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Abstract 

Over the last decades we have witnessed a profound digitalization of tangible 

products. While this shift offers great opportunities, it also exposes product 

developing industries to significant challenges. In these industries 

organizations, markets, and technologies are tuned for mass production, 

providing competitive advantage through scale economics. Typically, firms 

exercise modular strategies to deliver such scale benefits. Rooted in Herbert 

Simon’s notion of near decomposability, modular product architectures 

allow for production assets, such as tools, processes, and plants, to be 

effectively reused across product variants and over generations of designs. 

However, they come at a price; modularity requires overall design 

specifications to be frozen well before production. In practice, this tends to 

inscribe functional purpose in the structures of the system, effectively 

preventing firms from taking advantage of the speed by which digitized 

products can be developed and modified. 

The main objective of this thesis is to investigate and explain how product 

developing organizations adapt architectural thinking to balance the proven 

benefits of modularity and the emerging opportunities provided by digital 

technology. In doing so, it introduces a complementary architectural frame, 

grounded in Christopher Alexander’s seminal work on patterns. This frame 

associates the concept of architecture with generativity and reuse of ideas, 

rather than scale economics and reuse of physical assets. 

Sensitizing the theoretical framework through a longitudinal case study of 

digital product innovation this thesis derives several implications for theory 

and practice. Across four embedded cases in the automotive industry it 

demonstrates that generative capability follows from a shared organizational 

view on products as enablers and catalyzers of new, yet unknown 

functionality. Such an emergence-centric view requires product developing 

firms to rethink existing governance models. Rather than exercising control 

through specific functionality, inscribed in modular product structures, it 

offers the benefit of influencing innovation through general functional 

patterns, serving as raw material in distributed and largely uncoordinated 

innovation processes. This shift in focus, from specific functionality to 

general functional patterns, enables a new strategic asset for product 

developing firms. It opens up for proactive rather than reactive strategies, 

where the architecture makes an instrument to cultivate new ideas and 

business opportunities, rather than a tool for cost savings. 

Keywords: digital innovation, product innovation, generativity, 

modularity, patterns, architecture, architectural frames. 
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1 Introduction 

Thursday January 21, 2010 Nokia launched free walk and drive navigation as 

a part of their new version of Ovi Maps1. This aggressive move towards a 

mobile service market was enabled by Nokia’s acquisition of the leading 

digital map provider Navteq in July 2008. Consulting traditional business 

logic, it simply does not make sense for a product developing firm to give 

away an $8.1 billion investment, without any explicit revenue generation. 

However, a press release from February 3 gives an indication of the rationale 

behind Nokia’s strategy; in about one week the new Ovi Maps service was 

downloaded by 1.4 million users. Anssi Vanjoki, executive vice president at 

Nokia explains why these new users are so important to Nokia2:  

This is great news for our 3rd party application developers. 

Within a matter of days there is an installed base of more than 

1 million active users all potentially hungry for new and 

innovative location-aware apps. […] For the operators too 

there is a growing opportunity to sell more data-plans and a 

complete navigation package to existing and new customers. 

As illustrated in Businessweek Online, August 2006, Nokia’s previous 

success in the mobile handset business was tightly connected to its 

                                                             

1 Ovi Maps (now Nokia Maps) is a free mapping service provided by Nokia for its 

mobile phones and smartphone multimedia devices. 

2 http://press.nokia.com 
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manufacturing machinery (Reinhardt 2006). A key element of this 

machinery was the strong commitment to modular product architectures. 

This architectural strategy allowed Nokia to offer product variation, while 

transferring marginal cost to commoditized components. It served Nokia 

well over several years, providing significant scale advantages and the 

highest operating margins in the business. Against this backdrop Vanjoki’s 

statement uncovers a new Nokian perspective on innovation and 

technological progression. First, it suggests that Nokia is adopting a new 

architectural philosophy with a clear distinction between platform and 

services. Although the release of Ovi Maps attracted enormous attention at 

the level of users thanks to the new functionality, the quote indicates that 

Nokia looks upon navigation primarily as an important part of a platform. 

Second, the statement denotes a new organizing logic, where functionality is 

expected to emerge from the more or less independent work of 3rd party 

application developers. This opens up for unconstrained creativity and 

alternative modes of value generation. Third, it recognizes a new market 

dynamic, breaking with traditional ways to do business. With end-user value 

primarily supplied by 3rd party developers, Nokia customers will seek a 

prospering service ecosystem, feeding multiplicity and heterogeneity. 

Therefore, the decision to invest in a handset will correlate to the number of 

developers engaged in the ecosystem. At the same time, developers seek an 

outlet for their applications, making the number of potential customers a key 

aspect in the decision to engage in the ecosystem. Obviously, the installed 

base of mobile handset is an entry key for Nokia in their struggle to set up 

and capitalize on this type of two-sided market. 

Over the last decades we have witnessed a profound digitalization of tangible 

products (Yoo et al. 2010b). Nokia’s Ovi Maps initiative is nothing but a 

specific example of a general trend in product developing industries. Turning 

to the automotive industry, as an example, a modern car embeds numerous 

onboard computers, more than 10 million lines of code, and is increasingly 

connected to mobile devices and telematics services (Barabba et al. 2002; 

Broy et al. 2007; Henfridsson and Lindgren 2005). It is argued that as much 

as 80% of all car innovations can be traced to digital technology (Leen and 

Heffernan 2002). Given this wide adoption of software and digital 

technology, product developing organizations are triggered to rethink 

established models of innovation. Rather than centering on the corporate 

R&D department, they acknowledge that innovation is an increasingly 

distributed activity (Yoo et al. 2008), taking place in networks (Boland et al. 

2007; Powell 1990; Tuomi 2002) or ecosystems (Basole 2009; Rosemann et 

al. 2011; Selander et al. 2010; Selander et al. in review) rather than within 

hierarchies. In turn, this calls for new forms of governance (Demil and 

Lecocq 2006; Ghazawneh and Henfridsson 2011; Ghazawneh and 
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Henfridsson forthcoming; Markus 2007), alternative business models 

(Economides and Katsamakas 2006; Eisenmann et al. 2006), and generative 

technologies (Remneland et al. 2011; Zittrain 2006), encouraging 

spontaneous and uncoordinated innovation. 

This thesis is rooted in the observation that product developing industries 

need to combine different innovation regimes to tackle digitalization (Godoe 

2000; Svahn and Henfridsson 2012; Svahn et al. 2009). On the one hand, 

cars, heat pumps, and washing machines will remain physical products, 

delivering tangible value – transportation, heating, and cleaning. On the 

other hand, this value is increasingly enabled by software and digital 

technology, calling for a new perspective on innovation.  

In addressing the challenge of combining innovation regimes, this thesis 

draws on an assessment of innovation literature (2.1). This is a large and 

rather fuzzy body of literature, ranging from economics to entrepreneurship, 

via technology management and organizational science. However, for this 

particular purpose I have concentrated my efforts on two, relatively 

homogeneous streams; product innovation and digital innovation. Product 

innovation is an established branch that we can trace at least back to the 

work of Schumpeter (cf. Schumpeter and Opie 1934). Although being a wide 

body of literature, it is relatively sharp in its contours. Researchers 

essentially refer to the same knowledge base when using the notion of 

product innovation. Turning to software there is not yet such a clear body of 

innovation literature. Software-enabled ERP3 systems have transformed 

corporate governance, embedded software has revolutionized electronics, 

and open source software has forever changed our view on the incentives 

involved in innovation. Not surprisingly, the wide application of software has 

translated into several fields of research. At the same time, researchers 

generally recognize that software separates the meaning and functional 

behavior of a product from the physical product in itself. As a consequence, 

there is reasonable consensus that innovation processes, centered on 

software, follow a different logic. I present this logic in under the notion of 

digital innovation. The review suggests that these two streams of research 

approach innovation with inherently different perspectives (Table 1): 

Product innovation is essentially firm-centric. Innovation is shaped in 

vertical industries where these firms develop new physical artifacts in a 

teleological and reductionist manner. Applying waterfall models, value is 

created in linear processes, governed by behavioral control mechanisms. 

Markets are characterized by competition over price since significant 

                                                             

3 Enterprise Resource Planning 
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marginal cost pushes for commoditization and economies of scale, eventually 

making an influential force for dominant designs and homogeneity on 

markets. When architecting tangible products, product developing firms 

center on the physical structure. Modular designs allow for efficient reuse of 

assets, such as production tools and machineries. A strictly hierarchical 

decomposition of products preserves the overall functional setup, while 

allowing for change at the level of details. 

Digital innovation is largely network-centric. Innovation is shaped by 

horizontal industrial structures, where essentially independent actors 

together shape value in a non-linear and emergence-oriented manner. 

Without centralized authority these processes are governed by output 

control, rather than direct influence over processes. In practice, that makes 

an evolutionary approach to innovation, providing variation and multiplicity 

to markets that constitute an ultimate selection mechanism. In a digital 

innovation regime, such markets normally take the form of two-sided 

markets, centered on a shared platform. Rather than competition over price, 

these markets are characterized by competition over attention. The 

architectures of digital products are normally centered on the functional 

structure of solutions and problems. An overall objective is to create 

generative designs, encouraging reuse of general functional patterns in ever 

new specific applications, not know at the time of platform design.  

Product innovation and digital innovation make distinct regimes in the sense 

that organizing logic, market dynamics, and architectural design principles 

make sense together, as a whole. They manifest two consistent logics for 

innovation, where a range of different forces are intertwined and largely 

inseparable. To some extent it appears as if product innovation and digital 

innovation seem incompatible; digital innovation is powered by multiplicity 

and choice while product innovation is associated with commoditization and 

dominant designs. Product innovation is teleological in the sense that value 

is created linearly from an idea to a diffused product. Further, a product 

innovation regime rewards the stability coming out of efficient reuse of 

components, tools, and machineries, while digital innovation is centered on 

the generative reuse of functional patterns to encourage novelty and change. 

Contrasting product innovation literature and digital innovation literature 

certainly reveals a range of more or less fundamental tensions between the 

two regimes, but the literature is largely silent on theoretical as well as 

empirical evidence on how to combine them. 

Organizing logic, market structure, and architecture of products are certainly 

deeply intertwined and cannot be studied in isolation. At the same time, it is 

not a bold statement to say that the radical changes of today’s society are 

pushed by technological change. Few people would argue that publishing is 
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reforming in response to new organizational needs or customers desire for 

new business models. There is overwhelming evidence suggesting that 

publishing, photo, consumer electronics, and many other industries 

primarily change as a consequence of internet, tablets, electronic payment, 

etc.  

This thesis addresses the gap in the literature by investigating how different 

ways to conceptualize products resonate with innovation processes. The 

introduction of digital technology in product developing organizations tends 

to be dialectical (Henfridsson et al. 2009b). It is dialectical in the sense that 

new paths are created in a tension between a familiar past and an uncertain 

future. Therefore, this research is centered on how architecture and 

architectural thinking defines change across generations of products. Being a 

link between historical achievements and future potentialities, the 

architecture is an instrument for path creation as well as a shackle of path 

dependency. Whether product developing firms will be able to transform 

innovation practices and leverage the opportunities of IT relies on their 

capability to internalize the architectural thinking of a digital innovation 

regime and combine it with the architectural perspective of product 

innovation. Therefore, the research question of this thesis is: how do product 

developing firms architect digitized products to leverage the generative 

capability of IT? 

As a lens to be applied in my study of digital innovation in product 

developing organizations I have composed a theoretical framework centered 

on the concept of architectural frames (see also Henfridsson et al. in 

review). On a general level, architectural design is viewed as a way to manage 

complexity. Management of complexity is a critical activity in that it has 

implications on product change, product variety, standardization, and 

product performance (Alexander 1999; Simon 1962), but it also allows for 

division of labor, concurrent design, and accommodation of uncertainty 

(Baldwin and Clark 2000; Kirsch 1996; Ouchi 1979). As emphasized by 

Herbert Simon (1996, p. 215), complexity is not an invariant aspect of 

technology. Rather, “how complex or simple a structure is depends critically 

upon the way in which we describe it”. Anchored in this perspective, I see 

architectural frames as schemas for thinking about and representing a 

complex product’s architecture. Hence, I conceive of architectural frames as 

cognitive processes crystallized as a particular way of managing complexity 

in designing complex products. An architectural frame guides how complex 

forms can arise from simpler ones. Using the language of Brian Arthur 

(2009), it makes a distinct template for how technology is bootstrapped 

upwards, from the few to the many and from the simple to the complex.  
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Product innovation exercises modularity to handle complexity. This 

architectural frame relies on what Simon referred to as near decomposability 

(Simon 1962; Simon 1996; Simon 2002). A nearly decomposable system is a 

hierarchy of parts, where any level of analysis reveal a system of parts where 

each of those components is, in turn, a system of finer parts. Limited 

coupling between parts result in stable subassemblies, essentially defined by 

their respective interfaces. Such a stable subassembly makes a distinct 

building block, which can be used without paying much attention to its inner 

structure or legacy. As long as the interfaces are preserved an automaker can 

reuse e.g. a specific navigation component in a range of different car models. 

However, changing the interface of the navigation system is a major 

decision, with system level implications on every product using the 

component. Therefore, the original decomposition of a modular system is 

critical. In fact, this decomposition is “the scheme by which the function of a 

product is allocated to physical components” (Ulrich 1995, p. 419). 

In practice, the hierarchical structure of a modular system emerges as 

designers recurrently practice decomposition and aggregation in the design 

of products. With the decomposition of products into parts designers seek to 

establish and preserve stable, loosely coupled subassemblies. Such stable 

subassemblies hide complexity and delivers functionality through well 

defined interfaces. In the aggregation of parts into products designers take 

the opposite perspective and seek different configurations of parts to create 

product variability. From now I will label this architectural frame hierarchy-

of-parts. 

We have seen that the increasing digitization of products call for innovation 

practices where functionality is the output from a generative platform, rather 

than the input to the decomposition of a modular system. This development 

put into question the dominant position of modularity and its application of 

Herbert Simon’s notion of near decomposability. In a modular system 

coupling is low since every element has a well defined functional purpose, 

complying with the overall system design. In contrast, a generative system 

encourages coupling in that general functional building blocks are designed 

to be easily reused in large amounts of specific, yet unknown applications. 

Drawing on Christopher Alexander’s seminal work on patterns (Alexander 

1964; Alexander 1979; Alexander 1999; Alexander 2002; Alexander et al. 

1977) I propose a complementary architectural frame that is resilient to the 

challenges of increasingly digitized products. 

A cornerstone in Alexander’s writing as an architect is that sound and 

harmonic environments show significant multiplicity and variation, not the 

uniformity associated with standardized components and dominant designs. 

According to Alexander, “the ‘elements’, which seem like elementary 
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building blocks, keep varying, and are different every time that they occur” 

(Alexander 1979, p. 84). On a general level, he offers a rather simple 

explanation; good designs – that is designs which we perceive as “whole” and 

“living” – are adapted to their contexts. People simply have to “shape their 

surroundings for themselves” (Alexander 1979, p. 74). Therefore, we will not 

find a deeper structure if we focus on the decomposition of physical artifacts. 

Instead, we have to direct our attention to the processes generating these 

artifacts. That is the common sense, shared legacy, and formal knowledge 

that directs us in designing and producing things. We need to look for 

standardized processes, not standardized components. 

Patterns are the basic elements in Alexander’s perspective on architecture. A 

pattern expresses “a relation between a certain context, a problem, and a 

solution” (Alexander 1979, p. 247). Thereby, it can be viewed as an 

instruction, which shows how a particular solution to a problem can be 

reused, over and over again, wherever the particular context is relevant. We 

find structure in the fact that individual patterns are not isolated. Every 

pattern “depends both on the smaller patterns it contains, and on the larger 

patterns within which it is contained” (Alexander 1979, p. 312). Together, 

this network of interconnected patterns forms what Alexander refers to as a 

“pattern language”. 

In practice, these networks of patterns emerge as designers recurrently 

practices generalization and specialization in the design of products. 

Generalization is a way to manage complexity, where designers seek 

increasingly generic representations of the functionality associated with an 

artifact. These representations, or patterns, are distinct solutions for 

particular problems, defined by a given context. In the process of 

generalization patterns are repeatedly disassembled into increasingly generic 

elements, relating to each other through inheritance. Exercising 

specialization designers take a bottoms-up perspective, seeking to extend the 

application of generic patterns by reusing them for new purposes. From now 

I will label this architectural frame network-of-patterns. 

Seeking a better understanding of how product developing firms architect 

digitized products to leverage the generative capability of IT I have applied 

the theoretical framework to digital product innovation practices at the 

automaker CarCorp. The study is longitudinal in its character and spans a 

period of approximately one decade. It contains four different, yet 

temporally interlinked, embedded cases. Briefly, the objective of the study is 

(1) to understand how architectural thinking in product innovation and 

digital innovation can be conceptualized as architectural frames, how these 

frames (2) relate to each other, how they (3) can be combined, and, finally, 

how they (4) together influence innovation practices. 
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Together, the four embedded cases demonstrate how architectural thinking 

shifted in the automotive industry as a response to digital technology. The 

first case describes the adoption and appropriation of media-oriented 

systems transport (MOST), a radically new service-oriented and event-

driven architectural solution to infotainment4 system design. With MOST the 

network-of-patterns frame was officially recognized, for the first time. With 

the new frame automakers were offered the opportunity to exercise 

generalization, resulting in a harmonized infotainment solution, sharing 

many basic resources and functions. The second case is centered on the 

emergence of a new architectural concept for commoditization of instrument 

panel clusters - SoftCluster. The story explicates how CarCorp combined 

architectural frames to leverage differentiation in software. The SoftCluster 

platform was generative in the sense that it was not designed up-front for a 

particular functional setup. Instead, it allowed for recurring specialization of 

instrument cluster functionality across the full range of brands and models 

in the portfolio of GlobalCarCorp, CarCorp’s owner. Third, I follow a range of 

experimental setups for leveraging nomadic device integration in cars. This 

story is primarily colored by the architectural challenges of introducing 

leeway between automotive lifecycles and the faster rhythm of consumer 

electronics. Finally, I study the emergence and consolidation of new 

architectural solutions for open, in-car platforms in the automotive industry. 

In this phase, network-of-patterns thinking had taken hold beyond R&D. To 

reinforce the generativity of the new Android-based infotainment platform 

CarCorp reconsidered their relationship to suppliers, their business models, 

and the deep-rooted automotive perspective on market logic. 

On the basis of this longitudinal case study of digital innovation practices in 

the automotive industry I demonstrate the theoretical framework and 

leverage differences between architectural frames. Largely, generative 

capability is about encouraging creativity outside established processes, 

organizations, and conventions. However, it is also about accessing and, 

eventually, profiting from such creativity. The longitudinal case study of 

CarCorp shows that as the network-of-patterns frame is assimilated, people 

reassess their perspective on products. Rather than viewing their products as 

carriers of pre-fabricated functionality, they increasingly see them as 

enablers and catalyzers of new, yet unknown functionality. Further, 

synthesizing the four embedded cases I also argue that unless such a view 

informs all the different actions and decisions across the organization a 

                                                             

4 Infotainment refers to media providing a combination of information and 

entertainment. In the automotive industry it includes navigation, telematics, rear-

seat entertainment, and similar systems.  
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product developing firm has little chance to build permanent generative 

capability. Finally, this thesis suggests that a product developing firm cannot 

build generative capability unless adopting a distinctly different governance 

model. Generative capability relies on unconstrained freedom to create new 

specific functions. Such freedom clashes hard into established modular 

governance models, where decomposition of products is guided by specific 

functionality. Unless product developing firms find ways to govern 

innovation through general patterns rather than specific they have little 

chance to build permanent generative capability. 

The thesis also derives theoretical and practical implications for technology 

and innovation management. First, it is argued that the assimilation of 

network-of-patterns thinking redefines the role of architecture; rather than 

being a tool for cost savings, it turns into an instrument for cultivation of 

new ideas, eventually building new business opportunities. Therefore, the 

network-of-patterns frame opens up for proactive rather than reactive 

architectural strategies. Second, the network-of-patterns frame turns the 

spotlight from specific functionality to general functional patterns. Sensors, 

actuators, data, and other low-level elements of a system are no longer 

details that should be embedded in components and hidden to reduce 

complexity. Instead, they have turned into valuable resources that should be 

exposed to developers. Therefore, it can be argued that the network-of-

patterns frame enables a new type of strategic asset. Finally, network-of-

patterns thinking brings a new perspective on how products change. It 

furthers a view where the meaning of a particular product is not up-front 

defined, but can evolve over time. Specialization can occur independently of 

hardware design, generating a constant flow of new functions. This 

disconnects software-based functionality from hardware, not just in a 

technical sense, but from an innovation perspective. As an important 

consequence, the network-of-patterns frame allows for appropriation of 

value across the product life cycle. 

This work is concluded with a few notes on challenges for future research. In 

particular, it identifies four distinct challenges for product developing 

organizations when architecting hardware. Installed base is critical to 

generative environments. To avoid breaking installed base apart, product 

developing firms have to be careful when designing variants. They have to 

ask; how can differentiation be achieved without exercising aggregation, 

potentially generating incompatible hardware configurations? Further, an 

urgent need to assist the reuse of functionality calls for a range of actions. 

Producibility entails decomposition into largely independent components. 

However, in modular practices low coupling is achieved by decomposing the 

system from the perspective of functionality. This effectively inscribes 



Chapter 1 

18 

 

functionality in the physical structure of the system, which prevents reuse for 

new purposes. This raises several questions for future research. How can 

physical products be decomposed for low coupling without inscribing 

functionality in the structure? In this vein, it is relevant to ask; is it possible 

to assist reuse by increasing hierarchic span? Such increased span would 

result in less deep hierarchies, reducing recursive, nested encapsulation and 

potentially expose more functionality to developers. Finally, product 

developing firms need to question how they design interfaces. Applying 

modularity interfaces are hard to reassess in retrospect. Therefore, they 

make an important mechanism for product developing firms to exercise 

control over innovation processes; the more specific interface, the more 

detailed control. This makes a stark contrast to the principles of 

generalization, exercising control from the perspective of general patterns, 

rather than specific. Therefore, an important question for future research is; 

what does best practice for general interface design look like? 

The rest of this thesis is organized as follows. Section two explicates an 

assessment of the innovation literature, drawing on the concept of 

innovation regimes. From this assessment I identify a research gap which 

centers on the lack of contributions elaborating how digital technology 

influences innovation in product development. Next, I derive a theoretical 

framework to understanding digital product innovation. In particular, this 

framework is designed to explicate architectural thinking in traditional 

product developing settings increasingly exposed to digital technology. 

Following a description of my methods, I then provide an empirical analysis 

of an automaker’s attempts to architect infotainment products in response to 

technological change. Finally, I discuss how this research extends current 

views on product architecture and contributes to the emerging literature on 

innovation.   
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2 Related Work and Conceptual Foundation 

Innovation is an old concept with many facets. As revealed by its Latin roots 

– nova – innovation is centered on the notion of newness or novelty (see e.g. 

Luecke et al. 2003). Although a significant body of literature approaches 

innovation primarily as “new products and processes” (Tushman and Moore 

1982), the distinction between invention and innovation (Schumpeter and 

Opie 1934) suggests that it is something more than an act of intellectual 

creativity generating new ideas and concepts. Innovation is also about the 

“the production or emergence of a new idea” (Gupta et al. 2007, p. 886). 

Essentially, this perspective recognizes the demanding journey towards 

practical application of an idea as a central part of innovation. At the heart of 

such reasoning is that a novel idea does not make an innovation until it is 

changing practice. Therefore, in addition to ideas and their tangible 

manifestations in products, processes, etc, innovation is about relevance and 

value. Innovation is “the embodiment, combination, or synthesis of 

knowledge in original, relevant, valued new products, processes, or services” 

(Luecke et al. 2003, p. 2). 

Synthesizing this brief walkthrough of definitions a few aspects stand out as 

fundamental to innovation. First, innovation is obviously about ideas. Any 

innovation process holds an element of creativity. However, most people 

would argue that it is not primarily an artistic creativity, where the output 

emerges in an open-ended manner. Instead, innovation is about the 

capability to make abstractions of our everyday life and elaborate them for 
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specific purposes. Second, innovation is about practice. It is about the 

application of abstract concepts in real life. Therefore, innovation is a 

phenomenon highly intertwined with the concept of practice. Given a 

definition where practice is “a process by which we can experience the world 

and engage with it as meaningful” (Wenger 1999, p. 51), it is also about 

meanings. New meanings. 

However, understanding the process of innovation, as we see it in 

contemporary industrial practice and research, is largely about 

understanding technology. Ideas are manifested as functions or services, 

mediated and enabled by technology. New practices emerge through the 

adoption and use of new technology. Since new technologies in one way or 

the other is birthed from previous ones, innovation is intertwined with the 

evolution of technology over time, in research often referred to as 

technological change. 

Clearly, technological change emanates from the interplay between people 

and technology. New technology is often the source of inspiration in 

innovation, subjecting new opportunities (Svahn 2009; Svahn et al. 2009). 

At the same time technology may make a strong opposing force as innovators 

seek new solutions. With technology making the backbone of many solid 

structures in society, users and designers tend to inscribe meaning in it. 

Established practices simply make efficient barriers for humans to rethink 

technology and give it new meanings. As noted by Nelson and Winter (1982, 

p. 258), some directions of progression “seem much more compelling of 

attention than others. Particularly in industries where technological advance 

is very rapid, advance seems to follow advance in a way that appears almost 

inevitable”. Such path dependency (Arthur 1989; David 1985) makes 

technology evolve according to an inherent logic that we cannot ignore.  

At the same time existing research underlines that new technology may 

disrupt this logic. Ultimately, it may inaugurate the emergence of a new 

technological paradigm (Godoe 2000), seeding new paths of innovation. 

Following the literature, such new paths are variously termed as 

“technological regimes” (Nelson and Winter 1982), “technological 

trajectories” (Dosi 1982), “pattern of evolution” (Hughes et al. 1987), 

“technological guideposts and avenues” (Sahal 1985), and “basic designs” 

(Rosenberg 1982). A new technological paradigm inevitably brings a shift in 

“principles, norms and ideology, rules and decision-making procedures”, 

recognized by Godoe (2000, p. 1034) as the transition to a new innovation 

regime. Such regimes make a new foundation for actors to form 

“expectations and actions in terms of the future development of a 

technology”.  
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This thesis is rooted in the observation that traditional product developing 

industries need to rethink innovation to tackle digitalization. Cars, heat 

pumps, and washing machines are physical products, delivering tangible 

value – transportation, heating, and cleaning. Over the years practitioners 

and technology have developed a relatively stable interplay – an innovation 

regime – embracing established business models, organizational role 

models, architectural standard solutions, and best practices (Svahn et al. 

2009). However, digital technology is inherently different from tangible 

products (cf. Yoo 2010). As transportation, heating, and cleaning is 

increasingly enabled by software and digital technology the established 

product innovation regime will be disrupted. New perspectives on 

materiality will subject new opportunities to designers. At the same time, 

designers implementing new technology will be hampered by the resistance 

of traditional technology.  

A new innovation regime will emerge as tangible products become 

increasingly digitalized. Such a regime unfolds from a different set of rules or 

fundamental mechanisms defining the elements and friction constituting the 

interplay between technology and people.  

In what follows, I distinguish and review two distinct streams of innovation 

literature: product innovation and digital innovation. They represent 

innovation regimes in the way they manifest a particular view on innovation. 

At the heart of product innovation we find the tangible product, while digital 

innovation is centered on information technology, software and the IT 

artifact. As we shall see, these two streams deliver inherently different 

theoretical explanations to the concept of innovation, underline different 

challenges, and offer different architectural solutions to these challenges. 

2.1 Assessment of Innovation Regimes 

Product innovation literature is a well established research branch, with a 

track record of at least one century. We find seminal contributions in a 

variety of outlets, ranging from ASQ and Research Policy to AMR and 

Management Science. Product innovation is studied by strategy theorists 

(Porter 1985; Teece et al. 1997), economists (Nelson and Winter 1982; 

Schumpeter and Opie 1934), organization theorists (Cohen and Levinthal 

1990; Tushman and Anderson 1986), and technology management 

researchers (Baldwin and Clark 2000; Van de Ven 1986). 

Digital innovation is perhaps a less recognized label. Yet, this dynamic and 

slightly fragmented stream of research is gaining momentum across 

disciplines. While engineering-oriented outlets, such as IEEE journals, often 

have tried to translate product innovation to software settings (Boehm 1976; 

Parnas 1972; Royce 1970), we increasingly see recognition of the inherently 
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different properties of IT (Alexander 1999; Allen 2006; Jackson 2000). 

Similarly, outlets such as Organization Science show increasing interest in 

digital innovation, illustrated by an upcoming special issue labeled 

“Organizing for Innovation in the Digitized World” (Yoo et al. 2009). As 

digitalization is playing out at different levels of society we also see a 

translation of the information systems (IS) discipline. The traditional 

management perspective is gradually complemented with a growing interest 

in digital innovation. This is reflected in a range of special issues in premier 

journals. Fall 2010 Information Systems Research (ISR) published a special 

issue on digital systems and competition (Ferrier et al. 2007). The interest in 

questions relating to digital innovation was confirmed by ISR’s 20th 

anniversary special issue, dedicated to “forward-looking commentaries on 

important topics and phenomena that are likely to frame a high-impact 

research agenda in the next few years” (Sambamurthy 2010). In this issue, a 

whole range out of totally 15 research commentaries are explicitly framed in 

this direction (Brynjolfsson et al. 2010; El Sawy et al. 2010; Tilson et al. 

2010; Tiwana et al. 2010; Yoo et al. 2010b). Let us also note two similar calls 

for papers in MISQ on service innovation in the digital age (Barrett et al. 

2010) and digital business strategy (Bharadwaj et al. 2010). We also see an 

increasing number of conference tracks and dedicated workshops (cf. Yoo et 

al. 2010c) centered on the rapid digitalization of society. 

I will now turn to product innovation and digital innovation literature in an 

attempt to incarnate the two innovation regimes and illustrate essential 

differences between them. In particular, I will center my assessment on three 

key dimensions. First, I will discuss the basic organizational arrangements 

characterizing each regime. Next, I will elaborate the market dynamics 

empowering innovation in product innovation and digital innovation. 

Finally, I discuss similarities and differences in architectural perspectives, 

reflecting how the two regimes approach technological progression over 

time. While these three dimensions all together hopefully give life to the two 

innovation regimes portrayed in this thesis, they also make a tool for me 

rationalizing a focus on architecture. Together, they render a story that put 

organizing logic and new market dynamics in causal connection with 

architecture and architectural thinking. 

2.1.1 Organizing Logic 

IT and digital products largely seem to be incompatible with the firm-centric 

organizational structures developed over a hundred years of manufacturing. 

As one out of many examples, media industries are in the midst of a painful 

reorientation towards more network-centric structures. In this context, 

publishers and retailers desperately seek new organizational configurations 

as the distinction between producers and consumers is increasingly blurred 
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and fuzzy in the digital marketplace (Baudrillard 1998; Tapscott and 

Williams 2006). Similarly, the standardization and diffusion of the third 

generation (3G) mobile infrastructures have redefined innovation in the 

telecommunication area (Yoo et al. 2005). Mediating interests and 

motivations among a wide range of heterogeneous actors these standards 

have turned innovation of broadband mobile services into a collective 

achievement. Essentially, this put the once dominant operators in a new 

situation as the content and meaning enabled by their infrastructure is 

increasingly defined by networks out of their immediate control. 

A product innovation regime seems to cultivate organizational 

configurations that are distinctly different from the structures and logic 

emerging in a digital innovation regime. Therefore, it is far from sure that 

established organizing logic will allow firms to “manage the imperatives of 

the business and technological environments in the digital economy” 

(Sambamurthy and Zmud 2000, p. 106). Development practices seem to be 

different as innovation essentially is an in-house activity, while IT 

progression is distributed. Governance is different as the capability to 

control innovation processes is inscribed in organization structure, while IT 

relies on mutual benefit and symbiotic relationships to prosper. Finally, 

industry structure is different since product innovation seems to develop 

vertical organizations, while firms in an IT context tend to focus their 

competences on particular layers in a value chain, eventually forming 

horizontal industries. In an attempt to identify and uncover the basic 

arguments behind these differences I now engage in a review of the 

organizing logic linked to a product innovation regime and a digital 

innovation regime respectively. Following Sambamurthy and Zmud (2000, 

p. 107) I refer to organizing logic as the “managerial rationale for designing 

and evolving specific organizational arrangements in response to an 

enterprise’s environmental and strategic imperatives”. 

2.1.1.1 Firm-Centricity and the Exercise of Formal Control 

Although the product innovation literature may be sliced in different 

directions and framed for different purposes two dimensions seem to be part 

of any perspective. These two dimensions are critical drivers that cannot be 

ignored when seeking explanations to technological progression in product 

developing settings. On the one hand, an organization has to master the 

transformation of captured knowledge into new products and diffuse these 

products to remote practices, eventually increase market shares and secure 

profit. Such capability calls for an incremental perspective on technological 

progression, where new solutions are combinations of existing. On the other 

hand, product innovation research recognizes that technological progression 

may be born out of radical change processes, breaking with an established 
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paradigm. To cope with such progression an organization has to be able to 

internalize foreign knowledge and technology for in-house innovation. 

In a product innovation regime the organization is the epicenter of 

innovation activity and the natural container of innovation capability. A 

significant part of the research is focusing on challenges facing incumbent 

firms (Abernathy and Utterback 1978; Henderson and Clark 1990; Hill and 

Rothaermel 2003; Tushman and Anderson 1986; Utterback and O'Neill 

1994), manufacturing physical products of significant complexity. An 

incumbent firm is already established in a market, occupying a central 

position. The goods produced by different actors are homogenous, leaving 

relatively low price differentiation. As markets are occupied with such 

dominant designs (Abernathy and Utterback 1978; Rosenberg 1982; Sahal 

1985; Teece 1986; Utterback and Abernathy 1975) it makes perfect sense to 

view innovation as the fruit of incremental progression within organizations. 

In settings where material supplies are unreliable, production costly, and 

knowledge a scarcity, such incremental change is most efficiently managed 

through hierarchical organization structures (Clark 1985; Williamson 1973), 

hosting the development of modular products (Baldwin and Clark 2000; 

Sanchez and Mahoney 1996; Simon 1962) under strictly linear development 

processes (Godin 2006; Porter 1985; Takeuchi and Nonaka 1986). This 

translates to vertically oriented industries (Chandler 1977) where 

competitive advantage derives from an organization’s capability to enforce 

absolute control over its entire value chain. Following transaction cost theory 

(Coase 1937; Williamson 1971) the vertical integration we see in product 

developing organizations illustrates that it is cheaper to administer 

incremental innovation processes internally than outsource it to a market 

(Carlton 1979; Klein et al. 1978). As a final remark, it is worth noting that 

incremental innovation does not condition new ideas to derive from internal 

processes. However, it prescribes a distinct way for organizations to absorb 

new ideas; they are mangled through existing practices to align with 

established knowledge, organizational structures, and products.  

While incremental progression seems to be the dominant mode of 

innovation in product developing settings, the literature pays substantial 

attention to change processes where firms are forced to rethink established 

knowledge, routines, and organizational structures. It acknowledges that 

relatively stable periods of incremental innovation are recurrently 

interrupted by technological breakthroughs or radical innovations, 

overturning existing paradigms and, eventually, seeding new paths of 

incremental change. Such disruptions are potentially lethal to organizations 

tuned for incremental innovation. To maneuver in the uncertainty 

introduced by radically new technology organizations have to build 
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capability for creative destruction (Abernathy and Clark 1985; Schumpeter 

1942). Essentially, such capability allows for the development of new 

knowledge, coming at the expense of existing explanations to everyday 

problems. Such destruction is particularly problematic when the innovation 

changes the architecture of a product, since architectural knowledge tend to 

be deeply embedded in organizational structures and information-

processing procedures (Andersson et al. 2008; Henderson and Clark 1990). 

Cohen and Levinthal (1990) introduced the notion of absorptive capacity as a 

measure of an organization’s ability to implement this transformation, where 

new external knowledge is used to restructure established, internal 

innovation processes.  

Although research pays significant attention to various phenomena related 

to radical progression of technology, established firms tend to be organized 

for incremental innovation (e.g. Hill and Rothaermel 2003). Clearly, 

technological discontinuities (Tushman and Anderson 1986) are hard to 

predict and almost impossible to plan for. Although the literature is rich in 

explaining phenomena such as creative destruction and absorptive capacity, 

it is relatively weak in elaborating organizational implications. The theory on 

absorptive capacity (Cohen and Levinthal 1990) comes with a model on how 

to direct R&D expenditures, but without opposing traditional structures. 

Similarly, Henderson and Clark (1990) suggest that organizations have to set 

up communication channels, information filters, and problem-solving 

strategies to build architectural knowledge, but without questioning the 

basic organizational arrangements.  

Hierarchical organizations, linear models of product development, and 

vertical industry structures simply seem to be the dominant organizing logic 

of a product innovation regime. One lens to understand this dominance is 

offered by control theory, in turn deriving from ideas in transaction cost 

economics. Incremental innovation practices are highly visible within firms 

and, thereby, provide significant “knowledge of the transformation process” 

(Ouchi 1979, p. 843). When organizations know in detail how behaviors and 

processes will transform inputs into outputs it is cheaper to apply formal 

behavioral control than informal outcome control. Therefore, incremental 

innovation tends to feed such formal control modes, centered on authority 

(Eisenhardt 1985; Kirsch 1996) and maintained by the various distinctive 

properties of a product innovation regime.  

2.1.1.2 Network-Centricity and the Creation of Digital Options 

A salient distinction between traditional product innovation literature and 

digital innovation is that the firm-centric view is largely shifted out. 

Technological progression is not seen as a phenomenon deriving from linear 
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development processes, hierarchical organizations, and vertical industry 

structures. Instead, digital innovation research underlines that digital 

technology destroys many barriers favoring incumbent innovation. Over 

time this cultivates boundary-spanning practices (Levina and Vaast 2005; 

Lindgren et al. 2008), involving an increasing variety of largely 

uncoordinated innovation sources (von Hippel 1988). As a result, innovation 

translates into a distributed activity (Yoo 2010; Yoo et al. 2008). Taking 

place in networks (Boland et al. 2007; Powell 1990; Tuomi 2002; Van de Ven 

2005; von Hippel 2007) or ecosystems (Basole 2009; Selander et al. 2010; 

Selander et al. in review), rather than within hierarchies, such innovation 

feeds significant multiplicity in functions and services. 

Distributed value creation, scattered across networks and ecosystems, “leads 

to the emergence of dynamic, non-linear patterns of digital innovation” (Yoo 

et al. 2010c, p. 3). Such non-linear innovation provides value, not by 

outperforming existing products, but through the establishment of genuinely 

new value networks (Christensen 1997; Åkesson 2009). Although Clayton 

Christensen’s (1997) concept of disruptive innovation is not originally coined 

in response to digitalization, we can use it to understand how technology 

emerges in a digital innovation regime. When discussing disruptive 

technology he refers to the disruption of markets. Such disruptive technology 

takes root in simple applications at the bottom of a market and then 

relentlessly move ‘up market’, eventually displacing established competitors. 

At the heart of his concept we find the idea that remote sources of 

innovation, rooted at the bottom of a market, are able to break with 

established norms of how we appreciate value and create new meanings. As 

already discussed digital technology helps destroy many of the barriers that 

hold back disruptive technologies in a product innovation regime. It is 

simply significantly easier to reach an audience for a piece of new software 

than it is to create a market for a new generation of hard drives, which is a 

famous example from The Innovator’s Dilemma (Christensen 1997). 

Obviously, this bottoms-up model of innovation makes a strong contrast to 

traditional, firm-centric innovation, where value is created linearly (Godin 

2006; Porter 1985; Takeuchi and Nonaka 1986) as the product is refined 

from top to bottom using waterfall models (Boehm 1976; Royce 1970) in a 

strict design hierarchy. 

Navigating in a distributed innovation environment, where ideas and 

knowledge derive from external sources at the bottom of a market, requires 

firms to organize for agility (Sambamurthy et al. 2003). Agility, referring to 

the ability to detect and seize market opportunities with speed and surprise, 

is by many considered to be an imperative for success in a digital innovation 

regime (Brown and Eisenhardt 1997; Christensen 1997). Referring to 
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absorptive capacity (Cohen and Levinthal 1990) or creative destruction 

(Schumpeter 1942) one can argue that the capability to identify and 

internalize new knowledge and technology is a key part of any innovation 

regime. However, in product innovation literature the argument for 

openness towards external environments is rooted in reinforcement of 

internal activity. Therefore, such openness is essentially inbound. Digital 

innovation literature increasingly distances itself from such unilateral action 

and emphasizes that it might be a better idea to share intellectual property 

than keeping it hidden from competitors. Recently, this thinking has been 

successfully framed through the concept of open innovation. The term was 

popularized and promoted by Henry Chesbrough, defining it as the “use of 

purposive inflows and outflows of knowledge to accelerate internal 

innovation, and expand the markets for external use of innovation 

respectively” (Chesbrough 2006, p. 1). Although relatively imprecise in its 

contours, open innovation is increasingly adopted by practitioners. At the 

same time, researchers try to carve out the distinctions of the concept to 

identify future research agendas (cf. Huizingh 2011; Lichtenthaler 2011; 

West and Gallagher 2006).  

Taking an industry perspective rather than a firm perspective, a digital 

innovation regime seems to feed horizontally segmented industries. To 

survive in distributed innovation ecosystems, firms have to focus on building 

their distinctive competences, outsource the rest, and become nodes in value 

chain networks (Van de Ven 2005). As illustrated by the transformation of 

computer industry (Chandler 1997), accelerating pace of technological 

change and fierce competition forces product developing firms to focus on 

horizontal segments, rather than remaining vertical organizations. 

A key consequence of a transition towards horizontally structured industries, 

networked collaboration forms, and largely non-linear, open innovation 

processes is that once effective governance mechanisms are increasingly 

useless. While product innovation cultivates detailed control over internal 

behaviors and processes (Ouchi 1979), a prospering digital innovation 

ecosystem seems to be characterized by extensive and unconstrained cross-

fertilization, spanning firm boundaries. Essentially, such loosely coupled 

collaboration introduces uncertainty that prevents organizations from 

exercising formal control over the innovation process. As pointed out by 

Ouchi, it is pointless to enforce formal mechanisms to control the 

transformation of input to output in such environments: 

Under conditions of ambiguity, of loose coupling, and of 
uncertainty, [behavior] measurement with reliability and with 
precision is not possible. A control system based on such 
measurements is likely to systematically reward a narrow 
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range of maladaptive behavior, leading ultimately to 
organizational decline (Ouchi 1979, p. 845). 

With limited power to influence the details of innovation processes, firms 

operating in digital innovation regimes are directed to informal governance, 

controlling the output, rather than behavior. It is easy to argue that the 

inability to get involved increases the risk for a given firm. As expressed by 

Fichman (2004, p. 132) a digital innovation regime brings “uncertainty 

about expected payoffs [of engagement] and irreversibilities in the costs of 

implementation”. Uncertainty derives e.g. from unpredictable evolution of a 

particular technology, potentially creating unwanted path dependencies. 

Irreversibility may arise from high learning and adaptation cost, as well as 

high switching cost, when phasing out a technology.  

While recognizing that a given innovation process may hold significant risk 

for an organization, a digital innovation regime at the same time offers a 

powerful countermeasure. Open, distributed innovation “allows companies 

to scan a much wider range of the available technologies or new market 

developments” (Vanhaverbeke et al. 2008, p. 253), without mandatory 

commitments. Therefore, it makes a complementary mechanism that 

balances the risk of specific initiatives. A digital innovation regime gives a 

firm access to options that do not have to be exercised. Such rights, without 

obligations to take actions in the future are frequently discussed, across 

scientific disciplines, under the notion of real options. This concept extends 

from finance literature, where it is applied for decision-making processes 

under uncertainty (Dixit et al. 1994). However, in the 90th it emerged as a 

theoretical lens in strategic management (Amram et al. 1999), making a tool 

for firms to build managerial flexibility (Trigeorgis 1996).  

As demonstrated by Vanhaverbeke et al. (2008), real option theory makes a 

excellent tool in understanding governance and organizing logic in digital 

innovation. Many researchers have stressed the need to rethink the trade-off 

between incentives and authority in governance (Demil and Lecocq 2006; 

Markus 2007; O’Mahony 2007; Shah 2006). This argument is rooted in an 

increasing awareness of coopetition, i.e. simultaneous competition and 

cooperation (Walley 2007). Progressive digital innovation is built around 

symbiotic relationships, formed to create mutual value for its members 

(Basole 2009). Instead of elaborating rather fuzzy tensions between 

informal, incentives-driven governance and formal, authority-based control, 

one can argue that governance in digital innovation is about the creation, 

maintenance, and, eventually, realization of options. Such options “create 

value by generating future decision rights and, in this way, providing 

strategic flexibility. This flexibility is more valuable the higher the level of 

uncertainty” (Vanhaverbeke et al. 2008, p.252). With this perspective on 
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governance in digital innovation, one can say that IT is a “digital options 

generator” (Sambamurthy et al. 2003).  

Taking a step back, it makes sense to say that the multiplicity we see at 

digital markets is not primarily a measure of success, at least not in terms of 

profit, but rather an inherent property of digital innovation, needed for such 

distributed processes to work at all. While product innovation essentially 

seek formal control modes, centered on authority, hierarchical organizations 

and contractual agreements, the key to profitable digital innovation is found 

in the capability to domesticate the multiplicity of ecosystems and networks. 

To master such governance, firms have to organize for distributed rather 

than centralized knowledge bases, non-linear rather than linear value 

creation, and horizontal rather than vertical industries. Synthesizing the 

literature such organizing logic seem better tailored to informal control 

modes that ultimately aims for the creation of digital options.  

2.1.2 Market Dynamics 

The markets in contemporary western economies are flooded with products, 

not only in terms of volume but also by offering an almost indefinite range of 

options. However, zooming in on this reflection we can ask ourselves what 

constitutes these options. In what sense do markets offer consumers a range 

of alternatives? Tangible products are indeed offered in a wide range of 

forms, brands, and models. Still it can be argued that the technology is 

strikingly similar. The basic structure and functionality of a car, airplane, or 

heat pump is essentially the same, irrespective of brand and model. They all 

deliver transportation and heat, essentially using the same solutions.  

In contrast, software-oriented markets seem to feed remarkable variety and 

multiplicity (Anderson 2006; Brynjolfsson et al. 2010; Brynjolfsson and 

Smith 2003), at least if we focus on functionality – the value delivered to 

customers. This is particularly salient for innovation ecosystems built 

around a shared platform, rather than an application area (Tiwana et al. 

2010). The software offered at Apple’s AppStore or Android Market share 

many fundamental properties, yet they serve an almost infinite range of 

different purposes. Product innovation seems to feed relatively few solutions, 

tailored and optimized for a particular purpose, while digital innovation 

seems to be an open-ended process, allowing for a wide range of alternative 

solutions to reach the market. 

In order to shed some light on the differences in market offers and behavior I 

now engage in a review of the market dynamics linked to a product 

innovation regime and a digital innovation regime respectively. With the 

notion of market dynamics I generally refer to the mechanisms defining the 

forces of demand and supply at markets. While an economist is primarily 
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interested in resulting pricing signals, I focus my attention on how tensions 

are manifested and materialized. On a general level, the market dynamics 

explains why a producer is prevented from giving the consumer what it 

ultimately wants and vice versa. It defines an equilibrium at a market and 

the rules for mowing this balance point.  

