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ABSTRACT. Interindustry transactions recorded at a macro
level are simply summations of commodity shipment decisions
taken at a micro level., The resulting statistical problem
is to obtain minimally biased estimates of commodity flow
distributions at the disaggregated level, given various
forms of aggregated information. This study demonstrates
the application of the entropy-maximizing paradigm in its
traditional form, together with recent adaptations emerging
from information theory, to the area of spatial and non-
spatial input-output analysis. A clear distinction between
the behavioural and statistical aspects of entropy modelling
is suggested. The discussion of non-spatial input-output
analysis emphasizes the rectangular and dynamic extensions
of Leontief's original model, and also outlines a scheme for
simple aggregation, based on a criterion of minimum loss of
information. In the chapters on spatial analysis, three
complementary approaches to the estimation of interregional
flows are proposed. Since the static formulations cannot
provide an accurate picture of the gross interregional flows
between any two sectors, Leontief's dynamic framework is
adapted to the problem. The study concludes by describing

a hierarchical system of models to analyse feasible paths

of economic development over space and time,

KEYWORDS : Commodity flows, dynamic analysis, entropy,
information theory, input-output analysis, probability

&istributions, regional and interregional modelling.
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ENTROPY, INFORMATION THEORY,
AND SPATIAL INPUT-OUTPUT ANALYSIS

Abstrhact

A great dealof theoretical and empirical attention has been paid to
input-output analysis, since the appearance of Leontief's original model.
This study focusses primarily on a number of empirnical difficulties,
arising from the fact that interindustry transactions which are recorded
at the aggregated, or macro, level are nothing more than broad reflections
(or summations) of individual commodity shipment decisions taken at a
disaggregated, or micro, level. The resulting statistical problem involves
making efficient use of various forms of information (including published
input-output tables) which are available at the macro level, to obtain
unbiased estimates of commodity flow distributions at the micro level.

The major purpose of the study is to exanhne the potential application of
the entropy-maximizing paradigm in its traditional form, together with
more recent adaptations emerging from .ngfowmation theory, to the general
area of spatial and non-spatial input-output analysis. A clear distinc-
tion is maintained between the behavioural and the statistical aspects

of entropy. It is suggested that the entropy-maximizing approach to the
estimation of interindustry flows can more fruitfully adopt the first
principles of information theory, in preference to various microstate

descriptions derived by analogy with statistical mechanics.



The discussion of non-spatial input-output analysis emphazises the
rectangularn and dynamic extensions of Leontief's original static model.
The information content of an input-output table is also discussed, and
an ordering scheme for simple aggregation, based on the criterion of
minimum £Loss of information, is outlined. Biproportional matrix adjust-

ments are also examined.

In the chapters on spatial analysis three complementary approaches to

the estimation of interregional and intersectoral flows are proposed,
using a limited database of industrial and multiregional information.
Unfortunately, the static formulations cannot provide an accurate estimate
of the gnross interregional flows between any two sectors. Leontief's dy-
namic input-output framework is therefore adapted to the interregional

estimation problem.

The study concludes with a demonstration of how the various coefficient
estimates, derived in earlier chapters, can be used to analyse feasible
paths of economic development over space and time. A hierarchical system
of models is proposed, and particular attention is focussed on relation-
ships between, and within, the national and regional levels. Although,
this system disaggregates the development problem, it also permits an
autonomous, self-assertive tendency within each region, to counterbalance
the integrative forces in the nation as a whole. It is concluded that
information theory can play an extremely useful, complementary role in

the analysis of hierarchical social systems.
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Chapter 1

INTRODUCTION

A great deal of theoretical and empirical attention in economics has been
devoted to the subject of input-output analysis since the appearance of

Leontief's original national mode].]

There are several good reasons for
this. Firstly, input-output analysis is a theoretically simple technique
for recognizing the interdependent nature of an economic system. By
grouping the productive activities of firms into various industries or
sectors, it is possible to describe the overall balance between the

supply of, and demand for, various products in terms of a simple set of

linear equations.

Secondly, input-output tables provide a practically appealing means of
representing economic interdependencies. Considerable effort has already
- been devoted in most developed countries to the task of either construct-
ing or updating intersectoral transaction tables, thereby assuring the

empirical tractability of input-output analysis at the national level.

Thirdly, input-output models are being adopted more frequently for shonrt
o medium term economic forecasting. Future levels of production can be
predicted, given known or exogenously determined levels of final demand,
by assuming constant technical (input-output) coefficients. Moreover, the
multiplier principle permits the quantitative intersectoral effects of
prescribed changes in the production levels of one or more sectors to be

estimated directly.



Although much has also been written about the problems and weaknesses of

2 we shall not dwell on

input-output analysis from an economic viewpoint,
these theoretical problems at any length. Instead, we shall focus primarily
on a number of empirical difficulties arising from the fact that inter-
industry transactions which are recorded on the aggregate, or macro, level

are nothing more than broad reflections (or summations) of individual

commodity shipment decisions taken at a disaggregate, or micro, level.

1.1  The Problem and its Importance

The Statistical problem which is central to this dissertation involves
making efficient use of various forms of information (including published
input-output tables) which are available on an aggregate level, to obtain
unbiased estimates of commodity flow distributions on a disaggregate level.
A simple example may help to clarify the nature of the problem. Consider

a case where the national input-output table furnishes information about
the flows between different sectors, but is incapable of providing any
information about the geographical origins and destinations of these flows.
In this rather common situation, we require some means of estimating the
distribution pattern of commodities over space given their flow pattern
between sectors. In other words, we wish to derive a full interregional

input-output table by spatial disaggregation of the national table.

The obvious drawback to any survey-based development of an interregional
input-output model, covering the whole national economy, is the
considerable cost and effort involved in its empirical implementation.
A simple form of interregional model can be derived given the avail-

ability of a single regional input-output table, and another for the



same period relating to the remaining wider aggregate. While this type
of model makes small demands for data, it inevitably understates the true
extent of interregional {§eedbacks and spillovers. In a genuine inter-
regional system, the basic requirement is that each component region
should be treated equivalently and directly, leading normally to

consideration of a large number of regions.

Recent research into the formulation of models describing the spatial
distribution of goods and people within an wtban environment has largely
been characterized by the adaptation of theories based on the laws of
large numbers and of probabilities. These theories originated in the
physical world of interacting particles and gravitational force, and have
since inspired the development of many entropy-based models of spatial
interaction. More recently, the probabilistic methods evolving from a
seemingly independent field, namely infoamation theory, have been used

for similar types of model building.

Since the initial adaptation of these statistical techniques to the field

of urban distribution modelling by wﬂson,3

there have been many
refinements and extensions to the basic methodo]ogy.4 Common to many of
these developments is the adoption of the entropy-maximizing paradigm to
derive new model formulations for various spatial distributions. To
illustrate the adaptation of this approach to our interregional estimation

problem, we shall consider two seemingly different interpretations of the

entropy concept.



Firstly, we can characterize the entropy function in its traditional

form as a measure of the probability of a physical system of particles
being found in a particular state. The entropy of the system is
logarithmically proportional to the number of possible microstates which
correspond, or give rise to, that particular macrostate. In elementary
statistical mechanics, this view typecasts the entropy-maximizing
procedure as the process of determining the most probable macrostate which
corresponds to the largest number of microstates. The fundamental |
assumption inherent in this approach is that all microstates are equally

probable.

The potential analogy between such physical assemblies containing large
numbers of particles and the system components describing the spatial

distribution of goods is readily demonstrated. Suppose we wish to estimate
rs
iJ
production of other commodities by sector j in region s. If we know X:,

X:3, the shipment of commodities from sector i in region r for use in the

the total production by sector i in region r, we have

Z.IZx..=Xr.‘ . (1.1)
J S

Adopting the assumption that each commodity unit is distinguishable, the
number of ways in which Xg units can be distributed into £ (= m x n)
groups, with x?? (3 =15000005n3 8 =1,.....,m) commodities in each group,

is given by the combinatorial formula

wr_: 1°

i s (1.2)
I x.5!
js 1

Considering all regions and sectors simultaneously, the complete microstate



~description becomes

el
W= ‘rs ) (1.3)
ir| O x.3!
js

We can then determine the most probable commodity distribution by

maximizing W subject to a known system of constraints.5

The second and more recent interpretation of the entropy concept
characterizes it as a measure of the amount of uncertainty or Lack o4

information associated with a probability distribution. In theory, this
rs

approach necessitates a transformation of variables such as Xij into
probabilities, wherein the elementary event is the shipment of commodities
from sector i in region r to sector j in region s; pgg is the probability
of such an event, and is defined by
rs
rs ij
p;: = —= (1.4)
i3 X
where X = ZLIZ X:;- The most probable commodity distribution is then
ijrs
determined by maximizing the entropy function in the form

S=-3235173p"s logp's (1.5)
ijrs 1 W

subject to a set of constraints containing whatever flow information is

available.

This information-theoretical approach provides a constructive criterion
for estimating probability distributions on the basis of partial

knowledge, and characterizes the maximum-entropy estimate as a type of



statistical inference. It is simply the least biased estimate possible with
the given information; and is maximally non-committal with regard to

- missing 1nformation.6

If we consider statistical mechanics to be a form of statistical inference,
instead of just a purely physical theory, these two seemingly different
views of entropy are essentially reconcilable. It has consequently been
argued that the perspective which should be adopted may simply be a matter
of zaéte.7 On the contrary, we believe that it is both useful and
important to maintain a clear distinction between the behavioural and the
statistical aspects of entropy. The fonner consists of the correct
enumeration of the feasible states of the system, whereas the latter is a

straight-forward example of statistical inference.

1.2 Scope of the Present Investigation

The author is not currently aware of any comprehensive attempts to
straddle the general area of input-output analysis and information-
theoretical techniques. Wilson's early work included some interesting
speculation, whereas Theil's initial research focussed mainly on
information decomposition, and on the use of entropy as a measure of the
information content of an input-output tab]e.8 A number of interesting
papers have emerged during the seventies, but each has treated rather
specific examples of commodity movements, in preference to a more general
theoretical investigation of the area. We shall discuss these recent

developments in the appropriate chapters.

The main purpose of this dissertation is to examine the potential

application of the entropy-maximizing paradigm in its traditional form,



 together with more recent adaptations emerging from information theory,
to the génera] area of spatial and non—spatié] input-output analysis. A
fundamental decision, which will be made as early as possible in the
dissertation, is whether the entropy-maximizing approach to the
estimation of interindustry flows may more fruitfully adopt the first
principles of information theory, in preference to various microstate
descriptions derived by analogy with statistical mechanics. There is
clearly a stage beyond which such analogies can become misleading or
inappropriate. This point may be reached when we enter the multisectoral
world of input-output analysis. The rather restrictive assumption that
all microstates are equally probable may prevent any of the traditional

statistical distributions from reproducing empirical flows accurately.

The author's intellectual debt to various social scientists will become
evident as the dissertation unfolds. To an eminent economist, Wassily
Leontief, goes the credit for establishing input-output analysis as such
a valuable tool for the investigation of economic interdependencies. To
an eminent geographer, Alan Wilson, goes the credit for introducing the
entropy-maximizing technique into the world of spatial analysis and

- model-building. Many other notable scientists, such as Walter Isard and
Henri Theil, have made significant contributions to our multidisciplinary
area of investigation. We shall certainly attempt to acknowledge them all

within the following pages.

1.3 Plan of Each Chapter

In Chapter 2, we begin by examining the course of theoretical ideas which
has led to the suggested nexus between the physical concept of entropy,

and measures of uncertainty and information. Previous applications of the



entropy concept, and related measures of information, to the analysis
of spatial and economic phenomena are selectively reviewed. Particular
attention is paid to earlier analyses of commodity movements, and the

estimation of interindustry flow coefficients.

Chapter 3 explores the potential similarities between various statistical
representations of physical systems, and the system components describing
the spatial distribution of a single commodity. Quite different microstate
descriptions can be derived, depending upon whether each commodity unit is
regarded as identical or distinguishable. The chapter concludes by
recommending that entropy-maximizing approaches to the estimation of inter-
industry distributions should adopt the first principles of information
theory, in preference to vakious microstate descriptions derived by

analogy with statistical mechanics.

Whereas Chapter 3 con;iders each commodity in isolation, Chapter 4
demonstates how the f]ow patterns of various commodities can be 1inked
together by subdividing the economy into a system of mutually inter-
dependent industries. After examining Leontief's classic formulation, it
is apparent that some fundamental problems exist. In particular, it is
clear that mofe realistic representations of economic interdependencies
may be developed by adopting the rectangular and dynamic extensions of his
original static model. A major part of this chapter is therefore devoted
to a demonstration of the use of various measures and methods, based on
information theory, for the estimation of key parameters in these and

other input-output models.

Throughout Chapter 4, the discussion is essentially non-spatial. The



marriage of certain concepts derived in this chapter, with related work
on spatial analysis, is celebrated in Chapters 5 and 6. To clarify the
discussion in these chapters, some fundamental distinctions between
popular terms are necessary. Although they may not be appropriate on all

occasions, the following definitions are adopted for the purposes of this

dissertation:

REGIONAL - a general term referring to the behaviour of a single
region, with no detailed distinction between the internal
and external flow relationships.

INTRAREGIONAL - a specific term referring to the behaviour inside a single
region, with a detailed focus on the internal flow
relationships.

MULTIREGIONAL - a general term referring to the behaviour of a group of
regions, with no detailed distinctions between the
internal and external flow relationships.

INTERREGIONAL - a specific term referring to the behaviour of a group of

regions, with a detailed focus on the flow relationship

between each pair of regions.

Chapter 5 begins with an examination of various non-survey techniques,
both intra- and .{nten-regional, which have been adopted for the spatial
estimation of intersectoral flow coefficients. It is concluded that no
acceptable non-survey method for deriving intraregional coefficients from
their national counterparts has been published. We then propose three
different information-theoretical approaches to the estimation of inter-

regional and intersectoral flows, using a limited database of industrial
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and multiregional information.

Unfortunately, none of these static formulations is capable of providing
an accurate estimate of the gross interregional flows between any two
sectors. Since the exact distribution of capital flows is unknown, they
are also unable to analyse the repercussions of regional and industrial
growth or decline. In Chapter 6, Leontjef's dynamic input-output model is
adapted to the interregional estimation problem. Through the use of a
simple accelerator principle, a clear distinction can be made between the
intermediate flows, which are described by the usual input-output
coefficients, and productive capital flows, which are specified by an
interregional matrix of capital coefficients. Thus the analysis in
Chapter 6 is fonﬁu]ated in terms of coefficients, in contrast to the flow

estimates described in Chapter 5.

