Design

185

investments in specialized assets, such as tools, supply chains, and plants. To

stay competitive a product developing firm has to depreciate these costs

across large volumes of the product, enforcing an economy of scale. The

hierarchy-of-parts frame allows product developing firms to bridge the

barrier between design and production by a common product structure,

allowing specialized assets to be reused across variants and generations of

products.

A question for future research is whether it is possible to architect digital

products for producibility and generativity, without exercising the inherent

clash between governance models. I will elaborate this issue further in

section 7.

6.4 Summary

The architectural frames model is designed as a tool for understanding

technological change in digital product innovation, where different

innovation regimes clash into each other. It underlines that innovation

processes are deeply colored by the way we conceptualize products.

Architecture and architectural thinking largely defines change across

generations of products. Being a link between historical achievements and

future potentialities, the architecture is an instrument for path creation as

well as a shackle of path dependency. However, the model also emphasizes

that tangible products and software tend to be architected for different

purposes. When architecting tangible products, product developing firms

center on the physical structure. Modular designs allow for efficient reuse of

assets, such as production tools and machineries. In contrast, software tends

to be architected for efficient reuse of ideas. Therefore, as proposed in the

theoretical framework (see e.g. section 3.3.4) and later illustrated by the four

embedded cases, hierarchy-of-parts is largely associated with producibility,

while network-of-patterns thinking is linked to generativity. This research

suggests that generativity is not an explicit objective when product

developing firms engage in software-centric design practices. Rather, it

emerges along with a new kind of architectural thinking, triggered by new

affordances of digital technology. Programmability and replicability disrupts

taken-for-granted barriers between design and production, allowing

functionality to be elaborated and adapted on a recurring basis,

independently from hardware. Therefore, network-of-patterns thinking

centers on processes, rather than products. It associates architecture with

the structure of problems and solution, not structure of physical products.

The architectural frames model is demonstrated in product development

over several embedded cases and a temporal extension of one decade (6.1).

This demonstration shows that hierarchy-of-parts and network-of-patterns

Chapter 6

186

are not just theoretical constructs. They also have ontological significance in

that they offer concrete, frequently applied views on digital products.

Further, we have seen that the generativity associated with network-of-

patterns thinking has implications across the entire innovation process.

While, it is certainly possible to draw on the affordances of digital technology

to increase internal flexibility (e.g. SoftCluster), “the generative capacity for

unrelated and unaccredited audiences to build and distribute code and

content” (Zittrain 2006, p. 1975) follows from a new organizational

perspective on existing products (6.2). Rather than viewing their products as

carriers of pre-fabricated functionality, the organization, as a whole, has to

embrace a view where products are enablers and catalyzers of new, yet

unknown functionality. Finally, we have seen that hierarchy-of-parts and

network-of-patterns are associated with distinctly different governance

models that cannot be combined (6.3). Generative capability relies on

unconstrained freedom to create new specific functions. Applying network-

of-patterns philosophy, such practices can be governed by general patterns,

offered to developers as platform services, APIs, SDK, code libraries, etc. At

the same time, a hierarchy-of-parts practice offers creative leeway at the

level of components by defining specific functionality. A product developing

organization cannot build innovation practices drawing on both models.

Specifying both specific and general functionality will inevitably kill

creativity, while specifying none leaves the manufacturer without influence.

This thesis offers a theoretical perspective for understanding digital product

innovation. It also discloses a range of challenges facing a product

innovation organization trying to build generative capability. Two key

lessons are that (1) generativity requires organization-wide support for

network-of-patterns thinking and (2) a bottoms-up governance model,

rooted in control over general patterns. CarCorp found a way to implement

these substantial changes. However, they did it by setting up two innovation

regimes in parallel. Infotainment embraced open innovation, inviting

external software developers, while chassis, body electronics, and most other

functional areas preserved a traditional hierarchy-of-parts practice. In some

sense, CarCorp created an isolated playground, contained by specific

components, where software-based functionality could evolve on different

premises.

The problem of this approach is that sensors, actuators, and data sources

outside this isolated environment remain pieces in a pre-defined puzzle.

They cannot be easily generalized since they are created for a specific

purpose. Therefore, a major challenge for future research and practice is to

find a way to combine innovation regimes. How could digital products be

architected, as a whole, for both producibility and generativity? Is there a

Discussion: Generative Product Design

187

way to avoid the inherent contradiction between recursive hierarchy-of-parts

development and iterative network-of-patterns practices? Can hardware be

developed without exercising top-down governance, inscribing specific

functionality in system solutions at an early point? In the following section I

will elaborate these questions in some detail.

189

7 Implications and Future Work

This research provides new insights into how product developing firms adapt

architectural thinking in response to digital technology. While products must

continue to be architected for producibility, managers and designers are

increasingly aware that architecture also is an instrument for building

generative capability; it defines the creative processes providing yet

unknown functionality and content for tomorrow’s products.

To understand and elaborate this shifting view on products and product

development this thesis develops a complementary perspective on the

concept of architecture. Rather than seeing architecture as “the scheme by

which the function of a product is allocated to physical components” (Ulrich

1995, p. 419) or “the structure or structures of a system” (Clements et al.

2003, p. 471) this perspective centers on the inherent capability of

architecture to define change processes. It views architecture as structure-

preserving and structure-enhancing in the sense that it may be used to pass

sound solutions on from design to design and generation to generation. With

this view, architecture connects historical achievements with future

potentialities, making it a key instrument for path creation. With this

perspective follows a different approach to complexity. Rather than seeing

the architecture as an answer to the question how is the whole described

through its parts, it triggers architects to ask: how do things assemble

themselves? How does new functionality emerge from existing elements?

Chapter 7

190

Contributions to Research

Drawing on this view on architecture, this thesis contributes to existing

research in several ways. Most important, it develops and demonstrates a

distinct theoretical lens – architectural frames – allowing for the new

perspective on architecture to be applied in empirical studies of digital

product innovation. This framework makes a contribution to several bodies

of literature. On a general level, it can be viewed as a response to different

calls in IS literature seeking to regain focus on the IT artifact (cf. Benbasat

and Zmud 2003; Lyytinen and Yoo 2002; Orlikowski and Iacono 2001). In

this discourse, architectural frames offer a new way for understanding and

conceptualizing the mutual entanglement of technology and human action,

frequently studied in contemporary IS research (Jones 1998; Kallinikos

2006; Latham and Sassen 2005; Monteiro and Hanseth 1995; Orlikowski

2007; Orlikowski and Scott 2008).

More specifically, this framework contributes to an increasingly vital subset

of this literature, discussing the materiality of IT (cf. Jonsson et al. 2009;

Leonardi and Barley 2008; Leonardi 2010; Svahn et al. 2009; Yoo 2010; Yoo

et al. 2010d). While recognizing that “it may seem odd to say that

information technologies have material properties” (Leonardi and Barley

2008, p. 162) this stream of research draws attention to the performativity of

IT (Barad 2003; Pickering 1995). It is argued that the notion of materiality

remains relevant for digital technology as long as we refer to properties of

the technology that provides users with the capability to perform some

action (cf. Leonardi 2010). As we have discussed in section 3.1 such an

affordance perspective defines materiality in relation to an observer (Gibson

1979). The theoretical framework contributes to this stream of literature in

that hierarchy-of-parts and network-of-patterns make distinct perspectives

on such relations. One the one hand, consistent application of an

architectural frame changes products over time. It is structure-enhancing in

the sense that it over generations of designs reinforces selected material

properties of a product or technology. On the other hand, an architectural

frame gradually changes how people and organization conceptualize and

makes sense of products. It reinforces an organization’s capability to act by

offering a shared, cognitive model, specifically tuned for selected material

properties. This touch on an intricate question, leaving a research

opportunity for the discourse of materiality in IS; is an affordance

independent of an actor’s experience and culture, as claimed by Gibson

(1979), or are we better off conceptualizing it from a cognitive perspective, as

resulting from “the mental interpretation of things, based on our past

knowledge and experience” (Norman 1988, p. 14)?

Implications and Future Work

191

However, this thesis also contributes to product architecture literature

(Baldwin and Clark 2000; Henderson and Clark 1990; Robertson and Ulrich

1998; Sanchez and Mahoney 1996; Simon 1962; Sosa et al. 2004; Ulrich

1995), providing much of the theoretical foundations of this work. Clearly,

modularity is the dominant view on architecture in product innovation.

Simon’s work on near decomposability (Simon 1962; Simon 2002) is a given

point of departure when theorizing on modularity and the application of

modularity in product development. However, a significant body of product

innovation research points to the similarities in Simonian and Alexandrian

thinking (Baldwin 2008; Langlois 2006; Murmann and Frenken 2006;

Schilling 2000; Ulrich and Eppinger 2004; Von Hippel 1990). Opposing

such a view, this thesis suggests that the increasing digital content of

physical products (Andersson et al. 2008; Lenfle and Midler 2009; Yoo

2010; Yoo et al. 2010b) calls for consideration of their differences.

Finally, this thesis contributes to an emerging discourse on generativity in

the context of IT and digital technology. The term generativity has been

described as a technology’s capacity to enable voluntaristic and spontaneous

innovation driven by large, heterogeneous an essentially uncoordinated

crowds (Remneland et al. 2011; Zittrain 2006). At the same time, there are

strong voices arguing that generative capability is primarily an attribute of a

person, which “refers to one’s ability to reframe reality and subsequently to

produce something ingenious or at least new in a particular context” (Avital

and Te'eni 2009, p. 345). This thesis seeks to avoid the traditional wrestling

match between techno-centrism and human-centrism by shifting focus from

attributes and properties of technology and social structure to change

processes. In doing so it aligns with the traditional use of generativity in

behavioral sciences, where the concept is inherently associated with

transformation processes (Erikson 1963; Kotre 1984; McAdams and de St

Aubin 1992; Schön 1979). A salient example from this literature is Erik H.