2.1.2.1 Competition over Price under Dominant Designs 

Largely, product innovation research explains the relative uniformity at the 

level of markets through the concept of dominant design. At some point in 

the evolution of a technology the industry is moving from a system of “made-

to-order” products to a standardized mass-market manufacturing system of 

a complex assembled product (Abernathy and Utterback 1978; Abernathy 

1978). This turning point between flexible and specialized production marks 

the transition into a dominant design. The emergence of a dominant design 

is a subtle process which can be recognized in retrospect, but is almost 

impossible to appreciate in real time (Anderson and Tushman 1990). As 

reflected by Murmann and Frenken (2006), Abernathy (1978) identifies 

three distinct phases in the materialization of a dominant design. The first 

step is characterized by the introduction of a solution that has broader 

appeal in contrast to earlier product variants that focused on performance 

dimensions valued by only a small number of users. In the second phase 

attention is shifted away from performance and basic functionality towards 

the details of design as increasing market shares impose imitative design 

reactions among players competing at the same market. Finally, the 

dominant design is established as imitative behavior eventually enforces 

standardization throughout the industry and almost complete diffusion 

across the market. 

There are several perspectives in the literature discussing the causal 

mechanisms behind dominant designs. One stream of research emphasizes 

that a dominant design becomes dominant simply because it delivers the 

best technological compromise among the different functional 

characteristics of the technology (Abernathy and Utterback 1978; 

Christensen et al. 1998; Suarez and Utterback 1995; Utterback and Suarez 

1993). Other researchers focus on the self-reinforcing nature of dominant 

designs and argue that those designs initially gaining the lead in market 

share often will become dominant (Cusumano et al. 1992; Khazam and 

Mowery 1994; Liebowitz and Margolis 1995). Another recurring perspective 

on dominant design is based on the idea of network externalities (Baum et al. 

1995; Frenken et al. 1999; Hagedoorn et al. 2001; Rosenkopf and Nerkar 

1999; Wade 1995). The key point of this argument is that dominant designs 

are encouraged if the value of a particular technology depends on the 

number of other users who have adopted it (Arthur 1989; David 1985). 
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Finally, the most straight forward explanation to dominant design in product 

innovation literature derives from theories on economies of scale. On a 

general level, this concept refers to cost advantages an organization can 

achieve through expansion. Dominant designs simply are economies of scale 

that can be realized with standardized products (Hounshell 1984; Klepper 

1997). Therefore, as dominant designs emerge market competition is shifted 

from functional performance to price (Teece 1986). 

2.1.2.2 Competition over Attention through Shared Platforms 

Since competition over price is inherently related to the concept of dominant 

design it makes a stable point of departure when trying to distinguish 

between our two innovation regimes. Producing tangible products entails 

significant fixed and marginal cost, while producing software does not. 

Tracing the cost of a car or airplane we will find that a majority is related to 

production tools, supply chains, factories, and distribution, but also to the 

marginal cost, such as materials making up the physical artifact. In contrast, 

as stressed by Microsoft’s chairman Bill Gates, the cost of software derives 

almost exclusively from design. Elaborating the nature of software business 

in a Wall Street Journal article 2001 he underlines that the digital economy 

is different. “Say a piece of software costs $10 million to create and the 

marginal costs, because it’s going to be distributed electronically, are 

basically zero.” Once the costs of development have been covered, “every 

single additional unit is pure profit.”  

An innovation regime characterized by the absence of marginal cost and 

limited fixed cost induces new incentives and, therefore, gives rise to a new 

market logic. At the heart of this new logic we find a story about an 

abundance of critical resources. In digital innovation the bottlenecks 

standing behind a demand-side and a supply side are inherently different 

from the barriers in a product innovation regime. Software is realized, 

shipped, and consumed electronically, without consuming scarce, physical 

resources. Essentially, this eliminates price as a dominant force in 

innovation. Ultimately this promotes markets of infinite choice.  

A central argument in the “The Long Tail” (Anderson 2006) is that scarcity 

of fundamental resources in product innovation enforces dominant designs, 

here discussed in terms of “hits”. As one out of many examples, Anderson 

narrates that “if there are only a few slots on the shelves or [broadcast] 

airwaves, it’s only sensible to fill them with the titles that will sell best. And if 

that’s all that’s available, that’s all people will buy” (Anderson 2006, p. 8). As 

products are increasingly digitized such scarce resources are gradually 

marginalized and “the mass market is turning into a mass of niches”. That 

way digital technology has “unleashed an extraordinary possibility for many 
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to participate in the process of building and cultivating a culture that reaches 

far beyond local boundaries” (Lessig 2004, p. 9). Such power changes 

markets and threatens established content industries. 

Then, as multiplicity explodes in the wakes of digital technology, what drives 

competition? Obviously, an unlimited multiplicity cannot feed unlimited 

wealth. Not everyone can make money on digital products. What are the 

scarce resources of digital innovation? 

As pointed out by Bill Gates in the Wall Street Journal article, that scarce 

resource is attention. On the one hand, profit may sky-rocket as soon as 

design cost is covered. On the other hand, “your demand can literally almost 

drop to zero” in the moment when someone comes up with a superior 

solution and user attention is shifted away. Although this phenomenon is 

frequently discussed in the literature (cf. Davenport and Beck 2001), it is 

particularly well articulated by Herbert Simon (e.g. 1971, p. 40-41). What 

information consumes, says Simon, is “the attention of its recipients. Hence 

a wealth of information creates a poverty of attention and a need to allocate 

that attention efficiently among the overabundance of information sources 

that might consume it.” This translates well to digital markets. Multiplicity of 

software applications creates poverty of attention and a strategic need to 

allocate that attention efficiently across potential customers. 

Trying to set up such strategies it is critical to take into account that digital 

markets increasingly are taking the form of two-sided markets (Economides 

and Katsamakas 2006; Eisenmann et al. 2006). Two groups – here end-

users and application developers – are attracted to each other through at 

phenomenon identified by economists as the network effect (Katz and 

Shapiro 1994; Rosenkopf and Nerkar 1999; Wade 1995). The value of a 

particular network is largely depending on the number of users on the other 

side of the network. Game developers will direct their attention towards a 

community offering a critical mass of players. Similarly, players will favor 

communities with great variety of games.  

Clearly, the product is an essential ingredient and critical glue in these two-

sided markets. Sony’s Playstation may be a console where developers can 

design high-quality games, but more important, the diffusion of it allows 

them to get the attention of users. Equally valid, it guarantees a rich variety 

of games at the level of end-users. As two-sided markets are increasingly 

important, competition is shifted towards platform-centric ecosystems (Katz 

and Shapiro 1994; Tiwana et al. 2010). In such ecosystems, platforms are 

“products and services that bring together groups of users in two-sided 

networks” (Eisenmann et al. 2006, p. 94). This perspective downplays the 

tangible dimensions of the product and put attention on the “infrastructure 
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and rules that facilitate the two groups’ transactions”. This marks a 

distinction towards other perspectives on the concept of platforms, discussed 

in marketing (Bagozzi 1986; Morein 1975), software engineering (Clements 

and Northrop 2001; Pohl et al. 2005; Thiel and Hein 2002), or product 

development (Karlsson and Sköld 2007; Robertson and Ulrich 1998). 

Summing up this section, product innovation normally takes place in mature 

markets, characterized of fierce competition over price and dominant 

designs. In such environments it is essential to “meet the needs of diverse 

market segments while [at the same time] conserving development and 

production resources” (Robertson and Ulrich 1998, p. 20). With this view a 

platform is a “collection of assets that are shared between a set of [known] 

products”. In contrast, digital innovation increasingly faces the abundance of 

two-sided digital markets, kept together through shared platforms. Rather 

than competition over price, deriving from a dependence on scarce material 

resources, such markets are characterized by a competition over attention. 

For innovation to prosper the shared platform has to be able to facilitate the 

two groups’ transactions, which at the end of the day requires substantial 

diffusion across the market. 

From the perspective of a product developing firm, experiencing increasing 

digitalization of products and processes, it is reasonably highly frustrating to 

face a new form of market, with an inherently new logic. However, causing 

impact on design and production, a new perspective on the product is 

significantly worse. Capitalizing on digital innovation simply requires them 

to develop new a new approach to technology and a fundamentally new 

perspective on design. 

2.1.3 Architectural Design 

The more expensive, complicated, and ephemeral a product or service is, the 

more important it is to build on earlier achievements. Designing from 

scratch is simply a bad idea in environments characterized by significant 

pace of change. Such accelerating clockspeed (Fine 1999) is a distinguishing 

feature of product developing industries as well as business environments 

centered on IT. However, they adopt different approaches to the design 

challenges coming with technological change. As we have seen, in a product 

innovation regime such change emanates from the center of organizations 

that exercise formal control to improve functionality and reduce cost of 

products subject to dominant designs. Not surprisingly, product developing 

organizations, such as an automotive manufacturer, aim for a core design 

structure – often referred to as architecture – which is relatively stable in 

time and allows for the depreciation of investments across a range of models 

and several generations of the product. Essentially, this approach to 
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architectural design is grounded in a need to identify the least common 

denominator of a range of known, or at least anticipated, product variants. 

Properly implemented such a strategy allows for extensive reuse of critical 

assets while, eventually securing alternatives and attractive pricing at the 

level of end-users.  

We have also seen that digital innovations evolve in networks where a shared 

platform makes a tool to orchestrate a variety of heterogeneous knowledge in 

the harsh competition over attention. In such environments it is not 

surprising that platform designers direct their attention to application 

developers, rather than end-users. Google’s Android platform, as an 

example, is largely designed to make life easy for developers by providing 

generic building blocks and proven solutions at the architectural level. The 

architecture cannot be viewed as the common parts of a range of known 

products. Offering a collection of best practice tools and inherent support for 

the reconfiguration and reuse of existing ideas it is rather a catalyzer for 

open-ended innovation in ecosystems of rich and heterogeneous knowledge. 

Architecture is a subtle concept with many facets and angles. It is often 

described using notions such as abstraction, structure, and style (Garlan and 

Shaw 1994; IEEE Std 610.12 1990; Kruchten 1995; Perry and Wolf 1992; 

Ulrich 1995) and discussed in relation to concepts such as platforms 

(Karlsson and Sköld 2007; Robertson and Ulrich 1998), product families (Du 

et al. 2001; Jiao and Tseng 2000; Sanderson and Uzumeri 1995), and design 

rules (Baldwin and Clark 2000). When it comes to the rationale behind 

architectural investments and architectural thinking, it is argued that 

product architecture is profoundly linked to product change, variety, 

commoditization and standardization, performance,  and product develop-

ment management (Ulrich 1995). 

Briefly synthesizing this range of perspectives we can tell that architecture is 

a more stable and broad concept than design. “Architecture is design, but not 

all design is architecture” (Clements et al. 2003). Clearly, an architecture is 

something that spans particular solutions, designers, and moments in time. 

Although it is remarkably hard to make a clear-cut illustration of the 

distinction, most people would agree that design is specific and concrete, 

while architecture is universal and abstract. Design is forward-looking, 

aiming for the solution of a particular problem or challenge, while 

architecture, in some sense, can be described as retrospective, representing 

some kind of best practice for how to solve a particular class of problems. An 

architect searches for invariability, or timelessness as expressed by 

Christopher Alexander in one of his seminal books, discussing the essence of 

architecture in the context of buildings. 
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There is one timeless way of building. It is a thousand years old, 
and the same today as it has ever been. The great traditional 
buildings of the past, the villages and tents and temples in which 
man feels at home, have always been made by people who were 
very close to the center of this way. It is not possible to make 
great buildings, or great towns, beautiful places, places where 
you feel yourself, places where you feel alive, except by following 
this way. And, as you will see, this way will lead anyone who 
looks for it to buildings which are themselves as ancient in their 
form, as the trees and hills, and as our faces are (Alexander 
1979, p. 7). 

Although Alexander belongs to a different discipline, his reasoning captures 

a fundamental aspect of architecture that I will focus particular attention on 

in my attempt to distinguish between a product innovation regime and a 

digital innovation regime; the magnitude of the concept architecture 

becomes visible across generations of designs. While design work is directed 

towards a particular problem, defined by its time, architecture is a structure-

preserving mechanism, passing sound solutions on from design to design 

and generation to generation. In connecting historical achievements with 

future potentialities, architecture is a key instrument for path creation, 

helping firms to create competitive advantage over time. However, what 

introduces inertia in change may, at the same time, transform into ballast, 

preventing an organization to improve. Ideally, architectures are structure-

preserving and structure-enhancing (Alexander 2002) in the sense that they 

allow for innovation processes to take advantage of, yet not being obstructed 

by historical achievements. To some extent this is about the tricky balancing 

of defensive, retrospective forces and aggressive, forward-looking forces.  

We have now established a perspective where architecture is a key concept in 

the continuous temporal transformation of technology. In order to 

distinguish between the architectural design in product innovation and 

digital innovation respectively, we now need to elaborate the basic 

mechanisms for how technology evolves. What drives change? Let us, as a 

first step, make use of the generally accepted idea that both natural and 

artificial systems tend to evolve in response to changes in their context or 

changes in their underlying components, seeking better “fitness” (cf. Holland 

1992a; Holland 1996). Such fitness of a system is the degree to which the 

system and its context are "mutually acceptable" (Alexander 1964). 

According to Alexander this translates into an effort to achieve fitness 

between two entities: the system in itself and the context within which it 

exists. While the system is a solution to a problem, the context defines the 

problem.  
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In trying to achieve fitness with context, traditional engineering design 

would prescribe a methodology of constrained optimizations. On a general 

level, constrained optimization aims for “the highest level of product 

performance within some cost constraint or the lowest cost for a product 

meeting a minimum performance constraint” (Sanchez and Mahoney 1996, 

p. 65). A major problem following from this methodology is that it typically 

leads to highly integrated and tightly coupled designs. In turn, such 

monolithic designs require tight coordination of work forces, since changes 

in one component tend to trigger compensating changes on other 

interrelated components. Interdependencies in product designs simply entail 

isomorphic interdependencies in organizational structures (Andreasson and 

Henfridsson 2009; Baldwin and Clark 2000; Sosa et al. 2004). “Product 

designs composed of tightly coupled components will generally require 

development processes carried out in a tightly coupled organization 

structure coordinated by a managerial authority hierarchy” (Sanchez and 

Mahoney 1996, p. 65). Such designs incur high communication cost (Brooks 

1975; Langlois 2002), making an opposing force to change. It is simply very 

hard to launch new ideas when a wide range of people have to be involved in 

its implementation. Therefore, the tightly coupled, integral structures 

produced by constrained optimization design may perform well when 

context is relatively stable and solutions last over time. Yet, as I will 

demonstrate in deeper detail, they are inappropriate for environments 

characterized by significant change. 

However, before dealing with the intricate issue of change, let us elaborate a 

critical reflection on system design that can help us understand the nuances 

of coupling; sooner or later any design process will end up discussing the 

interplay between the whole and the parts. When changes in one component 

diffuses across a system and translates to unexpected effects in other 

components it is very difficult to understand the whole from its parts. This is 

at the heart of the concept of complexity, at least as interpreted by Herbert 

Simon: 

Roughly, by a complex system I mean one made up of a large 
number of parts that interact in a nonsimple way. In such 
systems, the whole is more than the sum of the parts, at least in 
the important pragmatic sense that, given the properties of the 
parts and the laws of their interaction, it is not a trivial matter 
to infer the properties of the whole (Simon 1962, p.468) 

Simon emphasizes that complexity is not an invariant aspect of technology. 

Rather, “how complex or simple a structure is depends critically upon the 

way in which we describe it” (Simon 1996, p. 215). Extending such reasoning, 

complexity can be reduced by finding new structural interpretations of how 

systems as a whole relate to the parts of a system. There are indeed many 
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perspectives on complexity and how to reduce complexity. However, most 

researchers agree that complexity is most efficiently managed by reducing 

the coupling between parts of a system. This is illustrated by concepts such 

as information hiding (Parnas 1972) or Brooks’ (1975, p. 78) commentary 

that programmers are “most effective if shielded from, rather than exposed 

to the details of construction of system parts other than his own”.  

Given a focus on architectural design and innovation, one aspect stands out 

as particularly salient; the autonomous innovation following from division of 

labor seems to outperform more cohesive approaches. Given that the overall 

properties of the product as a whole can be satisfied, decentralized processes 

“can have advantages in innovation to the extent that it involves the trying 

out of many alternate approaches simultaneously, leading to rapid trial-and-

error learning” (Langlois and Richard 1992, p. 301). A decomposable 

approach to design seems to release the creativity in people as they can focus 

on distinct problems without continuously being obstructed by system level 

constraints. 

Still, the main advantage of decomposable systems is not found in superior 

mechanisms for making abstractions in a given design process. Rather, we 

find its key strength in its ability to support technological change in the form 

of evolution. As demonstrated in his exemplary parable on the watchmakers 

Hora and Tempus, Simon (1962, p. 473) shows that “complex systems will 

evolve from simple systems much more rapidly if there are stable 

intermediate forms than if there are not”. Langlois (2002) provides a 

condensed, yet intuitive outline of the basic reasoning: 

In a nondecomposable system, the successful operation of any 
given part is likely to depend on the characteristics of many 
other parts throughout the system. So when such a system is 
missing parts (because it is not finished, for example, or because 
some of the parts are damaged), the whole ceases to function 
and the system becomes evolutionary shark bait. In a 
decomposable system, by contrast, the proper working of a 
given part will depend with high probability on the 
characteristics of other parts within its subassembly—but will 
depend with relatively lower probability on the characteristics 
of parts outside of that subassembly. As a result, a 
decomposable system may be able to limp along even if some 
subsystems are damaged or incomplete (Langlois 2002, p. 21). 

In its ultimate form, exercised by biological systems in nature, 

decomposability paves the way for a perspective on change which “assumes 

no teleological mechanism. The complex forms can arise from the simple 

ones by purely random processes” (Simon 1962, p. 471). In his ambitious 

work on the nature of technology Brian Arthur (2009) essentially adopts 



Chapter 2 

38 

 

such Simonian thinking when he argues that technology “bootstraps itself 

upwards from the few to the many and from the simple to the complex” (p. 

21). Therefore, one can say that “technology creates itself out of itself”. With 

this perspective systems are not designed, they emerge. 

This far I have tried to portray a view of system design and complexity that 

essentially is shared between product innovation and digital innovation 

regimes. Competitive advantage over time is rooted in the ability to 

domesticate technological change in path creating processes. Managing 

technological change is largely about mastering complexity in design 

processes, which at the end of the day enforce structural decomposability. 

Finally, such decomposability opens up for evolutionary, rather than 

teleological motors of innovation, radically increasing pace of change. 

Let us now put attention on a distinguishing aspect that translates into 

relatively different approaches to architectural design in product innovation 

and digital innovation. Although recognizing the intricate interplay between 

a system as a whole and the system in its parts, product developing firms 

tend to apply a reductionist perspective on complexity. Existing in a highly 

competitive environment where dominant designs make it largely impossible 

to question the role and meaning of a product, they turn their attention to 

the details. Making use of waterfall models (Boehm 1976; Royce 1970) these 

centralized organizations put things under a finer and finer microscope in 

order to make parts better or cheaper and then, eventually, put it together 

again, into a whole. As we shall see modularity is a standard strategy for such 

firms to handle complexity. It is an indispensable tool for making abstract 

designs but, above all, it allows for efficient reuse of critical assets in an 

evolutionary process of technological change. Properly applied modular 

architectures open up for continuous progression of product performance 

and cost, while at the same time reusing both components – “the part 

designs of a product, the fixtures and tools needed to make them, the circuit 

designs, and the programs burned into programmable chips or stored on 

disks” – and processes – “the equipment used to make components or to 

assemble components into products and the design of the associated 

production process and supply chains” (Robertson and Ulrich 1998, p. 20). 

In contrast to the reductionist perspective adopted by product developing 

firms, designers operating in a digital innovation regime increasingly often 

approach complexity by looking in the other direction. The key question is 

not how the whole is to be described through its parts. Rather, they ask: how 

things assemble themselves? How do new patterns emerge from existing 

elements? Finding themselves in environments where attention is achieved 

and maintained by continuous supply of novel functionality, these 

distributed networks of innovators have to create architectural solutions that 
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facilitate the materialization of new meanings. In contrast to a reductionist 

view this makes an open-ended process, where the configuration of patterns 

may never be finished. 

While modularity completely dominates product innovation literature on 

complex design, the significantly younger discipline of digital innovation is 

more fragmented. A wide range of researchers have tried to translate ideas 

from product innovation to fit a software context. Modular software design 

(Parnas 1972), component-based software engineering (Heineman and 

Councill 2001), and software product lines (Pohl et al. 2005) are prominent 

examples of such contributions. However, contemporary research 

increasingly downplays the usefulness of such direct translations. Digital 

technology seems to offer properties that do not allow for such morphing to 

work. As an example, pattern-oriented software design (Buschmann et al. 

2008; Gamma et al. 1995) move focus from components, modules, and 

processes to problems, functions, and ideas. Turning to Christopher 

Alexander and his ideas on pattern languages, this stream of research argues 

that the key challenge in software design is to reuse and refine sound ideas. 

Representing key ingredients of “living structure” a pattern language will act 

as a sifter in a sandbox as evolution gradually reinforces sound ideas in a 

series of “structure-preserving and structure-enhancing transformations” 

(Alexander 1999, p.79).  

As we shall see, the increasingly popular concept of generativity (Zittrain 

2006) is gaining momentum as a theoretical guide in the design of complex 

digital systems. On a general level, the term generativity describes a 

technology’s capacity to enable voluntaristic and spontaneous innovation 

driven by large, heterogeneous an essentially uncoordinated crowds 

(Remneland et al. 2011). Therefore, at the heart of generativity we find the 

ability to get quick turnaround on ideas. In other words, generativity allows 

for efficient reuse of ideas in an evolutionary process of technological 

change. Properly applied generativity increases the leverage, adaptability, 

ease of mastery, accessibility, and transferability of a product or service 

(Zittrain 2006). 

Let us now leave the general discussion on architecture behind and engage in 

a specific review of literature relating to product architecture and software 

architecture respectively. 

2.1.3.1 Product Architecture: Modularity and the Reuse of Assets 

Ever since the birth of mass production organizations have been forced to 

spend significant effort on production processes. Although we see many 

stances of mass production, a common denominator is found in the need to 

set up concurrent and autonomous operations. An assembly line is built on a 
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sequential organizational model, where tools, machines, and knowledge are 

specialized for a given task. This requires loosely coupled organization 

structures (Orton and Weick 1990; Weick 1976). 

Over the years many researchers have noticed that the structure of product 

developing organizations tend to match the structure of their products. This 

“fundamental isomorphism” of design structure and task structure (Baldwin 

and Clark 2000) suggests that decoupling between tasks at the process level 

is reflected as decoupling between components at the product level. This 

interplay between task structure and design structure certainly explains 

some of the strategic interest in product architecture. As underlined by 

Sanchez and Mahoney (1996, p. 64) a properly composed architecture may 

provide a form of “embedded coordination that greatly reduces the need for 

overt exercise of managerial authority to achieve coordination of develop-

ment processes, thereby making possible the concurrent and autonomous 

development of components by loosely coupled organization structures”. 

It can be argued that product developing firms originally engaged in product 

architecture to improve production processes, eventually translating to 

competitive pricing. Yet, contemporary research emphasizes its substantial 

role also at the level of product design. Seeing product architecture as “the 

scheme by which the function of a product is allocated to physical 

components” (Ulrich 1995, p. 419), it largely defines how a particular 

product can be changed and varied, not only how it is assembled. 

Today an overwhelming majority of product developing firms develop their 

products on the basis of modular architectures. There are voices reminding 

of integral solutions and their merits (Fixson and Park 2008; Schilling 

2000), but an inherent and successfully demonstrated capability to cope 

with change has largely rendered this discourse obsolete in the context of 

product development. The power of the concept is illustrated by its impact 

on a wide range of disciplines. It has had significant influence in fields such 

as organization studies (Orton and Weick 1990; Sturgeon 2002), 

management (Baldwin and Clark 2003; Ethiraj and Levinthal 2004; Sanchez 

and Mahoney 1996), innovation (Robertson and Langlois 1995; Ulrich 1995; 

Von Hippel 1990), and various forms of design research (Baldwin and Clark 

2000; Ulrich and Eppinger 2004). Although giving rise to such wide range of 

theoretical angles, it is grounded in two relatively simple observations, 

reflected in the concept of near decomposability (Simon 1962; Simon 2002). 

First, Simon establishes that systems “produced by successive assemblies of 

small numbers of components will emerge much more rapidly than systems 

that are assembled in one step by uniting large numbers of components” 

(Simon 2002, p. 598). Such systems form hierarchies in the sense that any 
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level of analysis will reveal a system of components where each of those 

components is, in turn, a system of finer components. This recursive 

decomposition can continue until we reach some point at which the 

components are "elementary particles" or until science constrains our 

decomposition (Simon 1962). At the heart of this reasoning we find the idea 

that stable intermediate forms assist bootstrapping processes, where simple 

structures are recursively combined over time to form increasingly complex 

ones (Arthur 2009). An off-the-shelf GPS receiver holds a remarkably 

complex interior. Yet, it can be used as an elementary building block in a 

navigation system, without actually paying attention to its hidden 

complexity. 

The second ingredient of near decomposability is that systems in which 

efficiency of design of each component is relatively independent of the 

designs of other components will increase their fitness much more rapidly 

than systems where components are interdependent. Therefore, nearly 

decomposable systems are manifested as “a hierarchy of components, such 

that, at any level of the hierarchy, the rates of interaction within components 

at that level are much higher than the rates of interaction between different 

components” (Simon 2002, p. 587). In its simplest form, the GPS receiver 

interface supplies position and time. That allows for satellite positioning 

technology to evolve relatively independent from contemporary applications. 

Similarly, applications development is unconstrained by GPS technology. 

The idea of near decomposability is truly universal and can be applied in 

order to understand phenomena ranging from biological systems to human 

problem solving. Consequently, the notion of component may refer to many 

different things. However, in a product innovation regime, discussing near 

decomposability in terms of modularity, the notion of component generally 

refers to the physical, tangible building blocks that together aggregate into a 

product. Therefore, when talking about modular structures, the architect 

normally refers to a hierarchy of such physical components. As a 

consequence, this hierarchy of parts becomes the main lens to understand 

complexity of products.  

Taking a step back, how does modular product architectures play out in the 

practice of a product innovation regime? In what sense does it allow 

organizations to develop competitive advantage in a product innovation 

regime? So far I have argued that product innovation unfolds from within 

organizations that exercise formal control modes to improve functionality 

and reduce cost of products subject to dominant designs. Reviewing 

organizing logic and market dynamics, we have seen that fit with context, 

making the primary force for change, is largely defined by the 

price/performance ratio. Product developing firms continuously improve 
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their products to keep up with technological progression and market 

expectations on improved functionality. At the same time the price of a 

product is a critical distinguishing factor when a dominant design makes the 

range of offers at a market relatively homogeneous. 

Let us then ask how organizations can change their products in order to 

improve price/performance ratios when markets are characterized by 

dominant designs. Turning to the literature, it is relatively straight-forward 

to claim that dominant designs enforces change in the details, while 

preserving structures of the system as a whole. As emphasized by several 

researchers, a dominant design is characterized by a set of core design 

concepts, corresponding to the major functions of a product (Clark 1985; 

Henderson and Clark 1990; Marples 1961). It also comes with a general idea 

of how these core design concepts are embodied in physical components and 

eventually integrated into a product (Clark 1985; Henderson and Clark 1990; 

Sahal 1985). “Once any dominant design is established, the initial set of 

components is refined and elaborated, and progress takes the shape of 

improvements in the components within the framework of a stable 

architecture” (Henderson and Clark 1990, p. 14). 

Hence, to stay competitive product developing organizations have to tune 

their architectural strategies towards the details. Structuring the parts of a 

system according to the principles of modularity allows them to focus their 

design attention on the internal properties of components. With this 

approach it is possible to feed markets with variety and change, while at the 

same time trying to preserve stable system solutions to conserve 

development and production resources for scale advantages (Robertson and 

Ulrich 1998). It makes little sense for an automaker to question the overall 

meaning, behavior, or structure of e.g. a navigation system. Instead, the fact 

that basic elements – map, routing, and guidance – as well as the interplay 

between these elements are defined by the dominant design allows for scale 

advantages in production. At the same time it is crucial to continuously 

improve fitness by a devotion to details. Response time in routing, level of 

details in maps, or precision in guidance instructions may be the 

distinguishing features directing the flow of customers from one brand to 

another. Such reasoning is at the heart of product platform literature (cf. 

Karlsson and Sköld 2007; Robertson and Ulrich 1998), arguing that a central 

challenge of product innovation is to, on the one hand, take advantage of the 

cost-saving potential in dominant designs and, on the other hand, 

differentiate the functional offer to end-users in order to escape the grip of 

price as the only discriminator between models and brands. Therefore, 

competitive advantage on markets characterized by dominant designs grows 

from the capability to continuously fine tune the fitness of a relatively stable 
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overall system solution by adapting its different parts (Abernathy and 

Utterback 1978; Clark 1985; Henderson and Clark 1990). Product innovation 

regimes feed reductionist perspectives on complexity, normally addressed by 

modular product architectures. 

Then, let us try to uncover yet another layer of details in order to understand 

the role of modularity in a product innovation regime. How do modular 

architectures actually promote variety and change? Given that we see an 

architecture as a structure-preserving and structure-enhancing mechanism, 

how does it allow for the reuse of historical achievements in benefit of future 

potentialities? Let us walk through, at least in some detail, how modularity 

delivers variety and change in tangible products by reusing (1) production 

assets and (2) existing components. As we shall see, these are critical aspects 

when firms ask themselves “what product architecture should be used to 

deliver the different products while sharing parts and production steps 

across the products” (Robertson and Ulrich 1998, p. 21).  

In order to achieve scale advantages in a product innovation regime 

production needs to be nearly algorithmic, with a well defined assembling 

process, enabling high-speed throughput (Chandler 1977). This push firms to 

deploy specialized capital, such as assembly lines, tooling, equipment, and 

various materials (Teece 1986). Such complementary assets make 

considerable investments for an organization, but with an absolute majority 

of fixed and marginal cost relating to production it pays off through lower 

unit cost in an economy of scale (Chandler 1990). 

In addition, these complementary assets make an appropriation regime, 

“that governs an innovator’s ability to capture the profits generated by an 

innovation” (Teece 1986, p. 287). When market competition requires 

significant investments in a wide range of complementary assets it is simply 

very hard for a newcomer to disrupt the barrier and translate a competing 

design into a competitive product. It is argued that this mechanism ranges 

beyond the stability of dominant designs and can help incumbent, product 

developing organization to appropriate the value also of radically new 

technology. At the heart of such reasoning we find the idea that “incumbent 

industry performance improves if the new technology can be commercialized 

through [existing] specialized complementary assets” (Rothaermel and Hill 

2005, p. 52). Consequently, such assets make a valuable, strategic 

instrument for most organizations in a product innovation regime. 

Preserving this value over time is a key challenge for most product 

developing organizations. 

On the one hand, modularity can be viewed as an abstract and “very general 

set of principles for managing complexity” (Langlois 2002, p. 19). However, 
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applied to product architecture it becomes highly concrete as it defines how a 

system can be separated and recombined (Schilling 2000). Properly 

implemented a modular architecture opens up for a palette of variants, still 

preserving the overall structure of the system and the interfaces between 

components. The extent to which a product can be viewed as modular is 

reflected in “the tightness of coupling between components and the degree to 

which the ‘rules’ of the system architecture enable (or prohibit) the mixing 

and matching of components” (Schilling 2000, p. 312). Properly exercised a 

modular architecture allows an organization to increases the value of 

complementary assets as products can be assembled at the same line, by the 

same people, using the same tools and the same basic components. This 

simply gives a manufacturer the opportunity to depreciate investments 

across significantly larger volumes, eventually leaving larger margins and 

higher profit. However, this leaves the manufacturer with an intricate 

architectural challenge, inevitably enforcing a perspective on modularity 

where the physical structures are in focus; a whole range of different 

products have to be decomposed and aggregated on the same basic premises, 

yet delivering variety. Modular architectures offer this, yet without exploding 

in complexity. The capability to encapsulate information and functionality in 

hierarchical structures of components, while serving simple external 

interfaces, is a critical aspect of modular product architectures since complex 

solutions are more difficult to assemble, require more expensive tools, and 

tend to be weaker in terms of quality. Even more important, increasing 

complexity may hamper product change over time. This is critical since the 

value of complementary assets is not only relying on the generic capability to 

support a range of products, but also on its resilience over time. The value of 

tools, materials, and processes decreases dramatically if they continuously 

have to be adjusted in order to align products with a changing market 

context. Modularity allows for a range of variants and product generations to 

share a temporally stable architecture. This offers “reduced uncertainty over 

product design [which in turn] provides an opportunity to amortize 

specialized long-lived investments” (Teece 1986, p. 288). Synthesizing our 

discussion so far, one can argue that with a modular strategy to product 

architecture organizations may reinforce and preserve the value of com-

plementary assets across specific product offers and generations of designs. 

Let us now focus our attention on the role of modularity in reusing 

components. Approaching this topic we need to make a slight detour, 

discussing design processes. As we know, a product innovation regime 

exercises linear models of product development. This prevailing model of 

innovation can be traced to a strong need to reduce ambiguity about the 

physical structure of the product (Godin 2006). Relying on formal control 

modes and strictly linear development processes organizations have to 
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change their locus, from functional design to physical design, at an early 

stage. By the time a design is released for production functional properties 

are inevitably frozen (Baldwin and Clark 2000). Clearly, the deployment of 

functional structure to physical structure is a critical moment, defining how 

a product can be changed both within the life cycle and across generations 

(Ulrich 1995). As a consequence, the interplay between functional structure 

and physical structure is highly visible in the architectural thinking in 

product innovation literature. One of the most cited definitions of product 

architecture is phrased by Karl Ulrich in a Research Policy paper from 1995. 

He defines product architecture as “the scheme by which the function of the 

product is allocated to physical components” (Ulrich 1995, p. 419). 

Elaborating this condensed statement, he offers a detailed discussion on how 

this overall definition translates into “the arrangement of functional 

elements”, “the mapping from functional elements to physical components”, 

and “the specification of the interfaces among interacting physical 

components” (p. 420). 

Ulrich’s definition of architecture is seemingly distant from the perspective I 

have outlined in the introduction of this subsection. After all, he identifies 

the architecture as a bridge between a functional domain and a physical 

domain, rather than an evolutionary bridge between generations of designs. 

However, let us recall that it is in the deployment of functional structure to 

physical structure that coupling appears, at least the kind of coupling that 

messes up the assembling of components into products. The product 

architecture “determines which functional elements of the product will be 

influenced by a change to a particular component, and which components 

must be changed to achieve a desired change to a functional element of the 

product” (Ulrich 1995, p. 426). Thereby, it defines evolutionary properties of 

a product. “A modular architecture increases the likelihood that a 

component will be commonly useful”. The ultimate modular architecture 

maps functional elements to components one-to-one, meaning that “each 

component implements one and only one function” (Ulrich 1995, p. 431). At 

a practical level, such one-to-one mappings make improvement of a 

particular functional property a lot more likely, since it does not requires 

different component suppliers to synchronize and align their efforts. 

Even more important in a context where functionality is frozen early in 

design processes, the product architecture defines “the degree to which a 

system's components can be separated and recombined” (Schilling 2000, p. 

312). Loosely coupled components are simply significantly easier to reuse 

and reconfiguration for new purposes. In fact, modularity exponentially 

increases the number of possible configurations achievable from a given set 

of inputs, which greatly increases the flexibility of a system (Arthur 2009; 
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Schilling 2000). This makes an almost priceless capability for product 

developing firms to moderate variation and change without redefining a 

system solution or, ultimately, even the components of the system. As we 

have discussed, coupling may favor functional performance in the short run, 

but complicates change and adaptation over time. To what extent it is 

desirable to reduce coupling by modularization is largely given by context. 

However, product innovation regimes normally face markets with 

substantial dynamics and harsh competition over price. In such an 

environment, decoupling translates into vital strategic flexibility, facilitating 

adaptation to context and, eventually, improving competitive advantage. 

Concluding this section, a product innovation regime translates the reuse of 

plants, production tools, processes, and components into competitive 

advantage. The architecture of products has proved to be of significant 

importance when building such capability. In general, product developing 

organizations architect their products according to the principles of 

modularity. The near decomposability of such architectures gives them 

significant flexibility to differentiate products over a range of variants and 

across generations of designs, yet commoditizing critical assets.  

2.1.3.2 Software Architecture: Generative Designs and the Reuse of Ideas 

Software engineering is a young discipline. So is the notion of architecture in 

the context of software. A historical expose in a 2006 special issue of IEEE 

Software (Kruchten et al. 2006) traced the concept of software architecture 

back to an early conference on software engineering techniques in Rome 

1969 (Buxton and Randell 1970). The conference hosted a whole range of 

researchers, such as Tony Hoare, Edsger Dijkstra, Alan Perlis, Per Brinch 

Hansen, Friedrich Bauer, and Niklaus Wirth, later making the backbone of 

the upcoming software engineering discipline. In relation to the concept of 

software architecture Ian P. Sharp made a statement which diverted from 

established thinking and paved the way for deeper theoretical contributions 

in this area. Arguing that “architecture is different from engineering”, he 

wanted to point out that an architecture is not the same as a design and the 

act of architecting is not the same thing as designing. Sharp wanted to put 

attention to the consequences of seeing specifications of software purely as 

functional specifications.  

We only talk about what it is we want the program to do. It is 
my belief that anybody who is responsible for the 
implementation of a piece of software must specify more than 
this. He must specify the design, the form; and within that 
framework programmers or engineers must create something. 
No engineer or programmer, no programming tools, are going 
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to help us, or help the software business, to make up for a lousy 
design (Buxton and Randell 1970, p. 9). 

Although being ahead of his time, Sharp certainly helped seeding the idea 

that architecture is relevant to the software industry and something that may 

support the reinforcement of sound and coherent software systems over 

time. Yet, over the coming two decades “the word ‘architecture’ was used 

mostly in the sense of system architecture (meaning a computer system’s 

physical structure) or sometimes in the narrower sense of a given family of 

computers’ instruction set” (Kruchten et al. 2006, p. 23).  

However, shifting into the 90th, the concept of software architecture 

attracted enough attention to form a distinct discipline. In 1991 Royce and 

Royce (1991) published a seminal paper positioning software architecture 

explicitly between technology and process. This is also the period when it 

became increasingly accepted to claim that this subtle concept could mean 

different things, depending on the observer. In the “4+1 view model” 

Philippe Kruchten (1995, p. 1) proposes a new way of “describing the 

architecture of software-intensive systems, based on the use of multiple, con-

current views”. He argues that “the use of multiple views allows to address 

separately the concerns of the various ‘stakeholders’ of the architecture: end-

user, developers, systems engineers, project managers, etc., and to handle 

separately the functional and non functional requirements”. 

I consider this a critical period in the history of software architecture. This is 

when a wider audience accepts the idea that software architecture plays out 

at many different levels, beyond pure technology. It is possible to see it as 

“the structure or structures of a system, which comprise elements, their 

externally visible properties, and the relationships among them” (Clements 

et al. 2003, p. 471), yet discuss inherently different perspectives. Studying a 

system from an end-user perspective, ‘elements’ and ‘structure’ may refer to 

functional building blocks. For a programmer the architecture may be the 

guide to sound real-time behavior and the hardware designers is primarily 

interested in the deployment of code to physical components. However, the 

key to sound and competitive products is found in the capability to combine 

different perspectives.  

In modern literature on software architecture we see several different 

branches. I would argue that, on a general level, we can tell them apart by 

the way they stress different architectural views. Some schools, in particular 

the early ones, tend to approach architecture primarily from the perspective 

of design processes and production of software systems. They are clearly 

inspired by the engineering techniques that successfully improved flexibility 

and efficiency in product development. Therefore, they emphasize structures 

with impact on the realization of software systems, rather than on functional 
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design. Modular software design (MSD) (Parnas 1972; Parnas et al. 1985), as 

an example, offers a design technique where information hiding is reinforced 

through a hierarchically structured code base, much similar to how 

modularity is applied in product development. Another branch of software 

engineering, highly intertwined with Parnas’ ideas on modular design, is 

often labeled component-based software engineering (CBSE) (Crnkovic 

2001; Heineman and Councill 2001). As for modular design, proponents of 

CBSE underline the separation of concerns in a software system. Software 

components are seen as autonomous, independent elements, defined by 

their interfaces. The main idea is that software should be componentized – 

that is built from prefabricated components – much similar to the fields of 

electronics or mechanics. Further, software product lines (SPL) (Clements 

and Northrop 2001; Pohl et al. 2005) is a contemporary movement also 

inspired by manufacturing industries, where software systems are created 

from a shared set of software assets using common methods, tools, and 

techniques for production. On a general level, SPL takes the concept of mass 

customization (Pine and Davis 1999) to the domain of software. 

As illustrated, SPL, CBSE, and MSD approach architecture from the 

perspective of software design. Investments in architecture pay off through 

efficient work processes, flexible software systems, and reusable code bases. 

However, with the emergence of object-oriented programming (OOP) and 

object-oriented analysis (OOA) (Booch et al. 1991; Mathiassen et al. 2000) 

we see a gradual shift in architectural thinking across the software 

engineering discipline. Proponents of OOP/OOA stress the need to model 

real-world phenomena. They argue that an artifact design has to emerge in 

coherence with an improved understanding of context. They distance 

themselves from a practice where context is squeezed into specifications at 

an early stage, after which the whole attention is focused on the design of an 

artifact. Instead, context and system has to be modeled together. This put 

what is today widely recognized as the logical view more in center of 

attention. In contrast to CBSE, OOP/OOA methodology seeks to create the 

“verbs” and “nouns”, readable to humans, rather than structures of reusable 

assemblages of software. This challenges the taken for granted distinction 

between system and context applied in traditional product development. To 

some extent, OOP/OOA includes the context in the design process, rather 

than building on a static, pre-fabricated stance of it.  

With architecture increasingly associated with the functional structures of 

software in context, the concept was gradually loaded with a new meaning. 

Over the last two decades service-oriented computing (Allen 2006; 

Papazoglou and Georgakopoulos 2003), pattern-oriented software 

architecture (Buschmann et al. 2008; Gamma et al. 1995), and other 
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theoretical perspectives have reinforced the idea that architecture is not just 

a set of tools for the structural transformation of the software system as an 

artifact, but a strategic tool guiding the gradual transformation of 

functionality.  

Service-oriented computing (SOC) “uses services to support the development 

of rapid, low-cost, interoperable, evolvable, and massively distributed 

applications. Services are autonomous, platform-independent entities that 

can be described, published, discovered, and loosely coupled in novel ways” 

(Papazoglou et al. 2007, p. 38). Obviously, SOC does not approach software 

or software systems as something that is up-front defined. Rather, services 

are software functions that are reusable in new configurations, and for new 

purposes. A Service-oriented architecture (SOA) is a set of flexible design 

principles used for designers to navigate in a volatile and changing 

environment. Therefore, in SOC, a software system is something that 

emerges over time.  

Pattern-oriented software design (POSD) (Buschmann et al. 2008; Gamma 

et al. 1995) emphasizes similar values as SOC, although it does not to the 

same extent engage in the realization of services or business processes. 

Instead, this branch stresses that patterns “document existing best practices 

built on tried and tested design experience. Patterns are not invented or 

created artificially just to be patterns” (Buschmann et al. 2008, p. 8). Rather, 

they “distill and provide a means to reuse the design knowledge gained by 

experienced practitioners,” so that developers familiar with an adequate set 

of patterns “can apply them immediately to design problems without having 

to rediscover them” (Gamma et al. 1995, p. 1).  

Most people argue that the concept of patterns, as applied in software 

engineering, can be traced back to the work of Christopher Alexander 

(Alexander 1964; Alexander 1979; Alexander 2002; Alexander et al. 1977). To 

Alexander a pattern “describes a problem which occurs over and over again 

in our environment […] and then describes the core of the solution to that 

problem, in such a way that you can use this solution a million times over, 

without ever doing it the same way twice” (Alexander et al. 1977, p. x). 

However, Alexander did not stay with the pattern concept in isolation, but 

argued that the potential in patterns is uncovered when studying how they 

relate to each other. Much like the words of a language, patterns make sense 

together through vocabulary, syntax and grammar. The vocabulary – a set of 

patterns – is a collection of solutions to well defined problems. The syntax 

show how a specific pattern fit with other patterns in a larger design. Finally, 

the grammar describes in what way the pattern solves a problem.  



Chapter 2 

50 

 

Alexander developed his ideas around pattern languages from observations 

of “certain generative schemes” in the building of houses that exist in 

traditional cultures. Trying to make sense of his work as an architect in the 

eyes of software engineers, Alexander explains that: 

These generative schemes are sets of instructions which, carried 
out sequentially, will allow a person or a group of people to 
create a coherent artifact, beautifully and simply. The number 
of steps vary: there may be as few as half a dozen steps, or as 
many as 20 or 50.When the generative scheme is carried out, 
the results are always different, because the generative scheme 
always generates structure that starts with the existing context, 
and creates things which relate directly and specifically to that 
context. Thus the beautiful organic variety which was 
commonplace in traditional society could exist because these 
generative schemes were used by thousands of different people, 
and allowed people to create houses, or rooms, or windows, 
unique to their circumstances (Alexander 1999, p. 81). 

Obviously, Alexander does not seek structures that make software systems 

(or in his case buildings) homogeneous and uniform. On the contrary, he 

seeks the structures that allow for new solutions to emerge in harmony with 

context, yet taking historical wisdom and best practice into account. 

Representing key ingredients of “living structure” a pattern language will act 

as a sifter in a sandbox as evolution gradually reinforces sound ideas in a 

series of “structure-preserving and structure-enhancing transformations” 

(Alexander 1999, p.79).  

This detour into the details of pattern languages is relevant to illustrate a 

slow and gradual, yet clear shift of perspective in the discipline of software 

architecture over the last two decades. On the one hand, the different 

perspectives I have reviewed agree that decoupling is a key property in 

handling complexity in software systems. On the other hand, the locus of 

attention seems to shift from the complexity of artifacts to the complexity of 

problems. With a growing focus on problems, software architects 

increasingly recognize that in order “to study and analyse a problem you 

must focus on studying and analysing the problem world in some depth, and 

in your investigations you must be willing to travel some distance away from 

the computer” (Jackson 2000, p. 9). Distancing themselves from the 

computer, many designers and architects see in software what Alexander 

saw in buildings; good design is an emergent phenomena. Context is 

certainly not static, neither are the problems defined by context. Therefore, it 

is increasingly emphasized that architectural design is less about the 

identification of generic structures of software systems per se, but rather a 

matter of identifying, describing, and using the generative schemes helping 

us to create what Alexander refers to as “living structure”, valid across 
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contextual barriers. As our ideas evolve, an architecture has to allow for 

designs to be re-factored and code to be reshaped and transformed. So 

“rather than looking for complex design tools with the hope of creating the 

ultimate design, we should continue to seek out practices, techniques, and 

tools that support a sustainable software design process and adaptable, 

habitable designs” (Wirfs-Brock 2009, p. 7).  