The final chapter demonstrates how the various coefficient estimates,
derived in Chapter 6 and earlier chapters, could be used to analyse
feasible paths of economic development over space and time. In particular,
a search is made for a plausible system of models to integrate national
and regional development. The exploration begins by reviewing some
existing approaches, which have adopted a dynamic interregional framework
of the interindustry type, and concludes by suggesting a hierarchical
system of models. Although this system disaggregates the development
problem, it also permits an autonomous, self-assertive tendency within
each region, to counterbalance the integrative forces in the nation as a

whole.

As we move down our hierarchy, from the national to the regional level,



"

we progress to a subsystem in which behaviour is more spatially
disaggregated. In doing so, we face an increasingly difficult data
problem: that of making efficient use of the information which is avail-
able at the national level, to coordinate, but not completely control, the
pattern of behaviour within and between each region. But this is, in fact,
the very information problem which is central to this dissertation.
Clearly, information theory can play an extremely useful, complementary

role in the development of our hierarchical modelling system.

As a guide to the nature of each chapter, Figure 1.1 depicts their

relative positions in a three-dimensional system of spatial, industrial

and temporal coordinates.



12

Figure 1.1
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FOOTNOTES FOR CHAPTER 1

1
2
3
4

See Leontief (1951; 1953).
See, for example, Richardson (1972).
See Wilson (1967; 1970 a, b).

See, for example, Fisk and Brown (1975 b), Snickars and

Weibull (1977), and Lesse et al. (1978).

5
than W.

6
7
8

It is usually more convenient to maximize Tog W rather

See Jaynes (1957, p 620).
See, for example, Williams and Wilson (1979).

See Wilson (1970 a, b) and Theil (1967).



Chapter 2

A REVIEW OF ENTROPY AND INFORMATION THEORY

2.1 Introduction

Despite its long history, which stretches back in excess of one hundred
years, to many the term entropy still appears esoteric. In the early days
of classical thermodynamics, perhaps it was; even though its original
meaning was grounded in a bedrock of physical facts. But nowadays it is
becoming increasingly popular in one field after another. To some extent,
these more recent adaptations are related in a purely formal way to a
simple algebraic formula which is the cloak under which entropy grows

more familiar to an increasing number of social scien’cists.'I

The purpose of the present chapter is twofold:

(i) to examine the course of theoretical ideas which has led to the
suggested nexus between the entropy concept of the physicists

and measures of uncertainty or information; and

(ii) to selectively review previous applications of the entropy concept

and measures of information in spatial and economic analyses.

In section 2.2, we begin by defining the original thermodynamic concept

of entropy, ‘and then demonstrate how the emergence of statistical mechanics
heralded an important redefinition of entropy as a measure of the degree
04 disondern existing within a system. At this stage, the concepts of
macrostate and microstate are introduced. We then examine the course of
ideas which has led to the suggestion that statistical entropy is equi-

valent to a probabilistic measure of uncertainty.

14
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As early as 1928, some scientists argued that the entropy of a system
constitutes an index of our degree o4 Agnorance about the microstructure
of that system. But another twenty years were to pass before the same
entropy measure derived in statistical mechanics was formally proposed
as a measure of the degree o4 uncertainty, or missing ingormation, in a

probability distribution.

Much more recently, the rather restrictive views of entropy adopted in
practice have been widely challenged. Some authors have sought to establish
other microstate descriptions, in most cases by analogy with statistical
mechanics. Other changes have been prompted by the desire to incorporate

a priond information (in the form of non-uniform prior probabilities)

into measures of uncertainty. Some of these current issues are discussed

near the end of Section 2.2.

Not long after Shannon's classic work on information theory,2 the terms
entropy and information were becoming magic words in a variety of disci-
plines. Towards the middle sixties, they made their first few appearances
in the Titeratures of economists and geographers. Section 2.3 traces the

ensuing applications in three fields, namely economics, spatial analysis,

and their interdisciplinary focus, known as spatial economics.

In these three fields, we find that measures of uncertainty or information
have been used for two quite different purposes. On the one hand, there
are those who use information measures as a descriptive statistic to
provide a statistical summary of a distribution. In these applications,

information statistics are employed to measure the dividedness or degree
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of concentration or specialization existing in a distribution. On the
other hand, thereiis the work pioneered by Wilson, which is largely
concerned with generating the most likely probability distribution given
a certain set of constraints. This body of work, using the entropy maxi-
mizing paradigm, demonstrates the importance of information theory as a
flexible tool of estimation or statistical inference for practical model-

building.

Although these two procedures appear somewhat different, when seen as .
steps in the process of generating and testing hypotheses, they can in

- fact be reconci]ed.3 However, for the majority of the work undertaken in
this thesis, the use of information theory as a versatile vehicle for

empirical estimation will be emphasized.

2.2 Theory

2.2.1. Thermodynamics and Statistical Mechanics

The entropy concept emerged from a memoir of Sadi Carnot dealing with the
efficiency of steam engines,4 "At the time, it was disguised under the name
calorique. By 1865, Rudolf Clausius was able to give to the first two laws
of thermodynamics their classic formulation:

"The energy of the universe remains constant;

the entropy of the universe at all times moves

towards a maximum“.5

Entropy was defined as a ratio relating the quantity of heat exchanged

isothermally in a heat engine to the absolute temperature during the
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exchange. Clausius seems to have understood the importance of recognizing
the evolutionary nature of the entropic process, for he coined the word
entropy from a Greek word, equivalent in meaning to evolution (Tpomn),

by adding the prefix en- to resemble energy.

It was quite difficult not only for physicists but also for other men of
science to reconcile themselves to the blow inflicted on the supremacy of
mechanics by the science of heat. No wonder then that ever since thermo-
dynamics appeared on the scene, physicists fervently strove to reduce

heat phenomenon to locomotion. The result was a new thermodynamics, better
known by the name of statistical mechanics. Within this new theoretical
framework, entropy came to be redefined as a measure of the deghee of

disonder existing within a system.®

Statistical mechanics circumvents the difficulty of actually defining

disorder by means of two basic principles:

(a) The disorder of a microstate is ordinally measured by that of the
corresponding macrostate.

(b) The disorder of a macrostate is proportional to the number of

corresponding microstates.7

A microstate is a state the description of which requires that each indi-
vidual particle be identifiable. A macrostate corresponds to a group of
microstates. The degree of disorder, computed according to rule (b),
depends on the manner in which microstates are grouped into macrostates.

Since statistical thermodynamics is concerned only with the mechanical
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co-ordinates of particles, all particles are treated as qualityless
individuals distinguishable only by their names. The concept of macrostate,
in which no particle names are used, corresponds to the obvious fact that
the physical properties of an assembly of particles do not depend on which
particle occupies a certain state. Each arrangement of particles in a given
macrostate constitutes a microstate. However, the criterion according to
which two such arrangements constitute two different microstates is an
additional convention which varies from one approach to another. So does

the criterion for what constitutes an acceptable macrostate.

In the earliest but still the basic approach,8 two arrangements constitute
two different microstates if and only if the names of the particles in some
state(s) are not the same. Furthermore, no restriction is imposed upon the
number of particles having the same state. In general, if there are m states
and N particles, the number of microstates, W, corresponding to each macro-
state (N], N23 ..... ,Nm), ZNi = N, is given by the familiar formula of com-

binatorial calculus

N!

N1!N2!.....Nh!

W= (2.1)

Boltzmann's famous formula for entropy, S, viewed as a measure of disorder is

S =k log W (2.2)

where log W is the natural logarithm of W and k is a physical constant
known as Boltzmann's constant. For farge values of Ni’ we can use Stirling's

approximation

Tog N! = N log N - N (2.3)



19

»
to estimate the factorial terms in (2.1). We have

log W= -2 N, Tog (N./N) . (2.4)
1

We can now rewrite (2.2) as follows:

S = - kNH (2.5)
where
H = % p; 1og p;
and (2.6)
Py = Ni/N .

H is the function adopted by Boltzmann to formulate his famous H-theorem.9

Clearly, -kH represents the average entropy per particle. For later re-

ference, it is worth noting that H and S vary in opposite directions.

The H-theorem provides a bridge between the phenomenological investigations
of Carnot and Clausius, and the atomistic views underlying the kinetic
theory of gases. The proof that -kH and thermodynamic entropy are identical
led to the unification of statistical mechanics and equilibrium thermo-
dynamics. However, it is now quite clear that Boltzmann's formula (2.1)
does not fit all conditions. Quantum mechanics provides at least three
other known statistics, namely Maxwell-Boltzmann, Fermi-Dirac and Bose-
Einstein, which lead to quite different combinatorial definitions for W,

10

and hence to different values of S. For the same macrostate, W is often

greatest for Maxwell-Boltzmann, and smallest for Fermi-Dirac, statistics.
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Ever since its conception, statistical entropy has been the object of

1 It should be instructive, there-

serious criticism; and it still is.
fore, to closely examine the course of ideas which has gradually led to
the conclusion that statistical entropy may be equivalent, or at least

related, to various measures of uncertainty and information.

2.2.2 Information theory

As early as 1928, some scientists argued that the entropy of a system
constitutes an index of our deghee 04 Agnorance or Lack of Angormation
about the microstructure of that system.]2 We shall take a very simple
example to illustrate this idea. Suppose we have four particles labelled
P1, P2, P3, P4 and two states A and B. Let us consider the microstate

P1, P2, P3 in A and P4 in B, and denote by S the entropy of this micro-
state. Since macrocoordinates do not depend on which particular particles
are in each state, every microstate in which any three particles are in A
and the other one in B must possess the same entropy S. From our knowledge
of S, we therefore know the macrostate; i. e. we know that there are three
particles in A and one in B, but not which particular particle is in each
state. However, we also know that there are four microstates that are
compatible with S. Now if we consider the microstate in which P1 and P2
are in A and P3 and P4 in B, then from our knowledge of the corresponding

entropy S', we would know that there are six microstates compatiblewith S'.

Boltzmann's idea is that S = k log 4 and S' = k log 6. Knowing S, we

wonder which of the foux compatible microstates is actually the case.

Knowing S', the spectrum of possibilities increases to six microstates.
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Clearly, as the entropy of our system increases from S to S', our degree
of ignorance - or our degree of uncertainty - about the actual microstate
increases as well. As Lewis puts it: "The increase in entropy comes when
a known distribution is converted into an unknown distribution. The loss,

which is characteristic of an irreversible process, is loss of information".

A specific definition of the amount of infonmation in relation to a pro-
bability distribution was introduced in 1948 by Norbert Wiener. He adopted
a decision-oriented approach by suggesting that if we knew a priondl that

a variable lies between 0 and 1, and a posterioni that it lies on the
interval (a, b) inside (0, 1), it is reasonable to regard any positive

and monotonically decreasing function F as an ordinal measure of the

a posteriond information, namely

measure of (a,b)
23 (2.7)

Amount of information = F { measure of (0.

where F (x) is strictly decreasing with x. But since it is reasonable to
expect that (2.7) should yield the same value for all intervals equal to
(a, b), it is necessary to assume that the variable related to (2.7) is

uniformly distributed over (0, 1) in which case

measure of (a,b)
measure of (0,1)

is the probability that the variable lies within (a, b).
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The general principle now becomes obvious: the amount of information,
I(E), that the event E of probability p has occurred is ordinally mea-

sured by the formula
I(E) = F(p) (2.8)

where F is a strictly decreasing function which may be assumed to satisfy
the condition F=0 for p=1. lWiener chose-the negative logarithmic function,

namely

I(E) = - log p (2.9)

which was suggested originally by Hart]ey.]3
The choice has obvious merits. If in (2.7) we assume thét a = b, then
the information is extremely valuable because it completely determines
the .variable. According to (2.9), the value of (2.7) is then infinite.
On the other hand, if (a, b) = (0, 1), then the information tells us
nothing we did not already know. The value of (2.9) is zero in this case.
But perhaps the greatest advantage of choosing the logarithm arises from
its ability to treat successive amounts of information additively.
A1l this is in order. But Wiener, using a rather obscure ar‘gument,]4
concludes that "a reasonable measure of the amount of information"
associated with the probability density f(x) is

+00

S [Tog f(x)1f(x)dx (2.10)

-00
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He further suggests that this expression is the negative of the quantity
usually defined as entropy in similar situations. In (2.9) we have the
togarithm of a probability, whereas in (2.10) the Togarithm is applied
to the probability density. We shall demonstrate shortly why (2.10)

cannot be regarded as the continuous form of Boltzmann's H-function.

The most celebrated way of connecting entropy with information is due to
C. E. Shannon who, in the same year as Wiener, presented it in a classical

memoir on communication theony.]s

Unlike Wiener, Shannon sought a measure
of the capacity of a code system to transmit or store messages. Shannon
was not concerned with whether the message contains any valuable informa-

t1'on.]6

A basic problem in communication theory is which code has the
largest capacity to transmit information. The shift in the meaning of
information is accentuated by Shannon from the outset: "the number of
messages..... or any monotonic function of this number, can be regarded as
a measure of information pfoduced when one message is chosen from the set".
The case of messages transmitted in some ordinary language is a little
complicated, since not all sequences of signs constitute messages. A long
sequence of the same letter, for example, has no meaning in any language;
hence it must not be counted in measuring the information capacity of a
language. To arrive at a formula for this situation, Shannon sought a
function that would fulfil prescribed analytical conditions. However,

the same formula can be reached by a direct manner which has the merit

of demonstrating why this formula is identical to Boltzmann's original

definition of entropy.
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Accepting that the relative frequency with which every sign (letter,
punctuation or blank space) appears in any language has an ergodic limit,

we can denote these frequency-limits by (p], Poseeaes ps).]7

A typical
message of N signs must contain (N] = p]N, N2 = p2N...‘..,NS = PSN) signs
of each type. The total number of typical messages is therefore given by

the combinatorial formula

W= . LI (2.11)

This is the same formula as (2.1), from which Boltzmann derived his H-

function. Since

Tog W= - N L p; log p, (2.12)
i

the Shannon informdtion per signal is given by

hﬁ_ﬂ = -z p; log p, (2.13)

i

which is found to be independent of N.

