This is a published version of a paper published in *OEM Online First*.

Citation for the published paper:
Järvholm, B. (2012)
"A comparison of occupational and non-occupational exposure to diesel exhausts and its consequences for studying health effects"
OEM Online First
URL: http://dx.doi.org/10.1136/oemed-2012-101134

Access to the published version may require subscription.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-59694

[DiVA](http://umu.diva-portal.org)
LETTER

A comparison of occupational and non-occupational exposure to diesel exhausts and its consequences for studying health effects

Diesel exhausts are common both in occupational and non-occupational settings. They are considered as a cause of lung cancer, and International Agency for Research on Cancer (IARC) recently upgraded the evidence from probable to sufficient (http://www.iarc.fr). However, the opinions about the health effects are not consistent. A recent review concluded that the published studies lack consistency.1 A pooled analysis of case-control studies and a study of miners were interpreted as consistent with an increased risk but questioned by others.2 3 Some of the studies of lung cancer risk from diesel exhaust are evaluating the risk in drivers of vehicles like buses, trains or heavy equipment operators.1 2 4

The possibility to find an association in epidemiological study depends on the contrast in exposure between groups. We used nitrous dioxide as a marker of diesel exhausts and estimated exposure during working time (1700 h/year) and to commuting and so on (700 h/year) and to average concentration in the city (http://www.ivl.se).

Occupational exposure constituted 89%. The average concentration in the Stockholm area was reported to 350 μg/m3 indicating an average concentration of 53 μg/m3,6 indicating an occupational contribution of 29% in drivers (figure 1). These are the occupational contributions of diesel exhausts during a year in which the worker is occupationally active. If the life-time cumulative exposure would be estimated the occupational contribution would decrease considerably. The recent US study of miners found an average concentration of 128 μg/m3 elementary carbon in underground workers while the concentration for surface worker was only 1.7 μg/m3.3 However, if the lung cancer risk at the age of 70 is proportional to the life-time cumulative risk, the occupational contribution would be just about 50% for a worker who had worked 5 years underground in the mine and 70% if he had worked underground for 10 years.

We conclude that occupational studies of the risk with diesel exhausts would considerably underestimate the risk if they do not consider the non-occupational exposure. This especially concerns studies of modestly exposed groups like drivers in non-confined spaces.

Bengt Järvholm, Christina Reuterwall
Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
Correspondence to Professor Bengt Järvholm, Department of Public Health and Clinical Medicine, Umeå University, Umeå SE 901 87, Sweden; Bengt.jarvholm@envmed.umu.se

Acknowledgements This work was supported by funding from the Swedish Work Environment Authority.

Contributors Both authors participated in the design and writing of the study. BJ was responsible for data collection.

Competing interests None.

Provenance and peer review Not commissioned; internally peer reviewed.

Accepted 26 August 2012

REFERENCES