Finally, seeing design as an emergent process is largely incompatible with a 

reductionist perspective on complexity. In contrast to a traditional product 

development setting, software architects increasingly find themselves not 

knowing exactly what they are architecting for. A software platform, such as 

Android, certainly offers a whole range of generic elements, yet we have no 

clear idea of how these elements will be used and combined to form the 

applications of tomorrow. Therefore, the question of how the whole is to be 

described through its parts may be hard to answer, or ultimately 

meaningless, for a software architect. Rather, they ask how things assemble 

themselves. How do new patterns emerge from existing elements? Software 

architecture seems to increasingly adopt a bottoms-up approach to 

complexity, as it is described in complexity theory (Anderson 1999; Holland 

1992a; Holland 1996), rather than the mechanistic, reductionist perspective 

taken for granted in product development. 

Then, how does this perspective on software architecture play out in 

contemporary practice? How does an emergence-oriented stance, seeing 

software as a complex adaptive system (Holland 1992b), resonate with the 

many other aspects we have discussed of a digital innovation regime? So far, 

I have argued that digital innovations evolve in networks, centered on a 

shared platform that makes a tool to orchestrate a variety of heterogeneous 

knowledge in the harsh competition over attention. Such networks – or 

ecosystems – are generally not up-front assembled to support a specific 

purpose or a given product. Rather they emerge in response to opportunities 

offered by a general platform (Katz and Shapiro 1994; Selander et al. 2010; 

Tiwana et al. 2010). Referring to the work of Zittrain (2006; 2008), we can 

argue that a platform able to trigger “voluntaristic and spontaneous 

innovation” in “large, heterogeneous and uncoordinated crowds of people” 

(Remneland et al. 2011, p. 210) holds generative capacity. Obviously, such 

generative capacity is a phenomenon playing out in the interplay between 

technology and social structures. Still, there has to be some inherent 

properties of the technology enabling generative practices. Can we identify 

these properties? How does the shift in philosophy among software 

architects favor the emergence of generative technology? 

Approaching these questions, let us first note that digital technology is 

inherently intertwined with the stored-program concept. In product 
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innovation the physical artifact – the product – mediates value and 

guarantees revenue for the innovator. In contrast, a digital innovation 

regime feeds functionality which is not inscribed in products, but carried by 

software, decoupled from the physical artifact. This fundamental separation 

of hardware and software derives from the stored-program concept, 

manifested as a processing unit, executing digitally encoded instructions, 

and a storage unit holding both instructions and data. The programmability 

following from such von Neumann architectures (Burks et al. 1963; 

Goldstine and Von Neumann 1963) or Turing machines (Turing 1937) allows 

for technological progression to occur without entering a new loop of artifact 

design and production. Essentially, digital technology allows for new ideas to 

materialize without marginal cost. This replicability dramatically reduces the 

role of price in technological change. Progression is not constrained by a 

need to cover the cost of plants, production tools, and supply chains across 

product variants and generations. Reuse is not motivated by depreciation of 

economic investments, at least not to the same extent as in traditional 

product innovation. 

Still, reuse is a central aspect in digital innovation. It is just not about the 

reuse of material things, such as tools or physical components. If we listen to 

the proponents of pattern-oriented design it is not even about the reuse of 

software components or code, it is about the reuse of ideas. The shared 

platforms, making a center of gravity in successful innovation ecosystems, 

represent a pattern language. This pattern language offers both a way to 

identify the core design problems of a particular application domain and 

replicable rules and building blocks for their solutions (Steenson 2009). We 

can see these shared platforms as a common framework for collaboration 

and a set of axiomatic resources to be used in innovation. Obviously, the 

platform is a manifestation of reuse. It offers a whole range of reusable 

resources that make life easier for software designers. Yet, it can be argued 

that its main advantage is not found in the capability to facilitate a given 

work process by offering precompiled bodies of code, but in its capability to 

shape applications – potentially a whole domain of applications – over time. 

Following Alexander (1999), such platforms constitutes structure-preserving 

and structure-enhancing elements, shaping coherent and sound, but 

different designs over time. On the one hand, it facilitates unbounded 

innovation and technological progression. On the other, it embodies an 

innovation regime and may constrain and hamper change. A “thin” and too 

general platform may be unable to hold an ecosystem together as it offers 

minor support in innovation. A “thick” and too specific platform, on the 

other hand, may prevent designers to realize ideas as it enforces predefined, 

standard solutions to solve known problems.  
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Although Christopher Alexander has not explicitly foregrounded the notion 

of generativity per se, I think it is rather straight-forward to say that it is a 

central concept in his work. I would even argue that his core message to 

software engineering is that the creation of generative technology is one of 

the main challenges for the discipline in general and for software 

architecture in particular (Alexander 1999). Turning to recent writings on 

generativity (Remneland et al. 2011; Zittrain 2006; Zittrain 2008), a 

software platforms should be architected with five principle factors in mind; 

capacity for leverage, adaptability, ease of mastery, accessibility, and 

transferability.  

Capacity to leverage denotes the degree to which a technology enables 

“valuable accomplishments that otherwise would be either impossible or not 

worth the effort to achieve” (Zittrain 2006, p. 1981). The more effort a 

software platform saves, the more generative it is. Adaptability refers to “the 

breadth of a technology’s use without change and the readiness with which it 

might be modified to broaden its range of uses” (p. 1981). A software 

platform allowing for hundreds of different applications to emerge is simply 

more generative than a platform tailored to the needs of a particular branch. 

Further, ease of mastery “reflects how easy it is for broad audiences both to 

adopt and to adapt it” (p. 1981-1982). Essentially, it is a measure of the 

magnitude of skills necessary for a designer when making use of a 

technology’s leverage capacity. From this perspective a generative software 

platform should offer low cognitive barriers of entrance for designers, while 

at the same time being malleable in the sense that it does not prescribe a 

specific use. Accessibility of a technology is a measure of how “readily people 

can come to use and control a technology” (Zittrain 2006, p. 1982). Software 

platform without economic barriers of entrance tend to be more generative 

than those requiring significant up-front investments. Similarly, a limited 

number of legal barriers tend to open a platform for a wider audience of 

potential users. Finally, the level of transferability “indicates how easily and 

accessible changes and updates in the technology are distributed among its 

users” (Remneland et al. 2011, p. 210). As an illustration of this dimension, it 

is suggested that an open source platform may be more generative than a 

proprietary correspondence, simply since “contributions are open for a wide 

community to modify and change”. 

For product developing organizations it is crucial to design products so that 

it is possible to reuse plants, production tools, processes, and organization 

structures to meet future challenges. In general, they architect their products 

according to the principles of modularity so that these massive investments 

can be covered by a range of variants and across generations of designs. As a 

contrast, a digital innovation regime increasingly recognizes ideas, solutions, 
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patterns, and functions as key elements for reuse in a combinatorial 

evolution of technology. Competitive advantage grows from the capability to 

explore and exploit these elements internally as well as externally 

(Chesbrough 2006). In a digital innovation regime this pushes organizations 

to architect generative software systems, allowing essentially unrelated and 

unaccredited audiences to build and distribute code and content (Zittrain 

2006). 

2.2 Research Challenges in Digital Product Innovation 

Innovation is about change. More precisely, the technological change we 

associate with innovation arises by combination of existing technologies. We 

can view an innovation regime as the ground rules of this process. It defines 

how technology over time “bootstraps itself upwards from the few to the 

many and from the simple to the complex” (Arthur 2009, p. 21). As we have 

seen, the literature offers distinctly different perspectives on product 

innovation and digital innovation. As illustrated in Table 1, a digital 

innovation regime emphasizes some elements, structures, and logics, while 

product innovation emphasizes other. As digital technology is increasingly 

integrated in tangible products we can expect these differences to translate 

into tensions, making strong forces in the change of established innovation 

practices. 

Table 1. Salient dimensions of product innovation and digital innovation. 

 Product Innovation Digital Innovation 
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Linear processes Non-linear processes 

Behavioral control Output control 

Vertical industries Horizontal industries 

Teleology Evolution 

Flexibility Agility 

Firm-centricity Network-centricity 
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Direct sales Two-sided markets 

Competition over price Competition over attention 

Marginal cost Fixed cost 

Economy of scale “a mass of niches” 

Dominant Designs Shared Platforms 
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 Physical structures Functional structures 

Complexity of artifacts Complexity of problems 

Reuse of assets Reuse of ideas 

Hierarchy Network 

Change at the level of details Change at the level of specifics 

Reductionism Emergence 

Modular designs Generative designs 

Early binding Late binding 
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Do we see these tensions? Can we even argue that digital technology is 

widely integrated in tangible products? As an illustration of the increasing 

importance of digital technology in product development, the software 

content of a modern car now exceeds 10 million lines of code (Broy et al. 

2007). Further, as much as 80% of all car innovations can be traced to digital 

technology (Hardung et al. 2004; Leen and Heffernan 2002). No doubt, the 

appropriation of new capabilities (King and Lyytinen 2005) following from 

digital innovation has improved the functionality of cars significantly in 

many application areas, ranging from climate control and infotainment to 

engine, braking, and transmission systems. 

Still, the momentum we see in digitization of complex manufactured 

products seems to be powered by arguments from a product innovation 

regime. The miniaturization of hardware, increasingly powerful 

microprocessors, inexpensive and reliable memory, broadband 

communication, and efficient power management simply offers extra-

ordinary opportunities to improve complex manufactured products (Yoo 

2010; Yoo et al. 2010a). Searching for industry-related evidence, literature 

offers a variety of explanations to the ongoing digitization of manufactured 

products. 

A recurring argument is that digital technology “is an important enabler of 

new and increasingly complex functions. Using software and networking it is 

today possible to create new functionality (italics added), such as an [in-car] 

anti-skid system, that was considered unfeasible, both with respect to cost 

and functionality, some ten years ago” (Axelsson et al. 2004). Further, it 

offers new approaches to systems integration, moving complexity from a 

physical domain to the logical domain of software elements, interconnected 

over digital networks (Eklund et al. 2005; Racu et al. 2007). Such networks 

allow manufacturers to “replace the numerous cables and harnesses and 

thereby reduce the number of connection points, cost and weight” (Axelsson 

et al. 2004). It is also stressed as a new opportunity to handle variability. 

While such “variability has typically been addressed on a case-by-case basis 

in late development phases” digital infrastructures now allow manufacturers 

to adopt a more “systematic approach to the ever-increasing number of 

variants” (Thiel and Hein 2002, p. 66). Furthermore, digitization of products 

and processes has opened up for the adoption of model-based design 

methods, making “a more rigorous approach to system development 

compared to the current state of practice” (Cuenot et al. 2007).  

Indeed, product developing organizations change in the wakes of 

digitalization. Given the documented impact on functionality, systems 

integration, variability, design methodology, etc, it is probably an 
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understatement to say that these new technologies changes innovation 

practices significantly. However, change largely seems to align with the path 

prescribed by a product innovation regime. We see little change in 

organizing logic and markets seem to remain relatively homogeneous, 

centered on a few dominant designs. In short, the tensions of Table 1 do not 

fully play out in practices. As illustrated well by today’s most salient 

industry-wide software initiative in the automotive industry – the 

AUTomotive Open System Architecture (AUTOSAR) – the ongoing 

domestication of digital technology is essentially directed towards the 

number one challenge of a product innovation regime; the balancing 

between commoditization and diversification.  

Reductions of hardware costs as well as implementations of new 
innovative functions are the main drivers of today’s automotive 
electronics. Indeed more and more resources are spent on 
adapting existing solutions to different environments. At the 
same time, due to the increasing number of networked 
components, a level of complexity has been reached which is 
difficult to handle using traditional development processes. […] 
To achieve this, AUTOSAR defines a methodology that supports 
a distributed, function-driven development process and 
standardizes the software-architecture for each ECU in such a 
system (Fennel et al. 2006). 

Even though we can find digital technology essentially wherever we look in 

product development, the industry seems to argue that tangible, complex 

products are fundamentally different from IT. In a car context, “any software 

architecture must first recognize the automobile industry’s myriad unique 

pressure and ad hoc design practices” (Simonds 2003, p. 8). Therefore, ”one 

should be very careful to uncritically apply technical solutions from one 

industry in another”, even when they are closely related (Fröberg et al. 

2005). The evidence reported in literature suggests that these organizations 

approach digital technology with an ambition to shoehorn it into existing 

models for innovation. Rather than seeing the generative aspects of digital 

technology, it is made a tool to reinforce a traditional product innovation 

regime. It simply seems as if they are using digital technology to solve 

problems associated with former generations of technology, not as an 

opportunity to identify new paths of innovation, exploiting novel angles on 

product development practices, organizational configurations, or business 

models. 

Clearly, product developing industries need to develop new capabilities to 

release the potential of digital technology (cf. Henfridsson et al. 2009a; 

Jonsson 2010). Although mainstream innovation follows a well known trail, 
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we see genuinely new initiatives, such as the GENIVI alliance5, and launches 

of new concepts, such as Ford Sync, BMW ConnectedDrive, Saab IQon, and 

Fiat Mio. It can be argued that these initiatives break with the logic of 

established product innovation practices and are framed to benefit from the 

generative capabilities of IT. Essentially, the literature is silent on this 

ongoing adaptation of product innovation practices. At least, we do not see a 

scholarly discussion on how to combine product innovation and digital 

innovation, allowing software to be increasingly disconnected from 

hardware, while at the same time recognizing that complexity keeps playing 

out across both hardware and software.  

Motivated by the upcoming initiatives in industrial practice and the apparent 

gap in literature, I embark on a study of how product developing firms build 

new innovation practices, combining the logics of product innovation and 

digital innovation. In seeking a better understanding of how digital 

technology shapes new innovation practices in product developing 

organizations I focus my attention on a salient phenomenon, present all 

throughout my distinction of product innovation and digital innovation; 

software separates the meaning and functional behavior of a product from 

the product in itself. Up until recently this basic property of IT has been 

exploited at a technical level to leverage functional improvements, and 

efficient design practices, but largely ignored outside R&D departments. To 

benefit more widely from the decoupling of functionality and hardware 

organizations have to develop new ground rules for how to moderate 

technological change. Therefore, the main focus of this thesis is to study how 

the two innovation regimes portrayed in this thesis are conceptualized and 

combined in architectural designs and architectural thinking. The research 

question is: how do product developing firms architect digitized products to 

leverage the generative capability of IT? 

This section has contrasted a product innovation regime and a digital 

innovation regime. Such a portrait is not unambiguous and can be done from 

many different perspectives. My compilation is done to illustrate the 

challenges a product innovation regime faces when traditionally non-digital 

products are increasingly digitized. However, it is also done to uncover a gap 

in the literature, justifying this thesis. Next section explicates the theoretical 

lenses used when approaching the empirical context. First, I outline a 

perspective on digital materiality. I have no ambition to make a generally 

applicable contribution to this extensive topic. Rather, this seeming detour is 

motivated by a need to clarify some basic differences between digital and 

                                                             

5 http://www.genivi.org 
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analog technology. This discussion is then applied in the development of two 

distinct architectural frames, corresponding to the two innovation regimes. 
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3 Theoretical Framework 

Product innovation and digital innovation represent different modes of 

innovation. They bring forward different organizing logic, feed different 

market dynamics, and cultivate different approaches to architectural design. 

The notion of regime underlines that these different modes of innovation are 

shaped by a whole range of different actors – human and material – together 

forming a web of forces, pulling in different directions. An innovation regime 

is constituted by a reasonably stable state – equilibrium – where the 

different forces play in concert.  

By viewing an innovation regime as a particular form of interplay between 

humans and technology I align with a central discourse in the information 

systems discipline; the continuous debate on the relationship between 

information technology and organizations. As framed by Leonardi and 

Barley (2008), technology is shaped by negotiations (Constantinides and 

Barrett 2006; Howcroft and Wilson 2003; Orlikowski 1992), human agency 

(Boudreau and Robey 2005; Poole and DeSanctis 2004; Vaast and Walsham 

2005), and personal interest (Kling 1992; Markus and Benjamin 1996; Scott 

and Wagner 2003). At the same time, it is widely recognized among 

researchers that organizations emerge in an interaction between people and 

machines (Mohr 1971; Thompson and Bates 1957), social and technical 

subsystems (Barley 1990; Scott et al. 1998), or social and material practices 

(Orlikowski 2002; Schatzki 2005). Essentially, information systems 

researchers agree that “information technology and organizations both arise 

at the intersection of social and material phenomena” (Leonardi and Barley 
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2008, p. 160). Still, we see a wide range of different perspectives on the 

epistemological and ontological nature of the relationship between the social 

and the material. These perspectives range from techno-centric determinism 

to human-centric relativism. The former extreme sees human action largely 

as a response to technological change, while the latter emphasizes that 

humans have free will and shape their environments to achieve particular 

goals. 

Although truly fascinated by the different facets of this discourse, my current 

engagement is motivated by a rather precise observation; as tangible 

products are increasingly digitalized, the relative stability of traditional 

product innovation regimes is disrupted. Software, digital networks, 

integration with external digital infrastructure, etc inject new opportunities 

in innovation. At the same time, it challenges established processes, 

structures, and logics, which introduces new tensions and, eventually, seeds 

new paths of change in product innovation. 

I will not engage in a deeper discussion on different socio-material 

perspectives and their respective benefits. However, addressing the research 

question I want to make two statements, positioning my research in the 

continuum between hardcore determinists and extreme relativists. First, I 

see digital technology as inherently different from the non-digital technology 

of tangible products. It introduces material properties allowing people to do 

what they already do in novel ways, but also to do things they could not do 

before. Thereby, I distance myself towards the kind of research arguing that 

technology holds a subordinate position in organizational change. By 

illustrating tensions between somewhat idealized innovation regimes in 

product development and IT settings I seek a demonstration of how digital 

technology, in itself, constitutes a powerful force in shaping new practices. 

At the same time, I reject the idea that a new technology superimposes an 

inevitable path of change. Rather, an innovation regime is formed over time 

by an intricate set of contradictory forces, gradually mangling out new 

practices. This mangling is far from deterministic and can be seen as a 

threesome dance of agency (Svahn et al. 2009) where the affordances of a 

new technology are subjected to human agents, experiencing resistance from 

established socio-technical structures. This model underlines that 

technology is not a progressive force per se, but can make powerful 

resistance to change when embedded in organizational structures, routines, 

and practices. Consequently, we will not see automotive manufacturers and 

other industrial actors translate from orthodox product innovation to digital 

innovation, as we know it from software settings, as they assimilate digital 

technology. Their unique path will emerge over time in reasonable concert 

with existing practices.  
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In summary, I advocate a perspective recognizing the transformative power 

of technology, while at the same time not resorting to determinism. This 

makes a realist perspective in that it recognizes that technology exists 

independently from observers. At the same time, it recognizes that our 

knowledge about the world is socially constructed. In addressing the 

research question, this critical realist view makes a compass directing my 

attention to material agency and affordances, but at the same time reminds 

me of the need to understand and conceptualize human reasoning exercised 

when people try to make sense of digital technology in an essentially non-

digital setting. Trying to be loyal to this perspective, I have compiled a 

theoretical framework in three steps, explicating (1) how digital technology 

subjects new opportunities, (2) implications on established innovation 

practices as these opportunities are exercised, and (3) a perspective on how 

to conceptualized digital products in order to bridge the gap between 

product innovation and digital innovation. 

First, I develop a perspective on materiality and material agency, grounded 

in the concept of affordances. This perspective emphasizes the 

performativity of a material. In doing so it turns our attention from physical 

characteristics, such as weight, plasticity, and hardness, to qualities of an 

object that allows an individual or organization to perform an action. It is a 

general lens, widely applicable in innovation, yet seeing materiality through 

the lens of affordances is particularly rewarding in context of digital 

innovation. Such innovation environments largely play out in a virtual world 

of representations, where physical characteristics are pointless. Without 

shifting focus, from physical properties to subjected possibilities, the notion 

of materiality is increasingly marginalized in context of digital technology. 

The concept of affordances is simply a way to give material agency a concrete 

face in digital innovation. 

Second, I outline a model for understanding how novel affordances 

associated with digital technology transform product innovation. The model 

is centered on two key barriers that significantly contributes to the character 

of traditional product innovation, but which are largely not present in digital 

innovation. Essentially, the dismantling of these two barriers can be traced 

to two specific digital affordances; programmability and replicability. The 

programmability of digital products largely eliminates the rationale behind 

early binding of functionality to physical artifacts, effectively destroying the 

taken-for-granted barrier between functional design and physical design. 

The replicability coming with digital technology, in turn, effectively destroys 

the barrier between design and production as software essentially is a 

manifestation of both.  
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Third, I introduce the concept of architectural frames. This concept makes a 

tool for understanding how designers approach complexity as product 

innovation is increasingly digitalized. The theoretical model is manifested as 

two idealized representations of a complex product’s architecture. The 

hierarchy-of-parts frame is centered on the physical structure of 

components and emphasizes decomposition with subsequent aggregation as 

the core principle for managing complexity. It largely reflects the thinking of 

Herbert Simon, or at least how his thinking is interpreted in the product 

innovation domain. The network-of-patterns frame is centered on the 

structure of problems and solutions, rather than the structure of artifacts. It 

emphasizes generalization with subsequent specialization as a 

complementary approach to complexity. This frame is derived from the work 

of Christopher Alexander and his forward-looking, emergent, and open-

ended approach to design and architecture. The architectural frames model 

contributes at several layers. It (1) helps us understand the complexity of 

architecting digitized products in general. More specifically, it makes an 

instrument I will apply in my empirical investigation to (2) analyze how the 

introduction of digital technology makes impact on architectural design in 

product developing organizations. It helps me explicating how the core ideas 

of product innovation regimes and digital innovation regimes are 

represented, combined, and realized in the architecture of digital products. 

3.1 Digital Affordances 

Material agency is an accepted concept in many scientific disciplines, but it is 

particularly well discussed in the field of information systems (IS). 

Generally, the idea of assigning agency to non-human elements is rooted in 

the observation that technological change emerges from the interplay 

between artifacts and people. Steel, glass, or plastics have distinct material 

properties coloring artistic work and innovation. There are apparent reasons 

behind their respective use in car chassis, windows, and bags. In fact, the 

material properties of steel, glass, or plastics define how they can be used, 

making a particular force of change in the complex interplay between people 

and organizations. As pointed out by Paul Leonardi (2010) “it sounds rather 

odd to say that digital artifacts – like software – have material properties 

because people generally think of materials or materiality as physical 

substances such as wood, steel, and stone”. Still, that is exactly what 

researchers do when they increasingly talk about the materiality of digital 

artifacts, thereby giving the concept a broader scope than just matter. 

On the one hand, materiality plays out in “the world of things and objects” 

(Pinch 2008). It is in this physical realm, where we hear, see, touch and 

smell that the concept has an explicit meaning. At the same time, it is 
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suggested that the physical matter out of which objects are constructed is not 

all that important when defining materiality of digital artifacts (Leonardi 

2010; Pinch 2008). Rather, the adjective “material” seems to refer to some 

property of the technology that provides users with the capability to perform 

some action. “The how” seems to be more relevant than “the what” 

(Westergren 2011). Calling something material emphasizes its 

performativity – the notion that it provides people with capabilities that 

they can use to accomplish their goals (Pickering 2001). 

With this perspective materiality seems to be more closely related to 

affordances than matter. When introducing the notion of affordances James 

Gibson (1979; 1977) wanted to put attention on qualities of an object (or an 

environment) that allows an individual to perform an action. On a general 

level, he defined affordances as “action possibilities”. A key argument 

characterizing Gibson’s writings is that “the meaning is observed before the 

substance and surface, the color and form, are seen as such” (Gibson 1979, 

p.134). While he originally developed the concept of affordances in context of 

visual perception, I find this reasoning applicable and highly relevant to the 

broader context of innovation as well. Physical properties, such as plasticity, 

elasticity, and hardness, certainly play an important role in everyday 

engineering as they facilitate and constrain the realization of products. Still, 

that is not what we see, as human beings, when elaborating an artifact or a 

material for new purposes. We do not explicitly perceive the hardness of a 

diamond, but we know it affords us the possibility to cut glass. Using the 

words of Gibson (1979, p.134), “what we perceive when we look at objects are 

their affordances, not their [physical] qualities”. 

Affordances cannot be derived from an object in isolation. Rather, 

“affordances are properties taken with reference to the observer” (Gibson 

1979, p.143). A stroller affords sleeping to the baby and walking to the 

parent. Thereby, “an affordance is neither an objective property nor a 

subjective property; or it is both if you like” (Gibson 1979, p.129). It is 

objective in that its existence does not depend on value, meaning, or 

interpretation. Yet it is subjective in that an actor is needed as a frame of 

reference (McGrenere and Ho 2000). Although unfolding in relation to an 

observer, it is important to note that “the affordance of something does not 

change as the need of the observer change” (Gibson 1979, p.138). Drawing 

on situated knowledge the user of a navigation system exercises different 

affordances in different contexts (Svahn 2004; Svahn and Henfridsson 

2009). At some point, real-time traffic information allows for re-routing to 

avoid jam, while another situation calls for precise guidance to reach an 

unknown destination. However, the system affords routing and guidance 

whether the user needs it in a given situation or not. 
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Discussing materiality through the lens of affordances resolves a problem I 

find increasingly critical as innovation turns digital; digital innovation 

largely plays out in a virtual world of representations where physical 

characteristics, such as length, weight, hardness, and plasticity fade into the 

background. Without shifting focus, from physical properties to subjected 

possibilities, the notion of materiality is increasingly marginalized in context 

of digital technology. The concept of affordances is simply a way to give 

material agency a concrete face in digital innovation. 

Let me, as an illustration, contrast adaptive noise cancellation (ANC) 

technology (cf. Widrow et al. 1975) with traditional solutions, based on 

insulation materials. ANC uses a set of microphones to detect vibrations in 

the body of e.g. an aircraft or car. It applies a digital model of the physical 

vehicle to estimate how these vibrations propagate in the body and 

eventually transforms into sound waves. Finally, these estimations are used 

to generate inverted sound waves, transmitted through speakers, cancelling 

out the noise. This example illustrates how the locus of innovation is shifted, 

from the physical domain of insulation materials to a representational 

domain of software and digital models of the physical world. Ideally, ANC 

affords exactly the same thing as a traditional solution – noise reduction. 

However, while the latter can be precisely characterized in terms of 

attenuation6, the performance of the former follows from the capability to 

model the propagation of sound in a particular vehicle body. 

The ANC example illustrates that digital technology cannot be reduced to 

material properties, measurable in the physical realm of our everyday lives. 

Instead, the materiality of digital technology unfolds from the virtual world 

of representations, where physical properties make no sense. The idea of 

virtual materials is not new. Photos and texts are everyday examples of such 

virtual materials, affording things to people that cannot be reduced to 

physical properties of the particular book or picture. Following the view on 

virtuality proposed by Deleuze and Guattari (1980), books and pictures are 

artifacts carrying aspects of reality that it not material, but nonetheless real. 

Inspired by Bergson, Deleuze later suggested that we can conceive of the 

virtual as a kind of potentiality that eventually becomes fulfilled in the actual 

(Deleuze 1988). 

I find this Deleuzian angle generally interesting and useful in a conversation 

about materiality. In fact, it resonates well with the idea of affordances – 

action possibilities. When resolving an affordance, its potential is fulfilled in 

                                                             

6 Attenuation is the gradual loss in intensity of any kind of flux through a given 

medium. 
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the actual. This underlines that meaning is not created at the time of 

production, but at the time of consumption and use. We perceive music 

when playing a record, not when pressing discs. However, Deleuze’s view on 

the virtual is particularly interesting in context of digital technology and 

digitalization.  

As we have seen in section 2, digital technology challenges the temporal 

sequencing of design and production – the conceptual and the physical – 

characterizing product innovation. When functionality is mediated by 

software it is possible to cross this barrier, back and forth, returning to a 

design state without being constrained by production processes that enforces 

the product to be assembled as a whole. Consequently, the affordances of a 

digital product can be readily changed, making it significantly more 

malleable than a non-digital product. An ANC system originally built for an 

Airbus can afford noise cancellation in a Boeing aircraft, given new digital 

models of the aircraft body. In the words of Deleuze, new software opens up 

for a new potentiality to be fulfilled in the actual, without changing any 

physical properties of the ANC system. 

Clearly, the possibility to reprogram a given product blurs taken-for-granted 

boundaries between design and production. However, digital technology 

does not only offer the opportunity to alter affordances of a product by giving 

it new software. Digital products are often able to revise their affordances 

autonomously in that they are adaptable. Turning back to the by now 

familiar ANC example, a new aircraft engine will change the characteristics 

of noise significantly. Still, the ANC system will be able to afford noise 

cancellation by using the digital model of the aircraft to adapt its output in 

response to measured noise characteristics. Similarly, mobile phone 

infrastructure affords energy saving by continuous adaptation of terminal 

transmission power to meet the specific needs at every moment. Another 

example is the auto-break functionality afforded by modern cars, where 

potential collisions are foreseen by an extrapolation of motion trajectories of 

surrounding vehicles and pedestrians. Affording noise cancellation for 

unforeseen sources of interference, power saving in unknown settings, and 

auto-break in just any traffic context relies on a capability to represent and 

adapt virtual models of the physical world hosting the system. Therefore, 

digital technology does not only blur the boundaries between the 

representational domain of abstractions and the physical domain of 

concretions – it clearly displaces it. In context of digital technology, the 

transition between design and production does not mark the scrapping of 

abstractions. Rather, a key advantage of digital technology is its inherent 

capability to draw on the representational realm in a use context, subjecting 

novel affordances in the physical realm available to our senses.  
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Then, why does digital technology to such a considerable extent redefine the 

boundaries between the representational and the physical realm? What 

explains that a digital product serves us, not one potentiality to be fulfilled in 

the actual, but virtually an indefinite number of potentialities? Seeking the 

answers on these questions it is necessary to elaborate the fundamental 

differences between analog and digital. 

The phrase analog refers to a specific property of the relation between an 

original and a copy (cf. Poster 2001, p. 79). The density and distribution of 

silver salt crystals in a photo resembles the characteristics of the original 

scene. The same applies to the grooves on a vinyl record in relation to the air 

waves of sound. An analog representation establishes an isomorphism 

between real world objects and their representation, although manifested in 

different material forms. As a consequence of this isomorphism, time and 

space are inevitably inscribed in the representation. Separation of objects in 

space is reflected in the photograph, and the causality of the music is 

replicated on the record.  

Digital representations do not hold this property of resemblance. The 

microscopic pattern on a CD (representing zeros and ones) do not in any way 

look like the sound it stands for. Instead an algorithm relates the zeros and 

ones to the characteristics of the sound at discrete points in time. Without 

knowing this algorithm (here embodying sampling time, resolution, coding, 

etc) the numbers simply make no sense. Consequently, time and space 

cannot be considered part of the data, but rather of the mechanism 

generating it. This essential attribute of digital technology holds major 

implications in that it fundamentally changes the representational form. 

Algorithm and data are separated, yet deeply intertwined, making sense to 

the representation only as a whole. Two printed posters of, let us say a car, 

may differ substantially in terms of color, shading or pattern. Yet, the digital, 

vectorized representations, used to produce the posters, differ only in terms 

of a few parameters in a ray tracing algorithm. A digital representation is not 

only one potentiality, fixed in space-time, but an infinite number of 

potentialities. Space and time is essentially decoupled from the 

representation.  

Clearly, digital technology affords very different things to designers and 

organizations. Representations decoupled from time and space can take a 

new form without the physical constraints of analog technologies. They can 

be moved, duplicated, refined, changed or combined with other 

representations without “visiting” the physical realm. An increasing number 

of papers discuss this new materiality of digital technology (cf. Jonsson et al. 

2009; Leonardi and Barley 2008; Svahn et al. 2009; Yoo et al. 2010d). Some 

even propose well defined sets of material properties (cf. Yoo 2010). 
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In the next section, I elaborate two particular properties of digital technology 

and their critical impact on product innovation. First, software allows for 

instant replication, without fixed or marginal cost (Benkler 2006; Shapiro 

and Varian 2000). In an environment where organizing logic, market 

dynamics, and architectural designs largely have emerged as a response to 

the efforts and costs of production, this property makes a significant force in 

changing innovation practices. Since the design of software essentially is the 

product, this unbounded replicability destroys the barrier between design 

and production, giving a product innovation regime its distinct character. 

Second, digital products are programmable, which largely detaches 

functionality from physical artifact. To exercise the affordance 

programmability organizations have to break with linear models of 

development, prescribing temporal sequencing of functional design and 

physical design. Similarly, they have to establish new business models, 

allowing for recurring sales across the lifetime of a product. As software 

separates the meaning and functional behavior of a product from the 

product itself it destroys the barrier between functional design and physical 

design. 

3.2 Programmability and Replicability 

The digitalization of tangible products can take different forms. Affordances 

may be exercised so as to comply with an existing innovation regime and, 

thereby, avoid many tensions calling for new practices. However, reaching a 

point of digitalization where a product can be given inherently new 

functional properties across its lifecycle by changing its software, established 

innovation practices are confronted with massive pressure for change. 

Supported by the literature review in section 2 I argue that the digitalization 

of tangible products destroys, or at least challenges, two key barriers that 

significantly contributes to the character of traditional product innovation, 

but which are largely not present in a digital innovation regime. 

First, product innovation is characterized by a considerable barrier between 

a design and its realization as a physical product. Largely, we can trace this 

barrier to the substantial fixed and marginal costs associated with the 

production of tangible products. The production of cars or airplanes requires 

massive investments in specialized assets, such as tools, supply chains, and 

plants. To stay competitive a product developing firm has to depreciate these 

fixed costs across large volumes of product, enforcing an economy of scale. 

Similarly, every single unit is associated with a marginal cost of materials, 

explicitly translating into product price.  

As we have seen, yet not expressed in terms of barriers, a product innovation 

regime is highly colored by production. Products are often architected for 
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producibility, rather than functional supremacy. Markets are relatively 

homogeneous as competition plays out across dominant designs. These 

dominant designs allow firms to fine tune production processes, while 

offering variation in the details. We can also trace the rationale behind 

organizational forms to production. The centralized organization structures, 

behavioral control modes, and linear development processes of a product 

innovation regime all make sense in light of production. They are not 

primarily instruments for the delivery of a particular functionality, but 

ensure that different parts are at the same place at the same time, that they 

fit together and can be easily assembled into a product. 

As a whole, a product developing organization is a highly teleological 

machinery. There is an up-front plan for design, sourcing of components, 

systems integration, verification, assembly, and shipping. Competitive 

advantage emerges out of a capability to make this machinery work in 

concert. Inevitably, this enforces a temporal sequencing, normally 

implemented as waterfall models of design and production (Boehm 1976; 

Royce 1970). Such temporal sequencing raises another fundamental barrier 

between functional designs and physical designs of the artifact mediating 

functionality. When the teleological machinery has turned its design 

attention to production aspects, functionality is largely frozen. It is simply 

very hard and costly to override prescribed processes in order to reconsider 

once agreed on functional specifications. When reaching the point of 

production, functionality is inevitably inscribed in the artifact. 

To illustrate the barriers and their implications on innovation I propose a 

simple model (Figure 1), centered on the distinctions between abstractions 

and observable phenomena, on the one hand, and technology and its 

context, on the other hand. First, I argue that innovation is about the 

continuous redefinition of meaning taking place in practice (right half-

plane). As artifacts evolve on open markets, they are filled with new 

meanings, eventually resulting in new practices. Using the language of 

Wenger (1999), designer reifications, making the foundation of specific 

products, may be overridden by the participation of users, applying the 

artifact for new purposes. What is pushed to the market for one particular 

purpose may be pulled by users for another purpose.  

Second, innovation is in general a matter of interplay between practice and 

our capability to understand practice through models, theories, and various 

abstractions (lower half-plane). Innovation is to a large extent an act of 

creativity that relies on our capability to make such abstractions of everyday 

life and elaborate them for specific purposes. Weather forecasting, as an 

example, has improved in coherence with our theoretical understanding of 

meteorological phenomena. To make sense in a product innovation context, 
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I have described this as the interplay between functional design and practice. 

Observe that this refers to the domain of problems, independently of 

technological manifestation. As an illustration navigation functionality can 

be captured in its details with a human co-driver in mind, rather than an in-

car device. Routing and guidance still make perfect sense and can be 

understood independently of technology. 

Third, we find innovation at the borderline between functional design and 

physical design (left half-plane). On the one hand, designers have to be 

skilled in the conceptualization of problems in context. At the same time, 

they need a solid language for how to understand the technology they work 

with and the opportunities and constraints coming with it. Successful 

innovation grows from the overall capacity to mangle these perspectives 

together. Essentially, this entails a genuine capability to rethink both the 

domain of technology and problems, seeing them from different angles 

where they make sense together. A one-sided approach may enrich our 

thinking, but does not translate into innovation. Consider, as an example, 

the case of teleportation7. From a philosophical point of view the idea is 

highly intriguing and it is relatively straight forward to engage in its 

functional design. However, when considering its manifestation in 

contemporary technology it is reduced to a marginal curiosity, simply 

because we cannot imagine the technology mediating teleporting 

functionality and even less so envisioning a conceptual design of it. At the 

level of designers, innovation is a process where the design of tangible 

artifacts is guided by functional specifications, but at the same time guides 

the conceptualization of these functions. This interplay injects new ideas in 

the design process, exposes affordance, and identifies constraints.  

Finally, product innovation plays out in the transition from physical design 

to product (upper half-plane). A blueprint represents a conceptual model of 

a product, mediating a particular function. However, it is also the schema 

guiding the assemblage of different parts into a product. Successful 

innovation emerges from the simultaneous capability to produce artifacts for 

particular functional purposes and architect products for the specific 

processes of mass production. Reducing the number of different bolt types, 

while preserving the functionality of a design offers larger volumes in 

sourcing bolts and fewer tools in production. Reducing the total number of 

bolts reduces the total cost and simplifies assembly as the number of 

operations fall.   

                                                             

7 Teleportation normally refers to instantaneous transfer of matter over long 

distances. 
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Figure 1. A model of product innovation. 

The separation of design and production, on the one hand, and functional 

design and physical design, on the other, constitute barriers that are highly 

characterizing for product innovation. However, my attention on these 

barriers does not primarily serve the purpose of illustrating a product 

innovation regime, but to make a basis for understanding digitalization of 

tangible products. In fact, these barriers essentially do not exist in a digital 

innovation regime. There is certainly fixed cost associated with software. 

However, this cost derives from design and not production. As we have seen, 

software affords instant replication, without fixed or marginal cost (Benkler 

2006; Shapiro and Varian 2000). While the transition between design and 

production is fundamental to a product innovation regime, it is largely 

meaningless in digital innovation. Essentially, the design is the product. 

Once a detailed design is in place, there is virtually no time lag before the 

product can be distributed to users.  

Similarly, the stored-program concept separates functional logic from the 

physical hardware that executes it. Therefore, a physical artifact can perform 

new functions across its life time if equipped with new instructions or 

programs. There is certainly a dependency between software-enabled 

functionality and the hardware executing it. Yet, the temporal sequencing of 

product innovation, inscribing functionality in physical designs has no 

correspondence in digital innovation. Digital technology affords 

programmability, largely detaching functional design from the physical 

design of artifacts.  
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Indeed, programmability and replicability are properties of digital 

technology with the potential to radically transform product developing 

organizations and industries. At the same time transportation, heating, lawn 

mowing, etc, will remain highly physical values even as cars, heat pumps, 

and mowers are increasingly digitized. Digital technology will not enforce a 

digital innovation regime on product developing organizations, but clearly 

we will see new forms of innovation emerge. How digitalization plays out in 

established innovation processes is determined by the extent to which firms 

and industries are prepared to rethink organizational forms, design 

processes, governance frameworks, business models, etc. As demonstrated in 

manufacturing over the last two decades, it is certainly possible to benefit 

from digitization at the level of components, without really changing the 

logic of innovation. Software and digital technology has proved successful in 

reducing cost of components as well as improving functionality at the 

margin. However, until now we have seen relatively few examples where 

product developing organizations have used the programmability and 

replicability of digital technology to set up an innovation practice with a 

genuinely new flavor. In the following section I outline a theoretical 

framework for how to conceptualize digital products at the boundary 

between digital innovation and product innovation. 

3.3 Architectural Frames 

Whether studying biological or artificial systems, progression is about 

combination (Alexander 2002; Arthur 2009; Simon 1996). In nature such 

combinatorial progression “assumes no teleological mechanism. The 

complex forms can arise from the simple ones by purely random processes” 

(Simon 1962, p. 471). Artificial systems are clearly designed. Still, all novel 

technologies arise by combination of existing technologies (Arthur 2009), 

whether making incremental or radical impact on practice. Those 

performing better are selected for future growth and development. 

Technology simply “bootstraps itself upwards from the few to the many and 

from the simple to the complex” (p.21).  

In order to understand this bootstrapping process, shaping new paths of 

innovation, we somehow need to appreciate the intricate interplay between 

humans and technology. As product developing environments are 

increasingly digitalized, we have to pay attention to the novel affordances of 

digital technology that, exercised by humans, translate into new 

opportunities (3.1). We also have to consider the impact of such new 

affordance on established innovation practices. That is, to what extent these 

affordances challenge established processes, structures, and logics (3.2). 

Still, we will not be able to paint a credible portrait of digital product 
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innovation unless we can explain how designers and managers conceptualize 

digital products to mindfully combine new and old, digital and non-digital. 

That is a theoretical perspective explaining how product developing 

organizations exercise the opportunities of digital technology in reasonable 

harmony with its legacy. 

Organizations manifest their strategies for technological change in product 

architectures. In contrast to design, which we often view as forward-looking, 

aiming for the solution of a particular problem or challenge, architecture can 

be described as retrospective. It represents some kind of guideline and best 

practice for how to combine and reconfigure existing elements for new 

purposes. Thereby, the magnitude of the concept becomes visible across 

generations of designs. Architecture is structure-preserving and structure-

enhancing (Alexander 2002), passing sound solutions on from design to 

design and generation to generation. In connecting historical achievements 

with future potentialities, architecture is a key instrument for path creation, 

helping firms to create competitive advantage over time.  

As technology “bootstraps itself upwards” (Arthur 2009) it turns increasingly 

complex. Combination inevitably feeds larger and larger systems, constituted 

by a growing number of elements and rapidly increasing interaction between 

elements. In a complex system, “the whole is more than the sum of the 

parts”, meaning that “given the properties of the parts and the laws of their 

interaction, it is not a trivial matter to infer the properties of the whole” 

(Simon 1962, p.468).  

Clearly, the management of complexity is a critical challenge in architecting 

products. When designers do not understand how elements of a system form 

a whole and make sense together they cannot work effectively with each 

other. In the long run, they cannot mediate the evolution of the system as 

they do not know the effects of restructuring it. When change in one part of 

the system is likely to generate unexpected side-effects in another designers 

will simply be very careful changing working solutions. Without a sound 

architecture, giving access to key structures of the system while 

backgrounding subordinate aspects, historical achievements are likely to 

turn into ballast rather than assets.  

The management of complexity is primarily a matter of identifying and 

exercising appropriate representations. As underlined by Herbert Simon, 

complexity is not an invariant aspect of technology. Rather, “how complex or 

simple a structure is depends critically upon the way in which we describe it” 

(Simon 1996, p. 215). Consequently, a given product can be complex in the 

eyes of one observer and simple for another. To make a successful link 

between historical achievements and future potentialities an architecture has 
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to offer a perspective on a product or system that can be shared among a 

wider audience. Therefore, at its most general level, an architecture is 

constituted by a shared way of thinking. 

As we have seen product innovation and digital innovation represent two 

radically different forms of architectural thinking. In product innovation 

change emanates from the center of organizations that exercise formal 

control to improve functionality and reduce cost of products subject to 

dominant designs. In this environment architectures are framed to 

foreground physical structures shared between variants. This framing is 

grounded in a need to depreciate substantial investments in plants, tools, 

and processes across a range of planned models and several generations of 

the product. Thereby, the architecture is an instrument offering reuse of 

critical assets, eventually securing reasonable variability, change, and 

attractive pricing at the level of end-users. 

Digital innovations regimes exercise quite different architectural thinking. In 

these software-centric environments, innovation takes place in loosely 

coupled networks where a shared platform makes a tool to orchestrate a 

variety of heterogeneous knowledge in the harsh competition over attention. 

The architecture cannot be viewed as the common parts of a range of known 

products. Rather, it is focused on the structure of functions or problems, 

offering a collection of best practice tools and inherent support for the 

reconfiguration and reuse of existing ideas. Making a catalyzer for open-

ended innovation in ecosystems of rich and heterogeneous knowledge the 

architecture is a key instrument for firms building generative capability. 

Clearly, product innovation and digital innovation represent two different 

traditions of architectural thinking. To understand complexity in a context 

where tangible products turn increasingly digital I will now present a 

theoretical model, centered on the concept of architectural frames. This 

model is designed to contribute at three different levels. First, it connects the 

architectural practice of product innovation and digital innovation to two 

different stream of intellectual thinking on complexity. Second, the model 

helps explicating the distinctions and differences between the two regimes. 

Finally, it makes a theoretical tool for understanding how architectural 

thinking can be combined in digital product innovation. 

On a general level, architectural frames are schemas for thinking about and 

representing a complex product’s architecture. Thereby, architectural 

frames can be conceived of as cognitive processes crystallizing as particular 

ways of managing complexity in the design of products. It is worth noting 

that this model uses the notion of frames somewhat differently than the 

seminal works of Bijker (1987), Gioia (1986), and Orlikowski (Orlikowski 
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and Gash 1994). Here frames do not refer to “built-up repertoire of tacit 

knowledge” (Gioia 1986, p.56), or a “subset of members’ organizational 

frames that concern the assumptions, expectations, and knowledge they use 

to understand technology in organizations” (Orlikowski and Gash 1994, 

p.178). Instead, the substance of respective frame is grounded in the history 

of intellectual thinking on complexity, rather than in the everyday practice of 

technology stakeholders. The frames can be seen as invariant and 

theoretically grounded bases in a space of architectural thinking. Together, 

the frames span this space and can be combined to inform practice in 

different phases of digitalization. 

The model distinguishes between two frames, the hierarchy-of-parts frame 

based in the thinking of Herbert Simon (Simon 1962; Simon 1973; Simon 

1996; Simon 2002) and the network-of-patterns frame based in the thinking 

of Christopher Alexander (Alexander 1964; Alexander 1979; Alexander 1999; 

Alexander 2002; Alexander et al. 1977). In what follows, I derive and 

explicate the characteristic features of these frames (summarized in Table 2). 

Reflecting the thinking of Herbert Simon and Christopher Alexander is, of 

course, an almost impossible task. It is particularly challenging since they 

belong to different disciplines and have different points of departure in their 

respective work. To make reasonable justice to their ideas, yet focus my 

attention where their lifetime achievements overlap or relate, I will now 

engage them in a fictitious dialogue (3.3.1) on complexity, structure and 

change. As far as possible this dialogue is compiled using direct quotes 

(italic) from a few seminal writings. Drawing on the dialogue I then outline a 

set of conceptual constructs, characterizing the hierarchy-of-parts frame 

(3.3.2) and network-of-patterns frame (3.3.3) correspondingly. Rather than 

giving literal justice to original intellectual sources, these constructs together 

manifest an ideal frame, “formed by the one-sided accentuation of one or 

more points of view” (Weber 1949, p. 90). Finally, I examine the relationship 

between the frames and how they interact during design of digitized 

products (3.3.4). 

Table 2. Core dimensions of architectural frames. 