Erikson’s (1963) discussion in “Childhood and Society” on adolescence and

the interplay between generations:

The fashionable insistence on dramatizing the dependence of
children on adults often blinds us to the dependence of the older
generation on the younger one. Mature man needs to be needed,
and maturity needs guidance as well as encouragement from
what has been produced and must be taken care of.
Generativity, then, is primarily the concern in establishing and
guiding the next generation, although there are individuals who,
through misfortune or because of special and genuine gifts in
other directions, do not apply this drive to their own offspring
(Erikson 1963, p. 266-267).

Chapter 7

192

Applying this basic reasoning to digital product innovation, this thesis

suggests that generativity emerges from product architectures that can “pass

sound solutions on from design to design and generation to generation” (p.

35). In the words of Erikson, generative, then, is primarily the architectural

concern in establishing and guiding the next generation of yet unknown

functionality and content for tomorrow’s products.

The empirical study of digital product innovation in the automotive industry

generates some distinct insights on the challenges facing an organization as

it seeks to develop generative capability. Essentially, these challenges derive

from the appropriation and adoption of network-of-patterns thinking. In

building generative capability firms seek to encourage voluntaristic and

spontaneous creativity, but also new models for appropriating value from

such creativity. The study discloses that such capability entails a new

perspective on products. Rather than viewing their products as carriers of

pre-fabricated functionality, the organization has to embrace a view where

products are enablers and catalyzers of new, yet unknown functionality (6.1).

Unless such a view informs all the different actions and decisions across the

organization a product developing firm has little chance to build permanent

generative capability (6.2). Further, this thesis suggests that a product

developing firm cannot build generative capability unless adopting a

distinctly different governance model. Generative capability relies on

unconstrained freedom to create new specific functions. Such freedom

clashes hard into established modular governance models, where

decomposition of products is guided by specific functionality. Unless product

developing firms find ways to govern innovation through general patterns

rather than specific they have little chance to build permanent generative

capability (6.3).

Contributions to practice

This thesis also contributes to industrial practice. Applying architectural

frames as a lens to digital product innovation in the automotive industry, it

illustrates how the concept of architecture is gradually loaded with a new

meaning in product developing industries. Rather than being a tool for

producibility it slowly turns into to an instrument for generative capability.

Uncovering the network-of-patterns frame, reflecting Christopher

Alexander’s view on architecture, product developing firms increasingly

center their attention on how products are created, rather than how they are

decomposed. With this view, the architecture affords reuse of solutions to

recurring problems, rather than reuse of physical components across models

and over generations of products. This research suggests that an increasing

locus on the network-of-patterns frame may increase competitive advantage

for product developing organizations in several ways.

Implications and Future Work

193

First of all, the network-of-patterns frame opens up for proactive rather

than reactive architectural strategies. Its inherent focus on solutions and

problems makes the architecture an instrument to cultivate new ideas and

exercise new business opportunities, rather than a tool for cost savings. With

recognition of the network-of-patterns frame designers can motivate not to

streamline solutions for particular, pre-defined purposes. When the

architecture plays out in an ever-expanding space of functionality it is, on the

contrary, a bad idea to minimize memory size or processor capacity to meet

the needs of a given function.

Second, the network-of-patterns frame enables a new strategic asset as it

turns the spotlight from specific functionality to general functional patterns.

In a hierarchy-of-parts practice, products are architected to support a range

of well-defined, specific functions, such as navigation, telephony, or audio

playback in cars. General elements, such as positioning, routing, or decoding

are largely irrelevant from an architectural point of view, simply because

they are embedded in components and, thereby, a headache for a particular

supplier. Recognition of the network-of-patterns frame, to some extent,

turns this equation up-side-down; products are architected to supply flexible

generic functions to distributed ecosystems, in turn, providing a range of

specific functions, far beyond what a firm can do in isolation. Suddenly,

high-precision positioning, enabled by integration of GPS and ABS31 sensors,

is a strategic asset for manufacturers, allowing them to appropriate value

from in-car navigation solutions supplied by other independent actors.

Third, the network-of-patterns frame allows for appropriation of value

across the product life cycle, rather than just at the time of sales. This is not

primarily a consequence of increasingly software-based functionality, but

rather an implication of the new frame. Network-of-patterns do not enforce

inscription of specific functionality in the physical structure of products.

Thereby, the meaning of a particular product is not up-front defined, but can

evolve over time. Specialization can occur independently from hardware

design, generating a constant flow of new functions.

Limitations and Future Work

There are certainly limitations in this work. Given the explicit ambition to

study how product innovation regimes and digital innovation regimes are

conceptualized and combined (p. 57), it can rightly be argued that the case

story provides poor evidence of a truly revised architectural practice,

combining hierarchy-of-parts and network-of-patterns. Although providing a

31 Anti-lock breaking system.

Chapter 7

194

relatively rich and nuanced portrait of how product developing organizations

take in and adapt to network-of-patterns thinking, this new architectural

philosophy remained somewhat an exception at CarCorp over the studied

period. With the Android platform still not in production, hierarchy-of-parts

remained the dominant view on the car, providing a well defined logic for

product design, organizations, and business models. As discussed in section

6.3 the two architectural frames co-existed, but with limited interaction. To

some extent, network-of-patterns thinking made a complement to

established practices, which largely remained untouched.

For several reasons this approach is likely to fail over time. Allowing

software-based functionality to evolve in a bottoms-up manner, while

specifying the hardware, hosting that software, according to a traditional

hierarchy-of-parts logic cripples generativity. It simply prevents the platform

owner from exercising effective generalization over time, continuously

feeding developers with new, interesting patterns that cannot be instantiated

independently from hardware. Therefore, to build sustainable generative

capability it is critical to form a working interplay between hierarchy-of-

parts and network-of-patterns. Physical structures of a product have to be

designed in careful dialogue with functional structures. Therefore, the

diffusion of network-of-patterns thinking in product development comes

with implications on hardware design and physical architecture. Together,

researchers and practitioners have to develop a revised practice, approaching

the hierarchy-of-parts frame from a slightly different angle. That is an angle

where Simon’s concept of stable subassemblies remains relevant, but not

primarily as a way to define remote islands of innovation in a rigid and fixed

overall structure. Instead, such a view has to emphasize the close link

between stable subassemblies and producibility. This leaves several

opportunities for future research on product architecture. Let us briefly

reflect on a few of them.

First, there is an opportunity for future research to find a better balance

point between the proven benefits of modularity and the emerging

opportunities of digital technology by developing new aggregation

strategies. Modularity allows an organization to form variants from a pre-

defined setup of components, designed to meet particular functional needs

(Schilling 2000). This way an organization can balance differentiation and

commoditization (Robertson and Ulrich 1998). Low-end variants are simply

based on fewer components. However, a generative environment, cultivating

functional variety relies on the accessibility offered by considerable installed

base (Zittrain 2006). To make niche applications interesting from a business

perspective it is necessary to create significant audience (Davenport and

Beck 2001). Against this backdrop, it is important for future research on

Implications and Future Work

195

product architecture to study new aggregation strategies. To increase

generative capability, physical products need to be architected on new

premises, where variants remain compatible from a software perspective. Let

us note that shared hardware may increase cost of low-end products. One

way to preserve scale advantages in such a scenario is to consider

standardized, off-the-shelf hardware. Such solutions are not tailored to the

particular context, but allows for large series without pressure to reuse

production assets over time.

Second, upcoming research may address product architecture by developing

new decomposition strategies, considering breaking down digital product

into physical parts on other premises than functionality. A modular product

is decomposed to create stable subassemblies that can make up predefined

physical element of a system (Simon 1996). Such stable subassemblies are

autonomous in the sense that their interior can be changed without

influencing the rest of the system. This is a fundamental aspect of traditional

product innovation since it preserves the overall functionality of a product,

while allowing for continuous price/performance improvements (Clark

1985). However, low coupling between components is achieved by

decomposing the system from the perspective of functionality (Ulrich 1995).

This effectively inscribes functionality in the physical structure of the system,

which prevents reuse for new purposes. Therefore, a critical question for

future research is to identify alternative premises for decomposition. How

can physical products be decomposed for low coupling without inscribing

functionality in the structure? As a suggestion, such decomposition may be

guided by producibility issues, rather than functionality.

Third, future research may examine how hierarchic span correlates to

generativity in the context of digitized products. Modularity prescribes

hierarchy as the dominant structure (Simon 1962; Simon 1996). In

established product innovation practices, such hierarchic structure follows

from recursive innovation processes, handling complexity by hiding

functional structure in components (Parnas 1972). Essentially, the different

general patterns used to realize the functionality of a particular component

are hidden for an external observer. Clearly, the modular approach to

complexity does not resonate well with the holy grail of generativity;

unconstrained reuse of old solutions to solve new problems. Therefore,

alternative structure for physical products is an important topic for future

research is to study. One question is whether there are better or worse

hierarchies. Let us recall that recursion is at the heart of the problem. It is

reasonable to believe that a deeper hierarchy is more rigid and hard to

change. The more nested levels, the more hidden functionality. This line of

argument suggests that a key measure to extend the generative capability of

Chapter 7

196

digital products is to increase the hierarchic span (Simon 1996, e.g. p. 202).

In practice, this will result in a less deep structure, where components exist,

side by side, without a nested structure hiding them from each other.

Fourth, future research may address the question of appropriate specificity

of interfaces in digital product innovation. In a modular innovation practice

interfaces define the roles of components in a system (Schilling 2000). They

reveal how different parts of a system interact and how functionality flows

from component to component. To reduce complexity and coupling, but also

to exercise precise control over innovation, interfaces tend to be tailored for

the specific purpose falling out of decomposition (Ulrich 1995). Making a

cornerstone in the specifications used to engage suppliers, interfaces tend to

be rigid and hard to reconsider. This makes a stark contrast to the principles

of generalization, being so central for generative capability. An important

topic for future research is to derive best practice for how to reduce

specificity of interfaces. While such general interfaces cannot be justified in a

specific design process, they make an investment in the functionality and

content of tomorrow’s products.