Like Wiener, Shannon noted the identity between (2.3) and Boltzmann's
formula, and proposed to refer to it as the entropy of the'set of pro-

18

babilities. In the case of typical messages, Wiener's formula (2.9)

yields

- log (1/W) = lTog W ‘ (2.14)

which is identical to Shannon's result. For Shannon, this represents

the number of binary units in typical messages of length N; while for
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Wiener the same formula represents the amount of information. To this
extent, we can see that information theory was founded independently

in 1948 by Shannon and Wiener, although Shannon introduced the expression

ULPl = -
i

netsS

1 p; log p, (2.15)
as a measure of the missing ingormation, or uncertainty in a probability

distribution P = (p1, pz,.....,pn).

It is also worth noting that Shannon suggested an identical formula to
Wiener for measuring the amount of information in a probability density
(2.10), but with the opposite sign. Unfortunately, expression (2.15)
is not invariant to the interval size over which the distribution is
defined,- so it is not a measure which can be defined consistently in
both discrete and continuous terms. Both Wiener's and Shannon's treat-

ments of the continuous case are inadequate.

Some ground between this newly founded information theory and statisti-
cal mechanics was established only after the research efforts of Brillouin

19 Brillouin's information measure assumes

and Jaynes were published.
that information on relative frequencies is obtained solely from observa-

tions, and is given by

Iy IN) = & (log Nt - I Tog N1 | (2.16)
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The strong link between Brillouin's measure and statistical mechanics
is evidenced by observing that (2.16) reduces to Boltzmann's combina-
torial definition of entropy (2.2) if k = 1/N. Consequently, Brillouin's
measure does not rely on Stirling's approxihation; it is defined in

terms of relative frequencies rather than probabilities.

A short time later, Jaynes demonstrated that Shannon's entropy measure

is identical to statistical entropy if we consider statistical mechanics
to be a form of statistical inference rather than simply a physical .
theory. He went on to formulate a principle of maximum uncertainty sta-
ting thata minimally prejudiced probability function can be estimated

by maximizing Shannon's measure subject to related facts which are treated
as constraints. His argument rests on the fact that the most probable
distribution is the one which can occur in the maximum number of ways,

and this corresponds to the state of maximum entropy. To argue that thig
distribution is the one which will occur in reality is a statement that

is "maximally non-committal with regard to missing 1nformation".20

Later, Jaynes realized that Gibbs had already given a similar interpreta-

21

tion of the maximum entropy estimate as early as 1902. Both Gibbs'

and Jaynes' ideas support Liouville's Theorem in so much as they re-

cognize that

(i) in the long run, a system is most likely to be found in the

state which has maximum entropy; and

(ii) if the system is still evolving, its most 1ikely direction

of evolution is towards the state of maximum entropy.
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The operational nature of Jaynes' principle heralded a plethora of
applications, some of which shall be discussed later in this chapter.
Although applications were limited originally to thermodynamics, the
constraints may embody relationships among variables which describe

vastly different systems.

In contrast to the Shannon and Brillouin measures, Kullback suggested a
measure of information gain which rests on the assumption that informa-
tion is a relative quantity, and compares probabilities before and after
an observation.22 Information gain is defined when a posterion distribu-
tion P; is compared with a known priorn distribution 9 - This gain,
I [P:Q] , is given by

L [PsQ1 = 2 py log(p;/a;) 4 (2.17)

Similar definitions have been suggested by other writers.23 Hobson has
also demonstrated that Ik [P:Q] 1is an unique measure of the information
content in a posterior probability assignment P; when the prior proba-
bilities are q; - The conditions used by Hobson are essentially simple

extensions of the original Shannon - Weaver conditions.24

Equation (2.17) is perhaps the most general of all information measures.

It represents a relative measure which
(i) s independent of the number of €vents or observations;

(ii) is always positive;



28

(iii) has more reasonable additive properties than Shannon's measure;
(iv) can be extended to continuous sample spaces; and

(v) allows for non-uniform prior probabilities.

More recently, the use of Ik [P:Q] for various applications has re-
ceived strong support. It is possible to derive a measure of uncertainty

in terms of the difference between two information gains, namely
Uk [P] = Ik [Pmax;Q] - Ik [P;Q] (2.18)

where Pmax denotes the probability distribution characterizing the state
of maximum knowledge (certainty). If each element of Q is deemed equi-
probabie, Uk [P] reduces to Shannon's measure US [P] . Furthermore,

if the posterior distribution is uniform, (2.18) becomes
U = Tog W (2.19)

which is Hartley's definition of classical entropy known from statisti-

cal mechanics.

26

Kerridge defined a measure of information inaccuracy, u [PQl , as

U [PQ] = - = p; Tog q; (2.20)
1

which, together with Shannon's measure, can be used to derive Ik [p:Ql1 ,
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since
Ik [Ps;Q] = U [PQ] - US[P] . (2.21)

Other writers have derived similar functions, 1ike the following definition

of spatial entropy:
I[P3dX] = - £ p; Tog(p,/ax;) (2.22)
1

in which Axi is the interval size over which Py is defined. This function
was prompted by the realization that Shannon's measure is not invariant to
the interval size over which the distribution is defined. It is apparent,
however, that (2.22) does not correspond exactly to Kullback's notion of
information as a relative quantity, since the interval size ( Axi) is
simply a property of the distribution q; rather than its a prioni proba-
bility.

In conclusion, it now seems clear that Shannon's measure is really a special
case of Kullback's information gain. The Kullback formula gereralizes Shannon
entropy and also contains Hartley's form as a special case. However, one can

readily conceive of the other ways in which both expressions could be gene-

ralized.

For example, Rényi entropy of order a is defined by

1 o
Ug[P1 = 3= Tog ? P (2.23)

At the limit where o approaches one, UR [P] approaches Shannon's formu]a.28
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Taneja has suggested a generalization of Kullback's measuré, namely

1IPQ) = (%71 - 1) (2Pl ) (2.24)
.i .

which approaches Ik [P;Q] as o approaches one.29

These generalizations indicate that there may be whole families of in-
formation measures merely awaiting discovery. However, we shall regard

further generalizations as being of little practical importance for the
forthcoming applications. Nevertheless, their existence is certainly

acknowledged.

As a final salute to the remarkable historical developments associated
with the entropy concept, Figure 2.1 summarizes the most significant
theoretical constributions made to classical thermodynamics, statistical

mechanics and information theory.
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2.3 Selected app]ications

Soon after Shénnon's derivation of entropy as a measure of uncertainty,
information theory was becoming a magic word in a number of disciplines.

It was adopted by biologists in 1953, sOcioIogists in 1954, psychologists
in 1956 and ecologists in 1958. In some cases, the pioneers in some of
these fields were a little optimistic. Nevertheless, applications continued

to spread.

Economists and geographers were more apprehensive. But towards the middle
sixties, the concepts of entropy and infbrmation made their first few
appearances in the literature of both these disciplines. We shall firstly
trace the relevant developments in two specific fields, namely economics
and spatial analysis. Then we shall briefly review the use of entropy

measures in the youthful interdisciplinary field known as spatial economics.

2.3.1 Economic Analysis

Perhaps the first invitation to‘include-the theory of information in the
economist's tool box came in 1967. In that year, Theil devoted a whole
volume to the presentation of this idea, with many introductory examples
falling within the economist's field of vision. Two of the earliest areas

of interest were industrial concentration and input-output analysis.

Proposals to use Shannon's expression as an inverse measure of industrial

30

concentration were made independently by a number of economists. If we

consider an industry that consists of n firms, we can write PysPpsececass Pn
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for the annual sales (or number of workers, etc) of these firms measured
as fractions of the total annual sales (or number of workers) in the
industry. The entropy, S, is then interpreted as an inverse measure of

concentration, where

w
1]
]
W ™M3

\ p; log p; (2.25)

i
S will be zero in a monopoly situation, and reach a maximum of log n when
all n firms are of equal size. This maximum will increase as the number of

firms increases.

One of the major attractions of the entropy measure for industrial con-
centration, and indeed for many other applications, is its ability to
handle problems of aggregation and disaggregation. If we combine n firms
into N groups of firms, with Gj (3=1,....,N) firms in each group, the

entropy at that level of groups is then

n
S'=- % P, log P, (2.26)
j=1 J J
where
P.= T p (2.27)
I deq, !
J
for j=1,..... sN. Theil refers to S' as the between-group entropy, and
then develops the following relationship between S and S':
n
S=S8"+ 3% P.S. (2.28)
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where
p. P.
S. = I -ﬁl Jog L (2.29)
o je6, T P
J
for j=1,..... sN. Sj is interpreted as the entropy within group Gj, and

31

so the term Z Pj Sj is the average within-group entropy. In the context

J
-of industrial concentration, S' and Sj measure deconcentration at the
group level, and within group Gj, respectively. Clearly, these ideas could
be extended to measure and compare industrial concentration in different

geographical regions.

Theil was also instrumental in applying some information concepts to input-
output analysis. In collaboration with Tilanus, he adopted the expression
I[P;Q] in Equation (2.17) as a measure of the information inaccuracy of

decomposition forecasts.32

The forecasts relate to the input structure of
certain industries in a future year. Using a similar approach to the one
adopted in the earlier studies of industrial concentration, they developed
expressions to monitor the predictive achievements of subgroups of input
coefficients. The information measures so defined were then applied to a

ten year time series of input-output tables for the Netherlands.

Building on this initial input-output work, Theil then examined the
question of aggregation bias in the consolidation of individual firms

into industrial groups. He introduced a measure for the information
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content of an input-output tab]e,33 namely

.. log — 9 | 2.30
ij gpi.p.j ( )

L=zzp
1]
. where pij is defined in terms of the interindustry flow between sectors
i and j measured as a fraction of the total output of all sectors, and
P and p.j are the correspondifg row and column sums, respectively. By
looking at the difference between the information contents before and
after aggregation, he formulates an information decomposition equation
for input-output aggregation. This equation is then applied to the same
time-series of Dutch input-output tables to identify, in particular, the

relative contributions of input and output heterogeneity to the information

lost by aggregation.

Theil's exploratory work on this important aspect of input-output analysis
was full of valuable insights, but remains unfinished. He concentrated on
measuring the information lost by aggregating the input-output coefficients
of a larger table into a smaller table of predetermined industrial groups.
However, a scheme for choosing the most appropriate set of industrial
groups, from the original table of disaggregated industrial information,
can also be formulated with the aid of information theory. We shall out-

1ine such an approach in Chapter 4.

But the most common application of information theory to input-output
analysis appeared initially in disguise. Studies of changes in input-
output relations over time have been constantly frustrated by lack of
time-series data. In 1962, Stone suggested that the problem of estimating

a normalized transaction matrix {pij} for a specific year can be simpli-
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fied by adjusting a known matrix {qij} to fit known row sums u; and
column sums vj for that specific year. He proposed a sequence of bipro-
portional matrix adjustments, generally referred to as the RAS method,

to find this estimate.? Elements in {pij} are given by

=r, s.q (2.31)

Pijg = " %5 %45

where the coefficients rs and sj are defined by an iterative adjustment

process.

However, several authors have noted that the same solution can be achieved

by formulating the problems as one of minimum information gain, 35
namely

Minimize I = ? § i 1og(pij/qij) (2.32)
subject to

D Pij = Uj (2.33)

J

T 2.34
) P1J V; ( )

and the usual non-negativity conditions. The original RAS method is
actually equivalent to a special application of the principle of minimum
information gain, in which the constraints are of the form specified in

(2.33) and (2.34).
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A detailed comparision of various methods which have been used for the

adjustment of input-output tables over time is included in Chapter 4.

2.3.2 Spatial Analysis

At much the same time as Theil was advocating the use of information
measures as descriptive statistics for the analysis of economic behaviour,
geographers were beginning to analyse spatial phenomena in a similar
manner. In most early geographica] applications, it was assumed that
Shannon's measure was the appropriate one to ascertain the degree of
concentration or diversity existing in an observed spatial distribution.36
The main thrust towards new information measures for spatial analysis

has only occurred recently.37

Batty's concern was prompted by a realization that Shannon's measure is

not invariant to the interval size over which the distribution is defined.
He therefore developed a number of new measures for the analysis of spat}al
distributions, including one defined earlier as spatial entnopy.38 His
primary aim was to find a spatial measure which can be defined in either
discrete or continuous terms. Walsh and Webber have also discussed the
appropriateness of various information measures for the analysis of

spatial problems.39

In contrast to those geographers who use information measures to provide
- a statistical summary of spatial distributions, there is the work pioneered
by Wilson which is largely concerning with generating the most likely

probability distributions to describe patterns of spatial behaviour.40
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This body of work, using the entropy maximizing paradigm, was largely

stimulated by the ideas of Jaynes.

Entropy maximizing models may be distinguished according to the nature

of the spatial phenomenon which they analyse. Two main classes appear in
the literature. Location models specify the probability that an individual
is located in a given area. Their purpose is to explain the distribution
of people or households in various zones of a city or region. The earli-
est solutions were derived in the absence of any distance considera-

41 In later models, the mean cost of distance from some centre or

tion.
set of centres is specified as a constraint, and the pattern of trips to
these centres is regarded as fixed.42 Typically, a negative exponential

decline of probability with distance from the centre is obtained.

Suggested improvements and alternatives to the original residential
location models have been frequent. Dacey and Norcliffe suggest methods
for incorporating zonal capacity constraints in a consistent fashion.43
Their research appears to build upon earlier work by Webber, in which
entropy-maximizing location models for nonindependent events are derived.44
Webber has also developed some location models in which the distribution
whose entropy is maximized is one of expenditures rather than items, and
others based on the location and allocation problems of the urban con-
sumer.45 More recently, attempts to broadén the conventional entropy
vmaximizing framework for location modelling have been made by considering
other baéic distributions in addition to the familiar Boltzmann statis-

tics.46
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In reality, residential location models are closely related to the
second broad class of entropy-maximizing models, namely trip-distribution

47 these models

models. Originally formulated by Murchland and Wilson,
define the elementary event as a trip between an origin and a destination.
The problem is one of estimating the complete distribution of trips
between a set of origins r and a set of destinations s. Let Trs be the
total number of trips from r to s, Or be the number of trips originating
at r, and DS be the number ending at s. The cost of a trip from r to s

is Cpg? whereas the total cost of all trips is C. The most probable

distribution is given by the matrix Trs which maximizes entropy S,

where
S = log W, (2.35)
|
W =TT“i""’ © (2.36)
rs’
rs
and
T=zz7 3 (2.37
re IS

subject to the following constraints:

T =0 (2.38)
rs r
S
z Trs = DS (2.39)
r
and
Tz Crs Trs =C (2.40)
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With the assistance of Stirlings' approximation (2.3), the solution can

be determined, and is

Teg = eXP(-ur - ng - Bcrs) (2.41)

where H.» N and B are Lagrangian multipliers associated with the

constraints (2.38), (2.39) and (2.40) respectively. The solution is

often expressed in the form

Trs = ABg0,Dg exp(-8c () | (2.42)
where

e = 12 B0, exp(-gc,. )17 (2.43)
and

B = [Z A0, exp(-6c,. )17 . (2.44)

The constants w,. and Ng (or Ar and BS) can be found by substitution,
whereas B is normally the subject of calibration. However, if C is
known, Equation (2.40) can be solved numerically for. 8 . Themost probable
distribution of trips given by (2.41) or (2.42) is identical to the
gravity distribution, developed originally by analogy with Newtonian

mechanics.