Dimension Hierarchy-of-Parts Network-of-Patterns 

Complexity Decomposition-
aggregation 

Generalization-
specialization 

Structure Hierarchy Network 

Element Part Pattern 

Relation Interface Inheritance 
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3.3.1 A Dialogue between Simon and Alexander 

Making a fair portrait of someone’s thinking is a challenging task. Trying to 

contrast the legacy of two great thinkers is even more demanding. To give 

life to the core ideas of Herbert Simon and Christopher Alexander, yet keep 

attention on the concept of architecture, I have engaged them in a fictitious 

dialogue. This dialogue is compiled on the basis of direct quotes, marked in 

italic. As demonstrated in other settings (cf. Steiner 2009) this approach 

enables original sources, while at the same time offering the reader a fast 

track, designed for a particular purpose. To set up such a fast track, this 

dialogue is moderated to center attention on topics of relevance for this 

thesis. At the same time it is complicated to extract quotes from a lifetime 

achievement to make certain points. To avoid a biased view this fictitious 

dialogue is composed on the basis of a few seminal sources and specifically 

designed to reflect Simon’s and Alexander’s views on complexity, structure 

and change. This said, let us give the floor to the moderator. 

 [Moderator] Today we are offered an exciting opportunity to plunge into 

the ideas of two very influential thinkers. Herbert Simon is a Nobel laureate 

in economics with seminal contributions in several scientific domains, 

including artificial intelligence, decision-making, organization theory, and 

complex systems. His work on nearly decomposable systems is generally 

considered to be the core concept of modularity, being immensely influential 

in modern mass production. Christopher Alexander is an architect who 

devoted his career to the de-professionalization of design, trying to restore 

users at the center of creative processes. His concept of pattern languages 

was created to empower anyone to design and build at any scale. Being 

somewhat an outsider in his own discipline, Alexander’s work has been 

highly influential in software industries. 

We are here today for something of a debate. It is grounded in the 

observation that the works of these two gentlemen are sometimes put on par 

and sometimes described as fundamentally different. The aim of this 

dialogue is to bring light to the different perspectives from which our guests 

have derived their frequently cited discussions on complexity, structure, and 

change. 

Let us warm up with a brief discussion on the concept of design. What is 

design? And what major challenges do you see in contemporary design? Prof 

Simon? 

[Simon] Well, that is a very general question. Let me try to give you a 

general answer. I use to say that everyone designs who devises courses of 

action aimed at changing existing situations into preferred ones. That 

makes design a very broad concept. The intellectual activity that produces 
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material artifacts is no different fundamentally from the one that 

prescribes remedies for a sick patient or the one that devises a new sales 

plan for a company or a social welfare policy for a state. Design, so 

construed, is the core of all professional training; it is the principle mark 

that distinguishes the professions from the sciences (Simon 1996, p. 111). 

[Moderator] Prof Alexander? 

[Alexander] I think Prof Simon just made a very good point here; Design is 

everywhere around us. We are all designers. In my work as an architect, I 

have spent a lot of time studying traditional societies where people largely 

created their own environment to meet their own particular needs. I think – 

as a response to your question about challenges – this perspective, to some 

extent, has disappeared. In our own time, the production of environment 

has gone out of the hands of people who use the environment (Alexander 

1999). The feeling that people have been robbed of their intuitions by 

specialists (Alexander 1979, p. 246) has been an ever-present inspiration in 

my work with patterns and pattern languages. Sorry, let us not drift away 

from the topic.  

[Moderator] No, please. Feel free to give us an introduction to patterns. 

We have plenty of time. 

[Alexander] Well, we originally derived the conceptual foundation of 

pattern languages from certain generative schemes that exist in traditional 

cultures. These generative schemes are sets of instructions which, carried 

out sequentially, will allow a person or a group of people to create a 

coherent artifact, beautifully and simply. The number of steps vary: there 

may be as few as half a dozen steps, or as many as 20 or 50. When the 

generative scheme is carried out, the results are always different, because 

the generative scheme always generates structure that starts with the 

existing context, and creates things which relate directly and specifically to 

that context. Thus the beautiful organic variety which was commonplace in 

traditional society could exist because these generative schemes were used 

by thousands of different people, and allowed people to create houses, or 

rooms, or windows, unique to their circumstances (Alexander 1999, p. 81). 

[Moderator] So, to some extent, pattern languages empower the people? 

[Alexander] Yes, that is way to frame it. 

[Moderator] Would you then say that modern man is powerless? Do we 

generally expect authorities and major corporations to design environments 

for us? 

[Alexander] Well, at least there was a time, not long ago, when people 

believed that a town had to be planned by a planner who made a plan or a 
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blueprint. It was said that if the order of the town is not created from 

above, there will just not be an order in the town. And so, even in spite of 

the most obvious evidence of all the beautiful towns and villages built in 

traditional societies without master plans, this belief has taken hold, and 

people have allowed themselves to give up their freedom. However, I think 

we might witness the pendulum swinging back, to some extent. It is 

increasingly accepted that the structure of a town can be woven much more 

deeply, more intricately, from the interaction of its individual acts of 

building within a common language, than it can from a blueprint or a 

master plan - and that indeed, just like your hand, or like the bush outside 

my window, it is best generated by the interaction of the rules which 

govern the construction of the parts (Alexander 1979, p. 499). 

[Simon] I like your examples and fully agree on your observations. I just 

want to add that they are valid far beyond your professional discipline. Over 

the last century, we have become accustomed to the idea that a natural 

system like the human body or an ecosystem regulates itself. Following 

Darwin and his disciples, we explain the regulation by feedback loops 

rather than a central planning and directing body. But somehow, 

untutored intuitions about self-regulation without central direction do not 

carry over to the artificial systems of human society (Simon 1996, p. 33). 

[Moderator] Now, you both emphasize that design is an emergent 

phenomenon, something that evolves over time under the influence of 

different people. How does that resonate with the empowerment of people? 

[Simon] I am probably drifting away from your question, but, clearly, a 

major strength of human kind is our capability to collaborate. That is our 

capability to create – design if you want – things together. My actions are not 

independent from yours. Neither are they independent from what people did 

yesterday. They are not even independent from what people do tomorrow. I 

think, the point we are trying to make here is that we generally tend to 

underestimate how both our historical legacy and our expectations on the 

future influences design. We are rational beings and are expected to act 

rationally when engaging in design. However, since the consequences of 

many actions extend well into the future, correct prediction is essential for 

objectively rational choice. That is not always easy to achieve. In simple 

cases uncertainty arising from exogenous events can be handled by 

estimating the probabilities of these events, as insurance companies do - 

but usually at a cost in computational and information gathering. An 

alternative is to use feedback to correct for unexpected or incorrectly 

predicted events. Even if events are imperfectly anticipated and the 

response to them less than accurate, adaptive systems may remain stable in 

the face of severe jolts, their feedback controls bringing them back on 



Chapter 3 

78 

 

course after each shock that displaces them (Simon 1996, p. 35). Returning 

to your question, one could of course argue that an adaptive perspective 

allows for good ideas to be absorbed in the evolution of products or towns, as 

they come, whether they derive from a firm’s internal R&D activities or the 

man in the street. In that sense, an evolutionary perspective on design is 

more efficient, simply since it is less likely to reject good ideas, just because 

they do not match our original expectations and assumptions. 

[Moderator] I guess the obvious question then is: How do we create 

technology that is naturally adaptable?  

[Simon] Indeed. How do we build technology which can be changed in its 

parts without falling apart over time into something useless? To me this is, 

first and foremost, about complexity and the management of complexity. 

Roughly, by a complex system I mean one made up of a large number of 

parts that have many interactions. In such systems the whole is more than 

the sum of the parts in the weak but important pragmatic sense that, given 

the properties of the parts and the laws of their interaction, it is not a trivial 

matter to infer the properties of the whole (Simon 1996, p. 183-184). 

Looking around in nature as well as our artificial environment, it is striking 

how often complexity takes the form of hierarchy – the complex system 

being composed of subsystems that, in turn, have their own subsystems, 

and so on (Simon 1962, p. 468). Hierarchies are interesting for many 

reasons, but, in particular, it offers very special conditions for evolution. The 

time required for the evolution of a complex form from simple elements 

depends critically on the numbers and distribution of potential 

intermediate stable forms (Simon 1962, p. 471; Simon 1996, p. 190). In fact, 

these stable intermediate forms exercise a powerful effect on the evolution 

of complex forms that may be likened to the dramatic effect of catalysts 

upon reaction rates and steady-state distribution of reaction products in 

open systems (Simon 1996, p. 192).  

[Moderator] But, what makes these stable intermediate forms of a 

hierarchy so powerful in change processes? Could you elaborate a bit on 

that? 

[Simon] Let us consider human problem solving, as an illustration. Here, a 

partial result that represents recognizable progress toward the goal plays 

the role of a stable sub-assembly (Simon 1962, p. 472). If we can approach a 

problem, piece by piece, we are much more likely to find a solution. When 

our partial results are not overturned as we approach the next sub-problem, 

we can benefit effectively from our historical achievements as we 

interconnect intermediate solutions in a hierarchy, eventually forming a 

solution for the overall problem. This example underlines that it is not 
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assembly from components, per se, but hierarchic structure produced either 

by assembly or specialization, that provides the potential for rapid 

evolution. The claim is that the potential for rapid evolution exists in any 

complex system that consists of a set of stable subsystems, each operating 

nearly independently of the detailed processes going on within the other 

subsystems, hence influenced mainly by the net inputs and outputs of the 

other subsystems. If the near-decomposability condition is met, the 

efficiency of one component (hence its contribution to the organism's 

fitness) does not depend on the detailed structure of other components 

(Simon 1996, p. 193). 

[Moderator] Then, would you say that near decomposability is a 

fundamental condition for stable intermediate forms to arise? 

[Simon] Yes, I would say so, at least in the context of complex systems. 

Hierarchies have the property of near decomposability. In such a nearly 

decomposable system, intracomponent linkages are generally stronger 

than intercomponent linkages. This fact has the effect of separating the 

high-frequency dynamics of a hierarchy – involving the internal structure 

of the components – from the low-frequency dynamics involving 

interaction among components (Simon 1996, p. 204). Consequently, in a 

nearly decomposable system the short-run behavior of each of the 

component subsystems is approximately independent of the short-run 

behavior of the other components (Simon 1996, p. 198). Such components 

are stable intermediate forms in the sense that they perform relatively 

independent of other components. Is that a reasonably clear illustration of 

how hierarchy and stable intermediate forms play out in evolution? One way 

to see it is that nearly decomposable systems are able of limping along, even 

if some subsystems are incomplete or damaged. Therefore, among possible 

complex forms, hierarchies are the ones that have the time to evolve (Simon 

1996, p. 196). 

[Moderator] If we turn to the literature, you are sometimes cited together, 

to make the same argument. I think we find the most salient example in 

different writings on modularity. Does that mean you essentially share the 

same perspective on complexity and the structure of complexity? Prof 

Alexander? 

[Alexander] Well, first of all, I am an architect. I have never claimed broad 

validity of my theories, beyond this domain. That is done by others. That 

said, I can see both similarities and differences in our respective work. I 

certainly approve of Prof Simon’s work. You have provided us with a whole 

range of beautiful theories, allowing us to better understand processes of 

change. At the same time, we clearly have adopted different perspectives. To 
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use your words, I have found a lot of my inspiration in the simple 

observation that we see so little of stable intermediate forms in our physical 

environment. At least in those environments we see as whole and living. I 

think it is very puzzling to realize that the ‘elements’, which seem like 

elementary building blocks, keep varying, and are different every time that 

they occur. For among the endless repetition of elements we see almost 

endless variation. Each church has a slightly different nave, the aisles are 

different, the west door is different … and in the nave, the various bays are 

usually different, the individual columns are different; each vault has 

slightly different ribs; each window has a slightly different tracery and 

different glass. Still, we have no problems recognizing a church. I find this 

truly fascinating. If the elements are different every time that they occur, 

evidently, then, it cannot be the elements themselves which are repeating in 

a building or a town: these so-called elements cannot be the ultimate 

“atomic” constituents of space. Since every church is different, the so-called 

element we call “church” is not constant at all. Giving it a name only 

deepens the puzzle. If every church is different, what is it that remains the 

same, from church to church that we call ‘church’? (Alexander 1979, p. 84-

91). If there are stable intermediate forms, where do we find them? 

Let us look more carefully at the structure of the space from which a 

building or a town is made, to find out what it really is that is repeating 

there. We may notice first that over and above the elements, there are 

relationships between the elements which keep repeating too, just as the 

elements themselves repeat. Beyond its elements each building is defined by 

certain patterns of relationships among the elements. For example, in a 

gothic cathedral, the nave is flanked by aisles which run parallel to it. The 

transept is at right angles to the nave and aisles; the ambulatory is 

wrapped around the outside of the apse, and so on. There are countless 

examples illustrating that our ability to recognize a gothic cathedral is 

hidden in the arrangement of elements – how they relate to each other – 

rather than the elements in themselves. Evidently, then, a large part of the 

‘structure’ of a building or a town consists of patterns of relationships. 

Medieval churches as well as cities get their characters from these repeating 

patterns of relationships (Alexander 1979, p. 85-87).  

When we look closer, we realize that these relationships are not extra, but 

necessary to the elements, indeed a part of them. The aisle is constituted by 

its relationships to the nave and other elements around it. As an element in 

isolation it is pointless and empty. Once we recognize that much of what we 

think of as an ‘element’ in fact lies in the pattern of relationships between 

this thing and the things in the world around it, we then come to the second 

even greater realization, that the so-called elements is itself nothing but a 
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myth, and that indeed, the element itself is not just embedded in a pattern of 

relationships, but is itself entirely a pattern of relationships, and nothing 

else. I hope this detour makes some sense to you? That it, to some extent, 

illustrates my view on evolution and change. Whatever object or system we 

study, it cannot be described in isolation. To get a grip of the structures 

repeating themselves over time, we need to capture the relations between 

systems and context. We need to refocus our minds – tune in for 

relationships, rather than element. Given this, the things which seem like 

elements dissolve, and leave a fabric of relationships behind, which is the 

stuff that actually repeats itself, and gives the structure to a building or 

town (Alexander 1979, p. 88-89). 

Finally, to conclude this monologue, the patterns are not just patterns of 

relationships, but patterns of relationships among other smaller patterns, 

which themselves have still other patterns hooking them together - and we 

see finally, that the world is entirely made of all these interhooking, 

interlocking nonmaterial patterns (Alexander 1979, p. 91). 

[Moderator] And this is where the pattern language comes in? The 

structure you refer to is a web of interlinked patterns?  

[Alexander] Yes, that is right. Let us focus on a particular pattern, labeled 

A. Let us say it is the aisles of a gothic church. If we make a picture of all the 

patterns which are connected to the pattern A, we see that the pattern A sits 

at the center of a whole network of patterns, some above it, some below it. 

Each pattern sits at the center of a similar network. And it is the network of 

these connections between patterns which creates the language. It is worth 

noting that the links between the patterns are almost as much part of the 

language as the patterns themselves (Alexander 1979, p. 313-314). 

Therefore, the structure of the language is created by the network of 

connections among individual patterns: and the language lives, or not, as a 

totality, to the degree these patterns form a whole (Alexander 1979, p. 305). 

[Moderator] So, this structure – the pattern language – is a knowledge 

base, guiding, for example, the construction of a gothic cathedral to be 

characteristic, yet unique? 

[Alexander] Yes, if you like. Ultimately, a person with a pattern language 

can design any part of the environment. He does not need to be an ‘expert’. 

The expertise is in the language. He can equally well contribute to the 

planning of a city, design his own house, or remodel a single room, because 

in each case he knows the relevant patterns, knows how to combine them, 

and knows how the particular piece he is working on fits into the larger 

whole. And it is essential that the people shape their surroundings for 

themselves (Alexander 1979, p. 353-354). As you probably have noticed this 
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is a cornerstone in my approach to design and architecture. Wholeness 

cannot be achieved by remote specialists, detached from the local 

environments. That is why I would prefer another twist of your original 

question; I do not think the challenge is to create technology that is naturally 

adaptable. We do not just want new technology, at an increasing pace of 

change, do we? We want technology creating wholeness and harmony in our 

everyday life, right? So, to me a central challenge is how to create such living 

structure. That is structure, allowing for variety, yet preserving the 

wholeness across generations of designs. It turns out that these living 

structures can only be produced by an unfolding wholeness. That it, there is 

a condition in which you have space in a certain state. You operate on it 

through things that I have come to call ‘structure-preserving 

transformations’, maintaining the whole at each step, but gradually 

introducing differentiations one after the other. And if these 

transformations are truly structure-preserving and structure-enhancing, 

then you will come out at the end with living structure (Alexander 1999, p. 

78-79). 

[Moderator] It strikes me that structure is a central concept in your 

respective writings, yet you refer to quite different things, do you not? When 

you talk about structure, Prof Simon, you seem to refer to the configuration 

of a well defined system, an observable phenomenon. It may be a church, a 

car, or an organization, yet it is something quite concrete. It is the schema 

interconnecting the whole and the parts. Some structural forms allow for the 

system to be changed and manipulated more easily than others. Therefore, 

seen across generations, the structure makes a basic condition, deciding the 

pace of change. In contrast, the structures we find in Prof Alexander’s 

pattern languages refer to something quite different. With your discussions 

in mind, I see it is a map, defining how different solutions – patterns – make 

sense together. A pattern language does not capture the structure of a 

particular gothic church, yet it holds the soul of any gothic church. When 

applying a pattern language in a design process, the designer is gradually 

carving out a path through the network of interconnected patterns making 

up the language. It does not reflect the decomposition of a system into parts, 

but rather how general patterns can form specific solutions in an indefinite 

number of ways. 

[Simon] I think I see the distinction you want to make. In my work, I have 

been theorizing on the relation between the structure of a complex system 

and the time required for it to emerge through evolutionary processes. 

Specifically, I have been arguing that hierarchic systems will evolve far 

more quickly than non-hierarchic systems of comparable size (Simon 1962, 

p. 468). Thereby, the system is at the center of attention in my writings. I 
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know it is easy to associate ‘system’ with hard things – cars and airplanes – 

but, keep in mind; the idea on near decomposability is equally valid for social 

systems and human problem solving. 

[Moderator] Still, the hierarchy of a nearly decomposable system – social 

or technical – is a structure of a real, concrete system, while a networked 

pattern language is an abstract structure, used to generate such specific 

instances. They play out at different levels. Am I wrong? Drawing inspiration 

from nature and biological systems, Prof Simon serves us with a perspective 

where historical legacy is carried from generation to generation by the 

system in itself. You, Prof Alexander, serve us a perspective, where legacy is 

embedded in our collective mental models for how to solve problems.  

[Alexander] Well, clearly a building is an instance. Ultimately, each 

building is unique, tailored for its particular context. Yet, there is a 

relationship between buildings, unfolding over time. To me it is rather clear 

that we will never understand this relationship – and thereby not the basic 

forces of evolution – if we try to dismantle the buildings. The blueprints of 

every church ever built will not help us understand why they are all 

churches, yet very different. Rather, we have to understand that every place 

is given its character by certain patterns of events that keep on happening 

there (Alexander 1979, p. 55). That is where to look for structure. To me the 

world does have a structure just because these patterns of events which 

repeat themselves are always anchored in the space. You do certain things 

in a church. The structures of a church will not unfold, unless you 

understand why and how people practice their different ceremonies. I 

cannot imagine any pattern of events without imagining a place where it is 

happening. I cannot think of sleeping, without imagining myself sleeping 

somewhere. Of course, I can imagine myself sleeping in many different 

kinds of places – but these places all have at least certain physical 

geometrical characteristics in common (Alexander 1979, p. 69). What I 

mean is that the structure we look for is found at the level of problems and 

solutions, rather than at the level of physical objects. That is at the level of 

actions and processes. What seems at first sight like a static thing is in fact a 

constant flux of processes (Alexander 1979, p. 356). This is where we need to 

focus our attention. It is the processes we need to understand. And this is 

where the pattern language comes in. Every act which helps to shape the 

buildings and the towns and their activities is governed by the pattern 

language people share – and governed above all by just that portion of the 

language which is especially relevant to that especial act (Alexander 1979, 

p. 358).  

[Moderator] You might find me obsessed with the idea of distinguishing 

your work, but I simply find it intriguing that you from certain angles seem 
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to say the same thing, while from other angles show remarkable difference. 

One early observation I did when first trying to get familiar with your work 

was that you, Prof Simon, obviously have found a lot of inspiration in nature 

and biological evolution, while Prof Alexander, being an architect, is very 

design oriented. That first led me to believe that hierarchic structures and 

near decomposability are dominant in change processes where path 

dependency is strong and short-term, human agency is weak, while patterns 

languages prosper in design-centric change, characterized by human will. I 

can see now that this is a very narrow view and essentially incorrect. As we 

know, modularity is a key concept in product design that has radically 

transformed industrial productivity. 

[Alexander] With respect for your observations, but I think it would be 

quite misleading to distinguish between us by attributing evolutionism to 

Prof Simon and design centrism to me. I would argue that we have both 

adopted an emergence-centric perspective on change. The role model of such 

a perspective is, of course, nature and the change processes we see in nature.  

As a collective, humans are exceptionally successful. Yet, compared to nature 

we are mediocre designers in some respects. Why? Nature makes use of 

time. It does not create things in a single act of mindful creativity. At least to 

this date, the great complexity of an organic system which is essential to its 

life cannot be created from above directly; it can only be generated 

indirectly (Alexander 1979, p. 162). In my work, I have argued that the same 

basic mechanisms apply to artificial system, meaning that towns cannot be 

made, but only generated, indirectly, by the ordinary actions of the people, 

just as a flower cannot be made, but only generated from the seed 

(Alexander 1979, p. 162). I truly believe that this applies to any complex 

system which we would see as living and whole. This is actually the 

theoretical underpinning of our work with pattern languages – we wanted to 

generate the environment indirectly, just as biological organisms are 

generated, indirectly, by a genetic code (Alexander 1999, p. 73). 

 [Simon] Listening to Prof Alexander I can only agree. At this level we have 

a very similar approach to change. I have seldom used the notions of indirect 

generation or generativity, but I have often said that among possible 

complex forms, hierarchies are the ones that have the time to evolve (Simon 

1996, p. 196). Near decomposability, unfolding from hierarchy and stable 

subassemblies, simply makes a powerful and efficient bridge between 

generations. Nature clearly shows that this architectural feature accelerates 

the rate at which the fitness of organisms possessing it increases over time 

through the standard processes of genome change and natural selection 

(Simon 2002, p. 588). It applies to artificial systems as well. Using the 

language of Prof Alexander, near decomposability allows a designer to 
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generate new systems from proven building blocks, working together in a 

proven configuration, without being exposed to its full complexity.  

[Moderator] You certainly do not make life easy for me, trying to find 

areas of disagreement! Let me try a different angle, before closing down this 

very rewarding session. You are both turning to biological evolution and 

genetics when demonstrating your views on change. I know it is a 

metaphoric use, yet it illustrates well the crucial role of an unbroken, 

common thread across generations. That is what genes do; they carry a 

legacy from generation to generation. Progression is about exploiting this 

legacy in a beneficial way, yet not being a hostage of it. Although you largely 

share the same view on the overall mechanisms behind change processes, I 

would say that you suggest quite different manifestations of this thread. 

[Simon] Could you elaborate that a bit more? I am not sure I follow. 

[Moderator] Well, as you have both pointed out, time is a key aspect when 

it comes to complexity and the management of complexity. Modular 

architectures and pattern languages are containers of knowledge, experience, 

insights, wisdom – whatever we want call it – sparing us the full complexity 

of a system up-front. They are instruments interconnecting generations of 

designs in a particular way. Thereby, they define a particular perspective on 

path dependency. It just strikes me that you promote rather different 

structures and, thereby, different models for understanding path 

dependency.  

Let us take the automotive industry as an example. Here, modularity is a 

central concept, present from the first sketches, through design and 

development, to the final car. In practice, this means that the entire 

organization is shaped to fit a representation of the final product – the 

outcome of the design process. In these modular design practices it is 

primarily the decomposition of the car that is documented, not the rationale 

behind that decomposition. The function of a particular component is largely 

described in terms of interfaces, telling us how it relates to other 

components. When I listen to you, Prof Simon, I can see that this is a key 

point, explaining why nearly decomposable systems evolve faster; when we 

have learnt how to produce a particular component it makes a stable 

subassembly. As long as we can continue producing this subassembly we can 

focus our full attention on other issues. The history behind it is, to some 

extent, expendable. 

[Simon] Indeed, that is certainly true. 

[Moderator] As a result, these stable subassemblies cause rather strong 

path dependency. If you like, historical legacy is carried from generation to 

generation by the artifacts – components and car. A designer responsible for 
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the navigation system knows the decomposition of his components in deep 

detail, but he knows very little about the original problems facing the original 

designers. In this context, it is a rather bold decision to make significant 

changes. With a modular system designers can predict how changes translate 

through the hierarchic system, i.e. how other components are influenced, but 

blueprints and component specification give little support in understanding 

how these changes play out at a social or practical level. 

[Simon] OK, I think I see where you are going. 

[Moderator] Prof Alexander argues that wholeness cannot be achieved by 

standard components. To create living structure every building has to be 

designed uniquely in harmony with its local context. Therefore, beyond an 

elementary level, you see few stable subassemblies, shared between all 

buildings of a class. However, you underline that there are standardized 

processes, able to generate such coherent and morally sound buildings. 

Pattern languages, whether formalized or tacit, are the structures passing 

knowledge about these processes on from one generation of carpenter or 

architects to another. Seeking inspiration in the design of a new house it is a 

waste of time trying to decompose an existing building in its different 

physical parts. Instead, we have to see through the physical structures to 

understand the problems addressed and solutions offered by a particular 

design. This way, path dependency manifests itself as structure-preserving 

and structure-enhancing transformations, generating buildings which offer 

solutions to generic, shared human needs, yet in harmony with local context.  

[Simon] You certainly have a point in that we discuss structure at different 

levels. I am just not sure these discussions are incompatible.  

[Moderator] Oh, that is not what I am suggesting. I just seek to clarify the 

distinctions in your respective writings. 

[Simon] OK. Let me then suggest that these related, but still slightly 

different discussions follow from different initial questions. Maybe it is that 

simple? After all, I have studied the structure of a complex system and the 

time required for it to emerge through evolutionary processes (Simon 

1962, p. 468). Clearly, this is not what has motivated Prof Alexander in his 

work with pattern languages. You have sought the evolutionary roots of 

wholeness and living structure. 

[Alexander] True.  

[Simon] I have used nature as a source of inspiration to understand the 

basic premises of change in artificial system. I have studied pace of change, 

but I have not engaged in a discussion on whether change is appropriate or 

desirable. That is, on the other hand, what your pattern language is all about, 
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Prof Alexander. You have used nature as a role-model to understand how 

sound designs, offering value to people in different context, can be preserved 

and enhanced over time. 

 [Moderator] That was an excellent closing of this dialogue. Rather than 

seeing Simon’s nearly decomposable hierarchy and Alexander’s pattern 

language as competing views we can see them as complementary approaches 

to the complexity of artificial systems. That is indeed a very encouraging 

perspective. I think we all have learned a lot and will walk out of this room 

with a lot of inspiration. Thank you all for coming here today. 

3.3.2 Hierarchy-of-Parts 

In his seminal work on complex systems, Herbert Simon has studied “the 

relation between the structure of a complex system and the time required for 

it to emerge through evolutionary processes” (Simon 1962, p. 468). 

Specifically, he argued that “hierarchic systems will evolve far more quickly 

than non-hierarchic systems of comparable size”. The “potential for rapid 

evolution”, coming with such hierarchic systems can be explained in that it 

“consists of a set of stable subsystems, each operating nearly independently 

of the detailed processes going on within the other subsystems, hence 

influenced mainly by the net inputs and outputs of the other subsystems” 

(Simon 1996, p. 193). If this so called “near-decomposability condition is 

met, the efficiency of one component (hence its contribution to the 

organism's fitness) does not depend on the detailed structure of other 

components”. 

Simon’s work is centered on the structure of systems. It identifies such 

structures as the link between generations of the system. The stable 

subassemblies of a hierarchy allows for historical efforts and investments to 

be efficiently reused and managed across generations. In the moment an in-

car navigation system or a kidney proves functional, its genesis turns 

irrelevant. As long as it remains functional, the subassembly can be pushed 

to the background, and forces of change can be directed elsewhere. 

As suggested by the name, the hierarchy-of-parts frame draws on this 

Simonian thinking by prescribing hierarchy as the core structure of design. 

Such hierarchic structure emerge as designers recurrently practice 

decomposition and aggregation in the design of products. With the 

decomposition of products into parts designers seek to establish and 

preserve stable, loosely coupled subassemblies. Such stable subassemblies 

hide complexity and delivers functionality through well defined interfaces. 

In the aggregation of parts into products designers take the opposite 

perspective and seek new configurations of parts. This is a bootstrapping 

process, where simpler structures are recursively combined over time to 
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form increasingly complex ones. This process allows for new value to 

emerge, yet while preserving parts and configurations of parts to take full 

advantage of design legacy. 

Thereby, the hierarchy-of-parts frame makes a distinct architectural 

approach to path dependency. On a general level, when decomposing a 

product, designers seek to maximize the pay-off on investments. A smart 

decomposition makes an asset for coming generations of the product. It is an 

investment in the future. Aggregation, on the other hand, seeks to leverage 

existing designs for new purposes. It is a way to exercise opportunities in 

design legacy. Drawing on this I suggest following definition of the 

hierarchy-of-parts frame: 

Definition: The hierarchy-of-parts frame views a product’s 

architecture as a hierarchy of loosely coupled parts, emerging 

from the recursive application of decomposition and 

aggregation as designers seek to connect historical 

achievements with future potentialities. 

As a scheme for allocating product functionality to physical components 

(Ulrich 1995, p. 419), the hierarchy-of-parts frame relies on early binding of 

functionality to physical configurations. The advantage of relying on this 

principle during the design process is that it encourages designers to develop 

architectures that support subsequent production. Some flexibility is 

achieved during the design process by assigning design parameters that can 

take on different values within a particular range to individual parts 

(Baldwin and Clark 2000). This allows the designer to distribute 

functionality to specific physical components while still defining generic 

conceptions of a product. Later, the designer can then freeze a specific 

solution by selecting particular values for each design parameter (Iansiti 

1995). These considerations motivate the following: 

The hierarchy-of-parts frame helps designers of digitized 

products converge towards a physical product through 

separation of concerns and early binding of functionality to 

physical components. 

3.3.3 Network-of-Patterns 

Christopher Alexander has devoted a long and successful career “trying to 

learn how to produce living structure in the world”. From the perspective of 

an architect “that means towns, streets, buildings, rooms, gardens, places 

which are themselves living or alive” (Alexander 1999, p. 73). Two aspects 

seem particularly important to Alexander when seeking to explain the 

formation of living structure. First, he underlines that we cannot create 
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coherent, morally sound objects, unless we do it in deep harmony with the 

local environment. “The characteristics of any good environment is that 

every part of it is extremely highly adapted to its particularities” (Alexander 

1999, p. 74). Therefore, in environments which we perceive as whole and 

living, many of “the ‘elements’, which seem like elementary building blocks, 

keep varying, and are different every time that they occur” (Alexander 1979, 

p. 84). To produce such living structure, “it is essential that the people do 

shape their surroundings for themselves” (cf. Alexander 1979, p. 74). Clearly, 

this breaks with the mass-production/mass-consumption logic of our 

contemporary world. In our time “the production of environment has gone 

out of the hands of people who use the environment” (Alexander 1999, p. 

74). Alexander even argues “people have been robbed of their intuitions by 

specialists” (Alexander 1979, p. 246).  

Second, Alexander states that “that life cannot be made, but only generated 

by a process” (Alexander 1979, p. 74). He argues that it is highly misleading 

to “think of works of art as ‘creations’ conceived in the minds of their 

creators” (Alexander 1979, p. 160). The great complexity characterizing 

living structure “cannot be created from above directly; it can only be 

generated indirectly” (Alexander 1979, p. 162). Following this line of 

reasoning, the main asset of a successful artist or engineer is not the 

capability to make detailed up-front constructions, but rather the application 

of generic and relatively simple skills in a responsive dialogue with materials 

and context. “The brush stroke becomes beautiful, when it is visible only as 

the end product of a process – when the force of the process takes over the 

cramped will of the maker” (Alexander 1979, p. 160). This is when “the 

maker lets go of his will, and lets the process take over”. 

The legacy of Christopher Alexander is embodied by the concepts of patterns 

and pattern languages. A pattern “is a three-part rule, which expresses a 

relation between a certain context, a problem, and a solution” (Alexander 

1979, p. 247). As an example, the star-shaped torx pattern for screw heads 

addresses the problem of cam-out8 in assembly processes and offers a more 

precise application of torque and increasing life-span of tools. It is widely 

adopted in manufacturing settings, but largely inadequate in consumer 

contexts, simply because the tool is not part of standard household 

equipment.  

“As an element in the world, each pattern is a relationship 
between a certain context, a certain system of forces which 

                                                             

8 Cam-out is the process by which a screwdriver slips out of the head of a screw, once 

the torque required to turn the screw exceeds a certain limit. 
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occurs repeatedly in that context, and a certain spatial 
configuration which allows these forces to resolve themselves. 
As an element of language, a pattern is an instruction, which 
shows how this spatial configuration can be used, over and over 
again, to resolve the given system of forces, wherever the 
context makes it relevant. The pattern is, in short, at the same 
time a thing, which happens in the world, and the rule which 
tells us how to create that thing, and when we must create it. It 
is both a process and a thing; both a description of a thing which 
is alive, and a description of the process which will generate that 
thing” (Alexander 1979, p. 247). 

As indicated, “the structure of a pattern language is created by the fact that 

individual patterns are not isolated” (Alexander 1979, p. 311). The torx 

pattern comes with significant material strain, stressing driver bits. 

Therefore, it relies on subordinate patterns, solving the problem of material 

damage in this particular context. When realized, such a subordinate pattern 

may be manifested as an appropriate alloy. Consequently, “each pattern 

then, depends both on the smaller patterns it contains, and on the larger 

patterns within which it is contained” (Alexander 1979, p. 312). In fact, “each 

pattern sits at the center of a network of connections which connect it to 

certain other patterns that help to complete it” (Alexander 1979, p. 313). “It 

is the network of these connections between patterns which creates the 

language” (Alexander 1979, p. 313). 

Clearly, a pattern language can be viewed from different perspectives. On the 

one hand, it gives an alternative angle on “some of the physical structures 

that make the environment nurturing for human beings” (Alexander 1999, p. 

73). A pattern langue helps us capture and describe the character of a place 

“by certain patterns of events that keep on happening there (Alexander 1979, 

p. 55). It is a formal representation, telling us why a church is a church, even 

though we cannot find two instances looking the same. However, a pattern 

language can also be viewed as a way to describe sound design practices in a 

particular field. Representing key ingredients of “living structure” a pattern 

language will act as a sifter in a sandbox as evolution gradually reinforces 

sound ideas in a series of “structure-preserving and structure-enhancing 

transformations” (Alexander 1999, p.79). The language is a generative 

scheme of instructions which, “carried out sequentially, will allow a person 

or a group of people to create a coherent artifact, beautifully and simply” 

(Alexander 1999, p. 81). Ultimately, “a person with a pattern language can 

design any part of the environment. He does not need to be an ‘expert’. The 

expertise is in the language” (Alexander 1979, p. 353). Thereby, a pattern 

language makes a link, interconnecting contemporary design activities with 

yesterday’s experiences and efforts. Together a network of patterns, 

constituting a pattern language, allows for historical problem solving to be 
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reused and managed by laymen as they design artifacts adapted to their own 

local environment, unique in time and space. 

As suggested by the name, the network-of-patterns frame draws on this 

Alexandrian thinking by prescribing network as the core structure of 

design. That is a network spanning a problem-solution space, rather than the 

structure of a particular artifact. Such network structure emerges as 

designers recurrently practices generalization and specialization in the 

design of products. Generalization is a way to manage complexity, where 

designers seek increasingly generic representations of the functionality 

associated with an artifact. These representations, or patterns, are distinct 

solutions for particular problems, defined by a given context. In the process 

of generalization patterns are repeatedly disassembled into increasingly 

generic elements, relating to each other through inheritance. We can view 

inheritance as a barrier, hiding complexity as it separates the more general 

aspects of a solution from the more specific. Thereby, the resulting web of 

patterns makes a map of a problem space, simultaneously offering different 

levels of granularity. Exercising specialization designers take a bottoms-up 

perspective, seeking to extend the application of generic patterns by reusing 

them for new purposes. While generalization largely is a matter of increasing 

granularity, this process extends the problem space in that it generates new 

specialized patterns from existing, more general ones. It is the process of 

specialization that produces network structure. While generalization largely 

generates hierarchy, as patterns are gradually broken down, the multiple 

reuse of patterns produces many-to-many relationships, forming network 

structure. 

The network-of-patterns frame makes a distinct architectural approach to 

path dependency. When exercising generalization, designers seek to identify 

and describe principal elements9 of a given function. This time-consuming 

work can seldom be motivated in context of an isolated product, mediating 

well defined functionality. Rather, the increasingly generic patterns 

emerging from generalization of high-level functionality has to be viewed as 

an asset for coming generations. To a significant extent, generalization is an 

investment in the future. Largely, these investments are exercised in the act 

of specialization. This is when designers reuse general patterns to shape new 

specialized patterns, resulting in new functions, products, and, eventually, 

revenue. Specialization is about exercising the embedded opportunities in 

design legacy. In this vein, specialization is associated with generativity. 

Drawing on this I suggest following definition of the network-of-patterns 

frame: 
                                                             

9 Compare principal component analysis in mathematics. 
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Definition: The network-of-patterns frame views a product’s 

architecture as a network of interrelated patterns, 

representing functionality at different levels of granularity. 

This network emerges from the iterative application of 

generalization and specialization as designers seek to connect 

historical achievements with future potentialities. 

 As a scheme for maintaining functional fit between a product and its use 

environment, the network-of-patterns frame relies on delayed, or fluid, 

binding of functionality to physical configurations. The advantage of relying 

on this frame during the design process is that it encourages designers to 

develop architectures that support “living structures” or generativity 

(Alexander 1999; Zittrain 2006). Flexibility is achieved by adopting a pattern 

language that allows connections to other patterns specified by other 

designers, making the space of possible solutions profound over time. These 

considerations motivate the following: 

The network-of-patterns frame helps designers of digitized 

products share design ideas through general solution patterns 

and delayed binding of functionality to physical components. 

3.3.4 Interaction between Frames 

The hierarchy-of-parts frame and network-of-patterns frame are not 

disparate or incompatible perspectives. To some extent all designers have to 

shape structures allowing them to reuse pre-existing components as 

products evolve. Modern cars apply standard engines across variants and 

generations. Ancient villagers used the same standard bricks, from the local 

brickyard, to build all the different houses in a village. Although playing out 

at completely different levels of abstraction and complexity engines and 

bricks are both examples of stable physical subassemblies, possible to 

combine with other parts, given strict compliance with some overall 

principles. Similarly, all designers have to shape structures allowing them to 

reuse the knowledge embedded in existing processes for new purposes. The 

star-shaped torx pattern for screw heads has been adopted to solve a 

countless number of problems and has improved assembly and reliability of 

cars substantially. Once again turning to ancient builders, the diffusions of 

half-timbering technique10 allowed 16th century builders to improve strength, 

material consumption, construction time, and insulation of houses. 

Therefore I suggest that: 

                                                             

10 Half-timbering – or timber framing - is the method of creating structures using 

heavy timbers jointed by pegged mortise and tenon joints (Wikipedia). 
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The hierarchy-of-parts frame and the network-of-patterns 

frame are both represented when ever organizations architect 

digitized products. 

Although operating on different levels, the two frames complement each 

other and contribute in distinct ways to reduce design complexity. The 

hierarchy-of-parts frame creates concepts and structures centering on the 

standardization and reuse of components, allowing for streamlined 

production of related, yet differentiated artifacts. The network-of-pattern 

frame creates concepts and structures zooming in on the standardization and 

reuse of solution patterns, allowing for novel functionality to emerge from 

the knowledge embedded in existing processes. Therefore: 

The hierarchy-of-parts frame and the network-of-patterns 

frame offer complementary schemes to architect digitized 

products. 

As tangible products are digitized, the network-of-patterns frame is 

increasingly relevant in architectural practices. It is not just anecdotal 

evidence, such as the immense popularity of Alexander’s pattern theory in 

the software engineering community, suggesting that product developing 

firms have to complement traditional approaches. This increasing relevance 

can be traced to the generative capability of digital technology, where 

programmability enables artifacts to perform new functions after production 

and replicability support inexpensive production. With its focus on general 

solutions to problems, the network-of-pattern frame leverages these 

capabilities of digital technology, concentrating on the product’s 

functionality rather than its production. In this regard, the two frames 

complement each other, enabling the product-developing firm to exploit its 

tangible products as platforms for a recurring digital business. This 

seemingly minor change opens up for a completely different model, where 

revenue is distributed across the lifecycle of the product.  

In short, it can be argued that firms need to stay focused on the hierarchy-of-

parts frame to produce cheap, powerful, and scalable hardware, creating 

significant installed base. At the same time, they have to cater for the 

network-of-patterns frame to make this hardware an attractive, generative 

platform, representing unlimited opportunities in the eyes of external actors. 

The network-of-patterns view is essential to mobilize external creativity and 

innovation, while the hierarchy-of-parts perspective allows for reasonable 

control over the innovation process and appropriation of some of the value 

created outside the boundary of the firm. Therefore: 

By exercising the network-of-patterns frame when 

architecting digital products organizations build capability to 
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leverage the generative capability of digital technology across 

the entire product lifecycle. 

By exercising the hierarchy-of-parts frame when architecting 

digital products organizations reinforce control over 

hardware, in turn, allowing them to appropriate value from 

largely uncoordinated innovation processes.  

Although the two architectural frames are represented in any design process, 

there is no doubt that the emphasis differ with the context. The ideas behind 

near decomposability have transformed manufacturing industries 

dramatically. Cars, airplanes, and home appliances are inherently modular, 

using near decomposability to create variety and rapid pace of change. At the 

same time patterns and pattern languages have influenced the software 

industry significantly over the last two decades. Today software designers 

find themselves spending more time on logical modeling of problems than 

on coding. How can we explain this obvious difference? How do product-

developing organizations, with stakes in hardware as well as software, 

combine frames? 

Addressing this question I suggest that we focus our attention on the barrier 

between a design and its realization as a physical product, derived in section 

3.2. Clearly, the production of tangible products is associated with 

substantial fixed and marginal costs, while software products are not. The 

production of cars or airplanes requires massive investments in specialized 

assets, such as tools, supply chains, and plants. To stay competitive a 

product developing firm has to depreciate these costs across large volumes of 

the product, enforcing an economy of scale. Relying on the hierarchy-of-

parts frame, product developing firms bridge the barrier between design and 

production by a shared product structure, allowing specialized assets to be 

reused across variants and generations of products. One can argue that 

physical products tend to be architected for producibility. 

If we think about it, this reasoning applies also to biological systems, so 

frequently used as role models by Herbert Simon. Nature has spent billions 

of years shaping sophisticated production machineries able to form living 

organisms out of genetic blueprints. These specialized production assets, 

shaped since the beginning of time at earth, are invaluable. The hierarchic 

structure we find in living organisms allows for these assets to be reused, yet 

opens up for adaptation at the level of parts. Any change in nature that 

renders reproduction mechanisms useless is destined to become a dead end 

in evolution. Living organisms are also primarily architected for 

producibility. 
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In software engineering the transition between design and production is 

relatively uninteresting. To some extent, we can argue that the design is the 

product. There are few specialized assets involved in the production, 

enforcing a shared structure across variants and generations. Therefore, the 

structure of a software product is not colored by production. There is simply 

little pressure for uniformity in the realization of a software product. Instead, 

competitive advantage emerges from the capability to reuse general ideas of 

a design to constantly spinoff new products to the market. We can argue that 

software products tend to be architected for generativity. 

If we turn to the many examples from traditional societies, used by 

Christopher Alexander in his writings, we will find that these settings are 

characterized by moderate barriers between design and production as well. 

Alexander keeps coming back to this setting since it is distinguished by a 

layman practice, where buildings were designed and constructed by the man 

at the street. It was not conditioned by expensive machines, exotic materials, 

or extreme skills. A house was reasonably associated with significant cost, 

but it was built using highly generic tools, such as saw, hammer, screwdriver, 

etc. It did not require specialized assets, enforcing uniformity between 

different buildings.  

In summary, design-production barriers determine the locus of architectural 

frames. Innovation environments characterized by substantial barriers – 

involving a lot of costly, specialized assets – view product architecture as a 

hierarchy of parts. In contrast, settings with low design-production barriers 

favor practices centered on the network-of patterns frame. Therefore:  

Inherent design-production barriers determine how the 

hierarchy-of-parts frame and network-of-patterns frame can 

be combined when architecting digital products 

Seeking generative capability, organizations need to reduce 

design-production barriers, allowing for an increased 

emphasis on the network-of-patterns frame when architecting 

digital products. 
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4 Methodology 

Digitalization is an ongoing, contemporary phenomenon. History gives 

limited advice in understanding how digital technology irreversibly changes 

our lives. Moreover, we have limited opportunities to test and elaborate in 

controlled environments. Digitalization is an emergent phenomenon which 

unfolds in a complex interplay between social structures and technology. 

Often we have no option but to study it in real-world settings and in real-

time. Therefore, in researching how “product developing firms architect 

digitized products to leverage the generative capability of IT” (p. 57) I have 

used qualitative in-depth case study as a basis of inquiry (Eisenhardt 1989; 

George and Bennett 2005; Gerring 2007). The case study “is preferred in 

examining contemporary events, but when the relevant behaviors cannot be 

manipulated” (Yin 2003, p. 7). Further, the case study offers a unique 

strength in its “ability to deal with a full variety of evidence – documents, 

artifacts, interviews, and observations” (p. 8).  

As discussed in section 3, the philosophical underpinning of this research 

has a critical realist stance (Archer et al. 1998; Bhaskar 1998; Easton 2010; 

Sayer 1992). It adopts a realist view in that it assumes observable, material 

properties of technology which exist independently from observers. Such 

properties translate into affordances, allowing designers, managers, and 

organizations to perform different actions. At the same time, it recognizes 

that our knowledge about the world is socially constructed. How people 

exercise affordances cannot be understood by studying technology in 

isolation. Instead, the assimilation of a new technology in an established 

practice has to be viewed in light of existing, socially constructed frames of 
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reference. With such a critical realist outlook this thesis approaches digital 

product innovation by combining realist ontology with interpretive 

epistemology (Archer et al. 1998). While this philosophical perspective 

resonates well with my personal character it is also suggested by several 

researchers as an important method to enrich IS research in general 

(Bygstad 2010; Mingers 2004; Smith 2006) and longitudinal case studies in 

particular (Dobson 2001; Easton 2010).  

Seeking to explain how product developing organization build generative 

capability the case study was tuned to uncover new cognitive frames for 

thinking about and representing digital technology. In that sense the 

research was interpretive (Klein and Myers 1999; Walsham 1993) in nature. 

At the same time, the critical realist outlook suggests that some ways of 

conceptualizing digital technology make more accurate representations of 

external objects than others. The assumption is simply that some schemas 

for thinking about and representing a complex product’s architecture are 

better off in delivering generative capability than others. Seeking to identify 

and represent such schemas the case study was specifically tuned to capture 

the interplay between actors and technology over time (Langley 1999; 

Markus and Robey 1988). This framing was supported in that the case study 

was longitudinal in its character, spanning a timeframe of approximately one 

decade. Even more important, it covered four different projects in four 

different phases of digitalization. The four projects were centered on 

different technologies, making it an embedded case study (Scholz and Tietje 

2002; Yin 2003), involving different units of analysis within the same case. 