197

8 References

Abernathy, W., and Clark, K. 1985. "Innovation: Mapping the Winds of
Creative Destruction," Research Policy (14:1), pp 3-22.

Abernathy, W., and Utterback, J. 1978. "Patterns of Industrial Innovation,"
Technology review (80:7), pp 40-47.

Abernathy, W.J. 1978. The Productivity Dilemma. Baltimore: Johns
Hopkins University Press.

Alexander, C. 1964. Notes on the Synthesis of Form. Harvard Univ Pr.
Alexander, C. 1979. The Timeless Way of Building. Oxford University Press,

USA.
Alexander, C. 1999. "The Origins of Pattern Theory," IEEE Software (16:5),

pp 71–82.
Alexander, C. 2002. The Nature of Order: An Essay on the Art of Building

and the Nature of the Universe. Center for environmental structure.
Alexander, C., Ishikawa, S., and Silverstein, M. 1977. A Pattern Language:

Towns, Buildings, Construction. Oxford University Press, USA.
Allen, P. 2006. Service Orientation: Winning Strategies and Best Practices.

Cambridge University Press.
Amram, M., Kulatilaka, N., and Association, F.M. 1999. Real Options:

Managing Strategic Investment in an Uncertain World. Harvard
Business School Press Boston.

Anderson, C. 2006. The Long Tail: Why the Future of Business Is Selling
Less of More. Harper Collins.

Anderson, P. 1999. "Complexity Theory and Organization Science,"
Organization Science (10:3), pp 216-232.

Anderson, P., and Tushman, M. 1990. "Technological Discontinuities and
Dominant Designs: A Cyclical Model of Technological Change,"
Administrative Science Quarterly (35:4).

Chapter 8

198

Andersson, M., Lindgren, R., and Henfridsson, O. 2008. "Architectural
Knowledge in Inter-Organizational IT Innovation," Journal of
Strategic Information Systems (17:1), pp 19-38.

Andreasson, L., and Henfridsson, O. 2009. "Digital Differentiation, Software
Product Lines, and the Challenge of Isomorphism in Innovation: A
Case Study," ECIS2009, Verona, Italy.

Archer, M.S., Bhaskar, R., Collier, A., Lawson, T., and Norrie, A. (eds.). 1998.
Critical Realism: Essential Readings. London: Routledge.

Arthur, W. 1989. "Competing Technologies, Increasing Returns, and Lock-in
by Historical Events," The Economic Journal (89), pp 116-131.

Arthur, W.B. 2009. The Nature of Technology: What It Is and How It
Evolves. Free Pr.

Avital, M., and Te'eni, D. 2009. "From Generative Fit to Generative Capacity:
Exploring an Emerging Dimension of Information Systems Design
and Task Performance," Information Systems Journal (19:4), pp
345-367.

Axelsson, J., Fröberg, J., Hansson, H., Norström, C., Sandström, K., and
Villing, B. 2004. "A Comparative Case Study of Distributed Network
Architectures for Different Automotive Applications," in: Handbook
on Information Technology in Industrial Automation. IEEE Press.

Bagozzi, R.P. 1986. Principles of Marketing Management. Chicago, IL:
Science Research Associates

Baldwin, C. 2008. "Where Do Transactions Come From? Modularity,
Transactions, and the Boundaries of Firms," Industrial and
Corporate Change (17:1), p 155.

Baldwin, C.Y., and Clark, K.B. 2000. Design Rules: The Power of
Modularity Volume 1. Cambridge, MA, USA: MIT Press.

Baldwin, C.Y., and Clark, K.B. 2003. "Managing in an Age of Modularity," in:
Managing in the Modular Age: Architectures, Networks, and
Organizations, R. Garud, A. Kumaraswamy and R.N. Langlois
(eds.). Blackwell Publishing, pp. 149-160.

Barabba, V., Huber, C., Cooke, F., Pudar, N., Smith, J., and Paich, M. 2002.
"A Multimethod Approach for Creating New Business Models: The
General Motors Onstar Project," Interfaces (32:1), pp 20-34.

Barad, K. 2003. "Posthumanist Performativity: Toward an Understanding of
How Matter Comes to Matter," Signs (28:3), pp 801-831.

Barley, S.R. 1990. "The Alignment of Technology and Structure through
Roles and Networks," Administrative Science Quarterly (35:1), pp
61-103.

Barrett, M., Davidson, E., Prabhu, J., and Vargo, S. 2010. "Call for Papers -
MISQ Special Issue on Service Innovation in the Digital Age," in:
MIS Quarterly.

Basole, R.C. 2009. "Visualization of Interfirm Relations in a Converging
Mobile Ecosystem," Journal of Information Technology (24:2), pp
144-159.

Baudrillard, J. 1998. The Consumer Society: Myths and Structures. Sage
Publications Ltd.

Baum, J.A.C., Korn, H.J., and Kotha, S. 1995. "Dominant Designs and
Population Dynamics in Telecommunications Services: Founding

References

199

and Failure of Facsimile Transmission Service Organizations, 1965-
1992," Social Science Research (24:2), pp 97-135.

Benbasat, I., and Zmud, R. 2003. "The Identity Crisis within the IS
Discipline: Defining and Communicating the Discipline's Core
Properties," MIS Quarterly (27:2), pp 183-194.

Benkler, Y. 2006. The Wealth of Networks: How Social Production
Transforms Markets and Freedom. Yale University Press.

Benson, J. 1977. "Organizations: A Dialectical View," Administrative Science
Quarterly (22:1), pp 1-21.

Bharadwaj, A., El Sawy, O., Pavlou, P., and Venkatraman, N. 2010. "Call for
Papers - MISQ Special Issue on Digital Business Strategy: Toward a
Next Generation of Insights," in: MIS Quarterly.

Bhaskar, R. 1998. The Possibility of Naturalism: A Philosophical Critique of
the Contemporary Human Sciences. Psychology Press.

Bijker, W. 1987. "The Social Construction of Bakelite: To-Ward a Theory of
Invention," in: The Social Construction of Technological Systems:
New Directions in the Sociology and History of Technology, W.
Bijker, T. Hughes and T. Pinch (eds.). Cambridge: MIT Press, p. 159.

Boehm, B. 1976. "Software Engineering," IEEE Transactions on Computers
(100:25), pp 1226-1241.

Boland, R., Lyytinen, K., and Yoo, Y. 2007. "Wakes of Innovation in Project
Networks: The Case of Digital 3-D Representations in Architecture,
Engineering, and Construction," Organization Science (18:4), pp
631-647.

Booch, G., Maksimchuk, R., Engle, M., Young, B., Conallen, J., and Houston,
K. 1991. Object-Oriented Analysis and Design, (1st ed.). Addison-
Wesley.

Boudreau, M.-C., and Robey, D. 2005. "Enacting Integrated Information
Technology: A Human Agency Perspective," Organization Science
(16:1), pp 3-18.

Brooks, F.P. 1975. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley.

Brown, S.L., and Eisenhardt, K.M. 1997. "The Art of Continuous Change:
Linking Complexity Theory and Time-Paced Evolution in
Relentlessly Shifting Organizations," Administrative Science
Quarterly (42:1), pp 1-34.

Broy, M., Krüger, I., Pretschner, A., and Salzmann, C. 2007. "Engineering
Automotive Software," Proceedings of the IEEE (95:2), February, pp
356-373.

Brynjolfsson, E., Hu, Y.J., and Smith, M.D. 2010. "Research Commentary:
Long Tails Vs. Superstars: The Effect of Information Technology on
Product Variety and Sales Concentration Patterns," Information
Systems Research (21:4), pp 736-747.

Brynjolfsson, E., and Smith, M.D. 2003. "Consumer Surplus in the Digital
Economy: Estimating the Value of Increased Product Variety at
Online Booksellers," Management Science (49:11), pp 1580-1596.

Burks, A.W., Goldstine, H.H., and Von Neumann, J. 1963. "Preliminary
Discussion of the Logical Design of an Electronic Computing

Chapter 8

200

Instrument," in: John Von Neumann Collected Works, A.H. Taub
(ed.). New York: The Macmillan Co.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. 2008.
Pattern-Oriented Software Architecture: A System of Patterns.
Wiley-India.

Buxton, J., and Randell, B. 1970. "Software Engineering Techniques: Report
on a Conference Sponsored by the Nato Science Committee," NATO
Science Committee; available from Scientific Affairs Division, NATO.

Bygstad, B. 2010. "Generative Mechanisms for Innovation in Information
Infrastructures," Information and Organization (20:3-4), pp 156-
168.

Carlton, D.W. 1979. "Vertical Integration in Competitive Markets under
Uncertainty," The Journal of Industrial Economics (27:3), pp 189-
209.

Chandler, A.D. 1977. The Visible Hand. Cambridge, MA: Harvard University
Press.

Chandler, A.D. 1990. Scale and Scope : The Dynamics of Industrial
Capitalism. Belknap Press.

Chandler, A.D. 1997. "The Computer Industry: The First Half-Century," in:
Competing in the Age of Digital Convergence, D.B. Yoffie (ed.).
Boston, MA, USA: Harvard Business School Press.

Charmaz, K. 2006. Constructing Grounded Theory: A Practical Guide
through Qualitative Analysis. Sage Publications Ltd.

Chesbrough, H. 2006. "Open Innovation: A New Paradigm for
Understanding Industrial Innovation," in: Open Innovation:
Researching a New Paradigm. Oxford University Press, USA, pp. 1-
12.

Christensen, C.M. 1997. The Innovator's Dilemma: When New Technologies
Cause Great Firms to Fail. Harvard Business School Press.