Many refinements to this general interaction model are possible. In trans-

port modelling, Wilson extended the basic model to incorporate person

48

types, modal and route split, and traffic assignment. Halder derived

a similar interaction model in terms of expenditures rather than trip

9

statistics, which underwent further refinement by Webber,4 Fisk and
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Brown derived new model formulations by revising the microstate descrip-

50

tions of the tripmakers and their destinations. This work has been

51 Dacey and Norcliffe developed a flexible

52

extended by Roy and Lesse.
doubly-constrained model incorporating inequality constraints. Finally,
both Fisk and Brown, and Snickars and Weibull, suggested approaches based

53 Snickars and

upon the inclusion of historical trip distributions.
Weibull demonstrated that the classical gravity model is considerably
less powerful as a tool for describing changes in trip patterns than
models based on a paioni trip distributions. Their investigations con-
stituted the first practical planning applications of the principle of
minimum information gain. The implications of some of these recent in-

novations for the estimation of commodity distributions will be explored

in Chapter 3.

It has been argued that the most successful planning applications of the
entropy-maximizing paradigm have been based upon interaction mode]s.54
A plethora of formulations have certainly emerged since Wilson's funda-
mental paper appeared. Nevertheless, a number of important issues remain

unsolved, including the necessary distinctions between statistical en-

tropy and any behaviouwral theory of human interactions.

It is perhaps no surprise to learn that certain difficulties have also
arisen amongst the school of geographers who subscribe to the use of
entropy as a descriptive statistic. It now appears that these social
scientists are beginning to recognize the potential relevance of other

measures for various spatial applications.
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2.2.3 Spatial Economics

It is now appropriate to discuss the use of information theory in an
evolving area which falls somewhere between geography and economics. We
shall refer to this area of interdisciplinary focus as spatial economics.
The desire to integrate geographic and economic approaches has been
hindered by the preoccupation of Anglo-Saxon economists with the intro-
duction of the time element into their analyses. However, it is encouraging
to observe that the spatial aspects of economic developement are now the

subject of vigorous enquiry in many parts of the world.

Attempts to introduce information theory into this interdisciplinary arena
have beenvery limited. Perhaps the earliest contribution came fromUribe,

de Leeuw and Thei].55

They suggested the adoption of an information-
minimizing solution to constrained matrix problems dealing with inter-
regional and international trade. More particularly, if pij is the (i,j)}h
element in an intersectoral, interregional or international trading matrix
which has been normalized, then the complete matrix {pij} can be regarded
as a set of contingent probabilities. If qij is then regarded as an
estimate or a prioni probability of the contingency (i,j), the function

I defined in (2.32) can be viewed as the expected information value of

the message that the probabilities are actually {pij}'

They proposed to solve this problem by minimizing I over {qij} subject to

the constraints

Q.. = U, (2.45)
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and

? qij = vj (2.46)

plus the usual non-negativity conditions. As {pij} is also unknown, how-

ever, a solution to this system for {qij} still requires some estimates

of the elements pij.56

Theil persisted with this two-stage approach when he formulated a gravity

model for interrregional commodity f]ows.57 Defining x:s as the total

*

: *
flow of commodity i from region r, X: and Xir as the total production

and useage, respectively, of commodity i in region r , and Xi as the

total production in the system, he postulated that

* *
X" ox.S
rs _ i i .rs
S vanl (2.47)
where
x5S X
rs _ i i
Qi alee s T (2.48)
Xi X_i

/\rs /\r* A *S N . .
X5 Xi . Xi and Xi are known values of the variables in some base year.
Theil then discovered that his estimate of x?s in (2.47) did not satisfy

1 i

5T x'S =X, (2.49)
rs

He suggested multiplication by a normalizing factor to remedy this, but

discovered that the new estimate did not satisfy the origin and destination
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constraints, namely

L xS = xg* (2.50)
S.'I
and
*
5 x?s = xis . (2.51)
-

His final solution was to replace the normalized estimate of x?s by i?s,

obtained by minimizing the quantity

xrs
rs i
i

which, he argues, is a measure of information inaccuracy, subject to

Equations (2.50) and (2.51) as constraints.

Wilson recognized the similarities between Theil's gravity model and a

58 The latter model does

similar model proposed by Leontief and Strout.
* *
not assume that independent estimates of the regional totals X: and X1.S

are available. It is of the form

* *
rs X: Xis rs ‘
X'i = —— Q'I (2.53)
X.
j

Y-* *S * %k . r* *
where Xi s X and X; are the unknown equivalents of Xi s X,

S
i and Xi

respectively.

Wilson's integration of the gravity and input-output models, using

entropy maximizing principles, serves as a fundamental focus for this
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thesis. He builds on the multiregional framework developed by Leontief
and Strout to achieve one of the most promising examples of model inte-
gration yet accomplished in spatial economics. His approach rests on one
rather elegant assumption: that the ultimate destination of goods is
irrelevant to producers, and that the origin of goods is irrelevant to
consumers. Consequently, x?s is now the quantity of commodity i produced

in region r and shipped to a (notional) demand pool in region s.

The integrated model based on Leontief-Strout assumptions corresponds to
an unconstrained input-output version of the gravity model. The only con-
straints included relate to freight costs and commodity balances. Firstly,

we have

r rs
s C

L LC.C X.o = (2.54)
rs

i i i

where c:s is the unit cost of deliverying commodity i from region r to
region s, and Ci is the total freight cost for commodity i. Secondly,

we have the fundamental relationship:

xS =zal, g xS 4yt

(2.55)
S 1 1] s J 1

where a:j is an input-output coefficient for region r, and y: is the

final demand for commodity i in region r. Since there are no separate

supply or demand constraints, the model is classified as unconstrained.59
A solution is obtained by maximizing entropy S defined as
S=-3I12Z x?s Tlog x:s (2.56)
irs

subject to Equations (2.54) and (2.55).60
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In reality, this model is very difficult to implement empirically. It
is more likely that historical estimates of X:* (and even X:r) will be
available than estimates of the input-output coefficients (a:j) or the
final demands (y:). For this reason, the development of an empirically
operational entropy-maximizing model for the estimation of intraregional

and interregional flows seems more appropriate. Such models are the

subject of detailed discussion in Chapters 5 and 6.

An alternative approach to the question of interregional commodity flows

has been suggested by Fisk and Brown. 61

They utilize Wilson's trip
distribution framework to obtain a new model formulation for the distri-
bution of commodity flows. Their revised expression for the entropy of
the distribution system is derfved using a statistical analogue emanating
from quantum mechanics. This type of approach to the estimation of inter-

regional flows will be discussed in detail in Chapter 3.

The abovementioned work haé provided little more than an elementary back-
ground to the eventual integration of spatial models within a comprehensive
economic framework. A major objective of the present study is to develop

a production-interaction model in which the elementary event is the move-
ment of commodities from sector i in region r for use in the production

of other commodities by sector j in region s; p:; is the probability of
such an event. This fully interregional input-output model can be regarded

as a generalization of earlier work on location and interaction models,

r .rs
ijs Pij
is the production of sector i in region r.

since 1% p?? is an interaction probability, is a location probabi-
. ¥y IS
lity, and ir P ij
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To the authors's knowledge, the only static input-output interaction
models to be formulated using information-theoretical concepts are

attributable to Bigsten and Sm‘ckars.62

Making use of different types
of initial information (to produce prior estimates of the intermediate
flows), they both apply the minimum information principle to derive
estimates of full interregional input-output tables for Kenya and Sweden,

respectively. Their respective approaches will be examined closely in

Chapter 5.

Rather surprisingly, various authors have already proposed entropy-maxi-
mizing solutions for different kinds of dynamic input-output interaction

mode]s.63

Some of these models deal with closed economies in which inter-
regional trade, location and growth are integrated within a general equi-
1ibrium framework. In others, the approach is one of mathematical opti-
mization. In each case, the interregional flows are estimated using
techniques which are equivalent to entropy-maximizing solutions. Some of

these models will be reviewed in the early pages of Chapter 7.

An historical summary of the more significant applications of information
theory to input-output analysis and interaction modelling is depicted in

Figure 2.2.
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FOOTNOTES FOR CHAPTER 2

1 See Georgescu—Roegen'(1971, p 4).

2 See Shannon (1948).

3 As demonstrated by Sheppard (1976, p 742-3).

4 For a full translation of Carnot (1824), see Magie (1899).
5 See Clausius (1865).

6 For an authoritative discussion of this point,
see Bridgman (1941).

7 See Margenau (1950).
8 Introduced by Boltzmann (1872).

9 Which simply states that H does not increase in
a closed system.

10 For definitions of each of these statistical forms,
see Gurney (1949)or Fast (1962).

11 Georgescu-Roegen (1971, p 147-8) suggests that the root
of the difficulty lies in the step by which statistical entropy
is endowed with additional meaning beyond that of a disorder index.
He strongly objects to the numerical values of expressions such as
(2.2) or (2.5) being described as measures of information.

12 See, for example, Hartley (1928) and Lewis (1930).

13 See Hartley (1928).

14 In which he acknowledges a suggestion from John von Neumann.
15 See Shannon (1948).

16 In contrast to Shannon, Jacob Marschak has been concerned
primarily with the economics of information systems and the real
value of coded messages. Useful references in this area are Marschak
(19715 19735 1975 a, b).

17 The reason why these coefficients are not referred to as
probabilities is related to the nature of linguistics. Although
the letters in a language do not follow each other according to a
fixed rule, neither do they occur completely at random like the
numbers in a die tossing. For further insights into ergodicity,
see Halmos (1956) or Georgescu-Roegen (1971, p 153-9).
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18 On the advice of John von Neumann.
19 See Brillouin (1956) and Jaynes (1957).
20 See Jaynes (1957, p 620).

21 In 1968, Jaynes (1968) acknowledged the earlier
suggestions of Gibbs (1902).

22 See Kullback (1959).
23 Notably Rényi (1966) and Theil (1967).
24 See Hobson (1969), and Shannon and Weaver (1949).

25 For example, Hobson (1971), Charnes, Raike and Bettinger
(1972), March and Batty (1975), Snickars and Weibull (1977), and
Webber (1979) have all suggested that Iy [P;Q] be used to define
our uncertainty about the state of the system. Others, such as
Hobson and Cheng (1973) and Batten and Lesse (1979), have claimed
that Iy [P;Q] is a generalization of the Shannon measure, by
allowing for non-uniform prior probabilities.

26 See Kerridge (1961).
27 The term "spatial entropy" was first suggested by Curry
(1972), although Batty (1974 a, b; 1978 a, b) proposed the formula
in (2.22).
28 See Rényi (1960,1961) for an explanation of this convergence.
29 See Taneja (1974).

30 Notably Hildebrand and Paschen (1964), Finkelstein and
Friedberg (1967), Theil (1967) and Horowitz and Horowitz (1968).

31 See Theil (1967).

32 See Tilanus and Theil (1965).

33 See Theil (1967, p 333).

34 See Stone (1962).

35 Notably Bacharach (1970) and Macgill (1977).
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36 Geographical examples based on this assumption in-
clude the work of Medvedkov (1967), Chapman (1970), and Semple
and Golledge (1970) concerning settlement patterns, Ya Nutenko
(1970) on zonal partitioning, and Garrison and Paulson (1973)
on spatial concentration. Berry and Schwind (1969) followed
Theil (1967) in analyzing migration flows using an algebra of
probability.

37 Pioneered predominantly by Batty (1974 a, b; 1976;
1978 a,.b).

38 See Equation (2.22).

39 See Walsh and Webber (1977).

40 For a broad spectrum of his ideas, see Wilson (1970 b).
41 See Curry (1963) and Berry (1964).

42 See, for example, Wilson (1969 b), Bussiére and
Snickars (1970), and Scott (1970).

43 See Dacey and Norcliffe (1976).

44 See Webber (1975).

45 See Webber (1976 b; 1977 a).

46 See, for example, Lesse et al. (1378).

47 Wilson (1967) is generally credited with the original
formulation, but he himself acknowledges the earlier work of
Murchland (1966).

48 See Wilson (1969 a).

49 See Halder (1970) and Webber (1976 b).

50 See Fisk and Brown (1975 a).

51 See Roy and Lesse (1980).

52 See Dacey and Norcliffe (1977).

53 See Fisk and Brown (1975 a, b) and Snickars and
Weibull (1977).

54 See Webber (1977 b, p 263).
55 See Uribe, de Leeuw and Theil (1966).
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56 Bacharach (1970, p 84) noted this back-to-front
method of analysis, and suggested a modification based on
the RAS method. His approach regarded the final estimate as
the posterior message instead of the prior, thereby overcoming
the difficulties associated with two-stage estimation.

57 See Theil (1967).

58 See Wilson (1970 a, b) for his elegant entropy-
maximizing formulation of the multiregional framework developed
by Leontief and Strout (1963).

59 In the terminology of Wilson (1970 b), four cases are
possible: (i) the unconstrained model; (ii) the production-
constrained model; (iii) the attraction-constrained model; and
(iv) the production-attraction-constrained model.

60 There is no need to normalize x§{S in order to obtain
the correct solution to this problem. The reader may care to
confirm that the definition of S in (2.56) gives an identical
solution to that obtained using the normalized form (x?s/Xi).
The latter is, of course, strictly correct if S is to be defined

as the entropy of a probability distribution.
61 See Fisk and Brown (1975a).
62 See Bigsten (1978) and Snickars (1979).
63 See, for example, Andersson (1975), Sharpe and Batten

(1976), Karlgvist et al. (1978), Andersson and Karlgvist (1979),
and Andersson and Persson (1979).