The case study was conducted at CarCorp, a product developing firm in the 

automotive industry that develops, produces, markets, and sells cars on the 

global market. CarCorp is known for its eccentric designs and innovative 

features, resulting in a small but devoted customer base primarily in Europe 

and the US. At the turn of the century, CarCorp became fully owned by 

GlobalCarCorp, a major global automaker. Seeking scale advantages 

GlobalCarCorp enforced shared product platforms across its different 

brands, causing CarCorp’s product innovation to be tightly integrated with 

its parent’s global organization. In this integration CarCorp was given a 

leading role in designing in-car infotainment systems for the different 

brands in GlobalCarCorp’s palette of global automakers. 

4.1 Data Collection 

The empirical study, used as a basis for this thesis, was not originally framed 

towards architecture. Rather, the process started as a business model and 

value chain analysis of nomadic device integration. In a collaborative project, 

involving three major automotive manufacturers, consultant firms, and 
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content suppliers, the first phase of this research initially aimed to identify 

and describe complementary business strategies for an infotainment system 

based on nomadic device integration. As the study unfolded, however, it 

became increasingly clear that each identified strategy was tightly connected 

to a distinct architectural view on the system. Launching a new research 

project with CarCorp, explicitly framed towards architecture, the study was 

reoriented to investigate the relationship between design flexibility and 

architecture. As CarCorp gradually adopted an open perspective on 

infotainment, encouraging external development of applications, the study 

focus was slightly shifted again. Rather than centering on design flexibility it 

unfolded as a research study of architectural implications on generativity. 

Eventually, the study spanned four different CarCorp projects, making up 

four embedded cases (Figure 2). Each project focused on a distinct 

technology; MOST, SoftCluster, nomadic device integration, and the Android 

platform. Together, these projects extend over a period of approximately one 

decade. Data was collected in three phases. The first phase (January 2007 – 

November 2007) centered on contemporary nomadic device integration and 

its historical roots at CarCorp. The primary data sources were interviews 

(29) and project meetings (16). However, the phase also included focus 

groups (4) at the three automakers and one content supplier. The second 

data collection phase (October 2007 – December 2008) was part of a 

smaller, architecture-centric research initiative, largely implemented on site 

at CarCorp. Over the most intensive period I spent 2 full days a week making 

participant observations as an embedded researcher in different 

infotainment projects. Being on site at CarCorp opened up for access to a 

wide range of documents (37), such as technical specifications and project 

descriptions, but also gave access to internal project meetings (47). As a 

complement to these in-practice data sources the study included a range of 

interviews (27) and a few focus groups (5). Finally, the third phase (April 

2008 – March 2011) was carried out in tight connection with CarCorp’s open 

platform initiative. In particular, this phase was framed towards the intricate 

interplay between ecosystems and platforms. The primary data source was 

project meetings (39), but the phase also included interviews (11), 

documents (6), and one focus group. 

All together, the three data collection phases embraced five different data 

sources; interviews, project meetings, focus groups, participant observations, 

and documents. First, the study includes 67 interviews. The scope of these 

interviews amounted to a total recorded time of 76 hours and a transcription 

word count of 697.170 words. All in all, 102 project meetings were attended 

at an estimated total time of 316 hours. That makes a mean length of 

approximately three hours, although they varied from less than an hour to a 
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full working day (σ=1 hours 55 min). Moreover, 10 different focus groups 

were completed, with a total time of more than 15 hours. Finally, the three 

phases included approximately 250 hours of on-site participant observation 

and 37 selected documents. 

In distinguishing between different styles of researcher involvement in case 

studies, the data of this thesis was collected by an “involved researcher” 

rather than an “outside researcher” (Walsham 2006). Although close 

involvement comes with certain risks, I find it highly unlikely that this 

research could have been conducted on the basis of a more distanced 

approached. Automakers are considerable organizations. Technology is 

developed in a collaborative manner, on a global scene. Tasks are 

distributed, not only across buildings and departments, but across nations 

and continents. In such a setting it is very difficult to study the interplay 

between technology and people as an outsider. There is no local, well defined 

practice to examine. Therefore, to make sense of events and actions in a local 

project team or design group it is of outmost importance to understand the 

bigger picture in which these people exist. Unless the researcher is able to 

adopt their perspective, in-depth access to that picture will slip between his 

fingers. 

 



 

 

Figure 2. Timeline of empirical setting.

Rejection 
of OPN 

concept

Market 
introduction

Platform 
selection

Market 
introduction

Launch of 
business 

model 
study

CarCorp 
assigned 

global lead 
for clusters

Public 
release

MOST

SoftCluster

Android

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 20111996

First 
internal 
cluster 
project

Selection 
of MOST

Launch of 
the Nokia 

project

Bluetooth hands-free OPN

Market 
introduction

Replacement 
of MOST

Phase I

Phase II

Phase III

Data collection

Target of data collection phase II

Target of data collection phase I

Target of data 
collection phase III



Chapter 4 

102 

 

Table 3. Data collection statistics. 

Data Source Ph. I Ph. II Ph. III Total Comments 

Interviews 29 27 11 67 

µ: 1:08:33 

σ: 0:23:15 

word count: 697.170 

Focus groups 4 5 1 10 
µ: 1:40:25 

σ: 0:34:08 

Project 

meetings 
16 47 39 102 

µ: 3:06:08 

σ: 1:55:18 

Participant 

observation 

(hours) 

 248  248 

 

Documents  37 6 43 

Project descriptions 

Technical specifications 

Sales forecasts 

Press releases 

 

 

Figure 3. Overview of data collection activities. 
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4.2 Data Analysis 

The analysis of empirical data was conducted to create distance to the 

research setting I had been so deeply involved with over a longer period of 

time. Therefore, in order to reduce the effects of biased judgment the initial 

coding process was conducted in a highly open-ended manner (Strauss and 

Corbin 1998), aiming to construct “analytic codes and categories from data, 

not from preconceived logically deduced hypotheses” (Charmaz 2006, p. 5). 

The various data sources were repeatedly read and coded to identify key 

themes from major events, activities, and technology choices that emerged 

over time (Langley 1999). The open coding process was organized using the 

ATLAS.ti software for qualitative data analysis. All in all, the open coding 

process generated 181 primary documents, 1217 unique quotes, and 327 

codes. 

Next, to reduce overlap and weed out clearly irrelevant concepts, the code 

base was reviewed again, in a more reflective manner. In the process of 

comparing the concepts generated by the open coding, preliminary 

definitions of properties and dimensions were inferred. This eventually 

resulted in a reduced list of 273 mutually exclusive concepts and 41 

descriptive memos, interlinked with the code base. 

Up until this point the analysis had been conducted bottoms-up, with 

deliberate distance to the practice generating the data, but also disconnected 

from the selected theoretical framework. To filter out the data resonating 

with the framework, the identified categories were mangled with the key 

concepts of architectural frames. Experimenting with different approaches 

co-occurrence analysis turned out to be an effective technique for mapping 

underlying structure of the data material to the framework. Co-occurrences 

reveal links between codes in that they share the same quotes. This analysis 

was conducted by frequent application of the Query Tool in ATLAS.ti, 

combined with the network view. This phase of the data analysis can be 

viewed as focused coding in that the objective was to “synthesize and explain 

larger segments of data” (Charmaz 2006, p. 57). 

In particular, co-occurrence analysis provided a relevant angle on the data 

material. It traced concepts such as reuse, modularity, and complexity to 

data sources and organizational settings. However, it also resulted in four 

distinct high-level categories that emerged out of this process; platform, 

architecture, organization, and software development practice. Together, 

these categories (Figure 4), weeded out codes and quotes of particular 

importance when analyzing the application of architectural frames in 

digitalization at CarCorp. 
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At the same time, the analysis of data turned out to be a challenge in that the 

different concepts of architectural frames are not explicitly used in industrial 

practice. In other words; the distance between theoretical constructs and the 

applied language used by practitioners was considerable. Further 

engagement in more or less instrumental coding of the data material seemed 

difficult and not particularly rewarding. Instead, to widen the scope and 

apply the broad lines of the framework, without resigning precision, the 

refined model of the data material was repeatedly revisited from three well-

defined angles. These angles aimed to: 

1. Identify, describe, and contrast network-of-patterns thinking and 

hierarchy-of-parts thinking at CarCorp. Since concepts such as 

specialization, generalization, or aggregation were not explicitly 

represented, this phase was directed to single out representative, 

implicit patterns in the data material. Eventually, this analysis 

resulted in a validation of the theoretical framework and a 

demonstration of its ontological significance (6.1). 

2. Review the locus of architectural frames in respective embedded 

case and shifts in architectural thinking across cases. Largely, the 

purpose of this phase was to derive evidence for the proposition that 

generative capability follows from the cultivation of network-of-

patterns thinking. Given this point of departure, temporal shifts in 

architectural thinking across the four embedded cases were at center 

of attention. This phase eventually resulted in a detailed portrait of 

how network-of-patterns thinking propagates across an organization 

(6.2). 

3. Identify tensions and contradictions between architectural frames. 

In particular, this part of the analysis was conducted with a 

dialectical stance to uncover incompatible aspects of the frames and 

their consequences in innovation practice. In synthesizing the four 

embedded cases I finally derived a theoretical perspective which 

explains why the governance model entailed by traditional 

hierarchy-of-parts practices is fundamentally incompatible with the 

governance prescribed by network-of-patterns (6.3). 

Approximately ten years ago CarCorp started a journey characterized by 

gradual assimilation of a new kind of architectural thinking, which I have 

referred to as network-of-patterns. This journey was paved by challenges and 

disappointments, but also by radical advancement and great success. In what 

follows I present the story of digital product innovation at CarCorp over the 

period of the period of 1998 to 2011. 
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Figure 4. Illustration of high-level categories and their underlying codes 
(MapEquation.org). 
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5 Digital Product Innovation at CarCorp 

At the turn of the century, the automotive industry could look back on an 

exceptional growth of infotainment-related functions. In just a few years 

rapid digitalization had opened up for in-car phones, navigation, telematics, 

TV, CD, and rear-seat entertainment where there used to be just a radio. 

However, while enabling such exceptional growth, digitalization had now 

reached a point where it seemed to challenge established innovation 

practices. It was more and more obvious to designers at CarCorp that 

complexity increased dramatically as coupling between components 

skyrocketed. Speakers, displays, controls, and various sensors simply had to 

be shared over the full range of infotainment applications to support 

coherent and progressive end-user functionality as well as leveraging 

economy of scale. However, the dominant architectural frame did not offer 

proper structures to handle this complexity. While seeing the system as a 

modular hierarchy of parts, with well defined interfaces in between, the 

design practice remained centered on components. Functionality was 

specified at the level of components and suppliers were contracted to deliver 

components. At the same time, intensified coupling between amplifiers, 

radios, CD players, and navigation systems made infotainment ambiguous 

for designers as well as customers as functionality could simply not be fully 

understood at the level of components. 

Following the deep-rooted logic of modularity CarCorp responded to this 

increasing complexity by defining groups of components to hide the 

increasing interdependence within sub-systems. In retrospect, we can see 
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this as a first step towards recognition of a new architectural frame in that it 

accepted that the structure of functionality did not match the structure of 

components. Sub-systems were explicitly defined to encapsulate 

functionality, distributed over several components. While initially boosting 

functional growth, this strategy soon turned into a serious burden for the 

automakers. With modularity being a central element in enforcing 

hierarchical control over suppliers and sub-contractors, CarCorp and its 

competitors largely found themselves being in the hands of the suppliers. 

Amplifiers, radios, CD players, etc, remained separate physical entities, but 

highly intertwined through various proprietary and, from the automakers’ 

perspective, largely unknown networks, protocols, and harnesses from a few 

major suppliers. In practice, this created monolithic, highly static solutions, 

hard to change after the time of production since functionality was bounded 

not only to a component, but to a particular configuration of components. 

R&D staff perceived decreasing control of system design, product planners of 

upcoming functionality, and purchasers of the sourcing process. The rapidly 

increasing coupling simply had to be addressed in a new way to reclaim 

control and secure future growth; CarCorp had to develop new fundamental 

principles for how to architect infotainment products. 

In what follows, I present CarCorp’s struggle with the identification and 

domestication of such a new architectural frame over a period of 

approximately ten years. The story covers four embedded cases, together 

making up a detailed narrative of how CarCorp transformed architectural 

thinking in response to digital technology. 

5.1 MOST: The Recognition of a New Architectural Frame  

Studying the automotive frontier as well as other manufacturing industries, 

infotainment designers at CarCorp realized that the unconditional 

encapsulation of software in hardware components was at the heart of their 

problems. To some extent, software afforded suppliers the opportunity to 

quickly change functionality at the component level, while this advantage did 

not play out at all at the system level. Specialized and complex interfaces 

effectively prevented reorganization of the system or redeployment of 

functionality. Somehow they had to build infotainment systems where 

software-enable functionality could exist without being forever inscribed in 

particular components. Such decoupling between hardware and software 

was expected to bring much needed flexibility to change functionality and, at 

the same time, increase the freedom when decompose the system. At the 

turn of the century there was one automotive initiative with enough 
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momentum to be hailed as a solution to this challenge: MOST11. A senior 

systems architect at one of CarCorp’s competitors, later consultant for 

CarCorp, recall the early discussions promoting MOST as an interesting 

general purpose network concept, supporting the domain specific 

requirements and thereby further growth: 

We all saw the transformation of infotainment. It was a 
remarkable change, and growth, and new lifecycles of the 
products. We needed an infrastructure to support this. MOST 
was [already] selected by BMW, with others talking about it. 
Somehow it should support this domain, with needs beyond 
body [electronics] and powertrain.  

At a physical level, the MOST architecture was constituted by a fiber-optical 

bus network, providing bandwidth far beyond hitherto established solutions. 

This network interconnected the different components through a generic, 

non-functional interface in a ring topology. In such a ring topology 

components are not nested to hide complexity. Instead, all components are 

found at the same level, whether functionally interconnected or not. Seen as 

a layer in a higher-level hierarchy – e.g. a car – such a system is flat, having a 

wide span (Simon 1962) at that level. However, the MOST architecture was 

also constituted by an object-oriented, event-driven application framework – 

the so called function blocks. These blocks could be viewed as instantiations 

of functional patterns at different levels of specificity. As an example, 

navigation core functionality, such as routing and guidance could be 

associated to one block, while traffic information, GPS positioning, and map 

data access could be associated to other. A pattern could be inherited by one 

or several other patterns, forming a network of patterns. Since MOST do not 

enforce any particular deployment strategies, the network of patterns can be 

reconfigured without touching the hardware setup. 

Clearly, MOST offered two complementary architectural views on an 

infotainment system. On the one hand, it offered a new way to structure and 

interconnect physical components. The ring network encouraged a flat 

structure, with many components. This would allow engineers to mount 

components just about anywhere in a car, as long as it was possible to 

connect a tiny fiber-optical wire. Further, it offered a new way to 

interconnect physical components. As illustrated by another external MOST 

specialist, with experience from CarCorp and other automakers, the generic 

interface was a key argument behind MOST: 

 [With MOST] we saw an opportunity to bring things together. 
To get control [data], signals, audio, and, as we expected, also 

                                                             

11 Media Oriented Systems Transport. 
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video into the same bus concept. This in contrast to a mess of 
different harnesses and cables. MOST would simplify the 
[physical] system dramatically for us. You can compare it to a 
computer that you are plugging into the wall; you don’t have 
one network for control signals, one for streaming audio, and 
one for streaming video. You’ve got ONE Ethernet connector. 
MOST takes this kind of thinking to the car. 

In addition to this generic interface, the fiber optics used in MOST 

technology offered significant communication bandwidth compared to 

established solutions. Extrapolating the functional growth of the 90th, this 

was standing out as a critical issue, partly contributing to increasingly 

monolithic systems. Demanding applications, involving streaming audio or 

video, could not be distributed across several components unless supported 

by a separate interface. The MOST architecture seemed to remove 

bandwidth requirements as a constraint in the decomposition of systems. 

CarCorp's former MOST project manager recalls that: 

We had remarkable ambitions. We planned for video screens in 
the back seat and support for external video sources, delivering 
services such as park assistance. It should be a pretty high level 
of functionality. And when we looked at the different things 
customers should be able to do concurrently – it was a concept 
work I guess – we found that CAN12 wouldn’t do. We needed a 
really powerful bus concept to survive that. It should be able to 
support graphics, while simultaneously transmitting a burst of 
navigation data. These were key arguments [behind the 
selection of MOST]. 

However, with the function block framework MOST foregrounded the 

network-of-patterns frame, offering a new way to conceptualize functionality 

independently from the hardware structure. In the past, the different 

functions of the infotainment system had been specified in relation to a 

component. An interface specification defined the functional relationship 

between components and a functional requirement specification all the 

details guiding the inner design of components. In contrast, the MOST 

architecture was largely centered on the so called “MOST Function Catalog”. 

This specification identified and described all the functional patterns 

available in the systems, without any assumptions on where these functions 

eventually should be deployed. More specifically, it described how patterns 

were to be instantiated in software, including all the details on how to call a 

                                                             

12 The Controller Area Network is a standardized vehicle bus network, designed to 

allow microcontrollers and devices to communicate with each other within a vehicle 

without a host computer. 
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particular function. Complementary specifications described how different 

functional patterns related to each other, i.e. how general functions were 

iteratively combined to form more specific functionality. A senior systems 

architect reflects back on the early impressions of MOST’s approach to 

functional architecture: 

I think we all realized – at least the people involved in 
[architecting] infotainment – that somehow this was the future. 
We needed to focus on the system, solving problems at the 
system level. We could not remain in the hands of suppliers, 
making stand-alone components. Instead, we had to make these 
suppliers part of a larger whole. […] I think, at the heart of 
MOST, we find a kind of system level thinking that is not 
component-oriented. Instead, it centers on the structure of 
logical elements or functionality.  

The architect underlines that the separation of functionality and 

components, applied in the MOST’ architecture, was necessary to address 

the challenges of increasing interdependencies between infotainment 

components. After all, these problems were rooted in an inability to 

rebalance the system over time, as new functional requirements emerged.  

We had to prepare ourselves in order to get access to that kind 
of flexibility [offered by MOST]. That is probably an interesting 
concept here – flexibility to produce information anywhere in 
the car and consume it somewhere else, in a simple way.  

This flexibility derives from the fact that MOST introduced a formalized 

network-of-patterns frame that remained relevant across generations of 

product design. As new functional requirements emerged, MOST promised 

the opportunity to deploy function blocks differently to physical 

infotainment components. The MOST architecture simply offered the 

automakers increasing freedom in combining architectural frames. In 

practice, this translated to a whole new freedom in decomposing systems. 

Deeply rooted in component-based innovation, most people outside the R&D 

departments saw this freedom as a way to reinforce modularity. With 

frustration CarCorp product planners had observed how increasingly 

monolithic hardware structures destroyed attractive business models. 

Instead of an attractive list of options, enabling customer unique 

combinations, these interdependent systems had forced the automakers to 

bundle functionality in a few predefined offerings. This did not just cripple 

the new sales, but complicated the lucrative aftermarket business. The chief 

systems architect at CarCorp recalls that MOST’s inherent capability to 

support a distributed system, opening up for a wide range of combinations, 

was recognized and highly appreciated. 
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The aftermarket business was a key concern at the time when 
we decided for MOST. We saw an opportunity to change and 
modify components on the aftermarket, at a low customer cost. 
It would be possible to add components over time and it would 
be possible to upgrade systems. […] With a distributed 
architecture [made up of more but smaller components] you get 
a cost penalty on the system, but you can still argue that ‘it is so 
important to be able to offer customers the opportunity to 
extend their audio system with new amplifiers or additional 
speakers’. Then, he doesn’t have to throw something away that 
he has already paid for.  

Rooted in the hierarchy-of-parts view, automotive organizations saw another 

great opportunity in extensive decomposition of infotainment systems, 

supported by MOST: standardization. Significant adoption of a standardized 

technology was considered a great potential. With the traditional, 

proprietary system solutions CarCorp could possibly benefit from 

competition at the time of sourcing, but not over the product life cycle. Major 

investments in systems integration effectively prevented re-sourcing of 

components, causing lock-in effects where the manufacturer had no option 

but to stick with existing suppliers. Considering another reflection from the 

external MOST specialist, it is clear that standardization was an important 

argument in promoting MOST. With standardized components CarCorp and 

other automakers saw a potential to dramatically increase competition, with 

lower thresholds for re-sourcing. 

This idea about common specifications on functions and 
interfaces, that’s a major benefit. More or less being able to buy 
a component [off the shelf], like a radio tuner, developed for one 
manufacturer, but applicable to another since it’s a common 
interface specification.  

Clearly, the freedom to decompose infotainment in relatively independent 

physical components made MOST an attractive opportunity to increase 

revenue as well as reduce cost. Still, architects and designers could see that 

complexity would not disappear just because software-enabled infotainment 

functionality could be distributed across components. Inherent emphasis on 

the network-of-patterns frame would certainly facilitate change by 

transferring complexity to a digital domain, but it would not per se address 

the accelerating interaction between components. Somehow, the new 

infrastructure also had to address the root cause of increasing 

interdependency between components: reuse. At the time, there was neither 

technical nor organizational support for the reuse of resources or functions. 

As prescribed by the logic of modularity, problems were solved at the 

component level, by component engineers having the specific functional 

requirements of this component in mind. Consequently, sensors, displays, or 



Digital Product Innovation at CarCorp 

113 

 

control buttons were designed as solutions to specific problems associated 

with the component. Appropriating such solutions for other purposes was 

time consuming, expensive, and unnecessarily complicated. A new 

infotainment architecture also had to support the idea of generalization, 

where reuse is an integral part of creative processes. It had to support 

designers and engineers in creating generic solutions that could be easily 

inherited by colleagues working with similar problems. This would not just 

reduce complexity of the system, it would also translate to a much needed 

alignment of infotainment functionality. Reflecting back, a senior systems 

architect at one of CarCorp’s competitors, later consultant at CarCorp, argue 

that this opportunity to create a shared platform of common functional 

resources was – and still is – a key argument in favor of MOST. 

There are many reasons to question a lot when it comes to 
MOST, but its fundamental principles remain sound and viable. 
That’s what I think. It brings an object-oriented approach to 
“standardization” of [elements in] systems.  

I tend to see the logical perspective in the original MOST 
philosophy. I see some kind of elements that you reuse in 
different configurations. These [functional] elements can [for 
example] be a media player or GPS. They are not supposed to be 
too specific, with manufacturer unique information, related to 
HMI13 or something. They should be pretty basic, to take care of 
well-defined tasks. On top of this you build your system, 
defining how these elements are used in different [specific] 
applications.  

As we shall see next, CarCorp’s appropriation of the MOST architecture 

provided little change in business practices, marginal benefit from 

standardization, but a radically different infotainment system. In this MOST-

based infotainment system the structure of every function was visible and 

well described in UML14. However, it was not just described, but generalized 

in the sense that general elements were up-front designed to be shared 

among specific functions. As a consequence, the new infotainment system 

offered functional alignment and coherence far beyond what earlier systems 

had been able to provide. 

Appropriating MOST 

With the decisions to adopt MOST for the coming generations of 

infotainment CarCorp entered a rather painful path, unfolding in the clash of 

                                                             

13 Human-Machine Interface 

14 Unified Modeling Language 
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two architectural frames. MOST’s service-oriented approach, largely dealing 

with functionality decoupled from hardware, reinforced the network-of-

patterns frame significantly. Where the specification of functionality had 

been a relatively informal activity, at most supported by a shared word 

document template, MOST prescribed a seemingly unambiguous way to 

create, structure, and maintain the different functional patterns of the 

infotainment system. However, this frame was about to be applied in a 

domain deeply characterized by the component-based modularity of a 

product innovation regime. With innovation processes, organization 

structures, and products shaped by the architectural thinking of a hierarchy-

of-parts frame the automakers had a difficult journey ahead, trying to set up 

a new interplay between frames.  

The new way to structure components in a ring topology, implemented as a 

fiber-optical network, caused considerable concerns to CarCorp. At the same 

time, these troubles largely played out at a rather practical level. As an 

example, the novel integrated circuits that enable access to the optical 

network were not yet stable, thus causing major trouble to most 

manufacturers. Although learning how to manage fiber optics in an 

automotive context was demanding, these challenges had little to do with the 

conceptual principles behind MOST and, therefore, did not translate beyond 

the engineering level. Instead, the long term challenges related to MOST’s 

new architectural perspective. With MOST, the notion of architecture 

became blurred in the eyes of designers, and gradually loaded with new 

meaning. The traditional rationale behind architectural work – hiding 

complexity, division of labor, etc – was extended with a new, partly 

incompatible logic. With software-based functionality distributed over a 

range of physical components, other properties became salient. The new 

infotainment architecture became an enabler of functionality, largely 

defining the shape and form of this distributed computing environment. 

Systems architects turned into platform designers. The architecture came to 

manifest a design philosophy and generic system level services, rather than a 

structure of components. 

Although this transition was highlighted in the original MOST concept, the 

automakers underestimated the challenges of discovering, understanding, 

and implementing this design philosophy. It was simply far from obvious 

how specific infotainment functionality should be composed from general 

functional elements. A senior systems architect at CarCorp remembers his 

disappointment, when discovering that the architectural concept was far 

from solid: 

They [MOST cooperation] promoted MOST as a new system-
level model, a new kind of thinking, a new philosophy for 
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design. But this model was never written down. It was BMW 
and Becker running it, but not in public. […] we could see how it 
was designed, I mean the result of the MOST interface 
definition, but we never understood the [deeper] thinking, and 
how they intended to evolve it. That made many of us, 
implementing at the time, doing extensions of our own, 
tweaking around, and creating solutions which probably did not 
align with the visions.  

On a general level, systems architects and designers were trapped between 

two architectural frames, without solid ideas on how to combine them. On 

the one hand, they had to reinforce the network-of-patterns frame to launch 

a more service-oriented approach to infotainment development. There was 

consensus among systems architects that the established component-based 

modularity would not be able to secure future growth for this family of 

increasingly changing applications. On the other hand, they were still 

embedded in a product development context that is tightly entangled with 

hardware-centric component-based modularity. A massive body of existing 

requirements was derived from the architectural thinking associated with a 

hierarchy-of-parts frame. Further, both suppliers and the automakers’ own 

purchasing were reluctant to adopt software-driven business models. So 

were the product planners, showing marginal interest in software as a future 

revenue generator. The component seemed to remain the center of gravity 

for everyone, except designers and architects trying to reform infotainment. 

With such a range of path-dependent forces, the lack of clear and 

unambiguous design vision became highly problematic.  

The automotive industry’s component-based modularity, refined over a 

hundred years, is tightly intertwined with strict hierarchies both in product 

and organization structures. Product structures are hierarchical, with 

horizontal independency between components. In the same way, 

organizations are hierarchical, dividing relatively independent branches of 

labor. In order to govern such design hierarchies CarCorp followed strictly 

linear innovation processes, with a dynamics powered by waterfall models 

(Boehm 1976; Royce 1970) of product development. In practice, 

requirements were gradually broken down alongside the design hierarchy. 

Business objectives, general system topics, and overall functional properties 

were managed by the manufacturers, while the design of components and 

detailed functionality was assigned to highly autonomous suppliers, further 

down the hierarchy. As witnessed by a consultant, deeply involved in 

CarCorp’s MOST project as systems engineer, this traditional hierarchy-of-

parts approach did not change when sourcing the new infotainment system.  

They thought the traditional model would work, where each 
[supplier] had responsibility for his own function, embedded in 
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his own component. […] Down the road, they saw the flip side. It 
didn’t work since the whole system – end-to-end – was so 
incredibly distributed. 

Attracted by the opportunities of a distributed system, CarCorp had 

decomposed their systems widely, resulting in significantly more 

components than earlier solutions. At the same time, they had invested 

considerable efforts in generalization, trying to build a solid infotainment 

platform where shared functional patterns were consistently reused by 

higher level, more specific functions. At the time of deployment, when 

functional patterns were allocated to physical components, the clash 

between the two architectural frames became obvious; functions and 

components did not match anymore. The remote “islands of innovation” did 

not perform anymore, when a specific function, such as navigation, was 

distributed across several components in that it inherited general 

functionality deployed to other components. Suppliers were contracted to 

design and produce components, not software. However, relying on the deep 

rooted practices of component-based modularity, these suppliers were 

formally made liable to functionality that was distributed across a range of 

other components, outside their immediate control. 

Neither suppliers nor manufacturers were comfortable with this situation. 

Without dedicated software suppliers, taking full responsibility for 

component-spanning functions, innovation would most likely slow down. 

CarCorp saw no other option than bridging the gap between suppliers 

themselves by specifying not only interfaces between components, but also 

the system level behavior of all component-spanning functions. As 

illustrated by a project manager at CarCorp, this transition of responsibility 

increased the automakers’ stakes in functional design dramatically.  

You are taking a [new] responsibility as a manufacturer, when 
specifying this stuff. It becomes… I mean, they [suppliers] 
CANNOT even do anything! When I think about it, it’s not them 
rejecting responsibility; it’s us taking it from them. Yes, that’s 
what it is. We are telling them that “the only thing you’re about 
to do is to support this [our solution]. […] Earlier, when things 
were more component-oriented, they had an opinion of their 
own on things, they had tested it – possibly with other 
manufacturers – and knew what was good and what was bad. 
With this approach [MOST] we more or less lost such feedback.  

Clearly, these problems were grounded in an emerging and fundamental 

mismatch between the existing organizational structures and MOST’s 

approach in conceptualizing software-enabled functionality. Taking the 

network-of-patterns frame seriously, designers had to increasingly 
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background the physical hardware. At the same time, these designers 

remained organized to match the hardware structure of the system. 

Knowing that this mismatch could not be easily resolved, the automaker 

initiated two different measures to smooth the implementation of a MOST-

based infotainment solution. First, they reorganized the workforces at a local 

level to meet the new commission. The management realized that the notion 

of component was less important with the new technology and architecture. 

Therefore, the local organizational unit, related to infotainment, where tuned 

for an increased need to exercise system level control and specify overall 

functionality. The acting project manager for MOST industrialization 

reflected on this topic: 

Originally, it was a component-oriented group. They were 
expected to work with functional specifications as well. Later on, 
this didn’t work out, so they invited some people working with 
functions only. They needed more and more such people and, 
eventually they were a group of their own. Probably 10-12 
[persons], maybe even more. Most of them were consultant since 
it was running so fast, and we wanted it implemented. We 
underestimated the efforts significantly. 

Rather than obliterating the hierarchical structure, the manufacturer 

rebalanced the workforce, with old roles and levels of the hierarchy 

essentially remaining the same, while the locus of design activities moved 

upwards in the waterfall model, from the component level to the functional 

level. 

Second, as designers reinforced the network-of-patterns frame, they had to 

break with the strictly linear models of innovation associated with 

component-based modularity. The new situation pushed new forms for 

collaboration and new relations – some temporary and some more 

permanent – between actors that were not supported by the official 

hierarchy. Moreover, with functionality becoming a system-level issue, it was 

necessary to adopt iterative approaches to innovation. While the official 

development processes stated very few recursions, each resulting in the 

production of a pre-series car, the new way of designing infotainment 

seemed to call for an endless series of iterations. While the reorganization 

was formally approved by management, solutions to these challenges 

emerged bottom-up, from designers’ daily need to make progress. When 

specifications were ambiguous to suppliers, workshops were initiated with 

relevant stakeholders. When supplier implementations failed due to various 

misconceptions, the automakers built extensive system-level test 

environments to identify and solve problems collectively. When progress was 

too slow, the number of iterations increased dramatically, sometimes 
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exceeding one software release a week for individual components. Such 

figures are in stark contrast to the official development process, stating just a 

handful of releases for an entire 3-4 year car project. 

Struggling with an appropriate model to combine architectural frames, 

CarCorp gradually found a reasonably stable way forward. On the one hand, 

the product innovation regime associated with component-based modularity 

remained. Formal specifications were written, broken down to a component 

level and, eventually, sourced to various suppliers according to existing 

principles. On the other hand, much of the critical system level and 

functional work was performed in a fluid structure of more or less 

temporary, cross-organizational design teams. Relations between actors and 

arenas for collaboration were established and destroyed according to project 

needs. Together these informal teams and processes made up a network-

based model for innovation, augmented to the formal hierarchy.  

Balancing these two, partly incompatible forms of collaboration was highly 

challenging to designers and architects. To support the network-oriented 

daily work, the automakers had to create new design practices, improving 

the collaborative visibility. At the same time, to enforce the formal 

hierarchies they had to find new practices for the deployment of the growing 

functional designs to physical components.  

Systems architects at CarCorp had studied new design practices from the 

software industry even before the introduction of MOST. Since they had 

already seen increasing interdependencies with the low bandwidth CAN 

networks, they were attracted by the ideas of service-orientation and the 

ontological separation between software and hardware. With the decision to 

adopt MOST technology, bringing object-orientation and event-driven 

design, such ideas became legitimate and apparently useful.  

As a first step to reinforce the new architectural frame CarCorp revised the 

definition of architecture. In the architecture specification for the new 

MOST-based infotainment system, they revised the notion of components, 

now referring to them as either logical entities or physical nodes. On the 

basis of this extended notion, they defined architecture as 

the structures of the components of the system, their 
interrelationships, and principles and guidelines governing the 
design and evolution over time.  

In contrast to prior architectural approaches which more or less addressed 

the decomposition of systems in independent parts, this definition 

significantly changed the locus of architectural work. In including the 

dynamics of interconnected components and principles for development, it 

made system architecture a matter for designers in their daily work. 
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Further, with the network-of-patterns view on systems design in place, 

CarCorp adopted new CASE15 tools supporting a model-based approach to 

functional design. They decided to use the unified modeling language (UML) 

as a basis for modeling. These new tools provided significant support in the 

process of deployment. Linking functional designs to physical design, they 

allowed for smooth generation of component level specifications and 

interface specifications. Clearly, this model-based approach played an 

important role in shaping how CarCorp combined architectural frames. As 

the new practices emerged, the role of component engineers transformed 

radically. Their prior role, interpreting information and compiling 

specifications, was essentially reduced to editorial work, including various 

non-functional requirements. Therefore, this approach supported not only 

the cognitive aspects of system design, but also the more organizational 

challenges of rebalancing the workforces. 

Over time CarCorp realized that the mismatch between hierarchy-of-parts 

thinking, reflected in established organizations, and network-of-patterns 

thinking, reinforced by MOST, materialized at the time of deployment. It was 

the allocation of functional elements to different components that, in the 

end, enforced new relationships between component suppliers, without 

proper support in traditional processes. Therefore, it became increasingly 

clear that deployment could not be done on technological premises alone. 

Consequences on organizations and innovation processes were equally 

important when deciding how to distribute functionality across different 

components. 

In response to this challenge CarCorp tried to allocate functionality 

characterized by high pace of change to just a few components. This strategy 

was expected to give a malleable infotainment system that could be 

effectively changed, without exercising the intricate tensions between 

different suppliers. As described in CarCorp’s architecture specification, this 

strategy was centered on user interfaces, considered to be the most volatile 

part of infotainment. 

The infotainment system is a user interactive and user intensive 
system (application) with continuously changes in the user 
interface but with core functionality that in some degree is 
defined as stable. Therefore it is a good idea to split the core 
functionality from the user interface. 

However, splitting the more general and durable “core functionality” from 

specific user interface functionality was not just a matter of making 

                                                             

15 Computer-aided software engineering 
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appropriate deployment; it required an up-front conceptualization of 

functionality that allowed for such deployment to take place. It was simply 

necessary to have this strategy in mind when deriving general functions from 

specific. Further, it called for a shared approach to generalization. A scenario 

where navigation, telematics, and media player derived generic functional 

patterns on different premises would not just increase complexity; it would 

most likely result in different user interface logics and, eventually, confusion 

at the level of end-users. Therefore, as described in CarCorp’s architectural 

specification, all designers had to adopt the same strategy when applying 

generalization to their respective functionality.  

In many cases there exist design issues that does not map onto a 
single component, neither physical nor logical. These issues are 
more general in nature and must be addressed and expressed in 
form of strategies that must be followed by all designers 
involved in the design of the infotainment system family. 

Specifically, CarCorp had to set up a strategy addressing the imminent need 

to separate changing interface functionality from more stable base functions.  

Based on this insight the decomposition of the infotainment 
system is based on the well-known architectural pattern Model-
View-Controller. 

With the model-view-control (MVC) pattern guiding generalization, 

designers were encouraged to break functionality apart in a very precise way; 

the so called model objects corresponded to basic functionality, such as 

navigation routing or digital music decoding. View objects implemented the 

user interface, while control captured the dynamic properties. Further, the 

automaker implemented the observer pattern (sometimes labeled publisher-

subscriber) to facilitate event-driven interaction between increasing amounts 

of distributed objects. Basically, this pattern identified controllers and views 

as subscribers of events at the models, creating a hierarchy between objects. 

Summary and Epilogue 

MOST introduced a new architectural frame at CarCorp. This new 

architectural thinking allowed them to structure physical and functional 

parts of the infotainment system more independently from each other. In 

order to reinforce the logic of modularity the automakers decomposed the 

physical system quite extensively, resulting in a wide range of components. 

Guided by hierarchy-of-parts thinking, the general, non-functional interface 

promised unbounded configuration of these components, translating to rich 

business opportunities. At the same time the automaker invested 

considerable efforts in generalization of infotainment system functionality. 

Released from the grip of components, systems architects and designers 
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inferred a range of general elements, to be reused for different specific 

functions. As a result MOST brought coherence between functions and, 

therefore, significant harmonization of the infotainment system. 

However, facing an organizing logic fully defined by hierarchy-of-parts 

thinking, CarCorp found that the new architecture destroyed established 

innovation logic. With specific functionality intertwined through shared, 

general functional elements infotainment became ambiguous from the 

perspective of suppliers. Still responsible for physical components, they 

largely rejected responsibility for functionality with the valid argument that 

it was outside their control. Distributing a specific function across several 

components, delivered by different suppliers, essentially prevented any of 

these suppliers from taking over all responsibility. The only way to resolve 

this problem was for the automakers to increase their stakes in functional 

design. As a result, the locus of innovation moved upstream, from suppliers 

to the manufacturers. CarCorp had to specify functionality in detail, deploy it 

to components and derive concrete component-level requirements for each 

supplier. In practice, this resulted in earlier binding of functionality and 

even less opportunities to adapt to changing needs. 

Addressing this weakness the automaker tried to deploy functionality to 

physical components so that expected changes would be isolated to just a few 

components. Knowing that a vast majority of infotainment change requests 

were related to user interfaces it was reasonable to direct attention to HMI. 

Therefore, the infotainment system was deployed to concentrate specific 

user interface functionality to one or two components, while the underlying 

functionality was distributed across the system. As noted by CarCorp’s 

MOST project manager, this had some brutal consequences for the system as 

a whole; it accelerated the coupling between components dramatically. 

Well, we did not make the ideal MOST implementation – it was 
hyper interactive. […] There was massive communication 
between the user interface and [e.g.] the audio manager, who 
needed to be involved. Then, when it had decided how to 
respond, it resulted in massive communication with the 
connection master and, then, the connection master with 
everyone else to set up new channels. So, yes, it was hyper 
interactive. 

In retrospect, CarCorp domesticated the network-of-patterns frame with 

MOST. The organization learned to use this complementary frame to engage 

in generalization, resulting in much needed and appreciated harmonization 

of infotainment functionality. At the same time, the attempts to combine 

architectural frames did not match established innovation logic and forced 

them to take full responsibility for functional design. With limited supplier 
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innovation, even earlier binding of functionality, and little focus on 

specialization of general functional patterns for new purposes the new, 

sophisticated MOST systems offered essentially no new specific 

functionality. On top of this, extensive distribution of functionality caused 

strong coupling between components, largely preventing low-end 

implementations of the MOST system. Whether configuring the system for 

base functionality or high-end application, most components turned 

mandatory. As expressed by CarCorp’s former MOST project manager, this 

made the infotainment system far too expensive and, in particular, very hard 

to scale for a range of car models. 

Considering our different levels... For high-end, with navigation, 
MOST was competitive. It delivered more functionality to a 
lower cost than any other solution within GlobalCarCorp. 
Unfortunately the low-end system became more expensive than 
corresponding GlobalCarCorp solutions.  

At CarCorp this eventually resulted in the rather remarkable decision to 

abandon MOST and turn back to existing solutions.  

It happened fast and I think it had to do with the fact that 
GlobalCarCorp had a solution we could use. If we had been on 
our own, we might have given it another chance. Then we might 
have designed a cheaper, more centralized, and simpler system. 

Although few automakers followed CarCorp’s quite dramatic decision to 

abandon MOST, it was generally questioned and criticized. As witnessed by a 

senior systems architect at one of CarCorp’s competitors, the introduction of 

MOST systems at markets was painful for managers and designers at most 

automakers. 

MOST was associated with failure. Then, it obviously was very 
costly. […] It is not an easy thing to stand up and defend a 
solution that just drained the wallet and caused a lot of trouble. 
It is not an easy thing for a manager to do. I know several 
manager who got a lot of blame, some were even close to losing 
their job. 

5.2 SoftCluster: Rethinking Platforms 

The MOST architecture and other related projects in the late 90th had 

opened up a Pandora’s Box in the automotive industry. These projects had 

introduced a radically new architectural thinking, foregrounding the 

structure of functionality, rather than the structure of physical artifacts. The 

new architectural frame had encouraged designers and architects to identify 

and reinforce functional patterns that were or could be shared within the 

system. When reusing such patterns for different purposes this 

generalization paid off as coherence between specialized infotainment 
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functions and, as a whole, a significantly more harmonized system. No 

doubt, the new frame was there to stay. At the same time, designers and 

architects were painfully aware that they had accomplished little progress in 

terms of new, specialized end-user functionality. Despite substantial 

investments they had simply not delivered anything new and exciting in the 

eyes of the vast majority, not seeing the system from the inside. 

One legitimate explanation to this lack of novelty is of course that CarCorp 

had to focus their attention on short term challenges. They had to learn a 

radically new technology and find new ways of collaborating with suppliers. 

They simply did not have the time and energy to push end-user functionality. 

However, as indicated by CarCorp’s chief systems architect there was a 

significantly more important challenge to tackle – a challenge that would not 

disappear as technology matured. Being a manifestation of the network-of-

patterns frame, MOST’s function block framework offered more or less 

unlimited freedom in designing functionality, without being constrained by 

the established logic of modularity. At the same time, this freedom 

disappeared at the moment when the functional designs were deployed to 

physical components. At this point in time the hierarchy-of-parts frame took 

over and suppliers considered specifications frozen. 

I would say the main challenge was to handle this variability 
from an aftermarket and production perspective. We created 
[design-time] flexibility, but it was a problem to preserve this 
flexibility [...] That’s often where we end; resolving technical 
challenges is one thing, to resolve all the different organizational 
challenges, about infrastructure and maintenance and support, 
that’s a lot worse. 

As illustrated by CarCorp’s architect, the inability to preserve the network-

of-patterns frame could be explicitly inferred from a mismatch between the 

new architectural thinking and established organizational structures. 

Infotainment was about to be a matter of software. With software 

increasingly disconnected from hardware and powerful communication 

infrastructures in the cars, the new digital technology aligned well with the 

new architectural frame. There were simply few technological arguments to 

cut functionality into pieces and deport these pieces to isolated components. 

However, the organization, with its embedded routines, practices, and other 

structures, was built around the design and production of well defined 

components, with minor dependencies to other parts. These structures 

essentially forced CarCorp to background the network-of-patterns frame 

when leaving the implementation of specifications in the hands of suppliers. 

Suppliers were still contracted to deliver components. Purchasers were 

scanning the domain of components to locate the best offer. Quality 

assurance was centered on the testing of components. 
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CarCorp could see that the established product innovation regime did not 

bring proper incentives for suppliers to engage in software-centric 

innovation. At the bottom line, they would be accounted for a component, 

not a piece of software. Still, they were expected to design and deliver the 

increasingly important software, making up the infotainment system. In 

addition, the clash between a new architectural frame and established 

organizational structures largely had transferred responsibility for functional 

design from suppliers to CarCorp. In summary, suppliers cared for 

components, CarCorp for functionality, but no one really cared for the 

software.  

At the end of the 90th CarCorp started to see that software was at risk of 

falling through the cracks. Although unclear how it would affect the 

organization, it seemed necessary to reinforce competence in this area. As 

narrated by today’s software manager, it was more or less insignificant at the 

time: 

From a software perspective CarCorp was a disaster when I 
came here 1998. You can’t even imagine. I was offered a position 
as software engineer, but realized that I, more or less, was the 
only one with software competence. Coming from Ericsson, it 
made a huge contrast. Over there, software was at the heart of 
what we did. 

Lost in this hardware-oriented organization he struggled a lot with how to 

contribute in the new organization. In contrast to his earlier positions, he 

ended up quite far from the practice of software design and implementation. 

I had major problems understanding what they wanted me for 
– what are their intentions? I spent a lot of time working with 
processes. You know, what does a software process look like at 
CarCorp? What is our role and what is the role of suppliers? 

However, while working in frustration with these high-level questions, pretty 

far from hands-on software development, coincidence played him in the 

hands. A new car model was in a critical phase of development when the 

supplier of the instrument cluster proved alarmingly weak on software 

competence. For several reasons CarCorp was stuck with the supplier and in 

a highly unorthodox manner, management decided to offer the relatively 

new software engineer to put together a small team and make the software 

in-house.  

This supplier proved to be weak on software. Really weak. They 
were excellent on mechanical things, on hardware, but they 
couldn’t handle software. So we said, OK, let’s make the 
software. We had backing from management, although I doubt 
they understood what we were about to do. With this support we 
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put together a group of 4-5 [designers]. We did the software on 
the basis of a platform that we had made ourselves and 
[eventually] we were able to take it to production. […] It was 
very successful. We did it fast and with quality. 

Looking back on this period the software manager sees a milestone. These 

achievements brought the issue of software up on CarCorp’s public agenda 

and indicated that it could be rewarding to engage in the actual production 

of it. With in-house development of software the automaker did not have to 

rely on the linear innovation processes where specifications were frozen too 

early, for deployment in different components. Instead, software 

development and functional design could co-evolve, essentially keeping the 

network-of-patterns frame alive and relevant across the entire development 

cycle. With in-house development of software, it suddenly seemed possible 

to achieve variability that was not grounded in the reconfiguration of 

components. As pointed out by the chief systems architect, such variability 

was particularly valuable for HMI-related functionality. 

By tradition, suppliers offered a low [component] price, 
knowing that change orders would feed them down the road. 
These changes always turned out to be ‘small and simple’ HMI 
changes.  

As CarCorp’s successful initiative raised attention at its owner, the rationale 

behind internal development of instrument cluster software was further 

reinforced. With several brands and a lot of different car models, 

GlobalCarCorp also saw an opportunity to commoditize hardware. With the 

traditional hierarchy-of-parts perspective on products, differentiation tended 

to drive cost, simply since it manifested itself as new component variants. 

More variants gave lower volumes and less opportunity to benefit from an 

economy of scale. Commoditization, on the other hand, tended to make 

designs inflexible. Making a component fit in the design hierarchy of several 

different cars was a challenging task, even with minor dependency to other 

parts. Changes would trigger re-validation across the entire range of vehicles. 