Christensen, C.M., Suárez, F.F., and Utterback, J.M. 1998. "Strategies for
Survival in Fast-Changing Industries," Management Science), pp
207-220.

Clark, K. 1985. "The Interaction of Design Hierarchies and Market Concepts
in Technological Evolution," Research Policy (14:5), pp 235-251.

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., and Little,
R. 2003. Documenting Software Architectures: Views and Beyond.
Pearson Education.

Clements, P., and Northrop, L. 2001. Software Product Lines. Addison-
Wesley.

Coase, R. 1937. "The Nature of the Firm," Economica (4:16), pp 386-405.
Cohen, W.M., and Levinthal, D.A. 1990. "Absorptive Capacity: A New

Perspective on Learning and Innovation," Administrative Science
Quarterly (35:1).

Constantinides, P., and Barrett, M. 2006. "Negotiating ICT Development and
Use: The Case of a Telemedicine System in the Healthcare Region of
Crete," Information and Organization (16:1), pp 27-55.

Crnkovic, I. 2001. "Component Based Software Engineering—New
Challenges in Software Development," Software Focus (2:4), pp 127-
133.

References

201

Cuenot, P., Chen, D., Gerard, S., Lonn, H., Reiser, M.-O., Servat, D., Sjostedt,
C.-J., Kolagari, R.T., Torngren, M., and Weber, M. 2007. "Managing
Complexity of Automotive Electronics Using the East-Adl," in:
ICECCS '07: Proceedings of the 12th IEEE International Conference
on Engineering Complex Computer Systems (ICECCS 2007).
Washington, DC, USA: IEEE Computer Society, pp. 353-358.

Cusumano, M.A., Mylonadis, Y., and Rosenbloom, R.S. 1992. "Strategic
Maneuvering and Mass-Market Dynamics: The Triumph of VHS
over Beta," The Business History Review (66:1), pp 51-94.

Davenport, T.H., and Beck, J.C. 2001. The Attention Economy:
Understanding the New Currency of Business. Harvard Business
Press.

David, P. 1985. "Clio and the Economics of QWERTY," The American
Economic Review (75:2), pp 332-337.

Deleuze, G. 1988. Bergsonism. Zone Books.
Deleuze, G., and Guattari, F. 1980. A Thousand Plateaus: Capitalism and

Schizophrenia. Ed. de Minuit.
Demil, B., and Lecocq, X. 2006. "Neither Market nor Hierarchy nor

Network: The Emergence of Bazaar Governance," Organization
Studies (27:10), p 1447.

Dixit, A., Pindyck, R., and Davis, G. 1994. Investment under Uncertainty.
Princeton University Press Princeton, NJ.

Dobson, P.J. 2001. "Longitudinal Case Research: A Critical Realist
Perspective," Systemic Practice and Action Research (14:3), pp 283-
296.

Dosi, G. 1982. "Technological Paradigms and Technological Trajectories: A
Suggested Interpretation of the Determinants and Directions of
Technical Change," Research Policy (11:3), pp 147-162.

Du, X., Jiao, J., and Tseng, M.M. 2001. "Architecture of Product Family:
Fundamentals and Methodology," Concurrent Engineering (9:4), pp
309-325.

Easton, G. 2010. "Critical Realism in Case Study Research," Industrial
Marketing Management (39:1), pp 118-128.

Economides, N., and Katsamakas, E. 2006. "Two-Sided Competition of
Proprietary Vs. Open Source Technology Platforms and the
Implications for the Software Industry," Management Science
(52:7), p 1057.

Eisenhardt, K. 1985. "Control: Organizational and Economic Approaches,"
Management Science (31:2), pp 134-149.

Eisenhardt, K.M. 1989. "Building Theories from Case Study Research,"
Academy of Management Review (14:4), pp 532-550.

Eisenmann, T., Parker, G., and Van Alstyne, M. 2006. "Strategies for Two-
Sided Markets," Harvard Business Review (84:10), p 92.

Eklund, U., Askerdal, Ö., Granholm, J., Alminger, A., and Axelsson, J. 2005.
"Experience of Introducing Reference Architectures in the
Development of Automotive Electronic Systems," ACM SIGSOFT
2005, pp. 1-6.

El Sawy, O.A., Malhotra, A., Park, Y.K., and Pavlou, P.A. 2010. "Research
Commentary: Seeking the Configurations of Digital Ecodynamics: It

Chapter 8

202

Takes Three to Tango," Information Systems Research (21:4), pp
835-848.

Erikson, E.H. 1963. Childhood and Society, (2nd ed.). New York: WW
Norton & Co., Inc.

Ethiraj, S.K., and Levinthal, D. 2004. "Modularity and Innovation in
Complex Systems," Management Science (50:2), pp 159-173.

Fennel, H., Bunzel, S., Heinecke, H., Bielefeld, J., Fürst, S., Schnelle, K.-P.,
Grote, W., Maldener, N., Weber, T., Wohlgemuth, F., Ruh, J.,
Lundh, L., Sandén, T., Heitkämper, P., Rimkus, R., Leflour, J.,
Gilberg, A., Virnich, U., Voget, S., Nishikawa, K., Kajio, K., Lange, K.,
Scharnhorst, T., and Kunkel, B. 2006. "Achievements and
Exploitation of the AUTOSAR Development Partnership," in:
Proceedings of SAE Convergence 2006.

Ferrier, W., Holsapple, C., and Sabherwal, R. 2007. "Call for Papers: Digital
Systems and Competition," Information Systems Research (18:2),
pp 228-230.

Fichman, R. 2004. "Real Options and IT Platform Adoption: Implications for
Theory and Practice," Information Systems Research (15:2), pp 132-
154.

Fine, C.H. 1999. Clockspeed: Winning Industry Control in the Age of
Temporary Advantage. Perseus Books.

Fixson, S.K., and Park, J.-K. 2008. "The Power of Integrality: Linkages
between Product Architecture, Innovation, and Industry Structure,"
Research Policy (37:8), pp 1296-1316.

Frenken, K., Saviotti, P.P., and Trommetter, M. 1999. "Variety and Niche
Creation in Aircraft, Helicopters, Motorcycles and Microcomputers,"
Research Policy (28:5), pp 469-488.

Fröberg, J., Sandström, K., and Norström, C. 2005. "Business Situation
Reflected in Automotive Electronic Architectures: Analysis of Four
Commercial Cases," in: SEAS '05: Proceedings of the second
international workshop on Software engineering for automotive
systems. St. Louis, Missouri: ACM Press, pp. 1-6.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns:
Elements of Object-Oriented Software Architecture. Addison-
Wesley Reading, MA.

Garlan, D., and Shaw, M. 1994. "An Introduction to Software Architecture,"
School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, USA.

George, A.L., and Bennett, A. 2005. Case Studies and Theory Development
in the Social Sciences. The MIT Press.

Gerring, J. 2007. Case Study Research: Principles and Practices. Cambridge
Univ Pr.

Ghazawneh, A., and Henfridsson, O. 2011. "Micro-Strategizing in Platform
Ecosystems: A Multiple Case Study," Int. Conf. on Information
Systems, Shanghai, China.

Ghazawneh, A., and Henfridsson, O. forthcoming. "Balancing Platform
Control and External Contribution in Third-Party Development: The
Boundary Resources Model," Information Systems Journal (:).

References

203

Gibson, J. 1979. The Ecological Approach to Visual Perception. Houghton
Mifflin Boston.

Gibson, J.J. 1977. "The Theory of Affordances," in: In Perceiving, Acting,
and Knowing: Toward an Ecological Psychology, S. R. and B. J.
(eds.). Lawrence Erlbaum, pp. 67-82.

Gioia, D.A. 1986. "Symbols, Scripts, and Sensemaking: Creating Meaning in
the Organizational Experience," in: The Thinking Organization,
H.P. Sims and D.A. Gioia (eds.). San Fransisco, CA: Jossey-Bass Inc.
Pub., pp. 49-74.

Godin, B. 2006. "The Linear Model of Innovation: The Historical
Construction of an Analytical Framework," Science, Technology &
Human Values (31:6), p 639.

Godoe, H. 2000. "Innovation Regimes, R&D and Radical Innovations in
Telecommunications," Research Policy (29:9), pp 1033-1046.

Goldstine, H.H., and Von Neumann, J. 1963. "On the Principles of Large
Scale Computing Machines," in: John Von Neumann Collected
Works, A.H. Taub (ed.). New York: The Macmillan Co.

Guglielmetti, L. 2003. "Standardizing Automotive Multimedia Interfaces,"
IEEE multimedia (10:2), pp 76-78.

Gupta, A., Tesluk, P., and Taylor, M. 2007. "Innovation at and across
Multiple Levels of Analysis," Organization Science (18:6), p 885.

Hagedoorn, J., Carayannis, E., and Alexander, J. 2001. "Strange Bedfellows
in the Personal Computer Industry: Technology Alliances between
IBM and Apple," Research Policy (30:5), pp 837-849.

Hardung, B., Kölzow, T., and Krüger, A. 2004. "Reuse of Software in
Distributed Embedded Automotive Systems," in: EMSOFT '04:
Proceedings of the 4th ACM international conference on Embedded
software. Pisa, Italy: ACM Press, pp. 203-210.

Heineman, G., and Councill, W. 2001. Component-Based Software
Engineering: Putting the Pieces Together. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA.

Henderson, R.M., and Clark, K.B. 1990. "Architectural Innovation: The
Reconfiguration of Existing Product Technologies and the Failure of
Established Firms," Administrative Science Quarterly (35:1).

Henfridsson, O., and Lindgren, R. 2005. "Multi-Contextuality in Ubiquitous
Computing: Investigating the Car Case through Action Research,"
Information and Organization (15:2), pp 95-124.

Henfridsson, O., Mathiassen, L., and Svahn, F. 2009a. "Reconfiguring
Modularity: Closing Capability Gaps in Digital Innovation," Sprouts
Working Papers on Informations Systems (9:22).