Chagter 3

PROBABILITY DISTRIBUTIONS FOR COMMODITY FLOWS

3.1 Introduction

In elementary statistical mechanics, the entropy of a physical system of
particles can be determined statistically by counting the number of
possible microstates which correspond to a given macrostate. Although
all of the early microstate descriptions were based upon Boltzmann
statistics, the advent of quantum mechanics focused attention on three
other statistical forms, namely Maxwell-Boltzmann, Fermi-Dirac and Bose-
Einstein distributions. Each of these forms corresponds to a particular
assumption about the manner in which microstates are grouped into macro-

states.

The potential similarities between these three statistical representations
of physical systems and the system components describing spatial distri-
butions of goods and people have recently been recognized.] In the case

of commodity flows, quite different microstate descriptions can be derived
depending on whether each commodity unit is regarded as identical or
distinguishable. The purpose of this short chapter is to explore some of
these rather speculative physical analogies, and to decide whether entropy-
maximizing approaches to spatial estimation problems should adopt the

first principles of information theory in preference to various microstate

descriptions derived by analogy with statistical mechanics.

Section 3.1 outlines various microstate descriptions and the corresponding

entropy formulae which could be adopted to describe the spatial distribu-

53
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tion of a single commodity in a production-constrained economy. The
entropy-maximizing procedure is presented in its more traditional form,
namely as the process of determining the most probable macrostate which
corresponds to the largest number of possible microstates.2 The assump-
tion that each microstate is equi-probable may prevent any of these
standard distributions from reproducing empirical flows accurately. The
inclusion of non-uniform prior probabilities in tne entropy formulations

is therefore discussed.

Section 3.2 examines the doubly-constrained model, and demonstrates

how two different microstate descriptions can produce the same solution.
This convergence may have important implications for later attempts to
derive more complex microstate descriptions relating to spatial input-
output analysis. The presence of supply and demand constraints could
lead to various simplifications which support the use of Shannon un-
certainty, or Kullback information gain, as the most appropriate ob-

jective function for a range of constraint situations.
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3.2 Production-constrained Distributions

3.2.1 Microstate Descriptions

In the early pages of Chapter 2, we introduced the concepts of macrostate
and microstate. It was stated that the entropy of a system can be deter-
mined statistically by counting the number of possible microstates which
correspond to a given macrostate. In other words, the entropy depends on
the manner in which microstates are grouped into macrostates. Since the
maximum number of microstates corresponding to any given macrostate
depends largely on the degree of aggregation specified in the macrostate
definition, it is clear that entropy is intrinsically related to the

degree of aggregation or diversity inherent in the system definition.

For convenience, we shall now repeat Boltzmann's original formula for

entropy S as a function of the number of microstates W, namely
S=klogW . (3.1)

Quantum mechanics provides three elementary statistical forms for the
determination of W. In the standard approach, based on Maxwell-Boltzmann
statistics, the counting of microstates is carried out as if each indivi-
dual particle is distinguishable. Alternatively, systems of .identical,
independent particles are described using Bose-Einstein or Fermi-Dirac
statistics.3 The former allows each quantum state to contain an unlimited
number of particles, whereas the latter does not permit more than one

particle to occupy the same state.
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The potential similarities between these physical assemblies, containing
large numbers of particles, and the system components describing the -
spatial distribution of goods are readily demonstrated. Suppose we wish

to estimate Xpe s the interregional distribution of flows between regions

s
r and s for some type of commodity. We know Xr’ the total production of

that commodity in each region r, such that
Tx. =X . (3.2)

Adopting the assumption that each commodity unit is distinguishable, the

number of ways, W. in which the total number of commodity units, produced

r

in region r can be distributed into m groups,4 with Xps (s=14....,m)

commodities in each group, is given by

W = ;! : (3.3)

This is seen to be based on the same familiar formula of combinatorial
calculus (2.1) which corresponds to Boltzmann's original definition of
entropy.5 Considering all regions simultaneously, the complete micro-

state description becomes

W=a|—ou]. (3.4)
r

However, expression (3.4) does not take into account the microstate space
associated with the .individual destination of each commodity unit entering
region s. In general, Maxwell-Boltzmann statistics imply that X ps indivi-

dual commodity units arriving in a region s may be assigned to DS indivi-
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X
dual destinations (depots) in (DS) 'S different ways, when more than one
commodity unit per destination can be accomodated. Thus expression (3.4)

should be modified to read

X ! X
- r
W=1 H—X-——'— H(DS) rs R . (3.5)
r rs’ s
S

Up to this point, the commodity units have been treated as completely
distinguishable. In reality, this may not always be the case. A distri-
butor may not consider the sending of a commodity unit X4 to a destination
in region 51 and an J{dentical unit Xo to region Sos as beingdistinct from
sending X1 to Sy and X5 to Sy- In this case, either Fermi-Dirac or Bose-

Einstein statistics may be relevant.

Fermi-Dirac statistics are only suitable for commodity flow analysis if
no more than one commodity unit can be assigned to each destination.
Since more than one commodity unit per destination is allowed, we shall
restrict our attention to Bose-Einstein statistics. In this case, the
microstate description relates to the number of ways in which X iden-

3
tical commodity units may be assigned to DS distinct destinations.

For a fixed origin r, a given set of Xps commodity units may be assigned
to each region s in only one distinct way. Using Bose-Einstein statistics,
we can now calculate the number of ways in which the Xps identical units
can be distributed among the Ds destinations within region s. The problem

is analogous to the following situation:
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Suppose Xps balls are to be arranged in Ds boxes, allowing any number

of balls in a box. The procedure is to lay out the (x s * Ds) objects

6

r

(balls and boxes) in a straight line, but in a random order.” This
linear arrangement is chosen to start with a box and might continue as

depicted in Figure 3.1.

Figure 3.1.

Box Box Box| ......

Then, move those balls which are immediately to the right of a given
box into that box. For the arrangement depicted in Figure 3.1, there are

three balls in box 1, two in box 2 and so on. Since (x ¢ ¥ D, - 1) objects

r

actually move,7 there are (x st DS - 1): possible arrangements. But

r
many of these arrangements are identical. For example, we must divide by

3! to take account of the fact that the balls in box 1 are all identical.

In general, there are xrsl such permutations. Similarly, there are

(D = 1). permutations of the boxes. The total number of distinguishable

s
arrangements, wrs, is thus given by

_ (g #Dg-1)!

Wpes = % o-nT ° (3.6)

rs!'-s

This is indeed the number of ways in which X, identical commodity units

s
from a given region of origin r may be distributed among DS destinations
or depots in region s. If we now consider all origin and destination

regions simultaneously, the complete microstate description is of the
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form

W= —>_S . . (3.7)

Equation (3.7) is similar to the microstate description suggested ori-
ginally by Fisk and Brown.8 Since DS is normally large compared with

unity, a reasonable approximation of Equation (3.7) is given by

(Xpg*0g)!

= 1 1 (3.8)
“rs xrs' s'

=
n

Returning to our analogous arrangement of balls into boxes, Equation (3.8)

corresponds to a circular instead of a linear arrangement of objects.9

A summary of the microstate descriptions for each of the production-
constrained statistical analogues discussed above is given in Table 3.1.
To facilitate further understanding of the four basic microstate descrip-
tions, a simple example pertaining to industrial location is discussed
in Appendix A. A number of hybrid models could emerge from combinations
of these microstate descriptions to define multi-indexed variables such
as interregional, interindustry flows. It is obvious, however, that it
becomes increasingly difficult to define the apprépriate microstates in
more complex situations, and standard assumptions such as homogeneity

and independence become more difficult to fulfil.
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TABLE 3.1
STATISTICAL FORM W
X !
01d Boltzmann I [;I;jJ
r rs’
X ! x
Maxwel1-Boltzmann I ; I DSrS]
r rs! s
s
(x__+D_-1)!
Bose-Einstein n{ r? = =177
rs xrs‘ (Ds 1

3.2.2 Entropy Maximands

By assuming that each microstate is equi-probable, we can determine the
most probable commodity distribution by finding that solution which
corresponds to the maximum number of microstates, subject to a known
system of constraints. Jaynes suggests that "in making inferences on the
basis of partial information, we must use that probabitity distribution
which has maximum entropy subject to whatever is known. This is the only

unbiased assumption we can make".10

Before we discuss the appropriate
constraints, it is informative to define the entropy maximand for the

various statistical forms introduced in the previous section.

Maximizing the number of microstates W is equivalent to maximizing

Boltzmann's entropy formula (3.1). To take advantage of Stirling's
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approximation for factorials, namely

log n! = n(log n-1) (3.9)

we shall consider log W as the entropy maximand. If expression (3.4) is

simplified using Stirling's approximation, we find that

Tog W = X {2 P, log P, = ZZp
rs

log p 1} (3.10)
r rs

rs
- & = = ;

where X = v Xr, Pr = Xr/X, and Prs = er/X. Neglecting all the constant

terms, (3.10) reduces to Shannon's measure of the uncertainty in a pro-

11

bability distribution, namely

S, = - g P, 109 Prs (3.11)

T
&
r

We shall refer to this reduced form of (3.10) as Shannon entropy.

If we start instead with Equation (3.5), use of Stirling's approximation

leads to a different result, namely

log W = X{log D + E p. logp. + § Pre log P - E i p.. log prg»(3.12)

rs

. =z
where D $ DS and PS

(3.12) reduces to the following:

DS/D. Disregarding all the constant terms,

Sy = - E § p._ log (prs/ps) (3.13)

rs

It is noteworthy that Equation (3.13) resembles Batty's definition of
Apatial entropy, if DS is regarded as a measure of regional size in

terms of commodity useage. We shall therefore refer to 52 as Batty

entnopy.]z
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If we now redefine Ppg 35 er/Ds’ use of Stirling's approximation to

simplify Equation (3.8) produces the following result:
log W = E 2 DS {(1+prs) log (1+prs) - Ppe log prs} (3.14)

Disregarding the constant terms, Equation (3.14) reduces to the following

form

53 = - i g {prs log Pps ~ (1+prs) log (1+prs)} (3.15)
Since this formula is based on Bose-Einstein statistics, we shall refer

to S3 as Bose-Einstein entropy.

The entropy formula for each of these production-constrained statistical

analogues is included in Table 3.2.

TABLE 3.2
ENTROPY FORMS s DEFINITIONS
Shannon - LI log Prs Prs = Xpg/X
r s
Batty - L I{p,. 109 p. Prs = Xps/X
r s
- Ppg log ps} Pg = DS/D
Bose-Einstein - I I{p.g 109 P, Prs = Xps/Ds
rs
- (1+prs) Tog (1+prs)}
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3.2.3 The Most Probable Distributions

In the previous section, a set of entropy formulae were derived for the
case of production-constrained interregional flows, namely flows which
satisfy the production constraint (3.2) for each region r. Some recent
research has suggested that trip distribution models may be sensitive to
the location of destinations about the region of origin.13 The normal
practice in these models is to then constrain the {xrs} distribution, so
that it conforms to an origin-specific cost constraint, based on the

a priornd knowledge of average delivery costs between different regions.

In the case of commodity flows, binding constraints are more likely to be
associated with the nodes (regions) themselves, rather than with the links
between nodes. We shall therefore adopt a general capacity constraint of

the form

r rs = Vr (3.16)

for each region r, where <, represents the physical capacity requirements
for delivering each commodity unit from recion r, and Cr is the total
capacity for handling outgoing deliveries ‘rom region r. This capacity
constraint is included in the following formulations simply because it is
analogous to the energy constraint imposed on systems of particles in
quantum mechanics. Its inclusion in later formulations, derived using
information-theoretical arguments, will require additional justification.
We shall regard the commodity distributions resulting from any maximum
entropy estimate, subject to relations (3.2) and (3.16), to be part of a

set of basic solutions. In later chapters, further constraints will be
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introduced, and their effect on the basic solutions examined. The most
probable commodity distribution is found by calculating the number of
microstates associated with each distribution which conforms to con-
straints (3.3) and (3.16), and choosing the one which corresponds to

the maximum number of microstates.

Formally, the problem is to maximize W (or S) subject to Equations (3.2)
and (3.16), and the standard non-negativity conditions. This constrained-
matrix estimation can be achieved using the method of Lagrange multipliers.

We shall demonstrate this solution technique for the case of Batty entropy.

Firstly, we form the Lagrangian £, namely

£=TogW+z ur(X -3 T C. X ) (3.17)

r
r

w )
~ -
w1

where by, and 6r are the Lagrangian multipliers associated with Equations
(3.2) and (3.16) respectively. Note that it is more convenient to maxi-
mize log W rather than W, since it is then possible to use Stirling's

approximation to simplify L. We know that

Tog W = Tog X! - z Tog xrs! + § X e log D (3.18)
= X, log X,. = X, - § [Xpg 109 X o = Xpo = Xpo Tog D ]

The {er} distribution which maximizes £ , and which therefore constitutes

the most probable distribution of commodities, is the solution of

3L

Mg

<0 (3.19)
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and the constraint equations (3.2) and (3.16). We have

aii; - log x.o *+ 1og Do - . - 8. c.
and
ol 1

The first derivative vanishes when

Xps = Dg exp ('Ur'Br Cr)

and the second order conditions are negative definite as long as all

(3.20)

(3.21)

(3.22)

Xps # 0. The constants M and Br can be computed from (3.3) and (3.16).

Results for each of the basic cases are summarized in Table 3.3.

TABLE 3.3
ENTROPY FORM BASIC SOLUTIONS
w
-1
Shannon [exp(ur + 8. Cr]
Batty D lexp(u. + 8, cr)]'1
Bose-Einstein DS[eXp(ur + B, C,,)-H-1

It is interesting to note that the "quantized" solutions can be expressed

in the general form

- -1
Xpg = Ds[exp(ur + B, cr) + o]

(3.23)
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where o takes on the value 0, 1 or -1 depending on whether the distri-
bution is based on Maxwell-Boltzmann, Fermi-Dirac, or Bose-Einstein

statistics respectively.

3.2.4 Prior Information

If any of these production-constrained models provides a good representa-
tion of the distribution system, the {er} matrix will correspond closely
to survey results. If not, there is clearly something amiss with the
initial model hypotheses. For example, the assumption (implicit in the
model formulation) that all microstates satisfying (3.2) and (3.16) are
equally probable may prove unrealistic owing, for example, to different

average consunmption rates in each region.

Although it is possible to apply various weightings to the entropy function
to compensate for a posterioni knowledge (as described for the case of
Batty entropy), it is also feasible to treat some or all of the a priond
possibilities as being, at least in principle, empirically tractable.
Suppose we already know, or can independently estimate, prior information
in the form of an historical distribution {xgs} . Designating by Upg the

a priond probability that a commodity unit from region r will be sent to

region s, we have

= x2 /x° (3.24)
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How can we introduce this a prioni information into our basic model

formulations?