Therefore, commoditization came with no less than tough compromises 

between the values of different market segments and brands. Ripping up a 

settled deal to introduce new functionality would trigger a new round of 

painful negotiation. GlobalCarCorp now saw an opportunity to escape from 

this seemingly unavoidable contradiction; CarCorp’s approach promised one 

shared cluster hardware, powered by unique and easily changeable software 

for each model. 

2005 GlobalCarCorp launched a new strategy, where instrument cluster 

software was classified as ‘strategic software’ to be developed in-house. The 

task of developing this software for GlobalCarCorp’s all brands and models 
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was assigned to CarCorp. The official acknowledgment of software 

competence opened up for a new organizational setup. Above all, this 

allowed for significant professionalization and growth. CarCorp’s software 

manager remembers that: 

[2005], about three years ago, the first [real] software team was 
put together. That was when the organization started to see 
software. The team was approved and people with dedicated 
software skills were hired. This is also when we were trusted 
with the software development for all [instrument] clusters 
within GlobalCarCorp. […] Down the road we have hired more 
people working with structure and architecture and all the 
different aspects making a software organization.  

Developing the SoftCluster platform 

Over a relatively short period of time, the new team put together what was 

later recognized as the SoftCluster platform. Designing the architecture of 

this new platform, CarCorp had one primary objective; to destroy barriers of 

change. It was increasingly obvious that software-centric innovation was an 

emergent phenomenon, where functionality could not be designed up-front, 

as prescribed by established processes and structures. As underlined by one 

of the HMI designers, later using the software platform, it was designed for 

recurring specialization, where general elements were reused and 

recombined to form genuinely new functionality. 

Well, flexibility was a key argument. To be able to implement 
[new] HMIs down the road and modify them quite extensively.  

It’s like playing with LEGO. You’ve got a particular set of bricks. 
They’ve got their limitations, but you can build a whole lot of 
different things with them. And it’s simple. 

To make the SoftCluster platform a truly flexible toolbox of such LEGO-like 

bricks, the software team had to find a solution to an intricate challenge. On 

the one hand, instrument cluster functionality is inherently distributed. A 

display in the cockpit mediates information on average speed, fuel 

consumption, outdoor temperature, radio station frequency, and many other 

things. The instrument cluster system collects, aggregates, and presents all 

this rich information deriving from remote sensors, encapsulated in a whole 

range of different components. No doubt, these remote components had to 

remain stand-alone components, primarily for cost reasons. A low-end car 

would have a radically different setup compared to a high-end car. In that 

sense, the SoftCluster platform had to recognize the hierarchy-of-parts frame 

and support the decomposition of the system into different components. 
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On the other hand, the legacy of MOST projected strong arguments not to 

distribute instrument cluster software across different components. In order 

to take the network-of-patterns frame seriously it was necessary to avoid the 

destructive clash between frames that had eventually caused the exit of 

MOST technology at CarCorp. The only reasonable way to achieve this in an 

organization dominated by hierarchy-of-parts thinking was to deploy the 

SoftCluster platform to one key component. If change could be isolated to 

one physical node there would be little need for continuous synchronization 

of different parties through static component specifications that, eventually, 

would prevent variability. 

Trying to set up an architecture resolving this inherent contradiction 

between the hierarchy-of-parts frame and the network-of-patterns frame, 

the new software team concentrated their effort on three distinct measures: 

First, they agreed on a specific design rule to be applied when making 

functional designs; the system should be generalized in such a way that all 

information sources could be handled as independent, simple, and general 

patterns, logically decoupled from more specialized functions. As described 

in one of the specification for the SoftCluster platform, such a “functional 

unit (FU) defines what [information] content it is able to display”, but 

essentially nothing more. This would allow for a decomposition of the system 

in one master component, hosting all specialized functionality, and a range 

of slave units that could be configured to meet particular model 

requirements. On the whole, this design rule was introduced to assist the 

combination of architectural frames. It would help preserving some of the 

flexibility offered by modularity, while at the same time allowing for 

functionality to evolve as software could be easily changed at the master 

component, with minor implication at the slave nodes.  

Second, to cater for changes in FUs that after all would occur, the SoftCluster 

platform architecture introduced a new end-to-end communication strategy. 

This strategy was manifested as an XML interface – the OpenXMLInterface 

(OXL) – allowing for retrospective changes in communication between the 

master component and remote information providers without impact on the 

system level. As described in one of the system specifications the general 

CAN network in the car, used by the SoftCluster platform, allowed for 

restructuring of bus messages. However, such changes entailed modification 

of the central signaling database, essentially enforcing revalidation of the 

entire electrical system in the car. 

The [network] handler architecture allows architecture 
designers to change both parameter IDs and message framing 
[…], but this ambiguity is in conflict with the component sharing 
and interoperability strategy for components using the OXI 
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interface […] Therefore, all OXI messages shall have fixed 
parameter IDs, startbyte, and startbit relationships. 

With OXL instrument cluster designers could rely on fixed CAN network 

messages, while augmenting an XML structure on top. Changes could be 

rapidly introduced in the ends, without involving the rest of the organization. 

In practice, the system could evolve at the network-of-patterns frame, while 

preserving the hierarchy-of-parts frame intact. OXL was an important 

measure to avoid the lethal clash between architectural frames, causing so 

much damage to the former MOST-based infotainment system. 

Third, with the SoftCluster platform CarCorp introduced a macro-oriented 

approach to HMI development. Similar to the logic of a web browser, the 

new concept made use of a markup language to specify layout and look-and-

feel. The macro was stored in a database and interpreted in real-time by a 

standardized software component – the so-called HMI engine. 

Consequently, the new concept commoditized not only the hardware, but 

also considerable pieces of the software. Reflecting on the long-term 

consequences of architectural work, a senior engineer at the consultant firm 

co-developing the SoftCluster platform with CarCorp touches on the main 

rationale behind this radical approach; the architecture is explicitly reflected 

in processes and, therefore, it defines how a product can be changed over 

time.  

In some sense, it’s when you break the system into pieces that 
you really see the architecture. That’s when it is most important. 
It defines the processes for distribution, purchasing, verification, 
and things like that. 

Even though CarCorp had decided to develop instrument cluster 

functionality in-house, the design team feared that software would be 

inscribed in hardware at the time of production. The macro-oriented HMI 

(MOH) reinforced the separation between functionality and the tangible 

product one step further. With MOH CarCorp saw an opportunity to create 

and, in particular, maintain truly differentiated HMI solutions for the full 

range of vehicles within GlobalCarCorp, without being constrained by part 

number administration, system re-verifications, or other organizational 

burdens, hampering change. Specifications clearly state that the MOH is 

grounded in: 

…a need to support vehicle brand differences within the 
GlobalCarCorp family such as difference in graphics, layout and 
menu structures without having to change operational software 
in any ECU. 
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This reasoning is developed in some detail by the chief systems architect, 

when trying to summarize the rationale behind the selected architecture of 

the SoftCluster platform: 

With the new generation [instrument clusters] we wanted it to 
be perceived as uniquely designed for each market, with its 
language and culture, still relying on a shared [HMI] engine, 
handling everything. With this solution we wouldn’t have to 
verify the software for every market. The code was shared, it 
was decoupled from the look-and-feel. So, we truly separated 
presentation from logic and [general software] application. 

Summary and Epilogue 

With the SoftCluster platform CarCorp reinforced the network-of-patterns 

frame significantly. Earlier initiatives, such as the MOST project, had 

focused on generalization, providing coherence between functionality and 

increasing harmony in using in-car systems. With the new cluster project 

CarCorp shifted focus, from generalization to specialization, launching an 

architecture with one overall objective; to assist rapid and smooth evolution 

of instrument cluster HMIs. This architecture was grounded on three 

distinct elements: 

1. It separated volatile and specialized HMI functionality from 

relatively stable and generic functional units, collecting and 

aggregating basic information. With this separation CarCorp could 

combine architectural frames in a new way. Modular strategies could 

be exercised to vary hardware setup between car models, while at the 

same time concentrating the evolution of software-centric HMI 

functionality to one component.  

2. It introduced end-to-end communication capability, allowing for 

distributed functionality to change with insignificant implications on 

the system level.  

3. It introduced a macro approach to build specialized functionality. 

This allowed designers to launch new functionality without 

recompiling software, which reduced risk, validation efforts, end 

eventually cost. 

As illustrated by an excited HMI designer, the SoftCluster platform was 

exceptionally successful in reducing barriers for change. He argues that the 

platform completely dissolved the gap between design and product. In 

principle, a new idea could be pushed all the way to customers, without 

involving suppliers, software engineers, or even test teams. 

You know, lead times are usually very long in this industry. But 
it’s fascinating [with this new concept], because now I can be 
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part of a design discussion, trying to plan for a change that feels 
pretty challenging, and people ask me “how long does it take to 
implement it?” And I can tell them “it’s already done.” With this 
architecture I can make some design changes really, really fast. 
But I think there are very few realizing it. 

The designer underlines that the MOH concept introduced a set of 

fundamental limitations for creative work, but given compliance with the 

offered framework it provided substantial freedom in designing new 

specialized solutions: 

There are restrictions [in the SoftCluster platform], but as long 
as you follow them I see no problems. I could put something 
together, like… I mean now we are in the automotive industry, 
[working] with radios and phones, but give me two hours and I 
have designed a solution for a washing machine. Give me 
another two hours and I have the HMI ready. I don’t know 
[right now] what it’s going to look like, but give me a few 
sketches and it’s done. And then I mean up and running.  

Although many designers did not think the new instrument cluster solution 

was used to its full potential, the SoftCluster platform has to be described as 

a success. It entered production 2008 and is still a strategic tool in 

GlobalCarCorp’s maintenance of instrument cluster functionality. It is 

applied to 5 different families of clusters, spanning 23 different languages. 

All in all, GlobalCarCorp have shipped more than 10 million cars using the 

SoftCluster platform. 

Given this success, the software team at CarCorp was requested by 

GlobalCarCorp management to study how their experiences could be applied 

in a new infotainment platform. Fall 2007 the software manager put together 

a review team of employed engineers and external specialists to set up the 

guidelines for such a new software-centric infotainment platform, intended 

to be shared by all the brands within GlobalCarCorp. After several months of 

intensive brainstorming, technology reviews, and state-of-the-art analysis it 

was clear that the SoftCluster concept could not be transferred to 

infotainment unless it was extensively modified. The main reason was that 

infotainment evolves according to a logic which is substantially different 

from an instrument cluster. 

The SoftCluster concept was based on the assumption that variety and 

change plays out on the most specialized level, while the underlying, more 

general functionality is static. HMI design ideas which complied with the 

markup language, defined by MOH, could be realized with minor efforts. 

However, ideas that could not be implemented on the basis of these pre-

defined, general building blocks were destined for rejection. Similarly, ideas 

reusing and recombining existing FUs could be set up with little trouble, 
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while the need for new information sources would trigger painstaking 

development of new physical components. 

The review team found that the rigid SoftCluster platform, essentially relying 

on fixed general patterns, was unrealistic for infotainment. Somehow, an 

upcoming infotainment platform had to be adaptable also at the level of 

general patterns; generalization could not be seen as a one-off activity, 

performed at the time of original platform design, but had to be considered a 

recurring activity. Moreover, it was increasingly clear that the pace of 

recurring generalization and specialization could not be defined by the 

automotive industry. Over a few years engineers at CarCorp and other 

manufacturers had witnessed how infotainment was increasingly colored by 

the rapid progression in consumer electronics. Customer expectations were 

more and more defined by standards of mobile phones, handheld computers, 

and PNDs16 As illustrated by CarCorp’s software manager, it seemed 

inevitable to involve external parties to cope with this challenge.  

[For example] We don’t see these [increasingly important] 
advanced graphic engines as a core competence at software & 
control. We simply don’t think we can get state-of-the-art user 
interfaces if we decide to do them ourselves. 

With consumer electronics actors engaged in the development of an 

infotainment platform, CarCorp saw an opportunity to share general 

functional patterns across industry boundaries, eventually assisting them to 

keep up with its higher pace. The software managers emphasized that such 

strategic collaboration would not just have implications on HMI, but play out 

more widely and give: 

…the opportunity to actually offer marketing, product portfolio, 
and design what they really want. […] Requirements we get 
from design are very inspired by the iPod and the iPhone. That’s 
the kind of functionality they would like to see in our 
infotainment system. And we can’t do that in-house. 

So, what is new here? Well, I think we need to focus a whole lot 
more on flexibility and pace of change. We need [for example] to 
keep up with new trends for connectivity. Seeing WiFi 
connectivity coming for iPod we need meet that quickly with a 
new solution. So, by being in control of software, we can be fast 
and make sure there are [general] software functions 
supporting whatever it is we see coming. I think that’s the main 
challenge here. 

                                                             

16 Portable Navigation Device. 
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The overall challenge for CarCorp and other automakers was how to find an 

appropriate way to combine architectural frames so that infotainment could, 

on the one hand, exist in a hierarchy of parts characterized by one pace of 

change, while, on the other hand, allow for functionality to evolve at pace 

defined by consumer electronics. As we shall see, CarCorp addressed this 

challenge by two different initiatives; nomadic device integration (5.3) and 

the open Android platform (5.4). 

5.3 Nomadic Device Integration: Bridging Pace Barriers 

While the MOST-enabled infotainment system and the SoftCluster platform 

largely were responses to internal technological progression and accelerating 

functional growth, the automotive industry also faced increasing external 

pressure for change. Between 1998 and 2002 the number of mobile phone 

subscribers in the developed world increased from 25% to 65%17. Similarly, 

portable navigation devices had a remarkable commercial breakthrough a 

few years later, illustrated by TomTom’s 375% increase of sales between 

2004 and 200518. The roll-out pattern of portable music players is similar to 

navigation, although diffusion figures are even more overwhelming. In 

September 2009 Apple announced that the cumulative sales of iPods 

exceeded 220 million units19, with a significant breakthrough at the end of 

2004.  

Over just a few years the design challenge in vehicle infotainment changed 

dramatically as an emerging consumer electronics market offered an 

attractive alternative to integrated systems under the control of auto 

manufacturers. Whether CarCorp liked it or not, they had to relate their own 

products to the new competing systems. Every new release of in-car 

infotainment products would be measured by consumer electronics 

standards. Even more problematic, the high pace of change in consumer 

electronics made CarCorp’s in-car infotainment systems seem outdated in 

months or years, while the car, hosting these systems, had a significantly 

longer life time. Over time designers feared that the long development cycles 

in the automotive industry would turn these systems obsolete from the first 

day of sales. 

On the one hand, new initiatives for systems design and new perspectives on 

architecture had introduced technology and knowledge, allowing CarCorp to 

                                                             

17 ICT statistics from the International Telecommunication Union (ITU).  

18 TomTom press release February 14, 2006 

19 Apple press release September 9, 2009. 
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decouple software from hardware. The network-of-patterns frame, 

reinforced with MOST and the SoftCluster concept, had offered significant 

design-time flexibility. At the same time, this flexibility had vanished at the 

time of production, when architectural frames were irreversibly combined. 

With supplier revenue streams triggered by the delivery of high quality 

components, not superior design processes, the distribution of functionality 

across several components created unpleasant ambiguity. Similarly, the 

automaker centered its verification and quality assurance on component 

tests, not design reviews, further reinforcing a component-centric view on 

the products. Finally, the hierarchy-of-parts frame was made permanent as 

suppliers were made liable for components over time on the basis of 

warranties. Retrospective introduction of new software would not just bring 

additional properties to a system; it would potentially disrupt the stability of 

the system.  

One can argue that the MOST project introduced generalization at CarCorp, 

while the SoftCluster initiative established specialization. However, the 

automaker had not been able to close the loop, allowing the two mechanisms 

to survive beyond the time of production. No doubt, this would be necessary 

in order to keep in-car infotainment up-to-date with the progression in 

consumer electronics. However, a more software-centric perspective, where 

the network-of-patterns frame could survive the transition between design 

and production pushed for a radically new perspective on products as well as 

business models and seemed distant. It would come with no less than the 

dissolution of inherent institutional structures. 

Seeing the massive challenges in this, designers and managers working with 

infotainment saw an option in direct integration with mobile phones, PDAs, 

navigation systems, and other nomadic devices20. With this approach 

infotainment functionality could still be viewed through the lens of a 

component, included in the overall hierarchy making up a car. However, for 

a simple reason this functionality would not be restrained by the hierarchy-

of-parts thinking dominating the automotive industry; nomadic devices were 

designed in another industry and intended for a different market. Over time 

they would change at a pace defined by the consumer electronics industry, 

not the automotive industry. Nomadic device integration seemed to offer a 

combination of architectural frames where automakers could keep 

considering the product as a hierarchy of parts, while the consumer 

electronics industry would ensure that functionality was not forever 

                                                             

20 Nomadic device is a term used widely to refer to a handheld wireless device, such 

as a PDA or smartphone. 
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inscribed at the time of production. Nomadic device integration (NDI) would 

enforce consumer electronics life cycles on the automotive industry. 

As early as 1996 CarCorp initiated collaboration with the mobile phone 

manufacturer Nokia. The initiative rested on a cradle-based vision, enabling 

convenient use of at least one of Nokia’s phone models in the car setting. In-

car resources, such as speakers, microphones, and controls would give new 

opportunities to adapt the off-the-shelf phone to a driving context. The 

functional design of the phone would be untouched, while CarCorp planned 

to introduce more specialized patterns, inheriting general nomadic 

functionality to deliver a dedicated in-car user experience. However, the 

project was terminated in early stages as Nokia changed the interface for 

accessing the phone several times during the project. Nokia did not consider 

the potential gain in car-related cell phone sales attractive enough to stay 

with the initial interface. It would have slowed down its own product 

innovation. Sales of cell phones exceeded that of cars many times, making 

cooperation with CarCorp marginal to Nokia’s business proposition. The 

Nokia project had, once again, demonstrated that the hierarchy-of-parts 

frame relies on a stable structure, with fixed interfaces. Functionality can 

evolve within components, but the decomposition of the product is unlikely 

to change. 

Despite these discouraging experiences CarCorp renewed the efforts to 

create a system for nomadic device integration 2002. The sales of integrated 

phones would not take off and it was now recognized as a dead end. It was 

simply too expensive for most users and the solution was hopelessly out-of-

date in that it did not support the functionality offered by a typical cell 

phone. In addition, it was costly to maintain and modify. It was time for 

CarCorp to reconsider the idea of nomadic device integration. 

With the Nokia project in mind, designers realized that nomadic device 

integration would remain nothing but a vision unless they found a solution 

that allowed phone functionality to evolve, without impact on the in-car 

system. Addressing this issue, they formulated two guiding principles for the 

upcoming NDI initiative. First, it had to overcome interoperability problems 

caused by ever-changing physical characteristics. Instead of a cradle, tightly 

connected to phone designs, the new solution would make use of a wireless 

interface. Second, integration between vehicles and nomadic devices should 

not rely on vendor-specific, proprietary technology. Stability would come 

with no less than a public standard, not controlled by a specific actor.  

Although there were a few interface options available at the time, the 

escalating momentum of Bluetooth technology draw most of CarCorp’s 

attention. The fact that Bluetooth was not created by or for the automotive 
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industry complicated the process. Yet, it seemed to resolve the problem 

causing the Nokia project to fail. As illustrated by the infotainment product 

manager, Bluetooth was seen as the missing link, allowing nomadic 

functionality to evolve, while preserving the critical interfaces in the overall 

hierarchy of parts. 

We have overcome the barriers associated with proprietary 
standards in mechanics, electronics, buses, and so on. General 
standards such as the Bluetooth protocol now exist, making us 
believe that this will actually work, also beyond a particular 
phone model’s lifecycle. 

One of the engineers made a similar statement: 

Using a standardized interface means that we can both lower 
our development costs and increase customer value. […] It is 
much easier when you follow a standard rather than trying to 
develop a standard or a proprietary technology as we have done 
up to now. 

2004 CarCorp launched the first solution for nomadic device integration, 

based on Bluetooth technology. It was a handsfree-kit, allowing seamless 

transfer of phone calls between mobile and automotive contexts. Without the 

need for docking cradle, the user could leave the phone in the pocket or a 

bag, while interacting on the basis of dashboard controls and in-car audio 

resources. 

From a functional perspective the new system performed well. However, as a 

means of handling the inherent life cycle differences between consumer 

electronics and automotive industries the selected solution confronted 

significant and unanticipated challenges. First, the Bluetooth standard 

proved not to be a standard, at least not up to CarCorp’s expectations. Cell 

phone manufacturers interpreted and implemented the Bluetooth protocols 

differently, leaving significant interoperability problems for CarCorp. As a 

result, the NDI solution could only be developed, certified, and tested for a 

limited range of cell phones. This was a major disappointment for the people 

involved in the project. An infotainment manager ironically reflected upon 

the unanticipated problems: 

If you were an early adopter, you ran into troubles. CarCorp 
was a really early adopter [of Bluetooth] in automotive.… 
Standard proved not to be standard. There was a very complex 
relationship between devices across brands and models, which 
made the process rather tricky. 

Second, the Bluetooth standard proved not to be stable in time, at least not 

up to automotive norms. Instead, it evolved in harmony with new phones 

entering the market. With a repurchase time of less than 18 months 
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Bluetooth enhancements were pushed to consumers through new devices. 

With vehicle life cycles of approximately 25 years, this strategy was 

inherently closed for CarCorp. Suddenly, the idea of keeping the system up-

to-date over time, as customers bought new cell phones seemed hopeless. As 

illustrated by one of the infotainment designers, the fundamental differences 

in product life cycles turned out as the key challenge in creating a sustainable 

solution to nomadic device integration: 

Sadly, we don’t support the latest cell phones. We are working 
on it but we are facing a tough automotive reality. We have not 
been able to change our processes. It takes very long time to 
introduce software updates. The software has to be validated as 
part of a system. This is related to safety, and the fact that we 
must guarantee the endurance and quality of our systems over 
time. Getting a component into a car takes one year. When it is 
supposed to talk to another system in the car, it involves a major 
validation process. At CarCorp today, a new piece of software 
means a new validation process of the entire system. That’s why 
we can’t keep pace with new devices coming. 

At this point the NDI proponents were lost and frustrated. They gradually 

realized that Bluetooth would not be the solution to their vision. It did not 

allow them to support a wide range of mobile devices and, more important, it 

did not allow them to support future devices, not yet designed at the 

production of the car. Despite exceptional efforts they had not been able to 

appropriate Bluetooth to bridge the gap between architectural frames. In 

practice, functionality was still inscribed in the system solution.  

At the same time, the rapid consumer uptake of cell phones, portable music 

players, and navigation devices kept building up pressure from the consumer 

electronics industry. As illustrated by an infotainment project manager, NDI 

proponents expected CarCorp’s traditional business cases to break down as a 

consequence of this external pressure: 

We are a couple of people who think that [selling embedded 
navigation and CD-changers] won’t be possible in the future.… 
When you have navigation in your pocket, why have an 
integrated navigation system in the car? You will not have a 
CD-changer in the car AND an mp3-player in your pocket. We 
believe that this type of car equipment won’t be there in the 
future – that the market will disappear for us. 

At the same time he underlines the underdog situation by noting that:  

Now, I should not presume that this is the company’s official 
stance. I get a lot of shit for saying this, especially from our 
marketing people… they don’t believe in this, they don’t think it’s 
reasonable to think like this. They still believe that it’s going to 
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be possible to sell integrated navigation in large volumes, and 
that it still will be possible to sell CD changers. 

Consequently, the infotainment group faced not only a significant 

technological challenge, but also minor support from management and the 

rest of the organization. On the one hand, the absence of management 

attention was problematic. On the other hand, it nurtured a skunkwork 

attitude within the increasingly tight group. Reflecting back on this period 

one of the strongest NDI proponents noted that: 

We were rebels. We have always worked on ideas and solutions 
that have been difficult to appreciate from an automotive 
perspective. We have always seen ourselves as outsiders in view 
of the mainstream automotive designer. 

In this tolerant environment the design team approached the life cycle 

dilemma again. They realized that the NDI vision would remain a vision 

unless they were able to shift their mindset. As one designer commented, the 

idea of a fixed interface had proven fundamentally misleading: 

The car has a long life cycle and a slow development life cycle. 
We therefore need a flexible software-based connection for 
nomadic devices that can adapt the car to modern technology 
after the point of sale. We need this in order to offer new 
applications in a flexible and agile way 

Another designer noted that: 

What we should try to do is to introduce leeway in the interface 
between our slow cycle and a much faster cycle, and still create 
customer value. So, the objective must be to identify the magical 
interface that enables us to adapt to a world that moves so much 
faster  

Synthesizing previous experiences they abandoned the idea of enforcing the 

pace of one industry on another, which essentially was the idea behind using 

a standardized interface. Instead, they started to promote the idea that 

integration between in-car resources and nomadic device could be enabled 

and maintained through a gateway component. This solution would allow for 

interoperability between a static vehicle environment and evolving 

functionality on nomadic devices. With a simple software patch the CarCorp 

customer would be able to buy a new cell phone or music player, while 

preserving in-car support of the new device. 

This approach reinforced the network-of-patterns frame. Although 

seemingly simple at the level of technology, the idea represented a major 

deviation from established architectural thinking. Following the traditional 

logic of manufacturing, CarCorp applied a “fire-and-forget strategy” across 

its whole range of development. In practice, functionality was mangled out in 
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the design phase, but fixed at the moment of production. New ideas and 

solutions, born after start of production had to wait for a facelift or a new car 

model. Therefore, the new gateway concept for NDI had to challenge the 

traditional design-production barrier. It would keep the network-of-patterns 

frame alive and relevant beyond the time of production. This would be 

particularly problematic without a solid management support.  

2006 CarCorp launched an advanced engineering project to demonstrate 

these new ideas. The gateway was framed as an open platform for interaction 

with nomadic devices (OPN). At this point the notion of openness essentially 

reflected the envisioned capability to stay tuned with external consumer 

electronics, while platform emphasized the hardware-software distinction – 

the gateway would be malleable to external environmental changes through 

software updates only. The former manager of the Nokia project, now 

appointed project manager for the gateway project, reflected upon the new 

concept and the road ahead: 

We are envisioning a software design that boosts the car’s 
capacity to handle the digital world. The solution must enable us 
to follow the technical development in telecommunications 
during both the construction and production time of the car, 
which, taken together, is around seven years. 

With a vision calling for device-independency and the idea of standardized 

interfaces left behind, infotainment designers had to identify new 

mechanisms for the integration of vehicle and nomadic devices. Following 

traditional product innovation logic it would be CarCorp’s responsibility to 

identify new interfaces, specify them, and make sure the corresponding 

software was designed and installed on the gateway. Consulting earlier 

experiences they saw the absurdity in such a practice. CarCorp did not have 

intelligence capability to indentify proper candidates for integration. It 

simply did not know consumer electronics and telecommunication industries 

well enough. Further, automotive pace would effectively prevent quick 

turnaround of software drivers. Rigid automotive processes would delay the 

introduction of a new interface to the point where it was no longer 

interesting. Struggling with this challenge designers turned their attention to 

the successful USB technology. A senior software architect argued that:  

We should mimic the plug-in flexibility offered by USB. It is the 
device that is responsible for providing the relevant driver. This 
enables an end-to-end architecture for making the systems 
operate together… As a third-party vendor, you’ll supply this 
opportunity by installing the driver on our open platform. 

At this point the concept of openness was filled with a slightly different 

meaning in the eyes of designers. With this new perspective ‘open’ did not 
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just refer to the flexibility enabled by technological integration with external 

devices. Instead, it recognized integration between the vehicle and nomadic 

software, essentially disconnected from the device. A third-party developer 

would be able to provide software, relevant for in-car usage, without being in 

the hands of device manufacturers. At this moment, the architectural locus 

shifted significantly in favor of the network-of-patterns frame. It became 

increasingly clear that the functional structure of the infotainment system 

could change independently from the physical hierarchy of parts. Third party 

actors could introduce or revise general functional patterns, allocated to 

nomadic devices, for use in specialized in-car functions, allocated to in-car 

components under CarCorp’s direct control.  

With enthusiasm the NDI proponents saw the potential and beauty in this 

new perspective. With a general API21, the functionality of nomadic devices 

could evolve at its own pace, without being constrained by the physical 

decomposition of the infotainment system. Essentially, it would be up to 

external, third party actors to secure compliance with the car. Nomadic 

device software would not be accessible in the car unless it could be inherited 

by these specific patterns, adapting functionality to a car context. This 

seemed to be an extraordinary opportunity to resolve the life cycle problem.  

With the mobile navigation provider Appello as partner in the project, the 

first benchmark was more or less given. The NDI gateway should 

demonstrate how Appello’s mobile phone-based off-board navigation22 

solution could be enabled for specialized use in CarCorp’s cars. From an 

architectural point of view Appello’s existing solution represented a network 

of patterns, hosted by the nomadic device. This network had to be extended 

with a new layer of specialized functional patterns, solving problems that 

were unique to the car environment. In order to preserve Appello’s existing 

solution as much as possible these specialized patterns had to be deployed to 

the NDI gateway. In practice, the software designers approached the 

challenge by looking upon the car as an extended interface to the cell phone. 

Audio, video, and control signals were directed to the vehicle for 

presentation according to car-specific requirements.  

The role model for this approach was found in the almost forgotten work of 

AMI-C23, completed a few years earlier (cf. Guglielmetti 2003). Although the 

                                                             

21 Application Programming Interface 

22 In off-board navigation key features (e.g. map data access and routing) are remote 

services, deployed at a server, while other features (typically guidance and HMI) are 

deployed to the mobile client. 

23 Automotive Multimedia Interface Collaboration. 
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original AMI-C protocol had to be complemented (e.g. to support the vector 

graphics needed for the transfer of moving images), the solution performed 

virtually as expected. With this so called “streaming approach” Appello’s 

base functionality was preserved untouched, while the HMI was adapted to 

the car context.  

The validation of the streaming approach revealed a few technical 

weaknesses. The transmission of vector graphics across a wireless serial 

interface was a weak link. The solution faced an inherent latency issue that 

could not be easily resolved. Further, it effectively prevented customizations 

for the vehicle environment, using in car resources. However, the most 

important conclusion drawn from the demonstrator was not technical to its 

nature; it was increasingly clear to everyone involved that a non-functional 

interface, of the type used in the streaming approach, would transfer 

responsibility unconditionally to external actors. On the one hand, this was 

at the heart of the original idea; external actors would keep up pace of 

change. At the same time, the AMI-C-based interface would gladly relay any 

information for presentation in the car, as long as it complied with some 

basic specifications. Without influence over the nomadic device there would 

be no technical barriers, whatsoever, preventing a third party vendor from 

introducing functionality disapproved by CarCorp. In some sense, it would 

be possible to hijack the car. 

Such an aggressive strategy would be exceptionally provocative to a 

conservative automaker. For several reasons the automotive industry is 

centered on explicit control for governance. One motive is related to 

production – the act of assembling components. Significant control of 

component interfaces ensures compatibility at the time of production. This 

aspect would not be compromised by the new perspective on openness. 

Another strong argument behind the dominant control agenda in the 

automotive industry is related to liability. Although a car is assembled of 

components from a wide range of suppliers, customers look upon it as a 

coherent product. Distinct hierarchy-of-parts thinking, manifested as 

modularity, is the established way to exercise control over this organizational 

hierarchy. To implement the new perspective on openness CarCorp simply 

had to give up this kind of architecturally enforced control and identify other 

mechanisms to govern largely independent actors. From this moment in 

time, the openness-control dilemma made a dominant discussion in the 

project. The ambivalence is demonstrated by the project manager: 

We see great promise in the idea of developing a general API 
that gives third-party developers the opportunity to develop in-
car applications. By definition, the problem is that we won’t 
know what will happen. What applications will be developed? 
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There are major stakes involved in openness; they involve huge 
uncertainty, ignorance, and some fear about which direction 
this will take. 

The idea of giving up control of the design process was obviously highly 

challenging to CarCorp. By tradition, suppliers are influential in the design of 

in-car functionality. Still, the automakers exercise significant control 

through architecture. Together, the decomposition of systems into 

components and interfaces between components define how products can 

evolve over time. Functionality may be designed at Denso, Delphi, and 

Harman Becker24, but according to CarCorp’s overall agenda. Opponents 

argued that the proposed model for openness would put CarCorp in a 

reactive position, rather than a proactive. 

However, while losing control of design was problematic to CarCorp, losing 

control over the product was highly alarming. It was obvious to proponents 

as well as opponents that application software residing at an external device 

would be completely outside of CarCorp’s control. Furthermore, the nomadic 

device would be malleable across the vehicle life time, while the car was 

essentially fixed. Consequently, there was no mechanism binding a 

particular configuration of nomadic software to a particular vehicle. 

Consequently, functionality would evolve over time and seek new meanings. 

Meanings over which CarCorp had no influence, what so ever. As reflected in 

a later discussion with GlobalCarCorp’s top infotainment managers, this 

kind of openness was largely unthinkable: 

At least in the United State we have something called product 
liability and, if we think that people could create something that 
they’re gonna put in our vehicle and that is a distracting or 
somehow interferes with the primary task, then to some extent 
we are, we’re liable because we’ve kind of opened the door to 
that. 

This reasoning suggests that customers would make CarCorp liable for any 

disloyal functionality developed after time of production. Again, a promising 

idea to solve the life cycle problem seemed to fail. 

Summary and Epilogue 

Nomadic device integration posed a new challenge to CarCorp; the product 

had to be architected for change, not just between generations of the 

product, but across the lifecycle of products. Architectural frames had to be 

combined in such a way that in-car infotainment functionality could evolve 

at a pace defined by the consumer electronics industry. Up until now, 

                                                             

24 Major suppliers of automotive infotainment systems. 
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CarCorp had approached the network-of-patterns frame with the intention 

to generalize (MOST) and specialize (SoftCluster), but without closing the 

loop from the perspective of a given product. With NDI they envisioned an 

infotainment system where general functional patterns were continuously 

supplied by consumer electronics and easily provided to in-car users in a 

specialized form. With NDI infotainment would be able to evolve 

continuously, not just at discrete occasions constituted by the release of new 

car models. 

In an early attempt, CarCorp experimented with an accessory-like approach 

to this new challenge. A state-of-the-art Nokia mobile phone was integrated 

with a car on the basis of existing physical and electrical interfaces. This 

hierarchy-of-parts approach to NDI relied on the same basic idea used when 

customers buy new wheels; given a fixed, modular decomposition of the 

system and permanent interfaces between parts the end-user is free to pick 

the wheels of his or her own choice and upgrade when appropriate. However, 

the experimental setup demonstrated to CarCorp that nomadic device did 

not offer stable interfaces. Manufacturers used different solutions and, even 

more problematic, these manufacturers continuously changed these 

interfaces. 

Wide adoption of Bluetooth technology in consumer electronics injected new 

hope in CarCorp’s NDI vision. With a standardized, well diffused, and non-

physical interface, it once again seemed possible to approach nomadic 

devices as accessory parts that could be changed at personal preference. 

Bluetooth promised that general functionality, hosted by nomadic devices, 

could be inherited for specialized in-car usage. However, once again the idea 

of rigid structure of physical parts, preserved by stable interfaces turned out 

to be naïve. Bluetooth was a standard. Still, whether CarCorp liked it or not, 

it evolved at a pace defined by the consumer electronics industry. CarCorp 

was able to ship NDI solutions to customers, but after just a few years it 

could not support the latest devices.  

CarCorp designers realized that modularity did not offer a durable solution 

for nomadic device integration. In perspective of automotive lifecycles, 

mobile phones, portable navigation devices, and other nomadic devices 

turned out to be far from the stable subassemblies prescribed by a hierarchy-

of-parts frame. Further, such stability could not be enforced through 

standards, such as Bluetooth. Change could simply not be isolated to 

nomadic devices. In order to make use of the momentum in consumer 

electronics CarCorp had to find a way to deal with changing interfaces, not 

defined by them. With OPN, specialized functional patterns, hosted by the 

cars, would be able to evolve in harmony with generic functionality at the 
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nomadic devices. In practice, this meant that OPN software had to be 

updated across the life time of the vehicles.  

In a hierarchy-of-parts frame stable parts are bootstrapped into ever more 

complex configurations. Decomposition defines interfaces between parts 

and, in turn, how parts can be aggregated into new products. To some extent, 

the original setup of specific patterns is preserved in the interfaces. 

Therefore, in a hierarchy-of-parts frame, the physical break-down of a 

product is a manifestation of control. In context of NDI, CarCorp was 

inherently deprived of this traditional mechanism to exercise control. In a 

network-of-patterns frame generic functional patterns are bootstrapped into 

ever more complex configurations. Generalization defines how patterns can 

be inherited and, in turn, how these general patterns can be reused in 

increasingly specific functions. In this architectural frame, control is 

exercised through general patterns. Performance improvements in 

positioning will translate to the more specific navigation function, while the 

opposite is false. Suddenly, CarCorp designers found themselves in a 

situation where they neither had control over interfaces nor over general 

functional patterns. It became increasingly obvious that the OPN solution 

would be rejected for security and safety reasons, but also since it clearly 

lacked governance mechanisms allowing CarCorp to capitalize on its 

investment. 

Triggered by these insights, Appello’s software designers highlighted that 

porting could be accomplished simply by running their cell phone 

application at the gateway. At the time, cell phones were open to third-party 

software under the limited premises given by the Java sandbox25, provided 

by most manufacturers. Appello had successfully exploited this opportunity 

to leverage a device independent navigation solution. A similar Java 

environment at the gateway would offer a solution to CarCorp’s problems. 

Smooth porting of existing applications, originally developed for cell phones 

and other devices, would allow CarCorp to appropriate value from consumer 

electronics. At the same time, it would give reasonable control over 

innovation processes. Hosting the Java platform in cars, rather than 

nomadic devices, would give CarCorp control over general functional 

patterns. Such control would not just reduce liability issues by bring 

influence over specific application software, but also allow for efficient 

integration with the rich set of resources offered by the car. It would make an 

opportunity to govern external innovation, rather than just follow it. 

                                                             

25 In computer security the sandbox metaphor refers to a mechanism for separating 

running programs. 
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At this moment, CarCorp designers started to rethink the role of the gateway. 

They had used the notion of platform when discussing the gateway for a 

longer period of time, but essentially to point out that it would support a 

range of different nomadic devices. From now, they started to see it as a 

coherent enabler of hardware and software resources allowing for the 

execution of a wide range of applications.  

Consequently, they complemented the original demonstrator, turning the 

gateway into a full blown Java platform. What emerged as the “host solution” 

successfully demonstrated a high-performing port of Appello’s navigation, 

executed at CarCorp’s in-car platform. Latency issues vanished and software 

designers easily modified the software to align with the interaction resources 

provided by the car. 

When at the end of the project reflecting upon the transition between 

gateway and software platform, project members saw both opportunities and 

challenges. On the one hand, running the software at CarCorp’s platform 

enabled a set of new tools to handle the intricate liability issue. While 

controlling the platform, it suddenly seemed possible to dissolve the hitherto 

distinct boundary between wide open and closed. A smart platform strategy 

could reasonably be used to enforce CarCorp’s agenda, while still not 

internalizing the process of developing applications. As one of the 

consultants involved in the project noted, it would allow for a gradual 

transition between the traditionally closed model and a truly open one. 

CarCorp must start by offering services and applications that 
they control. It’ll be extremely difficult to open up the system to 
everything.… The first step will be to release some of the control 
and to work with third-party application providers that can 
offer some new services. 

At the same time, the NDI proponents began to see that this new 

combination of architectural frames would pose a whole range of new 

challenges to the organization. An open platform under CarCorp’s control 

would enforce new perspectives on product planning, purchasing, 

production, marketing, and sales. It would come with new product offers, 

new forms for supplier collaboration, and new business models. Shortly, it 

would disrupt the existing organization structure. At this time no one could 

see a way to implement this transition smoothly. In the next section (5.4) we 

follow CarCorp’s progress in seeking novel solutions to these substantial 

challenges. 

5.4 Android: Designing for Generativity 

2007 CarCorp had reached a point in its transition of innovation practices 

where the concept of open innovation was recognized and to some extent 
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accepted as a solution to the challenges facing infotainment. This journey 

can be viewed as a gradual uncovering of the network-of-patterns frame. 

Projects such as MOST had introduced generalization (5.1). By identifying, 

specifying, and reusing a range of general functional elements, across 

different components, CarCorp had designed an infotainment system where 

applications made better sense together and offered significantly more 

harmonized functionality. Later, the SoftCluster initiative demonstrated that 

such general and reusable elements, when released from the grip of 

components, had impact on innovation far beyond streamlining of 

functionality (5.2). It turned out that a platform making general functionality 

available and accessible accelerated creativity in design teams. In an act of 

recurring specialization new functions could be generated continuously, as 

general patterns were easily combined in new ways. Finally, CarCorp’s 

commitment in nomadic device integration showed that generalization and 

specialization are intertwined phenomena (5.3). Unless the general patterns 

of the platform and the many specialized applications using it evolve 

together the generative capability will inevitably decline. Drawing on the 

many experiences from nomadic device integration CarCorp started to see 

how such evolution could be governed; it was critical to take control of the 

platform. The general patterns of a platform are inherited by specific 

applications. This inheritance creates a unilateral relationship, where 

specific patterns rely on general, while general patterns can be described 

independently of specific. In practice, this translates to an opportunity for 

platform owners to exercise control over application development. Although 

seemingly evident, this offered a distinctly different perspective on 

governance. Traditionally, CarCorp and other automakers specified specific 

functionality, while leaving the functional breakdown in the hands of 

suppliers. Largely, they governed innovation processes through the 

structural decomposition of the system into components. 

As illustrated by a statement of the director of controls and software 

engineering at GlobalCarCorp, designers and engineers considered 

traditional linear innovation processes outdated for infotainment: 

This idea of being five years ahead to predict what future our 
customers are going to be in only means [that] what we deliver 
is irrelevant. 

The only way to keep up with consumer electronics would be to actually get 

involved, reduce existing barriers, and encourage the consumer electronics 

community to keep the car up-to-date on their own premises. Coming 

infotainment systems could not be up-front designed; they had to emerge in 

a continuous interplay between CarCorp and external actors.  An open 

platform, under the control of CarCorp seemed to be a way forward. Given a 
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capability to draw attention, it could take the creativity and multiplicity of 

consumer electronics to an automotive setting. The only thing was that the 

notion of openness and the concept open platform were fuzzy phenomena. 

Neither the software team nor the organization as a whole shared a view on 

them or a language to discuss them. Although blurred in its contours most 

people agreed that the value of an open platform was largely manifested in 

its capability to boost uncoordinated, creative processes. As underlined by a 

GlobalCarCorp strategist, such value is tightly connected to multiplicity and 

diversity. Unless an open platform is able to generate such multiplicity it is 

essentially useless. 

the way you establish value for this open platform is this idea 
that you have to be able to look at hundreds of ideas, and then 
you’re going to see the value. The minute you limit what you’re 
going to look at, by the nature of the beast, you have basically 
eliminated your value. 

With brutal precision the statement emphasizes that the purpose of an open 

platform is to generate options – digital options. Unless platform owner, 

developers, and end-users could find a way to do this together, an open 

platform approach would fail. To succeed they had to find a model where 

designers’ creative leeway could be balanced towards CarCorp’s need for 

influence and control. 

Despite the many promises it was increasingly clear to managers and 

designers that an open innovation approach to infotainment would require 

not only R&D staff to reconsider the hierarchy-of-parts frame, but essentially 

the whole company. Rather than placing well defined orders on tier-1 

suppliers, CarCorp would make offers to independent developers. This 

would enforce new perspectives on product planning, purchasing, 

production, marketing, and sales. It would come with new product offers, 

new forms for supplier collaboration, and new business models. Shortly, it 

would disrupt the existing organization structure. 

Although CarCorp did not know how to address all these challenges, it was 

increasingly clear that an open innovation practice would require them to 

close the loop between generalization and specialization. The platform and 

its wide range of applications had to evolve together, in reasonable harmony, 

while at the same time preserving revenue generation for GlobalCarCorp. In 

architecting such an infotainment system they predicted two main 

challenges. First, generalization could not be seen as one-off activity, taking 

place in isolation from application development. Instead, the platform had to 

be architected for continuous adaptation to developers’ shifting needs. 

Second, application development would not occur out of nowhere; it would 

be necessary to set up an attractive innovation ecosystem, hosting 
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specialization of infotainment functionality on CarCorp’s platform. 

Consequently, CarCorp launched two advanced engineering initiatives; one 

project to identify and specify the next generation infotainment platform and 

another to delve into the non-technical aspects of the open innovation 

concept, with particular focus on business models and developer ecosystems. 

Designing the “Next Generation Infotainment Platform” 

The task to identify and design a new infotainment platform was formally 

assigned to CarCorp by its parent, GlobalCarCorp. Originally, it was framed 

as a study of how to apply the successful SoftCluster platform to 

infotainment (see p. 130). Fall 2007 the software manager put together a 

review team of employed engineers and external specialists to set up the 

guidelines for such a new software-centric infotainment platform, intended 

to be shared by all the brands within GlobalCarCorp. It soon turned out that 

the SoftCluster concept could not be transferred to infotainment unless it 

was extensively modified. It allowed for easy modification of the specific 

look-and-feel in instruments clusters, but only given the fundamental rules 

defined by the platform. It turned out that the macro-oriented approach to 

HMI development was far too rigid for an infotainment context. Inheriting 

the SoftCluster architecture would essentially prevent the platform from 

evolving over time. Therefore, the team found themselves facing the 

challenge to develop a whole new platform concept, with little possibility to 

reuse existing solutions. This new platform had to be malleable to the 

changing functional requirements in automotive as well as consumer 

electronics far beyond what could be offered by SoftCluster. It soon became 

clear that this process would be both painful and difficult. 

To define the limits of CarCorp’s assignment, systems architects at 

GlobalCarCorp made an outline of how the new infotainment system would 

fit with the rest of the car. With some dismay the team found out that 

GlobalCarCorp’s architectural outline was a traditional, modular breakdown 

of the system. It assumed a hierarchy of components, allowing the 

automaker to scale the infotainment system, from the most basic low-end 

solution to premium configurations in the high-end segment. 

In a first workshop, trying to understand and make sense of the architectural 

outline, one of the team’s hired software specialists underlined that 

flexibility to adapt functionality does not resonate well with a distributed 

solution, where functionality is inscribed in components. With such a 

hierarchic setup of the system retrospective adaptation of functionality tends 

to increase coupling between components, inevitably making the system 

increasingly monolithic. 
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When you make drawings it makes sense using many 
components. That’s how you make architecture – by drawing. 
That’s how we all do. But we must not fool ourselves. It is 
tempting to distribute systems until you have a whole range of 
[physical] components, consuming huge amounts of resources. 
Then, suddenly you find yourself in a situation where even low-
end cars require a full configuration for things to work out. 
Then you’re screwed.  

This problem is a lot easier to handle [with a software solution]. 
How do we most effectively handle variants? By hardware or by 
software? That’s an important question [for GlobalCarCorp]. 
We need to keep in mind that this [document] is a draft. It makes 
a set of more or less spontaneous ideas. 

CarCorp’s team leader makes a similar statement, underlining that the new 

infotainment system must be architected on new premises. 

Scalability can cause a lot of damage to software architecture if 
we end up with a lot of variants. […] Scalability and cost 
optimizations will not give us the best architecture. It is 
something different. I’m not sure these criteria [at all] apply to 
software architecture. 