Henfridsson, O., Mathiassen, L., and Svahn, F. in review. "Managing
Technological Change in the Digital Age: The Role of Architectural
Frames," submitted to international journal ().

Henfridsson, O., Yoo, Y., and Svahn, F. 2009b. "Path Creation in Digital
Innovation: A Multi-Layered Dialectics Perspective," Sprouts
Working Papers on Informations Systems (9:20).

Hill, C., and Rothaermel, F. 2003. "The Performance of Incumbent Firms in
the Face of Radical Technological Innovation," The Academy of
Management Review (28:2), pp 257-274.

Chapter 8

204

Holland, J.H. 1992a. Adaptation in Natural and Artificial Systems. MIT
Press.

Holland, J.H. 1992b. "Complex Adaptive Systems," Daedalus (121:1), pp 17-
30.

Holland, J.H. 1996. Hidden Order: How Adaptation Builds Complexity.
Basic Books.

Hounshell, D.A. 1984. From the American System to Mass Production,
1800-1932: The Development of Manufacturing Technology in the
United States. Johns Hopkins Univ Pr.

Howcroft, D., and Wilson, M. 2003. "Paradoxes of Participatory Practices:
The Janus Role of the Systems Developer," Information and
Organization (13:1), pp 1-24.

Hughes, T.P., Bijker, W., and Pinch, T. 1987. "The Evolution of Large
Technological Systems," in: The Political Economy of Science,
Technology, and Innovation. pp. 51–82.

Huizingh, E.K.R.E. 2011. "Open Innovation: State of the Art and Future
Perspectives," Technovation (31:1), pp 2-9.

Iansiti, M. 1995. "Technology Integration: Managing Technological
Evolution in a Complex Environment," Research Policy (24:4), pp
521-542.

IEEE Std 610.12. 1990. "IEEE Standard Glossary of Software Engineering
Terminology," in: IEEE Std 610.12-1990.

Jackson, M. 2000. Problem Frames: Analyzing and Structuring Software
Development Problems. Addison-Wesley Longman Publishing Co.,
Inc. Boston, MA, USA.

Jiao, J., and Tseng, M.M. 2000. "Fundamentals of Product Family
Architecture," Integrated Manufacturing Systems (11:7), pp 469-
483.

Jones, M. 1998. "Information Systems and the Double Mangle:Steering a
Course between the Scylla of Embedded Structure and the Charybdis
of Material Agency.," in: Information Systems: Current Issues and
Future Challenges, T. Larsen, L. Levine and J. DeGross (eds.).
Laxenburg: International Federation forInformation Processing, pp.
287-302.

Jonsson, K. 2010. "Digitalized Industrial Equipment: An Investigation of
Remote Diagnostics Services," in: Department of Informatics.
Umeå, Sweden: Umeå University.

Jonsson, K., Holmstrom, J., and Lyytinen, K. 2009. "Turn to the Material:
Remote Diagnostics Systems and New Forms of Boundary-
Spanning," Information and Organization (19:4), pp 233-252.

Kallinikos, J. 2006. The Consequences of Information: Institutional
Implications of Technological Change. Cheltenham, UK: Edward
Elgar Publishing.

Karlsson, C., and Sköld, M. 2007. "Counteracting Forces in Multi-Branded
Product Platform Development," Creativity and Innovation
Management (16:2), June, pp 133-141.

Katz, M.L., and Shapiro, C. 1994. "Systems Competition and Network
Effects," The Journal of Economic Perspectives (8:2), pp 93-115.

References

205

Khazam, J., and Mowery, D. 1994. "The Commercialization of RISC:
Strategies for the Creation of Dominant Designs," Research Policy
(23:1), pp 89-102.

King, J.L., and Lyytinen, K. 2005. "Automotive Informatics: Information
Technology and Enterprise Transformation in the Automobile
Industry," in: Transforming Enterprise: The Economic and Social
Implications of Information Technology, W.H. Dutton, B. Kahin, R.
O'Callaghan and A.W. Wyckoff (eds.). pp. 283-333.

Kirsch, L. 1996. "The Management of Complex Tasks in Organizations:
Controlling the Systems Development Process," Organization
Science (7:1), pp 1-21.

Klein, B., Crawford, R.G., and Alchian, A.A. 1978. "Vertical Integration,
Appropriable Rents, and the Competitive Contracting Process,"
Journal of Law and Economics (21:2), pp 297-326.

Klein, H., and Myers, M. 1999. "A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems," MIS
Quarterly (23:1), pp 67-93.

Klepper, S. 1997. "Industry Life Cycles," Industrial and Corporate Change
(6:1), p 145.

Kling, R. 1992. "Audiences, Narratives, and Human Values in Social Studies
of Technology," Science, Technology & Human Values (17:3), p 349.

Kotre, J. 1984. Outliving the Self: Generativity and the Interpretation of
Lives. Baltimore: Johns Hopkins University Press

Kruchten, P. 1995. "Architectural Blueprints: The '4+1' View Model of
Software Architecture," IEEE Software (12:6), November, pp 42-50.

Kruchten, P., Obbink, H., and Stafford, J. 2006. "The Past, Present, and
Future for Software Architecture," Software, IEEE (23:2), pp 22-30.

Langley, A. 1999. "Strategies for Theorizing from Process Data," Academy of
Management Review (24:4), pp 691-710.

Langlois, P., and Richard, N. 1992. "Networks and Innovation in a Modular
System: Lessons from the Microcomputer and Stereo Component
Industries," Research Policy (21:4), pp 297-313.

Langlois, R. 2006. "The Secret Life of Mundane Transaction Costs,"
Organization Studies (27:9), pp 1389-1410.

Langlois, R.N. 2002. "Modularity in Technology and Organization," Journal
of Economic Behavior & Organization (49:1), pp 19-37.

Latham, R., and Sassen, S. 2005. Digital Formations: IT and New
Architectures in the Global Realm. Princeton, NJ: Princeton
University Press.

Leen, G., and Heffernan, D. 2002. "Expanding Automotive Electronic
Systems," Computer (35:1), pp 88-93.

Lenfle, S., and Midler, C. 2009. "The Launch of Innovative Product-Related
Services: Lessons from Automotive Telematics," Research Policy
(38:1), pp 156-169.

Leonardi, P., and Barley, S. 2008. "Materiality and Change: Challenges to
Building Better Theory About Technology and Organizing,"
Information and Organization (18:3), pp 159-176.

Leonardi, P.M. 2010. "Digital Materiality? How Artifacts without Matter,
Matter," First Monday (15:6-7).

Chapter 8

206

Lessig, L. 2004. Free Culture: How Big Media Uses Technology and the
Law to Lock Down Culture and Control Creativity. Penguin.

Levina, N., and Vaast, E. 2005. "The Emergence of Boundary Spanning
Competence in Practice. Implications for Implementation and Use of
Information Systems," MIS Quarterly (29:2), Jun, pp 335-363.

Lichtenthaler, U. 2011. "Open Innovation: Past Research, Current Debates,
and Future Directions," The Academy of Management Perspectives
(25:1), pp 75-93.

Liebowitz, S.J., and Margolis, S.E. 1995. "Path Dependence, Lock-in, and
History," JL Econ. & Org. (11:1), p 205.

Lindgren, R., Andersson, M., and Henfridsson, O. 2008. "Multi-
Contextuality in Boundary-Spanning Practices," Information
Systems Journal (18:6), pp 641-661.

Luecke, R., Staff, H., and Katz, R. 2003. Harvard Business Essentials:
Managing Creativity and Innovation. Harvard Business School Pr.

Lyytinen, K., and Yoo, Y. 2002. "Research Commentary: The Next Wave of
Nomadic Computing," Information Systems Research (13:4), pp
377-388.

Markus, L.M. 2007. "The Governance of Free/Open Source Software
Projects: Monolithic, Multidimensional, or Configurational?,"
Journal of Management and Governance (11:2), pp 151-163.

Markus, M., and Robey, D. 1988. "Information Technology and
Organizational Change: Conceptions of Causality in Theory and
Research," Management Science (34:5), pp 583-598.

Markus, M.L., and Benjamin, R.I. 1996. "Change Agentry - the Next IS
Frontier," MIS Quarterly (20:4), pp 385-407.

Marples, D.L. 1961. "The Decisions of Engineering Design," Engineering
Management, IRE Transactions on (8:2), pp 55-71.

Mathiassen, L., Munk-Madsen, A., Nielsen, P.A., and Stage, J. 2000. Object-
Oriented Analysis and Design. Marko Publishing.

McAdams, D.P., and de St Aubin, E. 1992. "A Theory of Generativity and Its
Assessment through Self-Report, Behavioral Acts, and Narrative
Themes in Autobiography," Journal of Personality and Social
Psychology (62:6), p 1003.

McGrenere, J., and Ho, W. 2000. "Affordances: Clarifying and Evolving a
Concept," Citeseer, pp. 179-186.

Mingers, J. 2004. "Real-Izing Information Systems: Critical Realism as an
Underpinning Philosophy for Information Systems," Information
and Organization (14:2), pp 87-103.

Mohr, L.B. 1971. "Organizational Technology and Organizational Structure,"
Administrative Science Quarterly (16:4), pp 444-459.

Monteiro, E., and Hanseth, O. 1995. "Social Shaping of Information
Infrastructure: On Being Specific About the Technology," in:
Information Technology and Changes in Organisational Work, W.
Orlikowski, G. Walsham, M. Jones and J. DeGross (eds.). Chapman
& Hall, pp. 325-343.

Morein, J.A. 1975. "Shift from Brand to Product Line Marketing," Harvard
Business Review (53:5), pp 56-64.

References

207

Murmann, J., and Frenken, K. 2006. "Toward a Systematic Framework for
Research on Dominant Designs, Technological Innovations, and
Industrial Change," Research Policy (35:7), pp 925-952.