Gaseous particles are known to exhibit uniform prior probabilities of
entering various quantum states. Consequently, there is little to be
learned from the various statistical forms discussed earlier, since all
these analogies are based on the a prionl assumption of equi-probability.

For non-uniform prior distributions, a different approach is needed.

Fisk and Brown have suggested that if Apg designates the a prionl pro-
bability that a tripmaker will travel to a destination in region s,
the microstate description (for the case of work trip distributions)
should be weighted by the factor

X

n(q ) rs
S rs

14

for each region r. The resulting maximization for each of the quantized

commodity distributions would lead to a general solution of the form

_ -1
Xpg = Apg Ds [exp(ur *+ B, cr) + 0] (3.25)

where o takes on the value 9, 1 or -1 depending on whether the distribu-
tion is based on Maxwell-Boltzmann, Fermi-Dirac or Bose-Einstein statis-

tics respectively.

Note, however, that DS biases the final distribution according to the
a posterioni number of destinations (or depots) in each region s, whereas

ps biases the same distribution according to the a prioni probability
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that a commodity unit from region r will be sent to region s. Solutions
based on (3.25) therefore imply that DS and Aps warrant equal weighting
in their joint influence on the final distribution. Such an assumption
appears to have neither theoretical nor empirical foundation, so Equation
(3.25) will not be adopted as the means of introducing prior probabili-
ties in the context of commodity distributions. Consideration of con-
ditional probabilities and Bayesian likelihood ratios may provide a
more acceptable theoretical wunderpinning for such an ana]ysis, but

these avenues cannot be explored in the space of this dissertation.

If instead we return to the first principles of information theory, we

15 which rests on

could adopt Kullback's measure of information gain,
the assumption that information is a relative quantity; it compares pro-
babilities before and after an observation. For the case of commodity

flows, our information gain, I [P;Q] , is given by

I[P;Q] = E i Prs Tog (prs/qrs) (3.26)
Adopting Jaynes' suggested extension of the maximum entropy par‘adigm,]6
we can choose that distribution {prs} which minimizes I [P;Q] subject
to related facts about P, which are treated as constraints. The principle
of minimum information gain is equivalent to choosing the most probable
distribution given that the prior:probabilities are non-uniform. Its
application emphasizes the inertia of the a priond distribution, since
the final solution is the one which most closely resembles the original

distribution in an informative sense.
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If we minimize I [P;Q] subject to constraints (3.2) and (3.16) and the
usual non negativity conditions, we obtain the following revised solution

for the most probable commodity distribution (er) :

Xpg = Xoglexplu, + 8 c )17, (3.27)
The important question concerning acceptable means by which the a priond
probabilities may be determined remains partly unanswered. If a complete
historical flow matrix xgs} is available, there is no difficulty in
calculating the prior probabilities. If partial information about histo-
rical flow patterns can be obtained, this information can be used to
derive a complete matrix of a prioni flows, so long as the total flows
are known. The procedure involved represents a compromise between the

entropy-maximizing and information-minimizing paradigms. To demonstrate

its application, a simple example is presented in Appendix B.

If we do not have any historical information available, it is doubtful
whether a priori probabilities should be "guestimated" by adopting some
ad hoc assumptions (such as regional consumption levels) to bias the

{ qrs} matrix. In this situation, it seems preferable to return to the
entropy-maximizing principle (with its implicit assumption of uniform
prior probabilities), which offers the additional descriptive flexibility
afforded by the various statistical forms. An entropy-maximizing solution
could certainly be adopted as the a prionl distribution in cases where
historical information (in the form of constraints) is superior to our
current knowledge about constraining influences on the distribution of

commodities.
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A further consideration is the degree to which the a paionl probabilities
contain distributional information partly related to that contained in
the C. coefficients which bias capacity constraints. Following the dis-
covery that the classical gravity model is much less powerful as a tool
for describing historical changes in trip patterns than models based on

a priord trip patterns,‘7 it is not all certain whether any constraints
like (3.16) should be included in any model which is based on a prionl
probabilities. The inertia embodied in the distribution system may ensure
that historical patterns are a superior guide to distributional behaviour

in the short to medium term. In this situation, the solution given by

(3.27) could be modified by dropping the ( Br . ) term.

3.3 Doubly-constrained Distributions

Having derived a full set of basic solutions for the production-constrained
models, it is now appropriate to examine some doubly-constrained models.
To do this we introduce the additional constraint

Tx =D (3.28)
r

for each region, where Ds now represents the demand for (or useage of)

commodities in region s, such that

S

LD =z X =X. (3.29)
S r

Equation (3.29) implies that demand equaTs supply at the aggregate level,
so much so that the doubly-constrained model is simply an equilibrium

model. If we now maximize W subject to a constraint system which includes
supply (3.2) and demand (3.28) equations, the resulting {xrs} distribu-

tion is therefore an equilibrium solution.
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Returning to the three statistical analogues (see Tables 3.1 and 3.2)
discussed in the previous section, a rather interesting convergence
occurs if Maxwell-Boltzmann statistics are applied. When each commodity
unit is regarded as distinguishable, Maxwell-Boltzmann statistics imply

that

X ! x
W=l lgp) T (0,1 . (3.30)
ros rs’ rs

Since I Xpg = Ds’ the second term in Equation (3.30) can be simplified

. rs
as follows:
Z X
S rs
i [DS'”S'] - n[D;‘ ]
rs S
D
= 1D )
S
= a constant .

This constant term will disappear when the Lagrangian is differentiated,
yielding an identical solution to the one obtained using Shannon entropy.
In other words, the double-constrained solution for Batty entropy re-

duces to that of Shannon entropy.

This convenient equivalence feature emphasizes the importance of Shannon
entropy for doubly-constrained models. Unfortunately, the same equi-
valence does not extend to the Bose-Einstein distribution, which retains

a similar solution to the production-constrained case. Solutions for the
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three doubly-constrained models are given in Table 3.4, wherein i is

the Lagrange multiplier associated with Equation (3.28).

As mentioned in Chapter 2, there has been particular interest in the
doubly-constrained model. A number of writers have indicated that the
doubly-constrained information-minimizing mode1 produces identical solu-
tions to those of a group of techniques classified as biproportional

18

matrix adjustments. The RAS method and two-dimensional contingency

table analysis belong to this group.

At first sight, this wealth of investigation into models which have a
similar structure looks very promising. From the viewpoint of a spatial
analyst, however, methods based on biproportional matrix adjustments may
sometimes be too restrictive, since they ignore all information beyond
the standard origin (supply) and destination (demand) constraints. For
this reason, biproportional matrix adjustment may be regarded as a
special case of minimum information gain in which the constraints are

of a particular form. The latter approach promises to provide a very
flexible approach to various matrix estimation problems which may be
confronted in spatial economics. For a detailed discussion of bipropor-

tional matrix adjustments, see Section 4.3.3 in the following chapter.

3.4 Concluding Remarks

The analysis of commodity flows in a production-constrained economy
(Section 3.1) reveals that certain analogies based on Maxwell-Boltzmann

or Bose-Einstein statistics may be useful, depending on whether each
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TABLE 3.4
ENTROPY FORM SCLUTIONS
EW‘

lexp(n. +n_+ B¢ )]

Shannon PLM, s r
-1
Batty [exp(u, + n. + 8 c)]
-1

Bose-Einstein DS[eXP(ur +ng +B Cr)'1]

commodity unit can be regarded as distinguishable or identical respectively.
The appropriate entropy maximands for these statistical forms are summarized
in Table 3.2. It is noteworthy that each maximand envolves Shannoh's measure
of uncertainty as the first term in its entropy expression. This common
feature suggests that it may be possible to reproduce all the "quantized "
distributions by adopting Shannon's measure as the objective function for
each case, and recasting the conditions imposed by each microstate descrip-

tion into the form of additional constraints.

Further support for the use of Shannon's measure as a general entropy maxi-
mand is provided by the doubly-constrained model. In the presence of both supply
and demand constraints, the equilibriumsolution for Batty entropy reduces to
that of Shannon entropy. This has particularly important implications for
input-output analysis, since Leontief's multisectoral world cannot boast a
homogenous one-to-one relationship between each commodity and the sector to
which it is allocated. Consequently, the need to distinguishdifferent commo-
dities inany one sector implies the adoption of Maxwell-Boltzmann statistics,

and either the Shannon or Batty entropy form.
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The entropy maximizing assumption that each microstate is equi-probable
may prevent any of these statistical representations from reproducing
empirical flows accurately. To overcome this, adoption of Kullback's
measure of information gain is recommended to compare prior and posterior
probability distributions. The principle of minimum information gain
searches for the most probable distribution, given that the prior pro-
babilities are non-uniform. To this degree, the need for additional
distributional assumptions, such as Wilson's familiar cost constraints,

may be reduced.

There is clearly a stage beyond which analogies drawn from statistical
mechanics become misleading and perhaps even inappropriate. This point
may be reached as we enter the multisectoral world of input-output ana-
lysis. Jaynes' entropy-maximizing paradigm requires no physical analogy,
since its use can be justified by mathematical reasoning and a logical
principle. For this reason, together with the arguments outlined above,

we shall adopt the first principles of information theory in the remaining

chapters of this dissertation.

Henceforth we shall restrict our attention to Shannon's measure of un-
certainty and Kullback's measure of information gain. The former will be
used as the entropy maximand for situations in which no satisfactory

a priond information about the flows can be ascertained, or in times of
change when the reproduction of historical trends is to be avoided. The
latter measure will be adopted as the information minimand for those
cases where adequate a pniondl information is available, and resistance

to change is sustainable.
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FOOTNOTES FOR CHAPTER 3

1 See, for example, Fisk and Brown (1975 a), Dacey
and Norcliffe (1976), Lesse et al. (1978), or Roy and Lesse (1981).

2 In this instance, each macrostate corresponds to an
interregional commodity distribution.

3 These particles are known as bosons or femions,
respectively.

4 In physical systems, these groups correspond to a
set of energy states.

5 See Equation (2.1).

6 Achieved, for example, by tossing a coin.

7 Box 1 is a fixed reference point.

8 See Fisk and Brown (1975 a).

9 In which there is no specific reference point.
10 See Jaynes (1957, p 620).

11 Shannon's measure is given originally in Equation (2.15).
For only two events (say E and not E), it can be expressed as

UtPl =~ [p, Togpy + (1 -py) Tog (1 - py)]

which resembles the familiar Fermi-Dinac statistical form with i = 1.
Differentiating U with respect to the probability Pys we get

P
=-log (
1 1-n

du
dp

)

which is the inverse of the fogit function. Theil (1972) concludes
that the logit model measures the sensitivity of uncasrtainty (or
entropy) to variations in probabilities.

12  Spatial entropy is defined by Equation (2.22), which
is the form proposed by Batty (1974 a, b; 1978 a). A similar de-
rivation based on Equation (3.5) can be found in Snickars and
Weibull (1977), but their interpretation of the {ps} distribution

differs. They describe {ps} as the a prioni most probable distri-
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bution, which should be of the same order as the a posterions
{ prs} distribution. Equation (3.13) is actually biased according
to the proportion of destinations in each region.

13 See, for example, Wilson (1973) or Fisk and Brown (1975 b).
14  See Fisk and Brown (1975 a).

15  See Equation (2.17).

16  See Jaynes (1968).

17  See Snickars and Weibull (1977).

18 See, for example, Bacharach (1970), Macgill (1977) or
Hewings and Janson (1980).



Chapter 4

NON SPATIAL INPUT-OUTPUT ANALYSIS

4.1 Introduction

In Chapter 3, we discussed shipments of goods by considering each commodity
in {s0lation. In this chapter, we shall link these commodity flows together
by describing the economy as a system of .Anterdependent activities being
carried out by many mutually interrelated industries. The traditional method
of describing these economic interdependencies is known as input-output ana-

lysis, and was developed initially for the American economy by Leontief.]

In examining Leontief's original static model, it is possible to identify
some fundamental problems associated with his classic formulation. Firstly,
there is the question of units. In order to distinguish between published
input-output tables which normally record interindustry transactions in
value terms, and tables which express the volumes of interindustry flows,
we must take account of prices explicitly. The conversion from value units
to physical units is quite straightforward if the appropriate price data
are available. Unfortunately, this is not often the case in practice, so

much so that tables recorded in inappropriate units are used in many studies.

Secondly, the fundamental Leontief form assumes a square matrix of techni-
cal coefficients, thereby implying that each industry produces just one
homogeneous product. Although each commodity may be regarded as homogeneous
for practical purposes, a one-to-one sector product assumption is clearly

unrealistic. Fortunately, the development of rectangular input-output

77
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tables has necessitated a specific distinction between sectors and pro-
ducts. The salient features of rectangular input-output models are dis-

cussed in Section 4.2.2.

A third difficulty with Leontief's original static model arises because
the input coefficients do not reflect the capital stock requirements of
the economy. Leontief recognized this problem and proposed a dynamic
extension of his original model to introduce the fundamental characte-
ristics of a growth model, in which the influence of time is recognized
explicitly. A major obstacle to the implementation of his dynamic input-
output model, however, has been the scarcity of reliable capital coeffi-
cients. We shall describe his original dynamic formulation in Section
4.2.3, and then demonstrate a means by which this empirical difficulty

might be alleviated.

Having introduced the essential characteristics of pertinent non-spatial

| input-output models, the rest of this chapter demonstrates the use of
methods based on information theory for the estimation of key parameters
in these models. In Section 4.3.1, Theil's original measure of the in-
formation content of an input-output table is replaced by a more general
expression, namely Shannon's measure of uncertainty.2 The discussion in
Section 4.3.2 embraces some speculation on an ordering scheme for simple
aggregation by adopting the criterion of minimum loss of information.

The objective function is expressed in terms of an information loss
criterion between the original array,and an array of the same size acting

as a surrogate for the reduced array.
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In Section 4.3.3, we examine biproportional matrix adjustments for up-

dating input-output tables. It is found that standard iterative solution
procedures like the RAS method and the IPFP algorithm are equivalent to
certain restrictive applications of the principle of minimum information

gain.3

The latter principle is more flexible, since it is capable of
including additional or alternative information to that demanded by these
standard approaches. Although this flexibility may not be regarded as
essential for the adjustment of input-output tables over time, it is
certainly important when attempts are made, in later chapters,to adjust

these matrices over space.