Over time it became increasingly clear to the new software team that a 

traditional hierarchy-of-parts thinking stood in opposition to the kind of 

malleability they envisioned. GlobalCarCorp’s hierarchy-of-parts approach 

would give them a range of well-defined, stable subassemblies, each 

streamlined for a specific functional purpose. While this would allow them to 

differentiate the offer across a range of different car models and brands, it 

would effectively prevent the system from changing over time. Given the 

overall vision to make infotainment increasingly open to external innovation 

it was increasingly clear that CarCorp had to give up some of the advantages 

offered by a hierarchy-of-parts frame in order to benefit from network-of-

patterns thinking. In practice that meant a position against distribution of 

the system. As far as possible the functionality of the new infotainment 

system had to be deployed to one component – a component hosting the 

software platform. 

Redefining the Scope 

With GlobalCarCorp’s attempt to define the scope of the project in mind, the 

software team decided to make an aggressive move and define the limits of 

the project themselves. In order make up a solid guide in their work, without 

damaging creativity and bold ideas, they developed a “project one-pager”. 

This brief project outline summarized a vision, critical aspects, and key 

enablers. From an architectural perspective there are several statements 

worth mentioning. First, the team established that the mission was to “build 
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a platform, not an implementation.” This seemingly uncontroversial 

statement marked that the project did not focus on the development of 

specific infotainment functionality. Instead, the objective was to engage in 

generalization and build generative capability that, in the hands of internal 

and external designers, could make the basis for independent and relatively 

unconstrained innovation. From an automotive perspective that was a major 

break with traditional, linear processes, always starting with functional 

specifications. Being careful about using the notion of openness to describe 

envisioned innovation practices, the team established that the platform 

should offer “support for plug-in software”. Such so called plug-in software 

was defined rather broadly, ranging from “CarCorp managed” to “3rd party 

aftermarket developed software”. 

It is worth emphasizing that although CarCorp had engaged in generalization 

before (e.g. the MOST project) it was now done on different premises. The 

objective was not primarily to build a coherent and harmonized system. 

Instead, as described, the upcoming infotainment platform aimed for 

innovation practices, where internal and external designers could engage in 

specialization independently from infotainment experts at CarCorp. To 

reinforce this position the one-pager declared that “[design] decisions and 

[project] focus should be business-case driven, not technology driven.” 

Thereby, it was critical to design a platform that allowed for CarCorp to 

appropriate value from increasingly independent innovation practices. 

Drawing on recent failures (the open platform for nomadic devices was 

eventually turned down) CarCorp had arrived at the conclusion that 

distributed, software-centric innovation, of the kind they envisioned for 

infotainment, could not be governed with less than significant influence over 

the general elements of a system. Therefore, they argued; “To be in control of 

[platform] SW is and will be very important”. To once again emphasize that 

such control did refer to the enforcement of a functional agenda, the one-

pager stated that “control does not mean doing-it-all-yourself”. 

Finally, it is important to show that the software team, from the beginning of 

the project, recognized that generalization had to be a recurring, 

continuously ongoing activity. Envisioned innovation practices would 

neither emerge nor persist without a living and fertile interplay between 

generalization and specialization. As described in the one-pager, the 

platform had to evolve in reasonable harmony with innovation practices. 

To be able to match and to interface to quickly developing 
consumer electronics, the system must be able to mature, both 
between model updates and in the after-market. 
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Searching for Platform Concepts 

In relative agreement on the task ahead the software team initiated what 

they referred to as a concept selection process. On a general level, they 

expected this process to result in an open platform strategy. In a first phase 

they agreed on a range of evaluation criteria; cost, technical challenge, 

business challenge, quality, liability and responsibility, flexibility and 

malleability, incentives and motivation, finally, what they labeled suitability 

for automotive applications. Second, they initiated a long discussion on how 

to identify and describe credible and realistic concept alternatives to evaluate 

towards each other. It was clear that the critical axis of tension would be 

found in the interplay between openness and control. The platform had to 

make an attractive offer, allowing for relatively unconstrained innovation to 

take place. At the same time, GlobalCarCorp would require influence and, 

ultimately, the right to veto inappropriate applications. It was also clear that 

control had to be exercised through the platform, since the opportunities to 

set up legal agreements would decline in an open environment.  

Over time the team found two dimensions, guiding the work to identify 

concept alternatives. First, they discussed intensively whether the platform 

should be “public” or not. Being programmers they used the notion of public 

(in contrast to private) to identify whether a platform was unconditionally 

open to external parties or not. In practice, such a public platform would 

allow for external actors to get full access to the platform to develop software 

application without CarCorp’s approval. From an architectural perspective 

this translates to the question of exercising hierarchy-of-parts control or not. 

With the software platform deployed to a physical component in the car 

CarCorp had, in a very practical sense, the key needed to unlock the software 

platform for external development. Therefore, the hot topic was whether 

they should make use of this opportunity, keep the key, and actively gate 

keeping introduction of new applications or release the key in public and 

allow for functional evolution outside GlobalCarCorp control. 

Second, the team argued intensively whether the upcoming infotainment 

system should be grounded on a GlobalCarCorp platform or an established 

off-the-shelf platform. Designing the platform internally would offer great 

opportunities to exercise network-of-patterns control as the process of 

generalization then would be in their own hands. With control over the 

general functional elements offered by the platform, CarCorp would preserve 

influence over applications, even though development went increasingly 

public. On the other hand, such a strategy would leave CarCorp with the task 

to continuously align with volatile requirements of the consumer electronics 

community. In addition, it was increasingly clear to the team that installed 

base was a critical concept in open innovation environments. The only way 
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to build multiplicity and generate digital options would be to offer a well 

diffused platform. Whether GlobalCarCorp would be able to build such a 

significant installed base on its own was a major question mark. 

Given these two dimensions, the software team singled out four concept 

alternatives (Figure 5), described in the document “Next Generation 

Infotainment Platform: Proposals for Concept Selection”; A “GlobalCarCorp 

‘open’ API platform”, an “industry standard ‘open’ integration platform”, an 

“industry standard ‘open’ public platform”, a GlobalCarCorp specific ‘open’ 

public platform”. 

 

Figure 5. Key dimensions in platform benchmarking. 

1. The “GlobalCarCorp ‘open’ API platform” would enable a fast follower 

approach, where the automaker could domesticate successful consumer 

electronics initiatives and make them fit with a platform essentially 

designed for automotive industry needs. It would allow CarCorp e.g. to 

give the platform APIs “to a navigation engine supplier and source them 

for delivering an adopted [and diffused] navigation engine ready to 

integrate in the GM infotainment platform”. 

2. The “industry standard ‘open’ integration platform” would take the 

follower approach a number of steps further by actually adopting an 

established platform, frequently used by consumer electronics 

communities. It would allow CarCorp to “buy and integrate off-the-shelf 

software components”. 

3. The “GlobalCarCorp specific ‘open’ public platform” would enforce 

another stance on openness. Essentially, this approach was grounded in 

the idea that a public platform would trigger new, external innovation 

processes, feeding GlobalCarCorp with novel applications. In practice, 

they would “create a public and open GlobalCarCorp-specific run-time 

environment similar but different to Symbian, MIDP and .NET 

environments”. With this approach the automaker would “rely on and 

encourage software module suppliers to develop and create [automotive 
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related] business on this GlobalCarCorp platform”. Consequently, this 

class of platforms was not just a tool in a follower approach, but a way to 

inject new momentum in automotive innovation. 

4. Finally, the “industry standard ‘open’ public platform” was seen as an 

initiative to merge automotive and consumer electronics innovation. It 

was “a platform approach aiming for adoption of widespread consumer 

electronics frameworks”. In this vein, the main purpose was “to minimize 

entrance barriers for CE actors, interested in porting their applications to 

the automotive environment”. The team envisioned two different models 

for such innovation; either the platform would be used to “support co-

branding under competition, where partnership with a strong brand is 

used to strengthen the vehicle brand”. In such a scenario GlobalCarCorp 

would be in control of the partners invited to competition. In the other, 

more aggressive approach GlobalCarCorp would agree “to fully open the 

platform for third party development and distribution of software”. In 

practice, it would mean that “the customer can download standard SW 

modules with minimum or no integration work”. 

Getting Management Support 

The four concept alternatives can be viewed as a way to maneuver in the 

minefield of tensions unfolding as the team started the demanding process of 

translating ideas into practice. On the one hand, they were committed to 

implement an architecture that could support more open innovation 

practices. On the other hand, they were embedded in an organization that 

would resist attempts to introduce openness in many different ways. 

Launching the four concept alternatives was an attempt to balance the 

different aspects and opinions that would inevitably materialize in the wakes 

of an open platform. In order to accomplish any change at all it would be 

critical to build support in the organization. 

Although the project had started in minor, with GlobalCarCorp’s attempts to 

enforce a hierarchy-of-parts perspective, it suddenly took an unexpected 

turn and continued in major. Unexpectedly, the director of controls and 

software engineering at GlobalCarCorp showed great personal commitment 

to the project. He gave his full support to the idea of rejecting decomposition 

of the system and focus on a software platform, deployed to one component.  

However, he also recognized other aspects with explicit implications on how 

to exercise and balance architectural frames. In particular, he could see and 

articulate the tensions between the automaker’s internal need for control, 

grounded in hierarchies-of-parts thinking, and the need to create 

deregulated, open, innovation environments, able to attract creative people 

and organizations, seeking to realize their ideas and dreams. On the one 
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hand, CarCorp had to reinforce control over the software platform to 

exercise influence over innovation processes. On the other hand, a 

proprietary CarCorp platform would draw little attention and build limited 

installed base, offering little chance to accommodate the changes in 

consumer electronics. The platform had to be open, yet, at the same time, 

making the basis for the automaker’s influence over external application 

development. The director of controls and software engineering argued that 

the only credible way to resolve this contradiction would be to adopt an 

existing open source platform. 

I would say we need to take control through an open source 
[platform] initiative and by our contribution to it, approve it. 
Because I think take control of it in a proprietary sense is still 
not going to create the crowd. 

No doubt, this position was exceptionally controversial and provocative in an 

automotive setting. To most people in the industry open source was an 

almost bizarre phenomenon. How would a relationship with an open source 

community be manifested? Clearly, traditional governance logic would not 

apply. As anticipated by the director, this kind of movement would trigger 

strong reactions by established institutional structures. 

…we have standard terms and conditions that everybody signs, 
because those are readily acceptable in the industry. They are 
fair terms, right. Those terms do not apply here, and the fact 
there is no really readily acceptable standard terms in the 
software industry, so everything is a negotiation. You have to 
start from a decent place, and then you got to negotiate teeth-to-
teeth, and our legal guys don’t even get that concept. We have 
our standard ones – you sign it or go away. That’s not going to 
work. You have to have different ones that you start with and 
negotiate, so take that, that’s just buying commercial 
proprietary cuts, and tell these guys we want go open source. 
You’ve totally ripped the foundation that they are standing on 
from underneath them, but it is exactly what we need to do.  

Although anticipating rock-solid opposition, in particular from legal 

departments, GlobalCarCorp’s director of controls and software engineering 

injected hope and commitment in an open source agenda. 

in the end – here’s the kicker – in the end, the lawyers don’t run 
the company, right, they only make recommendations. 

In an attempt to clarify and reinforce his position, the director identified an 

open source platform as the only credible alternative for an automaker to 

engage with community-based innovation, being increasingly important to 

contemporary consumer electronics. 
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I absolutely believe this is where we have to go – this is the game 
changer. And this is the thing that solves the problem of how do 
you stay relevant in infotainment telematics in a company that 
fundamentally operates at a speed that will make you 
irrelevant, right. And that is, you have to separate it, right. I 
mean you’ve got to get out to the communities that moves fast, 
which is open source, and you got to install a platform in the 
vehicle that can accommodate that innovation, and you got to 
kind of separate the life cycles, right. 

By repeatedly returning to and elaborating the role and meaning of the 

platform in practice, rather than its technical properties, the director 

increased the attention on a question that CarCorp had just started to study 

in another project; how could an automaker initiate, moderate and maintain 

a productive developer community, centered on the platform?  

Forming a Platform Ecosystem 

In parallel with the platform assignment, CarCorp had initiated a project 

with specific focus on new business and innovation practices. This project 

was rooted in the late experiences of integrating nomadic devices (5.3). In 

retrospect, managers and designers could see a breakthrough in the struggle 

with nomadic devices, although the open platform for nomadic devices did 

not translate into a commercial product. First, they had internalized a totally 

new view on governance, where the general patterns of a platform unfolded 

as critical elements in governing application development. However, they 

had also realized that such a platform would be essentially useless unless it 

would draw attention and collect crowds of developers. Without diffusion of 

the platform there would be little multiplicity and, eventually a limited range 

of digital options for GlobalCarCorp to capitalize on. 

Therefore, a new project was initiated late 2007, with an explicit ambition to 

study the business conditions in more open innovation environments. As 

illustrated by a senior consultant it was increasingly clear to the inner circle 

of infotainment designers and managers that the major challenges of 

launching an open platform would be “organizational and on the business 

side”. The critical questions would be: 

How should we sell this? How do we market our applications? 
How do we earn money? This is the fundamental issue! 

The original project application, presented to get internal funding, declared 

in a somewhat vague manner that: 

a business strategy for Open Source Software/open API and 
open innovation for automotive applications will be developed. 
This would require an open platform, probably the infotainment 
system should be targeted. 
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According to the project descriptions, the main motivation behind such a 

business strategy related to two critical questions: 

How can we increase the speed and flexibility of implementing 
new functionality and features?  

How can we increase the capability of detecting, exploiting, and 
developing new use cases?  

Largely, the participants of this exploratory project spent their limited time 

to figure out how an open innovation approach could help them address 

these questions in an automotive context. In order to provide concrete 

illustrations, they derived and described four alternative strategies (Table 4).  

Table 4. Proposed strategies for open innovation at CarCorp. 

Strategy Description 

Enhanced 
Crowdsourcing 

This approach was framed as a way to reduce burdens of 
R&D. By balanced involvement in open source projects 
CarCorp had a potential to leverage the possibility of 
mass collaboration for reducing cost and improve 
software quality. 

Software 
Accessories 

The “software accessories” approach referred to a 
strategy focusing on building an aftermarket business 
around infotainment software for connectivity 
personalization, and new functionality. Rather than 
creating new revenue streams, this strategy aimed to 
reinforce existing ones. Therefore, the primary objective 
of this strategy was to generate rich and potentially free 
complements, increasing the value of the core business – 
selling infotainment systems. 

Maintenance 
through Open 
Source 

This strategy suggested that proprietary application 
software should be donated for open source governance 
as new generations emerged. It would allow CarCorp to 
focus resources on core development and capitalize on 
investments, while securing customer satisfaction over 
time. In its ambition to reduce cost and, at the same 
time, preserve customer loyalty it can be view as a mix of 
the two former. 

Semi-Open 
Competition 

Finally, the “semi-open competition” was launched as a 
strategy to assign development of core applications to 
external 3rd party suppliers. Rather than reinforcing the 
CarCorp brand by offering proprietary infotainment 
applications this approach recognized that that the value 
of established and acknowledged brands, owned by 
external actors, could be leverage through strategic 
partnerships. In other words, these strategic 
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partnerships would be used to reinforce the CarCorp 
brand. As the project emerged, it became increasingly 
clear that this approach would redefine the automaker’s 
core business and force them to capitalize on 
complementary assets, rather than core applications. 

 

Together, the four strategies made clear to CarCorp that open innovation was 

not a well defined phenomenon, ready to be uncovered in different advanced 

engineering projects. Instead, it was a concept with margin for 

interpretation. The tricky thing would be to identify a strategy which 

successfully could exploit external creativity to expand horizons and 

generate a wide range of applications, but without challenging established 

innovation practices too much. It would simply be a bad idea to create too 

many enemies by questioning the rationale of the organization. 

Trying to launch a reasonably aggressive but realistic agenda, the project 

foregrounded the potential in partnering with new actors, deeply anchored 

in consumer electrics. Such partnerships would enable critical competence, 

in a reasonably controlled form. It would be controlled in the sense that it 

would be possible to apply traditional and familiar governance instruments, 

such as legal contracts. However, the project team could not overlook the 

potential in a more radical approach to open innovation. Therefore, as 

described by the project manager, the team agreed to propose a 

complementary strategy, aiming for novelty and originality. 

We foresee two models for how to introduce new applications. 
One option is to actively seek partnerships where brands and 
products reinforce each other [without cannibalizing]. The other 
one is [unconstrained] open innovation, where you do not really 
know what is going to happen, where you allow yourself to be 
surprised by people and their ideas. Together, these two models 
will pave the way for great products. 

Clearly, the more unconstrained view on open innovation called for a new 

playing field. Studying other successful initiatives, it was rather obvious that 

developers would not just gather around a platform. As underlined by 

GlobalCarCorp’s director of controls and software engineering, being 

interview by project members, the platform would not deliver open 

innovation on its own. The aggregate potential in platform and developers 

would not unfold without a community.    

We [also] need a community that is willing to develop on it, 
right. We need to be part of that community, and in some cases 
try to out-innovate, and we need to be attractive [enough] for 
the innovators to come to us and say we would like to get this in 
your vehicle and we have a more predictable, guaranteed safe 
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distribution mechanism than just downloading of the open 
source. 

At this point, the locus of the project changed as resources were redirected to 

delve deeper into the concept of developer communities, later recognized as 

innovation ecosystems. Developer incentives became top priority as well as 

trying to understand the interplay between developers and platforms. 

Almost reluctantly CarCorp started to realize that ecosystems would feed a 

quite different perspective on platforms, at least compared to the view 

adopted by their own engineers. Engaging in specialization independent 

developers would interact with the platform through a software development 

kit (SDK), consisting of a whole range of tools allowing for the creation of 

software applications. Further, they would draw on application 

programming interfaces (API) to reuse and recombine general patterns 

offered by the platform. Largely, the complex software stack, making up the 

platform in the eyes of CarCorp’s designers, would be invisible to external 

developers. Suddenly, the disconnection between platform and applications 

became very real; it would be fully possible to design infotainment 

applications to CarCorp without real-life contact with car or its different 

physical parts. Specialization and generalization would be interlinked 

through a few critical boundary resources. 

These findings played an important role when CarCorp 2008 pushed the 

project into a new phase, aiming for industrial implementation of the ideas 

in practice. Leaving the exploratory character behind, the team adjusted and 

refined the objectives of the project to focus on a few critical issues; the 

constitution of a developer program and the identification of critical 

boundary resources.  In short, the objective of the second phase of the 

project was: 

To develop an open innovation concept for next generation 
infotainment systems including a developer program, platform-
community boundary resources, and process innovation. 

While the first phase was implemented on a skunkwork basis, involving a 

very limited group of people, the second phase was rolled-out widely across 

the entire organization. To get maximum support the project manager 

engaged people from different parts of R&D, marketing, sales, product 

planning, and aftermarket. In addition, she involved two key players from 

Sony Ericsson with long term experience from partnerships programs and 

community management. 

Over a period of approximately one year CarCorp’s conceptual studies of 

innovation ecosystems and open innovation platforms continued side by 

side, while eventually merging as the company made a bold decision; the 
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next generation infotainment system – including in-car platform and 

innovation ecosystem – should be based on Android26.  

Platform Selection 

In February 2010 CarCorp’s executive management board decided to adopt 

Android as a basis for infotainment in the upcoming mid-sized car, with an 

ambition to apply it for all models in the longer run. It was indeed a bold 

decision, with many unresolved question marks in the margin. Still, it was 

not a reluctant or doubtful board approving a major investment in Android – 

a platform they did not control. On the contrary, these executive managers 

expressed their enthusiasm and strong support. In retrospect, the 

infotainment people could see that this massive support followed from the 

simple fact that although the proposed solution was flawed by lack of 

precision it gave credible answers to a whole range of critical questions. Top 

management could see through weaknesses and shortcomings since the 

proposal offered a coherent solution to a whole range of management and 

business challenges. It made sense together, as a whole.  

Judging by retrospective statements (see Table 5), CarCorp management 

paid particular attention to Android’s capability to: 

 Enable a recurring infotainment business in the form of 

aftermarket applications. In practice, this opportunity was grounded 

in a decoupled relationship between the car, hosting the Android 

platform, and application development. Infotainment functionality 

would be able to evolution continuously, without considering car 

lifecycles. 

 Generate multiplicity and diversity by drawing on an 

established developer community and an exceptional installed base 

in various consumer electronics devices.  

 Secure sense-and-respond capability, allowing for quick turn-

around on ideas and, thereby, enable state-of-the-art infotainment 

to CarCorp customers. 

 Support domain-specific extensions, being a basic condition for 

car-specific innovation. In fact, the capability to extend the platform 

with car-specific, general patterns would be crucial for CarCorp to 

appropriate value from an Android community and, therefore, 

necessary to secure revenue streams and profitability. 

                                                             

26 Android is a Linux-based operating system for mobile devices such as smartphones 

and tablet computers. It is developed by the Open Handset Alliance led by Google 

(Wikipedia). 
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 Support a versatile governance model, where CarCorp could 

balance between openness and control in a pragmatic way. Without 

a clear strategy for how to address fundamental security and safety 

threats open innovation would stay a beautiful vision in the 

automotive industry. 

While reflecting back on the long process that eventually made CarCorp go 

for broke on Android, the two main protagonists emphasized the same 

aspect; without combining the business oriented ecosystem project and the 

techno-centric platform project they would have followed a different path. 

Without understanding the interplay between community-based 

specialization and platform-based, continuous generalization of functionality 

the promises of open innovation would have remained a distant, unreachable 

vision. 

I think the ecosystem project made a huge difference. It changed 
our way of thinking. That kind of thinking has to be around for 
a while to understand. You need to hear it over a longer period 
of time to craft a clear vision. If not, it is easy to do what we first 
did; pick a platform [on technical premises] and see what 
happens. Without the ecosystem project I’m pretty sure we 
wouldn’t have taken the step to go for Android. Then, we would 
have had some other kind of open source platform, with a vague 
idea that such platforms can handle reuse. I think it is pretty 
interesting. I mean, how it actually influenced our way of 
thinking. […] Now, we have rock-solid support for this. This is it! 

The project manager for the ecosystem project agreed with her colleague, but 

underlined that the new model for how to view infotainment was not just an 

outcome of these two contemporary projects, but had emerged from many 

different projects, implemented over several years. 

I think this journey has been incredibly important for our 
company. We have now sanctioned the project throughout the 
organization and received a great response... This wouldn’t have 
happened without the early efforts. I don’t think that the 
company has been mentally prepared to make this journey until 
now... It’s fantastic. Sometimes I have to pinch my arm, 
confirming that I’m not dreaming. So many years, so much 
fighting, and suddenly it happens and everything works out - it 
feels very strange! 

 



 

Table 5. Key argument behind the selection of Android at CarCorp. 

Recurring business Multiplicity and Diversity Sense-and-respond Domain-specific 
extension 

Governance 

“[This solution] will 
allow infotainment 
services to con-
stantly evolve during 
the lifetime of a car’s 
product cycle, unlike 
current in-car sys-
tems which are fixed 
some years before a 
car goes on sale and 
then remain 
static.”27 

“The number of already 
existing [Android] app-
lications is a huge 
advantage. It’s extremely 
efficient in terms of 
development effort. It takes 
the focus away from 
technical development to 
business development.”28  

“[With our Android-based 
system] there are no limits 
to the potential for 
innovation. […] We will be 
inviting the global Android 
developer community to 
use their imagination and 
ingenuity.”27  

“[This solution] pro-
vides a faster, more 
efficient and more 
flexible alternative to 
the conventional, in-
house development of 
vehicle infotainment 
services.”29 

“Our open innovation 
strategy, using the 
Android operating sys-
tem, will keep the 
provision of in-car 
infotainment up to 
date.”27  

“CarCorp will issue third-
party developers with a 
vehicle application pro-
gramming interface (API) 
providing access to more 
than 500 signals from 
different sensors in the 
vehicle.”29 

“CarCorp’s ‘open 
innovation’ strategy offers 
the global developer 
community access to the 
full bandwidth of car 
communications — 
infotainment, telematics, 
systems monitoring and 
diagnostics.”29 

“To ensure [that] 
high driving 
safety and quality 
standards are 
maintained, pro-
grams from soft-
ware developers 
and application 
providers will be 
evaluated and 
approved by 
CarCorp before 
they are made 
available to 
customers.”29 

 

                                                             

27 Director at CarCorp Aftersales. 
28 Infotainment project manager. 
29 Written press material 
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6 Discussion: Generative Product Design 

In this thesis I set out to explore how product developing firms build new 

innovation practices to leverage the generative capability of digital 

technology. I have approached this task from a technological change 

perspective. In one way or the other new technologies arise from 

combination of existing technologies. While this process of combination is 

powered by forward-looking visions and a desire to accomplish new goals, it 

is also highly characterized by its legacy – the genesis of a particular 

technology largely defines how it can be reused for new purposes. The legacy 

simply makes some directions of progression “much more compelling of 

attention than others”. Often “advance seems to follow advance in a way that 

appears almost inevitable” (Nelson and Winter 1982, p. 258). I have used the 

concept of innovation regime to give a concrete face to the inherent logics 

defining how a physical component, a piece of software, or an algorithm can 

be reused and recombined with other artifacts. The “ground rules” of an 

innovation regime defines how a particular technology over time “bootstraps 

itself upwards from the few to the many and from the simple to the complex” 

(Arthur 2009, p. 21). 

Existing literature gives solid evidence for the idea that physical products 

and digital technology change according to different logics. Therefore, as 

tangible products are increasingly digitized, distinct innovation regimes 

clash into each other. In reality, this clash is manifested as tensions between 

the legacy of established practices and existing technology, on the one hand, 

and the potential in upcoming digital solutions, on the other. To leverage the 
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generative capability of IT organizations have to resolve or at least manage 

these tensions. 

In this thesis I have studied how product developing organizations use and 

develop architecture and architectural thinking to cope with these tensions. 

Broadly, organizations engage in architectural design to manage complexity. 

It is worth pointing out that complexity is not an invariant aspect of 

technology. Rather, “how complex or simple a structure is depends critically 

upon the way in which we describe it” (Simon 1996, p. 215). Still, such 

descriptions make rigid templates for how technology can be combined. 

Thereby, the architecture makes a link between historical achievements and 

future potentialities. Architecture is a strategic tool that, properly exercised, 

can be used to gradually reinforce sound ideas in a series of “structure-

preserving and structure-enhancing transformations” (Alexander 1999, 

p.79). In other words, architecture is an instrument for path creation, but, at 

the same time, a shackle of path dependency. Whether product developing 

firms will be able to transform innovation practices and leverage the 

opportunities of IT relies, to a significant extent, on their capability to 

fertilize new architectural perspectives, resonating with the opportunities of 

digital technology. 

To give a distinct perspective on how product developing firms architect 

digital products, I have developed and applied a theoretical framework that 

culminates in the concept of architectural frames. First, this framework takes 

off from the assumption that digital innovation cannot be understood unless 

we shift focus from physical properties to affordances. While the potter’s 

creative leeway is defined by the plasticity of his clay, the creative work of a 

software designer plays out in a virtual realm of representations. An 

algorithm affords the designer to solve a particular problem, but cannot be 

traced to physical quantities in any form.  

Second, the framework offers a model for understanding the implications of 

digitalization on product development through two distinct affordances; 

programmability and replicability. Replicability affords instant replication, 

without exercising marginal cost, while programmability affords separation 

of meaning and functional characteristics from the physical artifact. The 

presented model put emphasis on two distinguishing barriers in product 

innovation, largely destroyed by programmability and replicability; the 

transition between functional design and physical design and the transition 

between design and production. 

In product innovation, the transition between design and production triggers 

substantial marginal cost. Harsh competition over price force product 

developing firms to develop economies of scale, where massive investments 
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in specialized assets, such as tools, supply chains, plants, etc, pays off in 

terms of low unit cost. At the same time, these firms have to differentiate 

their products to stay competitive. Consequently, it is critical to architect 

products in such a way that all these specialized assets can be reused across 

variants and generations of the products. Products have to be architected for 

producibility. Modularity offers a solution, based on well-defined, highly 

autonomous components, forming scalable systems on the basis of a 

predefined, hierarchical template. This template prescribes how to 

recombine these components to leverage functional variation. As a 

consequence, this architectural strategy causes a barrier between functional 

design and physical design since modularity requires the overall 

functionality to be defined at an early stage for deployment to dedicated 

components. The critical task to design components cannot be initiated 

unless the whole picture is acknowledged. In practice, this unidirectional 

transition marks an irreversible shift in focus, from solving functional 

problems to the challenge of designing an artifact that can realize and 

mediate that functionality in a competitive manner. 

To some extent, programmability and replicability pull the rug from under 

the feet of traditional product innovation. The opportunity to design and 

produce functionality without considering the physical wrapping or the cost 

of implementing it opens up for genuinely new paths of technological 

change. With functionality increasingly detached from the artifact in itself, 

complexity does not primarily play out in the structure of products, being at 

the same time functional and producible. The architectural challenge is 

increasingly less a matter of reusing assets for new configurations of a 

product. As a consequence the introduction of digital technology in product 

development redefines the role of architecture and triggers a shift in 

architectural thinking. 

The third part of the framework introduces the concept of architectural 

frames as a way to view architecture in digital product innovation. With this 

theoretical model, making up two idealized representations of a complex 

product’s architecture, I suggest that digital product innovation rests on two 

architectural pillars. On the one hand, cars, airplanes, and washing machines 

will remain physical artifacts that have to be architected for reuse of assets, 

with producibility in mind. At the same time, accelerating digitalization blurs 

the functional boundaries of these artifacts; meanings and perceived 

experiences are not inscribed in the products, but can emerge over time. To 

reinforce such generativity digital products have to be architected for reuse 

of ideas. 

To shed light on this duality, the architectural frames model extends the 

established architectural thinking in product innovation, largely grounded in 
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Herbert Simon’s near decomposability, with a complementary view, based 

on the legacy of Christopher Alexander. In perspective of technological 

change, Alexander takes a position which assumes that progression cannot 

be fully understood if we seek to explain the genesis of an artifact through its 

predecessors. He rejects the idea that price/performance ratio is a dominant 

selection mechanism. Cheap, mass-produced products fulfilling a set of 

market-standard requirements do not always win in the sense that they 

make basis for coming generations. If they did, the world would be a lot 

more repetitive, uniform, and dull. Instead he argues that “the 

characteristics of any good environment is that every part of it is extremely 

highly adapted to its particularities” (Alexander 1999, p. 74). Following 

Alexander, it is not stable subassemblies, manifested as physical artifacts, 

that translate from generation to generation, but the ideas generating these 

adapted artifacts. When solving a particular problem, in a given context, our 

first question is; how did others solve similar problems in other settings? We 

do not start looking for existing building blocks to play with.  

According to Alexander, technological change has to be understood from the 

perspective of processes. The genesis of an artifact unfolds when we zoom in 

on the processes, generating the palette of highly adapted artifacts we can 

see around us. The task of architecture is to map, represent, and enable our 

problem solving heritage to designers, creating new artifacts. Thereby, 

architecture plays out in a problem-solving domain, rather than in a domain 

of physical things. Architecture is about the structure of problems and 

solutions, not about the structure of artifacts. Following this reasoning, we 

can argue that legacy is not carried from generation to generation by artifacts 

in themselves, but by the functionality they deliver. 

The architectural frames model makes an analytical tool for understanding 

and articulating a shift in architectural thinking; digitalization push product 

developing organizations from a product-centric to a process-centric 

perspective. However, the model does not assume a transition from one end 

to the other. Instead it makes a tool for reasoning about a new balance point, 

where product developing organizations can identify a sound and rewarding 

interplay between producibility and generativity. 

Specifically, the model consists of two idealized frames; hierarchy-of-parts 

and network-of patterns. The hierarchy-of-parts frame, derived from the 

legacy of Herbert Simon, is centered on the physical structure of components 

and emphasizes decomposition with subsequent aggregation as the core 

principle for managing complexity. Drawing on the concept of near 

decomposability and stable subassemblies, this frame resonates well with the 

incentives of traditional product innovation, with strong focus on the reuse 

of assets. The network-of-patterns frame is derived from Christopher 
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Alexander’s work in architecture, also frequently applied in contemporary 

software engineering practices. This frame is centered on the structure of 

problems and solutions, rather than the structure of artifacts. It emphasizes 

generalization with subsequent specialization as a complementary approach 

to complexity. Drawing on the concepts of patterns and pattern languages, 

this frame resonates with software-centric innovation practices, focusing on 

reuse of ideas. 

Addressing the research question of this thesis I have applied the theoretical 

framework to digital product innovation practices at CarCorp over 

approximately one decade. This longitudinal case story ranges from the 

automaker’s first staggering attempt to generalize infotainment with MOST, 

to the adoption and integration of Android, recognized as a highly generative 

platform in contemporary consumer electronics. In applying the 

architectural frames model to digital product innovation I have been able to: 

1) Demonstrate the ontological significance of the architectural 

frames model. Although being a theoretical model, with the 

ambition to explain digital product innovation at an abstract, 

aggregate level, the concepts forming the two frames have proven 

deeply anchored in observable real-world phenomena. The model 

offers a language for understanding people’s view on technology and 

thereby their rationale for engagement. 

2) Show that permanent generative capability relies on extensive 

organizational support for the network-of patterns frame. With 

the assimilations of this frame people increasingly view products as 

enablers and catalyzers of new, yet unknown functionality, rather 

than carriers of pre-fabricated functions.  

3) Show that inherent tensions and contradictions between 

architectural frames force organizations to develop new 

governance models. The CarCorp case story bears significant 

evidence of such tensions, unfolding when a product developing 

organization seeks to leverage the generative capability of IT. To 

develop practices based on a sound and effective interplay between 

architectural frames these inherent tensions have to be avoided. 

As demonstrated in this thesis a product developing firm faces several 

challenges when appropriating the network-of-patterns frame. These 

challenges become particularly salient when reaching a point where the new 

frame is exercised to build generative capability, rather than just internal 

design flexibility. Largely, generative capability is about encouraging 

external creativity, but also about benefiting from such creativity. This calls 

for a new perspective on products. Rather than viewing their products as 

carriers of pre-fabricated functionality, the organization has to embrace a 
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view where products are enablers and catalyzers of new, yet unknown 

functionality (6.1). Unless such a view informs all the different actions and 

decisions across the organization a product developing firm has little chance 

to build permanent generative capability (6.2). Further, this thesis suggests 

that a product developing firm cannot build generative capability unless 

adopting a distinctly different governance model. Generative capability relies 

on unconstrained freedom to create new specific functions. Such freedom 

clashes hard into established modular governance models, where 

decomposition of products is guided by specific functionality. Unless product 

developing firms find ways to govern innovation through general patterns 

rather than specific they have little chance to build permanent generative 

capability (6.3). 

6.1 Ontological Significance 

Hierarchy-of-parts and network-of-patterns are theoretical constructs, 

derived with an epistemological concern. At the same time, the application of 

these architectural frames to digital product innovation practices has 

disclosed a strong ontological significance of the model; the different 

concepts constituting architectural frames translate well into observable 

phenomena. The model does not just help us theorize digital product 

innovation, but makes a concrete language for representing, describing and 

discussing different perspectives on technology present in digital product 

innovation. Therefore, an architectural frame is an ontology in the sense that 

it offers a distinct model for understanding the different mechanisms 

powering an innovation regime. 

I argue that a significant strength of the architectural frames model is its 

capability to bridge the gap between micro level and macro level, concrete 

and abstract, ontological issues and epistemological concerns. It is valuable 

at an abstract level not despite of, but because it makes a lot of sense at the 

concrete level. As summarized below, the four embedded cases show that the 

architectural frames model offers a language for understanding how people 

view technology and thereby their rationale for engagement. In some sense, 

this makes an entry ticket for theory development.  

MOST. The MOST architecture was adopted as a response to 

accelerating complexity of infotainment systems. To meet future 

challenges in a progressive manner CarCorp had to make these 

systems more malleable. It had to be significantly easier to adapt the 

system to new premises without entering a new loop of artifact design 

and production. MOST offered an answer to this challenge. However, 

as summarized in Box 1, there were two distinctly different outlooks 

on how the MOST architecture would enable such malleability. 
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Box 1. Hierarchy-of-parts and network-of-patterns as distinct perspectives 
on the adoption of MOST. 

Hierarchy-of-parts 

With MOST fiber optics entered the car. 
This new technology made an 
exceptionally simple interface. In fact, 
the same, standardized interface would 
apply to all the different components 
constituting the system. With such a 
clean and simple template for how to 
build the physical structure of an 
infotainment system CarCorp saw a 
great opportunity to reinforce modul-
arity. MOST promised exceptionally 
flexible decomposition of the system into 
a wide range of components, each 
enabling a well defined piece of 
functionality. This would not just pre-
serve the existing hierarchy of tier-1 and 
tier-2 suppliers, but would also allow 
them to aggregate the system aggressiv-
ely to differentiate the product portfolio 
and launch a range of new, attractive 
offers. 

Network-of-patterns 

MOST introduced the concept of 
function blocks. These function blocks 
are concrete solution patterns for how to 
solve different problems in the context 
of infotainment. This new concept 
opened up for functional structure to be 
designed independently from the 
physical realization of the system. 
Drawing on this capability, CarCorp saw 
an opportunity to engage in general-
ization of the system. Such general-
ization would enable a whole range of 
shared general patterns that could be 
inherited by specific applications. Con-
sequently, it would pay off in the act of 
specialization, when functions such as 
navigation, telematics, and audio play-
back could reuse the same general so-
lutions for volume control or positioning 
to deliver a coherent and more harmon-
ized end-user experience. 

 

SoftCluster. The SoftCluster initiative was triggered by a need to 

reinforce commoditization while, at the same, allowing for flexible 

functional design and competitive functional diversity. Serving a range 

of brands, CarCorp had to find a way to share instrument clusters 

across car models while, at the same time, avoiding the rigidity and 

uniformity associated with standard solutions. The SoftCluster 

architecture was designed as a response to these challenges. An 

important property of this solution was its underlying assumptions on 

functional deployment; specific functionality, with high likelihood for 

change, was concentrated to one key component. Still, as outlined in 

Box 2, there were two different perspectives on how SoftCluster would 

enable a better balance between commoditization and differentiation. 
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Box 2. Hierarchy-of-parts and network-of-patterns as distinct perspectives 
on SoftCluster. 

Hierarchy-of-parts 

The SoftCluster architecture rested on 
two key concepts; the open XML 
interface (OXI) connecting the cluster 
hardware with remote components and 
a macro-oriented approach to HMI 
design (MOH). Together, these two 
concepts promised a competitive 
approach to commoditization. It allowed 
CarCorp to decompose the system into a 
hierarchy where the top-level cluster 
component hosted most of the 
functionality, while remote components 
turned functionally trivial data 
suppliers. Thanks to MOH the cluster 
could be commoditized in hardware as 
well as software, since functional designs 
were defined by macros, interpreted in 
run-time. Further, this top-loaded 
modularity allowed for smooth 
aggregation of the system in that the 
shared cluster could be easily configured 
to support just any combination of slave 
nodes, from low-end cars to extreme 
high-end. 

Network-of-patterns 

SoftCluster offered a condensed and well 
defined platform for specialization of 
cluster functionality. This platform was 
defined in a careful act of 
generalization, defining all general 
patterns of an instrument cluster. These 
patterns were then offered to designers 
in the form of a macro language, making 
a template for how to reuse and 
recombine general patterns. By applying 
the language in a specific macro, 
designers could inherit functional 
patters at a relatively detailed level to 
realize end-user applications with minor 
efforts. In practice, this new functional 
structure of an instrument cluster 
allowed for exceptional turn-around on 
ideas. As long as the macro language 
remained untouched, designers could 
engage in recurring specialization 
without paying attention to underlying 
hardware or software. 

 

Nomadic device integration. The automotive industry is generally 

characterized by linear development processes, where functionality is 

defined up-front. At some point, such processes could not provide for 

competitive infotainment solutions, keeping up with the clockspeed 

demonstrated by consumer electronics. Portable navigation devices 

and mobile phones simply outperformed in-car solutions far too early 

in their long car lifecycles. Nomadic device integration seemed to offer 

an answer to this challenge. However, as summarized in Box 3, there 

were two distinctly different outlooks on how it would address this 

lifecycle problem. 
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Box 3. Hierarchy-of-parts and network-of-patterns as distinct perspectives 
on nomadic device integration. 

Hierarchy-of-parts 

Nomadic device integration seemed to 
offer CarCorp the opportunity to solve 
the painful lifecycle dilemma by 
exercising an aftermarket approach to 
infotainment. Properly decomposed, the 
system could be designed to allow for an 
external component to fit with the 
established hierarchy of internally 
developed parts. Given an accepted and 
diffused interface this solution would 
offer customers the opportunity to 
upgrade the system simply by replacing 
their nomadic devices. Such aggre-
gation, leaving a new configuration of 
components, could be done in-
dependently of the car lifecycle and at 
customer expenses.  

Network-of-patterns 

With nomadic device integration 
CarCorp saw an opportunity to draw on 
the largely uncoordinated creativity in 
consumer electronics. The creation of a 
layered architecture, where nomadic 
functionality could be enabled as 
general services, promised a process 
focus where functionality could emerge 
independently from car lifecycles. By 
engaging in a process of specialization 
such general services could be inherited 
and continuously adapted to car specific 
use. Besides enabling new tools for 
CarCorp’s designers, this new approach 
was expected to bring interest for 
external, non-automotive developers to 
engage in infotainment design. 

 

Android. At a general level, Android was launched as a way for 

CarCorp to get access to rich, distributed innovation without 

becoming passive followers. Over almost a decade of experimentation 

with nomadic device integration they had identified a set of critical 

challenges. In particular, NDI did not allow an automaker to influence 

design processes. In practice, such solutions left for CarCorp and other 

car makers to be followers, adapting application already in place. By 

taking control over the software platform they saw an opportunity to 

reinforce their own influence over design processes. Still, as outlined 

in Box 4, there were two different perspectives on how the Android 

platform would allow for such influence. 
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Box 4. Hierarchy-of-parts and network-of-patterns as distinct perspectives 
on the adoption of Android as a basis for infotainment. 

Hierarchy-of-parts 

Android had the potential to provide 
CarCorp with unprecedented variety. 
However, to get access to such variety it 
was critical to build significant installed 
base. The traditional approach to break 
installed base apart in different hard-
ware configurations, adapted to different 
carlines, would not work well. Therefore, 
CarCorp decomposed the system 
carefully and planned for one standard-
ized infotainment component, to be 
mounted in all models. Although 
Android was a software platform 
ultimately controlled by Google, the new 
infotainment system offered an import-
ant advantage compared to previous 
NDI solutions; the hardware would be in 
the hands of CarCorp. Being in control 
of a physical component ultimately 
seemed to offer power of access to that 
component. It would offer the oppor-
tunity to govern software development 
by certification, providing necessary 
rights to install and run software at a 
given hardware.  

Network-of-patterns 

With Android CarCorp had access to a 
developer community of substantial 
proportions. This community made a 
huge innovation resource, waiting to be 
explored by progressive automakers. In 
such a context, the launch of car-specific 
services and API:s made an invitation 
for Android developers to engage in 
specialization of the rich automotive 
environment. From a technical point of 
view, such extensions seemed relatively 
smooth. Android offered not only a rich 
network of pre-existing patterns, but 
also an established model for how to 
extend the platform with new, reusable 
services. In contrast to NDI, reliance on 
Android would allow CarCorp to engage 
in generalization. As a key ingredient of 
a new governance strategy, explicit 
power to define general patterns made a 
template for how these patterns could be 
inherited when independent developers 
engaged in specialization. Ultimately, 
this made a bottoms-up strategy, leaving 
for unbounded innovation within a 
marked path. 

6.2 Organizational Support 

The application of architectural frames to digital product innovation at 

CarCorp has provided evidence for the idea that digitalization causes a shift 

in architectural locus. In its different parts the case story illustrates such a 

shift at an individual level, where people gradually reconsider their 

perspective on infotainment in light of new, digital technology. However, 

together the four embedded cases also provide rich evidence on how new 

architectural thinking propagates across an organization. Table 6 is a 

snapshot of selected quotes, illustrating how the network-of-patterns frame 

rolled out across CarCorp. 

With MOST CarCorp uncovered and learned the basics of generalization. 

This had major impact on systems architecture. MOST provided tools for 

architects to reason about an infotainment system in terms of logical or 

functional elements, rather than components (i). It allowed them to focus 

their attention on detailed functional problems and, eventually to architect a 
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coherent system hosting increasingly harmonized functionality. At the same 

time, specialization has a minor role in the story about MOST. The reason is 

simple; CarCorp stayed with a traditional component-based approach to 

distribute design assignments. Rather than inviting to development of 

software-based infotainment functionality, CarCorp engaged existing tier-1 

suppliers to design and produce components according to a traditional 

hierarchy-of-parts template. Purchasing expected that MOST would bring 

off-the-shelf components (xx), introducing much need competition between 

automotive suppliers. Similarly, product planning saw an opportunity to 

draw on the simple physical interface in MOST and break the infotainment 

system apart in a wide range of components. This would open up for 

differentiation and better business cases (xii). However, the conservation of 

traditional hierarchy-of-parts logic in design practices created problems, 

when generalized functionality should be deployed to a highly distributed 

system (vi). The clash between architectural frames became obvious, when 

suppliers found out that their components were not functionally 

independent anymore, but deeply intertwined with other components, 

outside their control. In making commitments on the basis of components, 

suppliers had no option but to reject much of the functional responsibility 

they normally had.  Rather than designing components on the basis of 

overall property requirements, they needed complete interface 

specifications, falling out of the deployment of generalized functionality on 

distributed components. In summary, MOST introduced generalization at 

CarCorp and brought a radically new perspective on architecture, but seeded 

little new thinking outside the inner circle of systems architects. Without 

proper organizational support for this new thinking MOST turned yet 

another illustration that “implementation of technology intended to 

reinforce organizational control can instead cause organizational disorder 

and drift from intended purposes” (Sandberg 2010).  

With SoftCluster CarCorp discovered specialization. The new macro-oriented 

approach disconnected functional design from platform software as well as 

physical properties of the system. Making a precise and clear template for 

how to reuse general patterns the macro language defined the creative 

leeway offered to designers (viii). It paid off quickly in exceptionally fast 

turn-around on ideas (vii). Rather than making a tool for smooth realization 

of existing ideas, SoftCluster turned into a generative platform. In the hands 

of designers, it produced novel functionality that no one had planned for up-

front. These new design practices rested on a successful generalization of 

cluster functionality. By taking in-house control over platform design (ii) 

CarCorp was able to set up a macro language that gave structure and support 

in design processes, while at the same time allowing designers to exercise 

creativity. While network-of-patterns thinking had now changed design 
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practices at CarCorp, this new perspective was far from rooted outside R&D. 

Product planning, purchasing and many other actors recognized that 

SoftCluster brought different design practices, but largely they understood 

its potential from a hierarchy-of-parts perspective. Rather than seeing its 

generative capability they emphasized the unique opportunity to exercise 

functional differentiation while, at the same time, capitalizing on scale 

advantages of both commoditized hardware and software (xiii). Similarly, 

SoftCluster’s well defined, straight-forward and relatively simple design 

process was attractive from a purchasing perspective. It seemed to make a 

solution to recurring and expensive change requests on component 

functionality, which tended to ruin project budgets (xxi). In summary, the 

SoftCluster story gives evidence on significant assimilation of generalization 

(platform design) as well as specialization (functional design). However, the 

many people not explicitly involved in technology largely understood 

SoftCluster from a hierarchy-of-parts perspective. 