Nelson, R., and Winter, S. 1982. An Evolutionary Theory of Economic
Change. Belknap Press.

Norman, D.A. 1988. The Psychology of Everyday Things. Basic books.
O’Mahony, S. 2007. "The Governance of Open Source Initiatives: What Does

It Mean to Be Community Managed?," Journal of Management and
Governance (11:2), pp 139-150.

Orlikowski, W. 1992. "The Duality of Technology: Rethinking the Concept of
Technology in Organizations," Organization Science (3:3), pp 398-
427.

Orlikowski, W. 2007. "Sociomaterial Practices: Exploring Technology at
Work," Organization Studies (28:9), p 1435.

Orlikowski, W., and Iacono, C. 2001. "Research Commentary: Desperately
Seeking The" IT" In IT Research-a Call to Theorizing the IT Artifact,"
Information Systems Research (12:2), pp 121-134.

Orlikowski, W., and Scott, S. 2008. "Sociomateriality: Challenging the
Separation of Technology, Work and Organization," The Academy of
Management Annals (2:1), pp 433-474.

Orlikowski, W.J. 2002. "Knowing in Practice: Enacting a Collective
Capability in Distributed Organizing," Organization Science (13:3),
pp 249-273.

Orlikowski, W.J., and Gash, D.C. 1994. "Technological Frames: Making
Sense of Information Technology in Organizations," ACM Trans. Inf.
Syst. (12:2), pp 174-207.

Orton, J.D., and Weick, K.E. 1990. "Loosely Coupled Systems: A
Reconceptualization," The Academy of Management Review (15:2),
pp 203-223.

Ouchi, W. 1979. "A Conceptual Framework for the Design of Organizational
Control Mechanisms," Management Science (25:9), pp 833-848.

Papazoglou, M., and Georgakopoulos, D. 2003. "Service-Oriented
Computing " Communications of the ACM (46:10), pp 24-28.

Papazoglou, M.P., Traverso, P., Dustdar, S., and Leymann, F. 2007. "Service-
Oriented Computing: State of the Art and Research Challenges,"
Computer (40:11), pp 38-45.

Parnas, D.L. 1972. "On the Criteria to Be Used in Decomposing Systems into
Modules," Communications of the ACM (15:12), pp 1053-1058.

Parnas, D.L., Clements, P.C., and Weiss, D.M. 1985. "The Modular Structure
of Complex Systems," Software Engineering, IEEE Transactions on
(11:3), pp 259-266.

Perry, D.E., and Wolf, A.L. 1992. "Foundations for the Study of Software
Architecture," SIGSOFT Softw. Eng. Notes (17:4), pp 40-52.

Pickering, A. 1995. The Mangle of Practice: Time, Agency & Science.
University of Chicago Press.

Pickering, A. 2001. "Practice and Posthumanism: Social Theory and a
History of Agency," in: The Practice Turn in Contemporary Theory,
T.R. Schatzki, K. Knorr-Cetina and E. Von Savigny (eds.). New York:
Routledge, pp. 163-174.

Chapter 8

208

Pinch, T. 2008. "Technology and Institutions: Living in a Material World,"
Theory and Society (37:5), pp 461-483.

Pine, B.J., and Davis, S. 1999. Mass Customization: The New Frontier in
Business Competition. Harvard Business School Pr.

Pohl, K., Böckle, G., and Van Der Linden, F. 2005. Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer-
Verlag New York Inc.

Poole, M.S., and DeSanctis, G. 2004. "Structuration Theory in Information
Systems Research: Methods and Controversies," in: The Handbook
of Information Systems Research, M.E. Whitman and A.B.
Woszczynski (eds.). Idea Group, pp. 206-249.

Porter, M. 1985. Competitive Advantage: Creating and Sustaining Superior
Performance. Free Pr.

Poster, M. 2001. What's the Matter with the Internet? University of
Minnesota Press Minneapolis.

Powell, W. 1990. "Neither Market nor Hierarchy: Network Forms of
Organization," Research in Organizational Behavior (12), pp 295-
336.

Racu, R., Hamann, A., Ernst, R., and Richter, K. 2007. "Automotive Software
Integration," in: DAC '07: Proceedings of the 44th annual
conference on Design automation. San Diego, California: ACM
Press, pp. 545-550.

Reinhardt, A. 2006. "Nokia's Magnificent Mobile-Phone Manufacturing
Machine," in: Businessweek Online.

Remneland, B., Ljungberg, J., Bergquist, M., and Kuschel, J. 2011. "Open
Innovation, Generativity and the Supplier as Peer: The Case of
Iphone and Android," International Journal of Innovation
Management (15:1), pp 1-26.

Robertson, D., and Ulrich, K. 1998. "Planning for Product Platforms," Sloan
Management Review (39), pp 19-32.

Robertson, P.L., and Langlois, R.N. 1995. "Innovation, Networks, and
Vertical Integration* 1," Research Policy (24:4), pp 543-562.

Rosemann, M., Andersson, M., and Lind, M. 2011. "Digital Complementary
Assets," Int. Conf. on Information Systems, Shanghai, China.

Rosenberg, N. 1982. Inside the Black Box: Technology and Economics.
Cambridge Univ Pr.

Rosenkopf, L., and Nerkar, A. 1999. "On the Complexity of Technological
Evolution," in: Variations in Organization Science: In Honor of
Donald T. Campbell, J.A.C. Baum and B. McKelvey (eds.). Thousand
Oaks, CA: Sage Publications.

Rothaermel, F., and Hill, C. 2005. "Technological Discontinuities and
Complementary Assets: A Longitudinal Study of Industry and Firm
Performance," Organization Science (16:1), pp 52-70.

Royce, W.E., and Royce, W. 1991. "Software Architecture: Integrating
Process and Technology," TRW Quest (14:1), pp 2–15.

Royce, W.W. 1970. "Managing the Development of Large Software Systems,"
in: Proceedings of IEEE WESCON. p. 9.

Sahal, D. 1985. "Technological Guideposts and Innovation Avenues,"
Research Policy (14:2), pp 61-82.

References

209

Sambamurthy, V. 2010. "Editorial Notes," Information Systems Research
(21:4), pp 661-664.

Sambamurthy, V., Bharadwaj, A., and Grover, V. 2003. "Shaping Agility
through Digital Options: Reconceptualizing the Role of Information
Technology in Contemporary Firms," MIS Quarterly (27:2), pp 237-
263.

Sambamurthy, V., and Zmud, R.W. 2000. "Research Commentary: The
Organizing Logic for an Enterprise's IT Activities in the Digital Era--
a Prognosis of Practice and a Call for Research," Information
Systems Research (11:2), p 105.

Sanchez, R., and Mahoney, J.T. 1996. "Modularity, Flexibility, and
Knowledge Management in Product and Organization Design,"
Strategic Management Journal (17), pp 63-76.

Sandberg, J. 2010. "Coping with Complexity: Exploring Modularity and
Flexibility in IT Infrastructure Adaptation," in: Industrial
Informatics: Design, Use and Innovation, J. Holmström, M. Wiberg
and A. Lund (eds.). Philadelphia, USA.: IGI Publishing.

Sanderson, S., and Uzumeri, M. 1995. "Managing Product Families: The Case
of the Sony Walkman," Research Policy (24:5), pp 761-782.

Sayer, A. 1992. Method in Social Science: A Realist Approach. Psychology
Press.

Schatzki, T.R. 2005. "The Sites of Organizations," Organization Studies
(26:3), pp 465-484.

Schilling, M. 2000. "Toward a General Modular Systems Theory and Its
Application to Interfirm Product Modularity," The Academy of
Management Review (25:2), pp 312-334.

Scholz, R.W., and Tietje, O. 2002. Embedded Case Study Methods:
Integrating Quantitative and Qualitative Knowledge. Sage
Publications, Inc.

Schumpeter, J., and Opie, R. 1934. The Theory of Economic Development.
Springer.

Schumpeter, J.A. 1942. Capitalism, Socialism and Democracy. New York:
Harper and Row.

Schön, D.A. 1979. "Generative Metaphor: A Perspective on Problem-Setting
in Social Policy," Metaphor and thought (254), pp 254-283.

Scott, C.R., Quinn, L., Timmerman, C.E., and Garrett, D.M. 1998. "Ironic
Uses of Group Communication Technology: Evidence from Meeting
Transcripts and Interviews with Group Decision Support System
Users," Communication Quarterly (46:3), pp 353-374.

Scott, S.V., and Wagner, E.L. 2003. "Networks, Negotiations, and New
Times: The Implementation of Enterprise Resource Planning into an
Academic Administration," Information and Organization (13:4),
pp 285-313.

Selander, L., Henfridsson, O., and Svahn, F. 2010. "Transforming Ecosystem
Relationships in Digital Innovation," Int. Conf. on Information
Systems, St Louis, USA.

Selander, L., Henfridsson, O., and Svahn, F. in review. "Capability Search
and Redeem across Digital Ecosystems," submitted to international
journal ().

Chapter 8

210

Shah, S. 2006. "Motivation, Governance, and the Viability of Hybrid Forms
in Open Source Software Development," Management Science
(52:7), pp 1000-1014.

Shapiro, C., and Varian, H. 2000. Information Rules. Harvard business
school press Boston, MA.

Simon, H. 1962. "The Architecture of Complexity," Proceedings of the
American Philosophical Society (106:6), pp 467-482.

Simon, H.A. 1971. "Designing Organizations for an Information-Rich
World," in: In Computers, Communications, and the Public Interest
(1971), M. Greenberger (ed.). pp. 37-72.

Simon, H.A. 1973. "The Organization of Complex Systems," in: Hierarchy
Theory: The Challenge of Complex Systems, H.H. Pattee (ed.).
George Braziller, pp. 1-27.