Finally, two information-theoretical models are formulated for the
estimation of unknown flow coefficients. In Section 4.3.4, the assumption
of one-to-one correspondence between sectors and commodities (which is
central to the classic Leontief model) is abandoned in an attempt to
simplify the aggregation problem. The resulting model makes use of in-
formation contained in rectangular make and absorption matrices, as

well as the square intersectoral matrix, to estimate the elements of a

new array {Xijk} » in which each element , x defines the flow of

ijk?
commodity k from industry i to industry j. Since published flow matrices
are usually out of date by the time of their release, the initial esti-
mates may be updated in a second stage of estimation using the principle

of minimum information gain.

A similar two-stage approach is suggested in Section 4.3.5 to improve

the method of estimating capital coefficients in dynamic models. First-
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stages estimates are computed using a standard two-factor model of in-
dependence, which assumes that a paiornl coefficients depend more on in-
vestments in the base period than on existing capacities. In the second
stage, base period coefficients are adjusted to satisfy a posterioni

capacity constraints using the same principle.

Throughout this chapter the discussion is primarily non-spatial. The
marriage of certain non-spatial concepts derived from the analyses in
this chapter with related work on spatial analysis will be celebrated

in Chapters 5 and 6.

4.2 Basic Model Characteristics

4.2.1 The Original Static Input-Output Model

Consider an economy which is (figuratively) divided into n production
sectors. Denote by X5 the total output of sector i,

and by X; the intermediate demand by sector j for goods produced by

J
sector i. Further denote by Y; the demand by final users for goods pro-

duced by sector i. The overall input-output balance of this n-sector

economy can be described in terms of n linear equations:

'y, (i = 1,...,n) (4.1)

x
|
i 13

jar 1
The input-output structure of any particular sector can be described by
a vector of technical coefficients, aij’ each of which states the amount
of a particular input from sector i which is absorbed by sector j per

urit of its ownoutput. Thus the commodity flows included in Equations (4.1)
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are subject to the following set of structural relationships:

This is a system of n linear equations in which final demand can be
regarded as the steering mechanism. The essential concern of input-output
analysis in this most basic form is to determine future levels of pro-
duction (xi) in the endogenous sectors, given known or exogenously
determined levels of final demand (yi), and assuming constant technical
coefficients (aij)' This is done by forming the familiar Leontief inverse,

achieved by rearranging terms in (4.3) to give (in matrix notation):
X = (1-A)7y, (4.4)

where X is a vector of endogenous sectoral outputs, Y is a vector of
exogenous final demands, A is the matrix of technical coefficients,

and I 1is the unit matrix.

It is worthwhile noting that there is a complementary row sum relation-
ship for the primary and intermediate inputs. If vj denotes the sum of

all primary inputs to sector j, the complementary equation to (4.1) is

n
X. = T X.. + V. (3 = 1,...,n) (4.5)
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It is convenient to represent these intersectoral relationships in

tabular form, as depicted in Table 4.1.

An augmented set of input-output coefficients can be formed by replacing

Vj by x In this case, it is obvious that

n+l,j°

; a.. =1 (3 =1,...,n) (4.6)

This particular feature, together with the knowledge that all coeffi-
cients are non-negative, implies that any augmented column of input-
output coefficients can easily be transformed into a vector which has
the same technical features as a probability distribution. As we shall
discover later in this chapter, this characteristic enables us to apply

concepts derived from information theory.

There has been no attempt above to offer anything more than a rudimentary
version of the basic input-output methodology. In so doing, a clear
passage is left to identify some of the difficulties associated with

Leontief's original formulation.

 Firstly, there is the question of units. Published tables normally record
intersectoral transactions in value terms, thereby allowing row and co-
Tumn sums to be expressed on a comparable scale. To study the effect of
technological conditions upon flow relationships, however, we prefer to
know flow volumes. In order to distinguish between tables which are ex-
pressed in physical and value units, we must take account of prices ex-

plicitly.
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To eliminate the price effect, we can convert the technical coefficients
from value units (aij) to physical units (a%j). Mathematically, this

conversion can be easily accomplished by the following multiplication:
d:. = — a.. (4.7)

where P; is the average price of products from sector i. In practice,
however, we must overcome the difficulty of obtaining the appropriate
data on prices. Consequently, many studies which deal with interihdustry

flows have actually employed technical matrices computed in value terms.

For our present purpose, a particularly limiting feature of the funda-
mental Leontief form is that Equations (4.4) assume a square matrix of
technical coefficients, thereby implying that each sector produces just
one homogenous product. This assumption ensures (amongst aother things)
that matrix inversion and an exact algebraic solution are possible. Al-
though no commodity is homogenous in the strict sense, it may be regarded
as such for most practical purposes. However, the one-to-one sector-
product assumption central to the classic Leontief model is clearly
unrealistic, and greatly confounds the aggregation problem. We must
eventually abandon this assumption if realistic models of commodity

flows are to be developed.

Fortunately, some of the theoretical and applied work on input-output

tables has acknowledged a specific distinction between sectors and pro-
ducts or, more generally, between industries and commodities. This body
of work has led to the development of rectangular input-output models,

discussion of which follows.



85

4.2.2 Rectangular Input-Output Models

Rectangular input-output tables have been published in Canada and Norway
for some years in response to the 1968 recommendations by the Statistical
Commission of the United Nations for a new system of national accounts.4
These tables exhibit a fundamental distinction between industries and
commodities, which is illustrated schematically in Table 4.2.5 In this
diagram , capital letters denote matrices, lower case letters denote

vectors, and primes indicate transposed column vectors (row vectors). The

complete notation is as follows:

U is an absorption matrix; a typical element ukj represents

the amount of commodity k used up by industry j,

V  is a make matrix; a typical element Vik represents the

amount of commodity k produced by industry i,

q is a vector of total commodity outputs,

g is a vector of total industry outputs,

y is a vector of final demands for commodities,
e is a vector of primary inputs.

The square partitions in Table 4.2 (namely the commodity-by-commodity
and industry-by-industry partitions) have no entries at all. Any attempt
to use a model as simple as Equation (4.4) requires either one, and only
one, non-zero element in each row of the absorption matrix so as to
ensure a one-to-one correspondence between aggregated commodities and

industries, or must manipulate the data from both matrices to provide



86

Cs b
.H.m
Lg A,
A, A R
spuews(q
s|e30] Leut 4 S9LUISNPU] S917 LpOwNo?)

¢"v °19el

spejol

sandup Auseuwtad

S9L43Shpu]

S317 Lpowwo)



87

entries for the empty square partitions. In the former case, the techni-
cal coefficients in matrix A could be given by ukj/gj’ and the make
matrix V would then be redundant. In the latter case, industries could
produce any number of products, so matrices U and V need not to be
square and assumptions regarding the internal structure of the square

matrices are required.

In terms of Table 4.2, the fundamental input-output balance is given by:

q, = 2 U
k i kJj

+ yk (4.8)
with the corresponding column sums yielding

g.:):ukj+e. . (4-9)

Further relationships for the output balances are given by

q g ik (4.10)

1

and

9

n
™
<

—e
=

(4.11)

Various assumptions that relate to the technical conditions of production

can be expressed as follows:

(a) The assumption that intermediate inputs of commodities are

proportional to the industry outputs into which they enter,

namely

Uy = bkj 9; (4.12)
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where B = {bkj} is a matrix of technical coefficients

of dimensions commodity-by—industry.6

(b) The assumption that each industry makes commodities in

its own fixed proportions, namely

i 94 (4.13)

Vik
where C = {Cki} is a matrix of coefficients of

dimensions commodity-by-industry.

(c) The assumption that commodity outputs are allocated

among industries in fixed proportions, namely

Vo = o 9 (4.14)

where D {dik} is a matrix of market share coefficients

of dimensions industry-by-commodity.

Combining (4.8) and (4.12) leads to the following basic relationship:

qk = ? bkj gj + yk (4.15)

The assumption that matrix B describes technical structure implies that
it is reasonably stable, irrespective of the levels of final demand and
of the resulting levels of commodity and industry outputs. However,
Equation (4.15) is not yet an input-output model. Such models define a
linear transformation from final demands to either industry or commodity

outputs. Consequently, a relationship linking industry and commodity

outputs is required.
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Assumption (b), corresponding to Equation (4.13), leads to a commodity
technology model in which there is only one way of producing each com-
modity. A commodity produced by several industries will have the same
input structure in each industry, so much so that the input structures
of industries will be linear combinations of the input structures of

the commodities they produce.

Combining (4.10), (4.13) and (4.15) results in the following input-output

relationship for the commodity technology model (using matrix algebra):
q=BC q+y (4.16)

In theory, the rectangular matrix C cannot be inverted, implying that
the assumption of a commodity technology is only permissible if the
number of industries equals the number of commodities. In reality, how-

ever, a pseudo-inverse of C may exist under certain conditions.7

Assumption (c), corresponding to Equation (4.14), leads to an {ndustry
technology model in which the market shares of industries are assumed
to be stable, and are regarded as independent of the levels of commodity

or industry outputs. From Equations (4.11) and (4.15), we can write

q=BDqg+y
(4.17)
= (1-BD)" 1y
and
-1
g = D(1-BD) 'y

(1-08) 'y . (4.18)
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Thus, if we denote the square input-output coefficient matrix by A, we
find that A = BD for a commodity-by-commodity table, whereas A = DB for
an industry-by-industry matrix. With the assumption of an industry
technology, there is no need for the number of industries to equal the

number of commodities.

A case can be made for each of assumptions (b) and (c) in particular
contexts. Moreover, mixed technology models have been proposed to allow
for both assumptions, depending on the nature of each commodity produced.
Distinctions between principal or secondary products, joint products

and by-products can be implemented by dividing the V matrix into two

parts, V] and V2, so that
V=V, Y, . (4.19)

The elements ofV] are outputs that more reasonably conform to the assumption
of a commodity technology; those of V2 are treated using the market share

hypothesis. Appropriate matrices of coefficients can then be calculated.

To take full advantage of the basic relationships embodied in rectangular

9

input-output theory,” it is necessary to introduce a new interindustry

flow matrix {Xijk} which is capable of defining supply-demand inter-
actions more realistically than the traditional matrix {xij} . A typi-
cal element, xijk’ in this new array defines the flow of commodity k

10

from industry i to industry j. Subsets of elements in {X'jk} can

i
be related directly to the elements of the absorption and make matrices
(in Table 4.2), by simply noting that summation over i automatically de-
fines elements in the make matrix, and summation over j defines elements

in the absorption matrix.
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This three-dimensional array formally recognizes that the functioning
of an economy takes place in terms of specific commodity flows between
producers and consumers. The form {Xijk} allows both producer's (i's)
and receivers (j's) to be explicitly defined, as well as the specific
item (commodity k) which is involved in any particular transaction between
them. The make matrix then defines the sources (producers) of these
interactions, whereas the absorption matrix defines the sinks (receivers).
The natural focus of interest is in the complete interaction array

{ X35k } , which is the subject of further discussion in Section 4.3.4

below.

4.2.3 Dynamic Input-Output Models

Before we discuss certain information-theoretical approaches which might
be adopted for the estimation of some key parameters in the input-output
models discussed above, there is a third difficulty arising from the
classical Leontief form which warrants our attention. In its original
static formulation, the Leontief model describes the mutual interdepen-
dence of various sectors in the economy by means of a set of technical
coefficients, which represent the flows between producers and consumers
during one time period. However, these input coefficients do not re-
flect the stock requirements of the economy. They do not, and cannot,
explain the magnitude of those input flows which serve directly to

satisfy the capital needs of each sector.]]
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In Equations (4.1), (4.2) and (4.3), all investment behaviour is con-
solidated into final demand (yi). This means that although the effects

of investment demand are considered, the actual magnitude of this par-
ticular demand cannot be ascertained. Explicit evaluation is only possible
if the stock requirements of all economic sectors are included in the
structural representation of the system, and distinguished from the flow

requirements previously described. This dynamic extension of the static

input-output model enables us to recognize the stock-flow relationship
explicitly, and thereby introduce the fundamental characteristics of

a growth model in which the influence of time is recognized explicitly.
Leontief introduced this dynamic element in 1953. In the following sec-
tion, we shall begin with his original formulation, and then demonstrate
a means by which one of the major empirical difficulties associated

with this model might be alleviated.

Let us reconsider our n-sector economy (initially discussed in Section
4.2.1) and introduce the time element into the model. Accordingly, xi(t)
and yi(t) now represent, respectively, total output and final demand for
the goods from sector i in period t. Final demand, however, now excludes
the annual additions to the stocks of fixed capital (by way of productive

investment) used by each sector to expand their productive capacity.

If Sij(t) represents the stock of a commodity produced by sector i and

used by sector j at time t, the rate of change of this stock at any

point in time can be written as

dsij(t)
dt
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or simply as §ij(t). Equation (4.1) can now be rewritten as follows:

S;5(8) +y(0) (= 1hn) (4.21)

In this formulation, all allocations of commodity i to the current
replacement and maintenance requirements of existing capital stocks are
included in the flow coefficients Xij(t)' Accumulated stocks for future
consumption are considered as another form of consumption, and are there-
fore included in final demand, yi(t). Consequently, the éij(t) term in
Equation (4.21) refers only to those changes in stocks which are designed

to increase the existing productive calpaxcity.]2

The set of structural equations (4.2) describing the input-output struc-
ture of each sector must now be supplemented by a corresponding set of

capital-output relationships, namely
Sij(t) > bij xj(t) (15§ = 15.005n) (4.22)

where bij is the stock or capital coefficient for capital goods produced
by sector i and used in sector j. Changes in stocks can be represented

by differentiating both sides of (4.22) with respect to time, yielding

Sij(t) 2 b

; ij(t) . (isd = 15...,N0) (4.23)

Substitution of relations (4.2) and (4.23) into (4.21) leads to our

fundamental system of dynamic input-output relationships

[ g e ]

n
xi(t) 2z
J:

PP x.(t) +

J J b]'j ).(j(t) + yi(t) (i = 19..-,") (4-24)

1 1

J
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which describe the dynamic interdependencies of the economy. We can

further simplify relations (4.24) by assuming that capital goods pro-
duced in year t are installed and operable by the following year, t+l.
Then the direct interdependence between the outputs of all sectors in

two successive years can be described by the following balance equations:

M
)

Xi(t) =

) ai.
J

g%l

bij [xj(t+1)-xj(t)] + yi(t) (4.25)

1 1

J
(i =1,...5n0)

if we assume full utilization of capital stocks in each period.