Nomadic device integration was triggered by the increasingly obvious 

difference in clock speed between the automotive industry and consumer 

electronics. Somehow the comparatively slow automakers had to bridge this 

gap not to be marginalized in infotainment (xiv), (xv). Nomadic device 

integration seemed to offer a solution where the automotive industry could 

tap in to the prospering developer communities forming around consumer 

electronics. Seeking architectural solutions for nomadic device integration 

CarCorp gradually understood that generalization and specialization are 

intertwined phenomena that cannot be disconnected from each other. As 

illustrated by their early Bluetooth enabled phones, specialization will 

inevitably decline and eventually stop if general patterns are not 

continuously adapted to new premises of application development. In 

response to this challenge CarCorp and its project partners researched many 

different concepts for how to make the car malleable to changes in consumer 

electronics (iii). At the R&D department engineers and designers were aware 

that a nomadic device strategy, grounded in a dynamic interplay between 

platform development and external application development would 

challenge established hierarchy-of-parts logic. Down the road, services 

would be a matter for external actors rather than tier-1 suppliers, delivering 

on CarCorp specifications (ix). However, the obvious threat to existing 

business models also pushed product planners to reconsider their view on 

infotainment. Although making an extraordinary idea with unclear 

implications, they started to accept that it would be possible to capitalize on 

such externally created functions and services (xvi). Slowly they recognized 

the logic of two-sided markets, where specialization materializes in the 

interplay between developers and end-users, powered by a platform that 

offers attractive and continuously revised general patterns. It was not clear 
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exactly how, but it seemed be possible to make money on these kinds of 

solutions. While this new position made a bridgehead for network-of-

patterns thinking outside R&D, most people at CarCorp still tended to apply 

hierarchy-of-parts thinking to make sense of nomadic device integration. 

With this perspective, a nomadic device made an accessory that could be 

added to an existing solution. It was a component that, like a trailer hitch, 

could be added at a pre-defined position in a design hierarchy to improve 

end-user functionality. From a cost perspective, however, this accessory 

perspective made sense; these components would not be associated with any 

cost for CarCorp, even though it made a key part of the infotainment system. 

Customers would buy phones and other nomadic devices independently 

from car investments. This opened up for a new segment of low cost 

infotainment solutions which CarCorp had not been able to offer before 

(xxii). In brief, the work with nomadic device integration furthered network-

of-patterns thinking at CarCorp. Generalization and specialization were 

increasingly seen as intertwined phenomena which, at its most concrete 

level, mean that platform development is a recurring activity that has to be 

exercised in harmony with application development. Even though this 

perspective was largely accepted at R&D and slowly taking root in product 

planning practices, the organization as a whole understood nomadic device 

integration from a hierarchy-of-parts perspective. 

With Android the network-of-patterns view on infotainment had its 

breakthrough at CarCorp. A smaller group of people at R&D had worked for 

many years on new architectural solutions in order to benefit from the 

digitization of infotainment. Their efforts now made a solid foundation for a 

new perspective on infotainment. Still, the generative capability of these 

solutions largely remained unresolved, since the organization consistently 

put emphasis on benefits making sense with a traditional hierarchy-of-parts 

lens. With Android this changed. There was simply no rationale for adopting 

this platform under a hierarchy-of-parts paradigm. To make this bold idea 

fly it was necessary to get unconditional support from top management. It 

would prove surprisingly simple to get that support. With a long track 

record, credibility, and solid arguments, the core infotainment group got 

Android sanctioned by the executive management team and in a couple of 

weeks supported by the organization as a whole (xxiv). Now supported by 

top management, network-of-patterns thinking spread across the 

organization. Aftermarket saw great opportunities in a recurring 

infotainment business, decoupled from car sales (xxiii). Marketing, product 

planning, and other sales oriented parts of the organization suddenly 

accepted that developers were to be considered a new type of customer and 

thereby in their interest. The car became an offer, not just addressing 

traditional end-users, but also independent developers (xix). This offer 
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would be delivered through different APIs, enabling rich and interesting 

content to third party developers (xviii). With this perspective, CarCorp 

slowly transformed its view on value. Rather than associating value with the 

embedded functionality of a component, the decision to adopt Android 

helped people to see that the value of a generic software platform is found in 

its capability to generate rich and varied content (xvii). A rich and 

continuously changing functional offer also stood out as a solution to the 

lifecycle dilemma, where cars always tended to be outdated (x). Drawing on 

an open community, CarCorp would be able to respond quickly to external 

change. While it was not fully clear what such a community would look like, 

managers at infotainment outlined different approaches. These approaches 

made complementary, but coexisting models for open innovation (xi). One of 

the main arguments behind Android was its tight connection to established 

communities. With Android CarCorp would have an architecture which 

adapted continuously to specialization practices (iv). At the same time, an 

open source solution would break significantly with established governance 

models. The idea to rely on public source code, which could not be modified 

unilaterally, seemed awkward and confusing. Slowly, CarCorp understood 

that influence would require engagement. In order to avoid being passive 

observers they had to get actively involved in the open source community 

maintaining the platform. Influence over the platform would be related to 

contributions (v). To take reasonable control over an automotive fork of 

Android CarCorp would have to give away valuable things. Being one of the 

first automotive actors showing interest in Android, there was a window of 

opportunity – an opportunity with the potential to make CarCorp a leading 

actor in automotive.  

Together, the four embedded cases provide a detailed narrative of how 

network-of-patterns thinking may propagate across an organization. Starting 

with systems architects and designers CarCorp gradually rolled-out a new 

perspective on their infotainment products over the studied period of 

approximately one decade. At the end of this period the organization viewed 

these products as enablers and catalyzers of new, yet unknown functionality, 

rather than carriers of pre-fabricated functionality. Although this study does 

not cover a commercial introduction of the Android platform it suggests that 

this view on digital products is a basic premise for generativity. Unless such a 

view informs all the different actions and decisions across the organization a 

product developing firm has little chance to break with traditional 

innovation logic to build permanent generative capability. 



 

 

 

Table 6. The propagation of network-of-patterns thinking at CarCrop, illustrated by selected quotes from the case stories. A few quotes 
are not represented in the case stories and therefore marked with formal positions. 

 MOST [1999-2003] SoftCluster[2002-] Nomadic Device Integration [2004-2007] Android [2008-] 
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(i) “I think we all realized – at least 
the people involved in 

[architecting] infotainment – that 

somehow this was the future. We 

needed to focus on the system, 

solving problems at the system 

level. […] I think, at the heart of 
MOST, we find a kind of system 

level thinking that is not 

component-oriented. Instead, it 
centers on the structure of logical 

elements or functionality.” 

(ii) “by being in control of 
software, we can be fast 

and make sure there are 

[general] software 

functions supporting 

whatever it is we see 

coming. I think that’s the 
main challenge here.” 

(iii) “We should mimic the plug-in flexibility 
offered by USB. It is the device that is 

responsible for providing the relevant 

driver. This enables an end-to-end 

architecture for making the systems operate 

together.[…] As a third-party vendor, you’ll 

supply this opportunity by installing the 
driver on our open platform.” 

(iv) “you’ve got to get out to the 
communities that move fast, which is 

open source, and you got to install a 

platform in the vehicle that can 

accommodate that innovation.” 

(v) “we need to take control through an 

open source [platform] initiative and by 
our contribution to it, approve it. 

Because I think take control of it in a 

proprietary sense is still not going to 
create the crowd.” 
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(vi) “They thought the traditional 
model would work, where each 

[supplier] had responsibility for 

his own function, embedded in his 
own component. […] Down the 

road, they saw the flip side. It 

didn’t work since the whole system 
– end-to-end – was so incredibly 

distributed.” 

(vii) “With this architecture I 
can make some design 

changes really, really 

fast. But I think there are 
very few realizing it.” 

(viii) “It’s like playing with 

LEGO. You’ve got a 
particular set of bricks. 

They’ve got their 

limitations, but you can 
build a whole lot of 

different things with 

them. And it’s simple.” 

(ix) “We have realized that we don’t have the 
capability to define all those upcoming 

services, to understand what people want. It 

might not even be our job anymore. [...] The 
pace of telecom is at the heart of this. The 

automotive industry can’t handle this rapid 

pace. Things are too old when they come to 
the car! […] At some point we decided not 

to care about services. They can emerge on 

their own premises. Our task is to offer 
connectivity [between nomadic device and 

car].” (project manager, CarCorp) 

(x) “[This solution] provides a faster, more 
efficient and more flexible alternative to 

the conventional, in-house development 

of vehicle infotainment services.” 
(xi)  “We foresee two models for how to 

introduce new applications. One option 

is to actively seek partnerships where 
brands and products reinforce each 

other [without cannibalizing]. The other 

one is [unconstrained] open innovation, 
where you do not really know what is 

going to happen, where you allow 

yourself to be surprised by people and 
their ideas. Together, these two models 

will pave the way for great products.” 
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(xii) “We saw an opportunity to change 

and modify components […] It 

would be possible to add 
components over time and it 

would be possible to upgrade 

systems.” 

 

(xiii) “a need to support 

vehicle brand differences 

within the 
GlobalCarCorp family 

such as difference in 

graphics, layout and 
menu structures without 

having to change 

operational software in 

any ECU”. 

(xiv) “We are a couple of people who think that 

[selling embedded navigation and CD-

changers] won’t be possible in the future.” 
(xv) [Today] we make money off of our current 

portfolio of entertainment products, and 

pretty soon we won’t, because none of them 
are gonna be viable, you know.” (product 

manager, GlobalCarCorp) 

(xvi) “It is not easy to get acceptance for the 

ideas that we are going to develop 

something that other actors may capitalize 

on or that we may generate revenue [on 
services] at the aftermarket. We might see a 

breakthrough here.” (product manager, 

CarCorp) 

(xvii) “the way you establish value for this 

open platform is this idea that you have 

to be able to look at hundreds of ideas, 
and then you’re going to see the value.” 

(xviii) “CarCorp will issue third-party 

developers with a vehicle application 
programming interface (API) providing 

access to more than 500 signals from 

different sensors in the vehicle.” 

(xix) “CarCorp’s ‘open innovation’ strategy 

offers the global developer community 

access to the full bandwidth of car 
communications — infotainment, 

telematics, systems monitoring and 

diagnostics.” 
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(xx) “This idea about common 

specifications on functions and 

interfaces, that’s a major benefit. 
More or less being able to buy a 

component [off the shelf], like a 

radio tuner, developed for one 
manufacturer, but applicable to 

another since it’s a common 

interface specification.” 

(xxi) “By tradition, suppliers 

offered a low 

[component] price, 
knowing that change 

orders would feed them 

down the road. These 
changes always turned 

out to be ‘small and 

simple’ HMI changes.” 

(xxii) “According to customer surveys we have 

done regarding this kind of connectivity 

[with nomadic devices] a 300 dollar option, 
including a connected ‘color screen radio’ 

would attract almost 85% [of our 

customers]. If we can make such a system 
cheap enough – which we can – it’ll 

increase our margins. And if we stay down 

there [in the low-end segment] we won’t 
cannibalize on the premium products. It’ 

makes a complement, which is good. So 

from a techno-strategical, but also 

commercial perspective, this is going to be 

important!” (senior manager, 

GlobalCarCorp) 

(xxiii)  “[This solution] will allow infotainment 

services to constantly evolve during the 

lifetime of a car’s product cycle” 
(xxiv) “We have now sanctioned the project 

throughout the organization and 

received a great response” 
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6.3 Governance Models 

As we have discussed, architectural frames are not mutually exclusive. An 

innovation practice is not based on either hierarchy-of-parts or network-of-

patterns. On the contrary, both frames are represented in any innovation 

regime. Still, this thesis has demonstrated that it is not an easy task to shift 

architectural locus. Tensions and contradictions always play an important 

role in the introduction and assimilation of new information technology (cf. 

Wimelius 2011). Such tensions and contradictions are particularly salient as 

organizations seek new combinations of architectural frames to release the 

generative capability of IT. Some of these tensions are easily resolvable while 

others turn out to be more fundamental contradictions of dialectical 

character. They are dialectical in the sense that they uncover incompatible 

applications of the two frames. Such contradictions identify areas where the 

they offer different “possibilities and one of them has to be made” (Benson 

1977, p. 18). 

In seeking a better understanding of how to build generative capability in 

product developing firms, contradictions between architectural frames play a 

critical role. Not surprisingly, it is a lot easier to extend a familiar way of 

doing something with new ideas, than replacing it. Dialectical tensions are 

not easily resolved and hold the potential of radical change. They enforce a 

new path, which makes them difficult for practitioners and interesting for 

researchers. Although the empirical study of this thesis demonstrates that 

CarCorp developed new approaches to combine architectural frames, each 

embedded case also bare witness of significant tension between frames. Let 

us, in an attempt to derive a useful theoretical perspective on this, zoom in 

on the most prominent contradictions of each embedded case. 

MOST. Drawing on net-work-of patterns thinking the MOST 

architecture afforded CarCorp a new innovation practice, where 

general function blocks and specific infotainment applications could 

emerge together in a productive manner, relatively disconnected from 

hardware. At the same time, its exceptionally simple physical interface 

afforded extensive decomposition of the system, reinforcing a 

hierarchy-of-parts practice. While commanding absolute compliance 

with an interface, such practices engage suppliers in relatively 

unbounded component innovation. 

Trying to exercise both perspectives CarCorp uncovered a strong 

tension between the two frames at the point when function blocks 

were deployed to physical components. In some sense, one can argue 

that suppliers were denied the creative leeway they had traditionally 

had by CarCorp’s intervention in design of general functionality, but 
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without being offered something in exchange. As a consequence, this 

contradiction pushed them to adopt a defensive strategy, largely 

leaving for CarCorp to define how to improve navigation, radio, and 

other infotainment functions. As we know, CarCorp’s MOST-based 

infotainment system had a lot of potential. The problem was that this 

potential was largely unresolved. Traditional applications, such as 

navigation, telematics, and media playback, could be repackaged in a 

coherent and more harmonized manner, but the substantial 

investment in MOST did not pay off in any new end-user functionality. 

Network-of-patterns thinking had offered the automaker new 

opportunities, but to the price of a crashed innovation model. 

 

SoftCluster. In creating the SoftCluster platform CarCorp exercised 

network-of-patterns thinking. The macro language made a rich 

network of patterns that could be reused for new specific applications, 

not planned for up-front. At the same time, SoftCluster was a response 

to a strong need for commoditization. Therefore the SoftCluster 

architecture was designed to allow the wide range of components 

feeding the instrument cluster with information to evolve according to 

the hierarchy-of-parts logic. Petrol fuel measurement, speed, or 

cockpit temperature made well defined, relatively simple functions 

that could fit a traditional hierarchy-of-parts practice.  The macro-

oriented approach to cluster HMI design seemed to offer a working 

combination of a network-of-patterns practice, where specific 

functionality could emerge in an open-ended manner, and a 

hierarchy-of-parts practice, where underlying components could be 

incrementally improved, given the constraints of fixed system 

decomposition and rigid interfaces. 

The SoftCluster project did not experience serious contradiction 

between architectural frames until designers tried to adapt the 

concept. For several reasons it turned out to be a hopeless mission. 

The established interplay between a hierarchy-of-parts practice and a 

network-of-patterns practice rested hard on the invariability of the 

macro language. Applying SoftCluster more widely, as a basis for the 

entire domain of infotainment, turned out to be very challenging. 

Apparently, the rigidity of SoftCluster would be increasingly 

problematic to cluster design as well. In practice, specialization would 

decline as it could not be supported by recurring generalization. 
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Nomadic device integration. Nomadic device integration was for 

many years viewed from a pure hierarchy-of-parts perspective, where 

mobile phones and handheld computers could be easily integrated 

with the car, using standardized interfaces. This would afford 

automakers tremendous design flexibility and give direct access to 

innovation in consumer electronics communities. At the same time, 

several years of experience with nomadic device integration had 

fostered a complementary view. Rather than centering on 

components, this network-of-patterns perspective recognized the 

functionality offered by nomadic devices. It viewed mobile phones as 

platforms, offering general patterns available for specialization in a car 

context. 

Being relatively close to industrialization of an open platform for 

nomadic devices, CarCorp uncovered a fundamental contradiction 

that was rooted in a clash between the two perspectives. On the one 

hand, they recognized and encouraged the innovation taking place in 

nomadic components. The problem was that they had little influence 

over this process, since they could not unilaterally define interfaces. At 

the same time, they recognized and encouraged innovation associated 

with specialization, i.e. adaptation of nomadic functionality to an 

automotive context. Gradually they understood that this process was 

governed by general patterns, hosted by nomadic devices. CarCorp 

was about to launch an infotainment system where they had very few 

tools for governing the innovation process. 

 

Android. The adoption of Android was grounded in a wide-spread 

belief that network-of-patterns thinking would be better off in 

providing rich infotainment experiences than a traditional hierarchy-

of-parts practice. By extending the well diffused platform with 

complementary general patterns, offered as car-specific API:s, 

CarCorp saw an opportunity to exercise significant influence over 

distributed and uncoordinated innovation processes. At the same time 

security issues and driving safety remained critical topics. Leaving the 

platform wide open for any kind of software was not an option. 

Drawing on hierarchy-of-parts thinking strong voices promoted the 

idea that CarCorp should use its unlimited control over the hardware, 

hosting the Android platform, to weed out undesirable applications. 

Trying to predict how an upcoming development community would 

act, CarCorp could see a significant contradiction between the two 

perspectives. Launching an Android-based infotainment solution 
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would most likely force them to exercise both, but unless it was done 

with extreme care and vigilance the whole initiative would fail. An 

open innovation environment would not survive without multiplicity 

and niche applications. Enforced CarCorp control would most likely 

drive important actors away from the ecosystem. Practicing lock-out 

of applications would send such a message to the community. 

 

Let us, when reflecting on the four embedded cases, recall that innovation is 

about combination. It plays out in a continuous interplay between existing 

building blocks and upcoming visions. Successful innovation practices offer 

predefined building blocks that assist production of new ideas, rather than 

enforce old ideas. Therefore, they are characterized by a sound and 

rewarding balance between creative leeway and rigid support for realizing 

new ideas. They offer, at the same time, freedom to design and well defined, 

solid structures supporting such design.  

Synthesizing the four embedded cases of this thesis I argue that practices 

with an architectural locus on hierarchy-of-parts offer one template for this 

balancing, while a network-of-patterns-centric practice offers another. These 

templates are not always compatible. As the cases demonstrate, a product 

developing organization cannot enjoy the benefits of both. 

 Hierarchy-of-parts, as we know it from modular practices in product 

development, requires specific functionality to be up-front defined, 

while enabling significant freedom for independent creation of new 

general functionality at the level of components.  

 An architectural locus on network-of-patterns hampers change of 

general patterns, reused across a wide range of applications, while 

allowing for an almost unbounded freedom to create new specific 

functionality. 

Not surprisingly, the predefined building blocks, paving way for creative 

leeway, also defines how an innovation process can be governed. With a 

hierarchy-of-parts perspective technological progression is primarily an 

outcome of the interplay between decomposition and aggregation. Applying 

modularity, as exercised at CarCorp and other product developing industries, 

the decomposition of systems is governed by specific patterns – the agreed 

overall functionality of the different products expected to be realized by the 

system. Such decomposition recursively brings a rigid and visible hierarchy 

of physical parts that makes a shared view on system characteristics, division 

of labor, production, etc. At the same time, this recursive process reduces 

complexity by hiding functional structure. Largely, the functional structure 

behind an interface is hidden at the system level. By detaching the functional 
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interior of different components a manufacturer builds remote islands of 

innovation. Suppliers are given significant freedom to design the interior of 

components as long as they obey the constraints defined by the system 

decomposition and, ultimately, the interfaces falling out of this 

decomposition. 

In contrast, an innovation practice centered on network-of-patterns thinking 

is defined by the interplay between generalization and specialization. As 

practiced e.g. in the Android community, such innovation is open-ended in 

that there is no up-front plan for specific functionality to be delivered. 

Instead, such specific functionality emerges over time in a never-ending, 

iterative process, continuously extending and enriching a network of publicly 

available patterns. Still, this iteration does not make a random walk. The 

process is governed by general patterns – the different resources offered to 

developers by a platform owner. By offering a complementary Android API, 

giving access to diagnostic data, CarCorp will seed one path of innovation, 

while access to break data will seed another. Therefore, in a network-of-

patterns-centric innovation practice creative leeway follows from direct 

access to the full functional structure of a system, allowing ideas to be 

iteratively reused for every new specific function. At the same time, it applies 

a layered architecture where designers can select the level of granularity. In 

particular, a layered software platform reduces complexity by hiding physical 

structure. In practice, it allows developers to implement applications on the 

basis of general software services, drawing on sensors and actuators, without 

ever seeing or working with the underlying hardware.  

Again, a hierarchy-of-parts practice offers creative leeway at the level of 

components by defining specific functionality, while a network-of-patterns 

practice offers unbounded freedom to create new specific functions by 

defining general functionality of the system. A product developing 

organization cannot foster innovation practices extracting the benefits of 

both. Specifying both specific and general functionality will inevitably kill 

creativity, while specifying none leaves the manufacturer without influence. 

One way to illustrate this inherent contradiction between architectural 

frames is to present a hierarchy-of-parts practice as recursive, while a 

network-of-patterns practice is iterative. These concepts are seemingly 

equivalent, both referring to a repetitive behavior. However, with this 

distinction I want to emphasize that decomposition-aggregation generates 

nested functional structure, hidden to an external observer, while 

generalization-specialization generates visible functional structure, 
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observable as a whole30. Recursion is not easily represented. As an example, 

a flow chart is able to illustrate loops, but not the logic of recursion, where a 

function calls itself over multiple instances. Therefore, in an attempt to make 

a simple illustration of why hierarchy-of-parts practices generate nested 

functional structure that cannot be unfolded and studied as a whole I have 

composed a few lines of pseudo code (Box 5 and Box 6). Although excessively 

simplified Box 5 demonstrates that hierarchy-of-parts practices generate 

hierarchical structure by repeated inscription of functionality in physical 

components. Typically, a product developing firm defines a first level of 

components, critical to production (03-06). Next, tier-1 suppliers are 

contracted to make the detailed designs of components. This involves a 

mapping and break-down of the component’s specific functionality into 

more general functional elements (11-13), followed by an assignment of these 

elements to sub-components, potentially provided by tier-2 suppliers (15-

18). 

Box 5. Pseudo code demonstrating the recursive materialization of 
hierarchic structure in hierarchy-of-parts practice. 

01 main () 

02 ( 

03  for each specific-function(i) of product 

04    define component(i) 

05    decompose(component(i),specific-function(i))   

06  loop  

07 ) 

08  

09 decompose(component-to-decompose,function-to-instantiate) 

10 ( 

11   do 

12     define general-function(i) from function-to-instantiate 

13   loop  

14  

15   for each general-function(i) 

16     define component(i) 

17     decompose(component(i),general-function(i))   

18   loop 

19 ) 

The purpose of the equally simplified pseudo code in Box 6 is to demonstrate 

that network-of-patterns practices do not embed functionality in 

components. Instead, functionality – the network of patterns – is a visible 

and available structure, evolving over time as different stakeholders extend 

                                                             

30 Network-of-patterns do not enforce open source practice, where publicly available 

software code represents functional structure. However, to remain relevant over time 

it has to include mechanisms for making good solutions available beyond original 

settings.  
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its boundaries. Let us see the network of patterns as the different software 

elements of a digital product, from the lowest layers of a platform to end-

user applications. When the product is launched this network of patterns is 

given an initial state (01). However, it evolves in an asynchronous, yet 

interdependent mangle between specialization and generalization. Typically, 

developers extend the network as they repeatedly reuse existing functional 

patterns of the platform to create new, specific applications (07-09). At the 

same time, platform owners seek to extend the platform by continuously 

developing new general functions with wide application across different 

contexts (11-13). 

Box 6. Pseudo code demonstrating the iterative evolution of networked 
structure in network-of-patterns practice. 

01 #define network-of-patterns 

02  

03 main() 

04 ( 

05   do in parallel  

06   A: 

07     do 

08       specialize(network-of-patterns) 

09     loop  

10   B: 

11     do 

12       generalize(network-of-patterns) 

13     loop 

14   end-do 

15 ) 

Given that the governance model associated with hierarchy-of-parts seems to 

be largely incompatible with a network-of-patterns practice, how did 

CarCorp resolve this conflict as products turned increasingly digital? The 

short answer is that they did not resolve it. With MOST, the deployment of 

functional patterns to physical components marks a point in time when 

architectural locus shifted rapidly from network-of-patterns to hierarchy-of-

parts. In the early phase designers exercised generalization to build coherent 

an aligned functionality. This functional design was performed largely 

independently from physical dimensions. However, in the later phase this 

perspective was marginalized and progression was guided by the structural 

constraints defined when allocating patterns to components. 

In contrast to MOST, it can be argued that the other three embedded cases 

preserved network-of-patterns thinking, at different levels, beyond 

deployment and production. The two frames seem to have coexisted. All 

three cases account for software-based innovation practice which existed 

relatively independent from the processes of designing and developing 

hardware. At the same time, these innovation practices were embedded 
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within a traditional hierarchy-of-parts practice. Functionality of clusters and 

nomadic devices was allowed to emerge according to a new logic, but only 

within well defined boundaries. This “sandbox” was defined in an act of 

decomposition, when making the overall systems architecture of cars. 

Cluster development, nomadic functionality, and Android-based 

infotainment could be changed on new premises, but only within a given 

component. The rest of the car evolved according to a hierarchy-of-parts 

logic. Therefore, the two architectural frames co-existed, but largely without 

interaction. 

The problem with this approach is that physical structure is created on the 

basis of an assumption of the functionality of the system. That assumption 

will forever constrain innovation and prevent the firm from releasing the full 

potential in generative capability. Generalization can be exercised for 

functionality associated with a given component, but all remote 

functionality, residing at other components, is created for specific purposes, 

beyond range for generalization. In practice, all the sensors, actuators and 

data sources of cars and other complex products hold enormous innovation 

potential which is very hard to release since they all make pieces in a pre-

defined puzzle. 

A question that remains unanswered is why product developing firms have 

not left hierarchy-of-parts thinking behind? Given that innovation processes 

cannot combine recursive, top-down governance and bottoms-up 

governance, powered by control over general patterns, what prevents them 

from releasing their grip of specific functionality? After all, architecture is 

not an inherent property of technology, but “a shared way of thinking” (p. 

73) and architectural frames are “schemas for thinking about and 

representing a complex product’s architecture” (p. 73). Would it not be 

possible for these firms to concentrate their efforts on network-of-patterns 

thinking, which does not per se hide new ideas deep down in nested 

hierarchies? Instead, such a network of patterns, manifested as platform 

services, APIs, tools in an SDK, code examples, community discussions, 

documentation, etc, represents an open and accessible pool of best practice. 

It makes a generative scheme of instructions which, “carried out 

sequentially, will allow a person or a group of people to create a coherent 

artifact, beautifully and simply” (Alexander 1999, p. 81). 

Together, the embedded cases give a clear indication that the answer is no. 

Product developing firms cannot abandon hierarchy-of-parts in their 

struggle to build generative capability. Although increasingly digitalized, 

physical products have to be architected for producibility (see section 3.2). 

The production of all the different systems making up a car remains 

associated with substantial fixed and marginal costs. This insists on massive 
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investments in specialized assets, such as tools, supply chains, and plants. To 

stay competitive a product developing firm has to depreciate these costs 

across large volumes of the product, enforcing an economy of scale. The 

hierarchy-of-parts frame allows product developing firms to bridge the 

barrier between design and production by a common product structure, 

allowing specialized assets to be reused across variants and generations of 

products. 

A question for future research is whether it is possible to architect digital 

products for producibility and generativity, without exercising the inherent 

clash between governance models. I will elaborate this issue further in 

section 7. 

6.4 Summary 

The architectural frames model is designed as a tool for understanding 

technological change in digital product innovation, where different 

innovation regimes clash into each other. It underlines that innovation 

processes are deeply colored by the way we conceptualize products. 

Architecture and architectural thinking largely defines change across 

generations of products. Being a link between historical achievements and 

future potentialities, the architecture is an instrument for path creation as 

well as a shackle of path dependency. However, the model also emphasizes 

that tangible products and software tend to be architected for different 

purposes. When architecting tangible products, product developing firms 

center on the physical structure. Modular designs allow for efficient reuse of 

assets, such as production tools and machineries. In contrast, software tends 

to be architected for efficient reuse of ideas. Therefore, as proposed in the 

theoretical framework (see e.g. section 3.3.4) and later illustrated by the four 

embedded cases, hierarchy-of-parts is largely associated with producibility, 

while network-of-patterns thinking is linked to generativity. This research 

suggests that generativity is not an explicit objective when product 

developing firms engage in software-centric design practices. Rather, it 

emerges along with a new kind of architectural thinking, triggered by new 

affordances of digital technology. Programmability and replicability disrupts 

taken-for-granted barriers between design and production, allowing 

functionality to be elaborated and adapted on a recurring basis, 

independently from hardware. Therefore, network-of-patterns thinking 

centers on processes, rather than products. It associates architecture with 

the structure of problems and solution, not structure of physical products. 

The architectural frames model is demonstrated in product development 

over several embedded cases and a temporal extension of one decade (6.1). 

This demonstration shows that hierarchy-of-parts and network-of-patterns 
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are not just theoretical constructs. They also have ontological significance in 

that they offer concrete, frequently applied views on digital products. 

Further, we have seen that the generativity associated with network-of-

patterns thinking has implications across the entire innovation process. 

While, it is certainly possible to draw on the affordances of digital technology 

to increase internal flexibility (e.g. SoftCluster), “the generative capacity for 

unrelated and unaccredited audiences to build and distribute code and 

content” (Zittrain 2006, p. 1975) follows from a new organizational 

perspective on existing products (6.2). Rather than viewing their products as 

carriers of pre-fabricated functionality, the organization, as a whole, has to 

embrace a view where products are enablers and catalyzers of new, yet 

unknown functionality. Finally, we have seen that hierarchy-of-parts and 

network-of-patterns are associated with distinctly different governance 

models that cannot be combined (6.3). Generative capability relies on 

unconstrained freedom to create new specific functions. Applying network-

of-patterns philosophy, such practices can be governed by general patterns, 

offered to developers as platform services, APIs, SDK, code libraries, etc. At 

the same time, a hierarchy-of-parts practice offers creative leeway at the 

level of components by defining specific functionality. A product developing 

organization cannot build innovation practices drawing on both models. 

Specifying both specific and general functionality will inevitably kill 

creativity, while specifying none leaves the manufacturer without influence. 

This thesis offers a theoretical perspective for understanding digital product 

innovation. It also discloses a range of challenges facing a product 

innovation organization trying to build generative capability. Two key 

lessons are that (1) generativity requires organization-wide support for 

network-of-patterns thinking and (2) a bottoms-up governance model, 

rooted in control over general patterns. CarCorp found a way to implement 

these substantial changes. However, they did it by setting up two innovation 

regimes in parallel. Infotainment embraced open innovation, inviting 

external software developers, while chassis, body electronics, and most other 

functional areas preserved a traditional hierarchy-of-parts practice. In some 

sense, CarCorp created an isolated playground, contained by specific 

components, where software-based functionality could evolve on different 

premises.  

The problem of this approach is that sensors, actuators, and data sources 

outside this isolated environment remain pieces in a pre-defined puzzle. 

They cannot be easily generalized since they are created for a specific 

purpose. Therefore, a major challenge for future research and practice is to 

find a way to combine innovation regimes. How could digital products be 

architected, as a whole, for both producibility and generativity? Is there a 
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way to avoid the inherent contradiction between recursive hierarchy-of-parts 

development and iterative network-of-patterns practices? Can hardware be 

developed without exercising top-down governance, inscribing specific 

functionality in system solutions at an early point? In the following section I 

will elaborate these questions in some detail. 

 





 

189 

 

7 Implications and Future Work 

This research provides new insights into how product developing firms adapt 

architectural thinking in response to digital technology. While products must 

continue to be architected for producibility, managers and designers are 

increasingly aware that architecture also is an instrument for building 

generative capability; it defines the creative processes providing yet 

unknown functionality and content for tomorrow’s products. 

To understand and elaborate this shifting view on products and product 

development this thesis develops a complementary perspective on the 

concept of architecture. Rather than seeing architecture as “the scheme by 

which the function of a product is allocated to physical components” (Ulrich 

1995, p. 419) or “the structure or structures of a system” (Clements et al. 

2003, p. 471) this perspective centers on the inherent capability of 

architecture to define change processes. It views architecture as structure-

preserving and structure-enhancing in the sense that it may be used to pass 

sound solutions on from design to design and generation to generation. With 

this view, architecture connects historical achievements with future 

potentialities, making it a key instrument for path creation. With this 

perspective follows a different approach to complexity. Rather than seeing 

the architecture as an answer to the question how is the whole described 

through its parts, it triggers architects to ask: how do things assemble 

themselves? How does new functionality emerge from existing elements? 
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Contributions to Research 

Drawing on this view on architecture, this thesis contributes to existing 

research in several ways. Most important, it develops and demonstrates a 

distinct theoretical lens – architectural frames – allowing for the new 

perspective on architecture to be applied in empirical studies of digital 

product innovation. This framework makes a contribution to several bodies 

of literature. On a general level, it can be viewed as a response to different 

calls in IS literature seeking to regain focus on the IT artifact (cf. Benbasat 

and Zmud 2003; Lyytinen and Yoo 2002; Orlikowski and Iacono 2001). In 

this discourse, architectural frames offer a new way for understanding and 

conceptualizing the mutual entanglement of technology and human action, 

frequently studied in contemporary IS research (Jones 1998; Kallinikos 

2006; Latham and Sassen 2005; Monteiro and Hanseth 1995; Orlikowski 

2007; Orlikowski and Scott 2008).  

More specifically, this framework contributes to an increasingly vital subset 

of this literature, discussing the materiality of IT (cf. Jonsson et al. 2009; 

Leonardi and Barley 2008; Leonardi 2010; Svahn et al. 2009; Yoo 2010; Yoo 

et al. 2010d). While recognizing that “it may seem odd to say that 

information technologies have material properties” (Leonardi and Barley 

2008, p. 162) this stream of research draws attention to the performativity of 

IT (Barad 2003; Pickering 1995). It is argued that the notion of materiality 

remains relevant for digital technology as long as we refer to properties of 

the technology that provides users with the capability to perform some 

action (cf. Leonardi 2010). As we have discussed in section 3.1 such an 

affordance perspective defines materiality in relation to an observer (Gibson 

1979). The theoretical framework contributes to this stream of literature in 

that hierarchy-of-parts and network-of-patterns make distinct perspectives 

on such relations. One the one hand, consistent application of an 

architectural frame changes products over time. It is structure-enhancing in 

the sense that it over generations of designs reinforces selected material 

properties of a product or technology. On the other hand, an architectural 

frame gradually changes how people and organization conceptualize and 

makes sense of products. It reinforces an organization’s capability to act by 

offering a shared, cognitive model, specifically tuned for selected material 

properties. This touch on an intricate question, leaving a research 

opportunity for the discourse of materiality in IS; is an affordance 

independent of an actor’s experience and culture, as claimed by Gibson 

(1979), or are we better off conceptualizing it from a cognitive perspective, as 

resulting from “the mental interpretation of things, based on our past 

knowledge and experience” (Norman 1988, p. 14)? 
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However, this thesis also contributes to product architecture literature 

(Baldwin and Clark 2000; Henderson and Clark 1990; Robertson and Ulrich 

1998; Sanchez and Mahoney 1996; Simon 1962; Sosa et al. 2004; Ulrich 

1995), providing much of the theoretical foundations of this work. Clearly, 

modularity is the dominant view on architecture in product innovation. 

Simon’s work on near decomposability (Simon 1962; Simon 2002) is a given 

point of departure when theorizing on modularity and the application of 

modularity in product development. However, a significant body of product 

innovation research points to the similarities in Simonian and Alexandrian 

thinking (Baldwin 2008; Langlois 2006; Murmann and Frenken 2006; 

Schilling 2000; Ulrich and Eppinger 2004; Von Hippel 1990). Opposing 

such a view, this thesis suggests that the increasing digital content of 

physical products (Andersson et al. 2008; Lenfle and Midler 2009; Yoo 

2010; Yoo et al. 2010b) calls for consideration of their differences. 

Finally, this thesis contributes to an emerging discourse on generativity in 

the context of IT and digital technology. The term generativity has been 

described as a technology’s capacity to enable voluntaristic and spontaneous 

innovation driven by large, heterogeneous an essentially uncoordinated 

crowds (Remneland et al. 2011; Zittrain 2006). At the same time, there are 

strong voices arguing that generative capability is primarily an attribute of a 

person, which “refers to one’s ability to reframe reality and subsequently to 

produce something ingenious or at least new in a particular context” (Avital 

and Te'eni 2009, p. 345). This thesis seeks to avoid the traditional wrestling 

match between techno-centrism and human-centrism by shifting focus from 

attributes and properties of technology and social structure to change 

processes. In doing so it aligns with the traditional use of generativity in 

behavioral sciences, where the concept is inherently associated with 

transformation processes (Erikson 1963; Kotre 1984; McAdams and de St 

Aubin 1992; Schön 1979). A salient example from this literature is Erik H. 

Erikson’s (1963) discussion in “Childhood and Society” on adolescence and 

the interplay between generations: 

The fashionable insistence on dramatizing the dependence of 
children on adults often blinds us to the dependence of the older 
generation on the younger one. Mature man needs to be needed, 
and maturity needs guidance as well as encouragement from 
what has been produced and must be taken care of. 
Generativity, then, is primarily the concern in establishing and 
guiding the next generation, although there are individuals who, 
through misfortune or because of special and genuine gifts in 
other directions, do not apply this drive to their own offspring 
(Erikson 1963, p. 266-267). 
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Applying this basic reasoning to digital product innovation, this thesis 

suggests that generativity emerges from product architectures that can “pass 

sound solutions on from design to design and generation to generation” (p. 

35). In the words of Erikson, generative, then, is primarily the architectural 

concern in establishing and guiding the next generation of yet unknown 

functionality and content for tomorrow’s products. 

The empirical study of digital product innovation in the automotive industry 

generates some distinct insights on the challenges facing an organization as 

it seeks to develop generative capability. Essentially, these challenges derive 

from the appropriation and adoption of network-of-patterns thinking. In 

building generative capability firms seek to encourage voluntaristic and 

spontaneous creativity, but also new models for appropriating value from 

such creativity. The study discloses that such capability entails a new 

perspective on products. Rather than viewing their products as carriers of 

pre-fabricated functionality, the organization has to embrace a view where 

products are enablers and catalyzers of new, yet unknown functionality (6.1). 

Unless such a view informs all the different actions and decisions across the 

organization a product developing firm has little chance to build permanent 

generative capability (6.2). Further, this thesis suggests that a product 

developing firm cannot build generative capability unless adopting a 

distinctly different governance model. Generative capability relies on 

unconstrained freedom to create new specific functions. Such freedom 

clashes hard into established modular governance models, where 

decomposition of products is guided by specific functionality. Unless product 

developing firms find ways to govern innovation through general patterns 

rather than specific they have little chance to build permanent generative 

capability (6.3). 

Contributions to practice 

This thesis also contributes to industrial practice. Applying architectural 

frames as a lens to digital product innovation in the automotive industry, it 

illustrates how the concept of architecture is gradually loaded with a new 

meaning in product developing industries. Rather than being a tool for 

producibility it slowly turns into to an instrument for generative capability. 

Uncovering the network-of-patterns frame, reflecting Christopher 

Alexander’s view on architecture, product developing firms increasingly 

center their attention on how products are created, rather than how they are 

decomposed. With this view, the architecture affords reuse of solutions to 

recurring problems, rather than reuse of physical components across models 

and over generations of products. This research suggests that an increasing 

locus on the network-of-patterns frame may increase competitive advantage 

for product developing organizations in several ways.  
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First of all, the network-of-patterns frame opens up for proactive rather 

than reactive architectural strategies. Its inherent focus on solutions and 

problems makes the architecture an instrument to cultivate new ideas and 

exercise new business opportunities, rather than a tool for cost savings. With 

recognition of the network-of-patterns frame designers can motivate not to 

streamline solutions for particular, pre-defined purposes. When the 

architecture plays out in an ever-expanding space of functionality it is, on the 

contrary, a bad idea to minimize memory size or processor capacity to meet 

the needs of a given function. 

Second, the network-of-patterns frame enables a new strategic asset as it 

turns the spotlight from specific functionality to general functional patterns. 

In a hierarchy-of-parts practice, products are architected to support a range 

of well-defined, specific functions, such as navigation, telephony, or audio 

playback in cars. General elements, such as positioning, routing, or decoding 

are largely irrelevant from an architectural point of view, simply because 

they are embedded in components and, thereby, a headache for a particular 

supplier. Recognition of the network-of-patterns frame, to some extent, 

turns this equation up-side-down; products are architected to supply flexible 

generic functions to distributed ecosystems, in turn, providing a range of 

specific functions, far beyond what a firm can do in isolation. Suddenly, 

high-precision positioning, enabled by integration of GPS and ABS31 sensors, 

is a strategic asset for manufacturers, allowing them to appropriate value 

from in-car navigation solutions supplied by other independent actors. 

Third, the network-of-patterns frame allows for appropriation of value 

across the product life cycle, rather than just at the time of sales. This is not 

primarily a consequence of increasingly software-based functionality, but 

rather an implication of the new frame. Network-of-patterns do not enforce 

inscription of specific functionality in the physical structure of products. 

Thereby, the meaning of a particular product is not up-front defined, but can 

evolve over time. Specialization can occur independently from hardware 

design, generating a constant flow of new functions.  

Limitations and Future Work 

There are certainly limitations in this work. Given the explicit ambition to 

study how product innovation regimes and digital innovation regimes are 

conceptualized and combined (p. 57), it can rightly be argued that the case 

story provides poor evidence of a truly revised architectural practice, 

combining hierarchy-of-parts and network-of-patterns. Although providing a 

                                                             

31 Anti-lock breaking system. 
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relatively rich and nuanced portrait of how product developing organizations 

take in and adapt to network-of-patterns thinking, this new architectural 

philosophy remained somewhat an exception at CarCorp over the studied 

period. With the Android platform still not in production, hierarchy-of-parts 

remained the dominant view on the car, providing a well defined logic for 

product design, organizations, and business models. As discussed in section 

6.3 the two architectural frames co-existed, but with limited interaction. To 

some extent, network-of-patterns thinking made a complement to 

established practices, which largely remained untouched.  

For several reasons this approach is likely to fail over time. Allowing 

software-based functionality to evolve in a bottoms-up manner, while 

specifying the hardware, hosting that software, according to a traditional 

hierarchy-of-parts logic cripples generativity. It simply prevents the platform 

owner from exercising effective generalization over time, continuously 

feeding developers with new, interesting patterns that cannot be instantiated 

independently from hardware. Therefore, to build sustainable generative 

capability it is critical to form a working interplay between hierarchy-of-

parts and network-of-patterns. Physical structures of a product have to be 

designed in careful dialogue with functional structures. Therefore, the 

diffusion of network-of-patterns thinking in product development comes 

with implications on hardware design and physical architecture. Together, 

researchers and practitioners have to develop a revised practice, approaching 

the hierarchy-of-parts frame from a slightly different angle. That is an angle 

where Simon’s concept of stable subassemblies remains relevant, but not 

primarily as a way to define remote islands of innovation in a rigid and fixed 

overall structure. Instead, such a view has to emphasize the close link 

between stable subassemblies and producibility. This leaves several 

opportunities for future research on product architecture. Let us briefly 

reflect on a few of them. 

First, there is an opportunity for future research to find a better balance 

point between the proven benefits of modularity and the emerging 

opportunities of digital technology by developing new aggregation 

strategies. Modularity allows an organization to form variants from a pre-

defined setup of components, designed to meet particular functional needs 

(Schilling 2000). This way an organization can balance differentiation and 

commoditization (Robertson and Ulrich 1998). Low-end variants are simply 

based on fewer components. However, a generative environment, cultivating 

functional variety relies on the accessibility offered by considerable installed 

base (Zittrain 2006). To make niche applications interesting from a business 

perspective it is necessary to create significant audience (Davenport and 

Beck 2001). Against this backdrop, it is important for future research on 
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product architecture to study new aggregation strategies. To increase 

generative capability, physical products need to be architected on new 

premises, where variants remain compatible from a software perspective. Let 

us note that shared hardware may increase cost of low-end products. One 

way to preserve scale advantages in such a scenario is to consider 

standardized, off-the-shelf hardware. Such solutions are not tailored to the 

particular context, but allows for large series without pressure to reuse 

production assets over time. 

Second, upcoming research may address product architecture by developing 

new decomposition strategies, considering breaking down digital product 

into physical parts on other premises than functionality. A modular product 

is decomposed to create stable subassemblies that can make up predefined 

physical element of a system (Simon 1996). Such stable subassemblies are 

autonomous in the sense that their interior can be changed without 

influencing the rest of the system. This is a fundamental aspect of traditional 

product innovation since it preserves the overall functionality of a product, 

while allowing for continuous price/performance improvements (Clark 

1985). However, low coupling between components is achieved by 

decomposing the system from the perspective of functionality (Ulrich 1995). 

This effectively inscribes functionality in the physical structure of the system, 

which prevents reuse for new purposes. Therefore, a critical question for 

future research is to identify alternative premises for decomposition. How 

can physical products be decomposed for low coupling without inscribing 

functionality in the structure? As a suggestion, such decomposition may be 

guided by producibility issues, rather than functionality.   

Third, future research may examine how hierarchic span correlates to 

generativity in the context of digitized products. Modularity prescribes 

hierarchy as the dominant structure (Simon 1962; Simon 1996). In 

established product innovation practices, such hierarchic structure follows 

from recursive innovation processes, handling complexity by hiding 

functional structure in components (Parnas 1972). Essentially, the different 

general patterns used to realize the functionality of a particular component 

are hidden for an external observer. Clearly, the modular approach to 

complexity does not resonate well with the holy grail of generativity; 

unconstrained reuse of old solutions to solve new problems. Therefore, 

alternative structure for physical products is an important topic for future 

research is to study. One question is whether there are better or worse 

hierarchies. Let us recall that recursion is at the heart of the problem. It is 

reasonable to believe that a deeper hierarchy is more rigid and hard to 

change. The more nested levels, the more hidden functionality. This line of 

argument suggests that a key measure to extend the generative capability of 
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digital products is to increase the hierarchic span (Simon 1996, e.g. p. 202). 

In practice, this will result in a less deep structure, where components exist, 

side by side, without a nested structure hiding them from each other. 

Fourth, future research may address the question of appropriate specificity 

of interfaces in digital product innovation. In a modular innovation practice 

interfaces define the roles of components in a system (Schilling 2000). They 

reveal how different parts of a system interact and how functionality flows 

from component to component. To reduce complexity and coupling, but also 

to exercise precise control over innovation, interfaces tend to be tailored for 

the specific purpose falling out of decomposition (Ulrich 1995). Making a 

cornerstone in the specifications used to engage suppliers, interfaces tend to 

be rigid and hard to reconsider. This makes a stark contrast to the principles 

of generalization, being so central for generative capability. An important 

topic for future research is to derive best practice for how to reduce 

specificity of interfaces. While such general interfaces cannot be justified in a 

specific design process, they make an investment in the functionality and 

content of tomorrow’s products. 
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