Simon, H.A. 1996. The Sciences of the Artificial. The MIT Press.
Simon, H.A. 2002. "Near Decomposability and the Speed of Evolution,"

Industrial and Corporate Change (11:3), pp 587-599.
Simonds, C. 2003. "Software for the Next-Generation Automobile," IT

Professional (05:6), pp 7-11.
Smith, M.L. 2006. "Overcoming Theory-Practice Inconsistencies: Critical

Realism and Information Systems Research," Information and
Organization (16:3), pp 191-211.

Sosa, M., Eppinger, S., and Rowles, C. 2004. "The Misalignment of Product
Architecture and Organizational Structure in Complex Product
Development," Management Science (50:12), pp 1674-1689.

Steenson, M. 2009. "Problems before Patterns: A Different Look at
Christopher Alexander and Pattern Languages," Interactions (16:2),
pp 20-23.

Steiner, C.J. 2009. "Ontological Dance: A Dialogue between Heidegger and
Pickering," in: The Mangle in Practice, A. Pickering and K. Guzik
(eds.). Duke University Press.

Strauss, A., and Corbin, J. 1998. Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory, (2 ed.). Sage
Newbury Park, CA.

Sturgeon, T. 2002. "Modular Production Networks: A New American Model
of Industrial Organization," Industrial and Corporate Change
(11:3), p 451.

Suarez, F.F., and Utterback, J.M. 1995. "Dominant Designs and the Survival
of Firms," Strategic Management Journal (16:6), pp 415-430.

Svahn, F. 2004. "In-Car Navigation Usage: An End-User Survey on Existing
Systems," in: Proceedings of the 27th Information Systems
Research Seminar in Scandinavia. Falkenberg, Sweden.

Svahn, F. 2009. "The Sociomateriality of Competing Technological Regimes
in Digital Innovation," in: Selected Papers of the 32nd Iris Seminar,
J. Molka-Danielsen (ed.). Tapir Academic Press, Trondheim,
Norway.

Svahn, F., and Henfridsson, O. 2009. "Situated Knowledge in Context-Aware
Computing: A Sequential Multimethod Study of in-Car Navigation,"
International Journal of Advanced Pervasive and Ubiquitous
Computing (1:3).

References

211

Svahn, F., and Henfridsson, O. 2012. "The Dual Regimes of Digital
Innovation Management," HICSS-45, Grand Wailea, Hawaii: IEEE
Computer Society.

Svahn, F., Henfridsson, O., and Yoo, Y. 2009. "A Threesome Dance of
Agency: Mangling the Sociomateriality of Technological Regimes in
Digital Innovation," Int. Conf. on Information Systems, Phoenix,
USA.

Takeuchi, H., and Nonaka, I. 1986. "The New New Product Development
Game," Harvard Business Review (64:1), pp 137-146.

Tapscott, D., and Williams, A. 2006. Wikinomics: How Mass Collaboration
Changes Everything. New York, NY: Penguin.

Teece, D., Pisano, G., and Shuen, A. 1997. "Dynamic Capabilities and
Strategic Management," Strategic Management Journal (18:7), pp
509-533.

Teece, D.J. 1986. "Profiting from Technological Innovation: Implications for
Integration, Collaboration, Licensing and Public Policy," Research
Policy (15:6), December, pp 285-305.

Thiel, S., and Hein, A. 2002. "Modeling and Using Product Line Variability
in Automotive Systems," IEEE Software (19:4), pp 66-72.

Thompson, J.D., and Bates, F.L. 1957. "Technology, Organization, and
Administration," Administrative Science Quarterly (2:3), pp 325-
343.

Tilson, D., Lyytinen, K., and Sørensen, C. 2010. "Research Commentary---
Digital Infrastructures: The Missing IS Research Agenda,"
Information Systems Research (21:4), pp 748-759.

Tiwana, A., Konsynski, B., and Bush, A. 2010. "Platform Evolution:
Coevolution of Platform Architecture, Governance, and
Environmental Dynamics," Information Systems Research (21:4),
pp 675-687.

Trigeorgis, L. 1996. Real Options: Managerial Flexibility and Strategy in
Resource Allocation. the MIT Press.

Tuomi, I. 2002. Networks of Innovation: Change and Meaning in the Age of
the Internet. Oxford University Press.

Turing, A. 1937. "On Computable Numbers," Proceedings of the London
Mathematical Society (2:42), pp 230-265.

Tushman, M., and Anderson, P. 1986. "Technological Discontinuities and
Organizational Environments," Administrative Science Quarterly
(31:3), pp 439-465.

Tushman, M., and Moore, W. 1982. Readings in the Management of
Innovation. Ballinger.

Ulrich, K. 1995. "The Role of Product Architecture in the Manufacturing
Firm," Research Policy (24:3), May, pp 419-440.

Ulrich, K.T., and Eppinger, S.D. 2004. Product Design and Development.
McGraw-Hill.

Utterback, J., and Abernathy, W. 1975. "A Dynamic Model of Process and
Product Innovation," Omega (3:6), pp 639-656.

Utterback, J., and Suarez, F. 1993. "Innovation, Competition, and Industry
Structure," Research Policy (22:1), pp 1-21.

Chapter 8

212

Utterback, J.M., and O'Neill, R. 1994. Mastering the Dynamics of
Innovation: How Companies Can Seize Opportunities in the Face of
Technological Change. Harvard Business School Press.

Vaast, E., and Walsham, G. 2005. "Representations and Actions: The
Transformation of Work Practices with IT Use," Information and
Organization (15:1), pp 65-89.

Wade, J. 1995. "Dynamics of Organizational Communities and Technological
Bandwagons: An Empirical Investigation of Community Evolution in
the Microprocessor Market," Strategic Management Journal
(16:S1), pp 111-133.

Walley, K. 2007. "Coopetition: An Introduction to the Subject and an Agenda
for Research," International Studies of Management and
Organization (37:2), pp 11-31.

Walsham, G. 1993. Interpreting Information Systems in Organizations.
John Wiley & Sons, Inc. New York, NY, USA.

Walsham, G. 2006. "Doing Interpretive Research," European Journal of
Information Systems (15:3), p 320.

Van de Ven, A. 1986. "Central Problems in the Management of Innovation,"
Management Science (32:5), pp 590-607.

Van de Ven, A.H. 2005. "Running in Packs to Develop Knowledge-Intensive
Technologies," MIS Quarterly (29:2), pp 368-378.

Vanhaverbeke, W., Van de Vrande, V., and Chesbrough, H. 2008.
"Understanding the Advantages of Open Innovation Practices in
Corporate Venturing in Terms of Real Options," Creativity and
Innovation Management (17:4), pp 251-258.

Weber, M. 1949. The Methodology of the Social Sciences. Glencoe, IL: Free
Press

Weick, K.E. 1976. "Educational Organizations as Loosely Coupled Systems,"
Administrative Science Quarterly (21:1), pp 1-19.

Wenger, E. 1999. Communities of Practice: Learning, Meaning, and
Identity. Cambridge university press.

West, J.W., and Gallagher, S. 2006. "Challenges of Open Innovation: The
Paradox of Firm Investment in Open-Source Software," R&D
Management (36:3), June, pp 319-331.

Westergren, U. 2011. "Disentangling Sociomateriality: An Exploration of
Remote Monitoring Systems in Interorganizational Networks," in:
Informatics. Umeå: Umeå University.

Widrow, B., Glover, J., McCool, J., Kaunitz, J., Williams, C., Hearn, R.,
Zeidler, J., Dong Jr, E., and Goodlin, R. 1975. "Adaptive Noise
Cancellation: Principles and Applications," proc. IEEE (63:12), pp
1692-1716.

Williamson, O. 1973. "Markets and Hierarchies: Some Elementary
Considerations," The American Economic Review (63:2), pp 316-
325.

Williamson, O.E. 1971. "The Vertical Integration of Production: Market
Failure Considerations," The American Economic Review (61:2), pp
112-123.

References

213

Wimelius, H. 2011. "Duplicate Systems: Investigating Unintended
Consequences of Information Technology in Organizations," in:
Informatics. Umeå: Umeå University.

Wirfs-Brock, R. 2009. "Creating Sustainable Designs," IEEE Software
(26:3), pp 5-7.

von Hippel, E. 1988. The Sources of Innovation. Oxford, New York: Oxford
University Press.

Von Hippel, E. 1990. "Task Partitioning: An Innovation Process Variable,"
Research Policy (19:5), pp 407-418.

von Hippel, E. 2007. "Horizontal Innovation Networks - by and for Users,"
Industrial and Corporate Change (16:2), pp 293-315.

Yin, R.K. 2003. Case Study Research: Design and Methods, (4 ed.). Sage
Publications.

Yoo, Y. 2010. "Computing in Everyday Life: A Call for Research on
Experiential Computing," MIS Quarterly (34:2), pp 213-231.

Yoo, Y., Boland, R., Lyytinen, K., and Majchrzak, A. 2009. "Call for Papers–
Special Issue: Organizing for Innovation in the Digitized World,"
Organization Science (20:1), pp 278-279.

Yoo, Y., Henfridsson, O., and Lyytinen, K. 2010a. "The New Organizing
Logics of Digital Innovation: An Agenda for Information Systems
Research," Information Systems Research (21:4), pp 724-735.

Yoo, Y., Henfridsson, O., and Lyytinen, K. 2010b. "Research Commentary:
The New Organizing Logic of Digital Innovation: An Agenda for
Information Systems Research," Information Systems Research
(21:4), pp 724-735.

Yoo, Y., Lyytinen, K., Boland, R., Berente, N., Gaskin, J., Schutz, D., and
Srinivasan, N. 2010c. "The Next Wave of Digital Innovation:
Opportunities and Challenges: A Report on the Research
Workshop'digital Challenges in Innovation Research," Fox School of
Business & Management, Temple University, Philadelphia, PA, USA.

Yoo, Y., Lyytinen, K., and Jr., R.J.B. 2008. "Distributed Innovation in
Classes of Networks," in: HICSS. IEEE Computer Society, p. 58.

Yoo, Y., Lyytinen, K., Thummadi, B., and Weiss, A. 2010d. "Unbounded
Innovation with Digitalization: A Case of Digital Camera," in:
Academy of Management. Montreal, Canada.

Yoo, Y., Lyytinen, K., and Yang, H. 2005. "The Role of Standards in
Innovation and Diffusion of Broadband Mobile Services: The Case of
South Korea," Journal of Strategic Information Systems (14:3), pp
323-353.

Zittrain, J. 2006. "The Generative Internet," Harvard Law Review (119:7),
pp 1974-2040.

Zittrain, J. 2008. The Future of the Internet: And How to Stop It. Yale Univ
Pr.

Åkesson, M. 2009. "Digital Innovation in the Value Networks of
Newspapers." Gothenburg: Gothenburg University.

215

Published Reports in Publication Series

Research Reports in Information Processing and Computer Science.

UMADP-RRIPCS with ISSN 0282-0579 (series terminated Spring 1996) and

Research Reports, Department of Informatics. RR with ISSN 1401-4572

(series started Autumn 1996)

UMADP-RRIPCS

1. Bergman, B., Brodén, B. & Granlund, J.: Från projektering till

produktion – Erfarenheter från två installationer av datorbaserade

tillverkningssystem. Report UMADP-RRIPCS l.84, 1984.

2. Ivanov, K.: Expert-Support Systems: The New Technology and the

Old Knowledge. Report UMADP-RRIPCS 2.86, 1986.

3. Forsgren, O.: Samskapande datortillämpningar – en systemteoretisk

ansats för lösning av vissa förändringsproblem vid administrativ

datoranvänd¬ning. Report UMADP-RRIPCS 3.87, 1987. (Doctoral

Thesis).

4. Zellini, P. & Ivanov, K.: Humanistic and Ethical Aspects of

Mathematics. Report UMADP-RRIPCS 4.88, 1988.

5. Nilsson, K.: Project Description – Design of Interactive Information

Systems. Report UMADP-RRIPCS 5.87, 1987.

6. Nilsson, K.: Some Problems on Data Modelling and Interactive

Database Applications. Report UMADP-RRIPCS 6.88, 1988.

7. Nilsson, K.: A Model of Relational Algebra. Report UMADP-RRIPCS

7.89, 1989.

8. Nilsson, K.: Designing for Creativity – Toward a Theoretical Basis for

the Design of Interactive Information Systems. Report UMADP-

RRIPCS 8.89, 1989.

9. Forsgren, O. & Ivanov, K.: From Hypertext to Hypersystem. Report

UMADP-RRIPCS 9.90, 1990.

10. Ivanov, K.: Learning to Design Learning Systems – The Metaphor of

Future Generations and Computer Technology. Report UMADP-

RRIPCS 10.90, 1990.

11. Ivanov, K.: Critical Systems Thinking and Information Technology –

Some Summary Reflections, Doubts, and Hopes Through Critical

Thinking Criti-cally Considered, and Through Hypersystems. Report

UMADP-RRIPCS 11.90, 1990.

12. Ivanov, K.: Information Systems Design Through Creativity – A

tutorial route towards aesthetics and ethics. Report UMADP-

RRIPCS 12.90, 1990.

216

13. Ivanov, K.: Hypersystems – A Base for Specification of Computer-

Supported Self-Learning Social Systems. Report UMADP-RRIPCS

13.91, 1991.

14. Stolterman, E.: Designarbetets dolda rationalitet – En studie av

metodik och praktik inom systemutveckling. Report UMADP-

RRIPCS 14.91, 1991. (Doctoral Thesis).

15. Whitaker, R.: Venues for Contexture – A Critical Analysis and

Enactive Reformulation of Group Decision Support System. Report

UMADP-RRIPCS 15.92, 1992. (Doctoral Thesis).

16. Ivanov, K.: Proceedings of the 14th IRIS – Revised papers of the 14th

Information Systems Research Seminar in Scandinavia, Umeå -

Lövånger, 11-14 August, 1991. Report UMADP-RRIPCS 16.92, 1992.

17. Forsgren, O. m.fl.: Idealorienterad Design – Om konsten att hålla

idealen levande i systemutveckling. Report UMADP-RRIPCS 17.94,

1994.

18. Grönlund, Å.: Public Computer Systems, The Client-Organization

Encounter, and the Societal Dialogue. Report UMADP-RRIPCS

18.94, 1994. (Doctoral Thesis).

19. Levén, P.: Från användning till handling – Om kvalitet i ett

marknads-orienterat informationssystem. Report UMADP-RRIPCS

19.95, 1995. (Licentiate Thesis).

Research Reports

1997

97.01 Kaptelinin, V & Nardi, B A: The Activity Checklist: A Tool for

Representing the "Space" of Context. Report RR-97.01, 1997.

97.02 Levén, P.: Kontextuell IT-förståelse. Report RR-97.02, 1997.

(Doctoral Thesis).

1998

98.01 Ågren, P-O.: Att förstå virtualisering. Report RR-98.01, 1998.

(Licentiate Thesis).

98.02 Waterworth, J.: Virtual Reality in Medicine: A Survey of the State of

the Art. Report RR-98.02, 1998.

1999

99.01 Henfridsson, O.: IT-adaptation as Sensemaking. Report RR-99.01,

1999. (Doctoral Thesis).

217

2000

00.01 Holmström, J.: Information System and Organization as

Multipurpose Network. Report RR-00.01, 2000. (Doctoral Thesis).

2001

01.01 Lindh-Waterworth, E.: Perceptually-Seductive Technology –

designing computer support for everyday creativity. Report RR-

01.01, 2001. (Doctoral Thesis).

01.02 Wiberg, M.: In between Mobile Meetings: Exploring Seamless

Ongoing Interaction Support for Mobile CSCW. Report RR-01.02,

2001. (Doctoral Thesis).

2003

03.01 Lund, A.: Massification of the Intangible. An Investigation into

Embodied Meaning and Information Visualization. Report RR-

03.01, 2003. (Doctoral Thesis).

03.02 Nordström, T.: Information Systems Stewardship – advancing

utilisation of information technology in organisations. Report RR-

03-02, 2003. (Doctoral Thesis).

03.03 Wiberg, C.: A Measure of Fun. Extending the scope of web usability.

Report RR-03.03, 2003. (Doctoral Thesis).

03.04 Fällman, D.: In Romance with the Materials of Mobile Interaction: A

Phenomenological Approach to the Design of Mobile Information

Technology. Report RR-03.04, 2003. (Doctoral Thesis).

2005

05.01 Lindblad-Gidlund, K.: Techno therapy – A relation with information

technology. Report RR-05.01, 2005. (Doctoral Thesis).

05.02 Raoufi, M.: How can I help you? The delivery of e-government

services by means of a digital assistant. Report RR-05.02, 2005.

(Doctoral Thesis).

2006

06.01 Amcoff-Nyström, C.: Designing Intranets for Viability –

Approaching organizational empowerment and participation. Report

RR-0601, 2006 (Doctoral Thesis).

06.02 Jakobsson, M.: Virtual Worlds and Social Interaction Design. Report

RR-06.02, 2006 (Doctoral Thesis).

218

06.03 Croon Fors, A.: Being-with Information Technology: Critical

explorations beyond use and design. Report RR-06.03 (Doctoral

Thesis).

2008

08.01 Nyberg, A. F.: Att studera digitala artefakter I människors

vardagsliv. Report RR-08.01, 2008 (Doctoral Thesis).

08.02 Waterworth, J.A., L-Waterworth, E, Riva, G and Mantovani, F:

Form, Content and Consciousness – An Evolutionary Account of the

Sense of Presence in Real and Mediated Environments. Report RR-

08.02, 2008.

2009

09.01 Jegers, K.: Pervasive Gameflow – Exploring and identifying the

mechanisms of player enjoyment in pervasive games. Report RR-

09.01, 2009 (Doctoral Thesis).

09.02 Orre, C.J.: Using Technology with Care – Notes on Technology

Assimilation Processes in Home Care. Report RR-09-02, 2009

(Doctoral Thesis).

09.03 Harr, R.: Striking a Balance – Managing Collaborative Multitasking

in Computer-Supported Cooperative Work. Report RR-09-03, 2009

(Doctoral Thesis).

2010

10.01 Skog, D..: Mjukvarumiljöer för gemenskap – en studie av

nätgemenskap, teknik och kultur. Report RR-10.01, 2010 (Doctoral

Thesis).

10.02 Jonsson, K.: Digitalized industrial equipment: An investigation of

remote diagnostics services. Report RR-10.02, 2010 (Doctoral

Thesis).

10.03 Danielsson-Öberg , K.: Att främja medverkan: utmaningar och

möjligheter för barns och ungdomars delaktighet vid design av

edutainmentspel. Report RR-10.03, 2010 (Doctoral Thesis).

10.04 Björkman, C, Elovaara, P, Sefyrin, J and Öhman, M: Travelling

thoughtfulness – feminist technoscience stories. Report RR-10.04,

2010 (Antologi).

219

2011

11.01 Wimelius, H.: Duplicate systems: Investigating unintended

consequences of information technology in organizations. . Report

RR-11.01, 2011 (Doctoral Thesis).

11.02 H. Westergren, U.: Disentangling Sociomateriality: An Exploration

of Remote Monitoring Systems in Interorganizational Networks.

Report RR-11.02, 2011 (Doctoral Thesis).

2012

12.01 Hoshi, K.: Here and Now: Foundations and Practice of Human

Experiential Design. Report RR-12.01, 2012 (Doctoral Thesis).

12.02 Svahn, F.: Digital Product Innovation: Building Generative

Capability through Architectural Frames. Report RR-12.02, 2012

(Doctoral Thesis).