Methods for the solutions of this system of linear difference equations

13

have been suggested, and the model's inherent stability problem has

14

received much attention. However, a major reason for the lag between

theoretical and empirical developments has been the scarcity of reliable
capital coefficients, { bij L

With this obstacle in mind, Brody assumed a direct relationship between
the coefficients in the stock and flow matrices to obtain his solution

for the American economy using a closed version of Leontief's dynamic

16 17

model. Although this implicit connection had been recognized earlier,
Brody estimated values for the quotients of the corresponding elements

in his simplified matrices. The explicit relationship is

bii = ay: tis (i3 = 1,e.an) (4.26)

where tij is defined as the turnover time, being the time réquired for
capital goods from sector i to be used up in the production of goods

in sector j.
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Unfortunately, accurate estimates of the turnover time in each sector are
usually unavailable. Approximations are possible by substituting physical

18 The former is more easily measured and

life span for turnover time.
is independent of the current price mechanism. But, in reality, the two
concepts are not equivalent. Their exact relationship requires further

investigation.

The purpose of the following discussion is to suggest a method for the
direct estimation of capital coefficients which does not require prior

19 However, the method

knowledge of the turnover time in each sector.
does not preclude the existence of a relationship 1ike (4.26) between
the stock and flow coefficients. We shall begin with the system of linear

difference equations (4.25) developed above.

The usual manner of investigating the growth possibilities in a system
like (4.25) is to study the corresponding homogenous system for which
yi(t) = 0. For this closed system, there exists a balanced growth path
which achieves the largest possible rate of expansion of the system.20
For our immediate purpose, studying this homogenous system would be

inappropriate. Instead we shall assume that each sector has a growth

path of its own, with a corresponding growth rate Ki, at which
x:(t) = %, (0) (13" L (= 1, (4.27)

Substituting (4.27) into (4.25), setting t=0, and writing X5 for xi(O),

we have

b.. A, x, +y. . (i=1,...,n) (4.28)

x
0]
n 13
x
+
13

J
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We shall assume that base values of Xis ¥io Xi’ and aij are available

at our reference point in time (t

0). Thus we can simplify Equations

(4.28) to the following:

n
'§ uj bij = 81 (i =1,...,n) (4.29)
Jj=1
where
= A, i =1, s
o 5% (3 =1 n)
and
n
Bio= X5 -y - ji1 355 X5 - (i =1,...,n)

We can also express Equations (4.26) in the proportional form

bij : aij tij

(1,5 = 15000sn) (4.30)
bip  35p tip

where £ is a reference column in the appropriate matrices. Equations
(4.30) express proportional relationships between the elements in

columns j and £ of any row i. A more convenient form is

b. . .
5}%=y}£ (14§ = 15e0.sn) (4.31)
;

where Y}E are constants yet to be determined.

Equations (4.31) form a system of n by (n-1) non-trivial equations.Z]

Combining Equations (4.29) and (4.31) results in a system of n2 equations
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which can be solved directly by simple substitution, giving
(i, = 1,...,n) (4.32)

In Equations (4.32), the aj and Bi terms ensure consistency with

].22

other elements of the mode As well as this, they determine the

relative distribution of capital flows between rows in the matrix of
capital stocks. In a complementary manner, the Y}t terms determine
the relative distribution between the columns of the same matrix.
Since the success of this approach rests entirely on the accuracy of
these row and column proportionality terms, we shall refer to this

technique as the Biproportionality Method.z3

To complete the estimation, however, we require a suitable means of
predetermining the Y}z terms. Two simple possibilities spring to mind.
Firstly, we could follow Brdody's seemingly drastic simplification, and

suppose that capital goods from sector i have a uniform turnover time,

24

ti’ which is independent of destination sector j. Thus we redefine

j} to be a diagonal matrix of n turn-

over times (ti)’ and Equations (4.30) simplify to the following:

our original square matrix {ti

=

bij

i

5 (i, = 15...5n) (4.33)
il il

4]
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Assumption (4.33) implies that for each delivery sector i, the distribu-
tion of capital flows between different destination sectors j are in the
same relative proportions as the distribution of intermediate flows. To

implement this approach, no prior knowledge of turnover times is required.

Secondly, we could postulate an alternative relationship between the

coefficients in each row, namely

b.. ki

=2 (123 = 14e.usn) (4.34)
i 2

where kj is the average or marginal capital/output ratio in sector j.
Equations (4.34) introduce the assumption that for each delivery sector i,
the distribution of capital flows between different destination sectors j
are proportional to the capital/output ratios in those destination sectors.

If the sectoral capital/output ratios are known, the y}z terms may be

estimated using (4.34).

Matrices of capital coefficients may be approximated using Equations
(4.32), together with assumption (4.33) or (4.34). The relative merits

of each approach have been assessed in Appendix C, using a closed version
of Leontief's model adopted originally by Brddy in a study of the American
economy.24 Equations (4.32) were found to produce superior results to

Brody's when the appropriate solutions were compared.

Although Equations (4.32) provide a convenient means of estimating a
complete matrix of capital coefficients in an ex post fashion, the

assumptions embodied in (4.33) and (4.34) are clearly unrealistic for
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any detailed model. Inaccuracy can partly be gauged by comparision with
the existing capital stock, Ki’ in each sector i. Under the assumption

of full capacity utilization, the following equations should hold:

1 bij X5 = Ki - (i =1,...,n) (4.35)

" M3

J

In reality, most sectors are not operating at full capacity, so
Equations (4.35) will not hold identically. It is more appropriate to
regard the existing capital stock as a capacity constraint in each

sector, namely

(4.36)

W ™Mm3
o
x
VAN
~
—
-
[}
—_
-
-
b=
~

J

Finally, it may sometimes be necessary to consider each input coefficient,

aij’ as the sum of two components: a current input coefficient, a}j, and

an input coefficient for the maintenance of fixed capital, so that

. .
35 = a5 * 9y bij (isd = 15...,0) (4.37)

where q; is the average rate of depreciation of goods produced by sector

1.25 If published input-output statistics record the current input

coefficients (a}j), Equations (4.28) can be modified to read

n
.= X NS S
X 5 a1J ; L

b..(g: + A )%, +y. (i=1,...,n). (4.38)
; ijt i

1
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This can be simplified to the following:

n
T oo, = B (i =1,.0.,0)
jop 13T i

where
aj = (qi + Kj)%j (isd = 1,...,n)

and

"o
By = Xy =y - _% aij X; (i =1,...,n)
Jj=1
Combining (4.26) and (4.37) gives
t..
=-_____._1J 1 1.7 =
JF {1-qi tij} 3 (i3 = 1,.0050)

(4.39)

(4.40)

(4.41)

An alternative approach, which adopts techniques derived from information

theory, is presented in Section 4.3.5.
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4.3 Some Information-Theoretical Formulations

4.3.1 The Information Content of an Input-Output Table

The application of concepts derived from information theory to measure
the information content of input-output tableswas first attempted in

26

the middle sixties. Theil's work is adopted as a starting point for

the reformulations discussed in this section.

Returning to our static multisectoral economy,27 it is possible to
normalize the original input-output matrix to form a bivariate probabi-
lity distribution, pij’ in two different ways. Firstly, we can express
the intermediate flows as fractions of the total output of all sectors,

namely

n
=X:./ L X, . (i, = 1500450) (4.42)

p..
1] 0 =1 K
Secondly, we can express the same flows as fractions of the .intewmediate
output of all sectors, thus

n n
Pis = X:s/ T I X .o (1.3 = 1,e.0,0) (4.43)

LR O Y Y
Theil adopted (4.42) to define his bivariate distribution, and then
expressed the .intermediate demand for products from sector i, namely Pi s

in the fractional form

>

Py = (xy - vq)/

o1
>

! (i =1,...,n) (4.44)

k=1
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together with the total supply of products to sector j, namely p.j, as

Pe: = X./ I X - (3 =1,...5n) (4.45)

The curious feature of Theil's approach is that primary inputs are in-
cluded on the supply axis of the bivariate array, whereas final demands
are excluded from the receiving sectors. Although this omission may be
Justified if we simply wish to disaggregate primary inputs, it does
little to clarify the choice between (4.42) and (4.43) as the most
appropriate bivariate array {pij} for defining the information content
of the original table. To restore consistency, we shall treat primary
inputs and final demands endogenously, and focus our attention on the

flows between all sectors.

The column sums, p.j, are given by (4.45), with

, are redefined as

n
p; = X;/ § Xy (i =1,...,n) (4.46)
k=1
n
where X = '21 Vi The elements of the array pij} can now be
J:
viewed as part of a bivariate probability distribution for which
n n
Lo T Pyj = 1 (4.47)

i=1 j=1
and Py 2 0 for all i and j. Information-theoretical concepts can there-
fore be adopted.
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Theil defines the information concept of the input-output table as the
expected mutual information of his bivariate array {pij} , namely

n P
I op.. log —d . (4.48)

1 =1 M Pi. P.j

—
1]
(g R |

n

.i

Expression (4.48) actually measures the difference between the informa-

tion contained in the complete input-output distribution, and that con-

tained in the row (pi ) and the column (p .) sums alone. In other words,

-J
(4.48) measures the deviation of the actual distribution from an inde-

29

pendence model, namely P; j°

i~ PP
A more plausible definition of the total information content involves
Shannon's measure of uncertainty, U, given as
n n
= = Z Z ‘. ‘10 . o . .

U s Pi; 109 Py; (4.49)
Expression (4.49) implies that the information contained in the table
is measured relative to the completely ignorant assumption of equi-

30

probability. Consequently, U will be adopted as a general measure

of the total information content of an input-output table.

We now turn to a simp]é example for clarification of this new definition.
In his 1967 analysis, Theil chose a 4 by 4 array which included primary

inputs as an additional row vector, together with additional zero entries
in the corresponding column vector. Since we have chosen to include final

demands in our bivariate array, the need for dummy column entries does
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not arise. Accordingly, we have modified Theil's original array to re-
present the flows between:four non-zero sectors. The resulting array

{ pij} is reproduced in Table 4.3.

TABLE 4.3

Demand Sector j Row
Sum

Supply 1 2 3 4 P
1 05 05 0 05 15

2 .05 . .05 0 .2

Sector i

3 1 .05 .05 0 .2
4 2 1 1 .05 45

Column Sum p j .4 .3 .2 N 1

Statistics describing Table 4.3 can be computed using both measures.

For Theil's measure (I), the information content is 0.182 bits. Using
Shannon's expression (U), the information content is 3.522 bits. The
larger information content exhibited under the latter assumption reflects
the greater degree of ignorance assumed beforehand. If we are interested
in the total information content of the table, this latter definition

is more appropriate.



4.3.2 Information Losses in Simple Aggregation

As a logical extension of the discussion concerning the information
content of input-output tables, we now turn to the subject of aggregation.
By aggregation, we refer to the process of combining individual firms
into groups which are generally referred to as industries or sectors.

Thi; aggregation procedure has significant effects on any predictions

of intermediate and final demand.

It is almost thirty years since the aggregation problem was first re-

31

cognized as a significant issue in input-output analysis. In the

intervening period, many useful theorems concerning the conditions re-
quired for the absence of aggregation bias have been formu]ated.32 In
addition, various criteria have been suggested for selecting an appro-

priate aggregation scheme,33 the two most popular of which attempt to

preserve input or output homogeneity.

Our present aim is to improve computational efficiency by determining,
with some scheme, the means of reducing the size of an input-output
array by aggregation of complete rows and columns (i. e. "simple" aggre-
gation), such that, in a special sense, the reduced array is the best

substitute for the original in the required areas of application.

In contrast to the previous section, aggregation involves a £oss of
information which prompts the adoption of a relative, rather than an
absolute measure. The ordering scheme will therefore be defined as that

which results in an aggregated matrix suffering minimum loss from the
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original in the Kullback tradition,34 representing a converse formulation

of the standard minimum information gain approach.

As this approach implies comparison of arrays of the same size, it does not
seem directly applicable to the case where the original matrix and a smailer
aggregated matrix are being compared. In addition, an information loss, ra-
ther than a gain, is'incurred in proceeding from the original matrix to the
aggregated matrix. However, defining our original matrix as an n by n matrix
Q, we seek an n by n surrogate matrix P which is equivalent in information
to a given mbym candidate aggregated matrix P (where m < n). We therefore
choose that aggregation strategy to form P (and thus P) which minimizes the
information gain I(Q: P); defined as

n

L 055 109 (9;5/p;5) (4.50)

I(Q:P) =
13=1 W

{11 g R §

i

between P and Q (or the information loss between Q and P). Matrix P is de-
termined as that having maximum Shannon uncertainty, with just the values
of P provided as constraint information. It is of interest to note that Fei
uses a completely different argument to support a similar transformation
from his aggregated matrix A* to an "equivalent" augmented matrix A:.35
Consider that we have available the original matrix Q, with terms already

" normalized by some scheme, such that

50T Qe. o= 1 (4.51)
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enabling Q to be regarded as a probability distribution. We wish to
reduce this matrix by combining complete rows and the corresponding
columns to form an m by m matrix P. The transformation from Q to any

particular P is given as
P =15'0S (4.52)

where the elements of the m by m matrix S are either zero or one, with

a single one in each row located in the column corresponding to the

position of that row of Q in the reduced matrix P.

In order to determine the surrogate matrix P, we maximize the Shannon
uncertainty of P, defined as U(P), in the form
n n
= - ¥ Lo 1 . .
U(P) E j§1 Pis 109 Py (4.53)

with the only information provided being the terms of P itself, which
enter into additivity constraints. In this way, an infowmation equi-
valent version P of P is obtained, which has the dimensions of the
original matrix Q. Letting I and J stand for a typical row and column

of the aggregated matrix P, the constraints are given in matrix form as

S'PS=P . (4.54)

Upon differentiating Equation (4.53) with respect to each term pij under

the relevant constraint from Equation (4.54), P may then be written as

P=SWS' (4.55)
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ATd

where the m by m matrix W contains terms (I, J) of e , and

A
1J
is the Lagrange multiplier on the (I, J)th constraint in Equation (4.54).

Now, defining a diagonal matrix D as
D=5S"S , (4.56)

where a typical term d(I) represents the number of original sectors in
aggregated sector I, the expression for P in Equation (4.55) may be
substituted into Equation (4.54) to yield W. This is then resubstituted

back into Equation (4.55) to finally give P as
S' . (4.57)

Then, Equations (4.52) and (4.56) enable Equation (4.57) to be given

directly in terms of the original matrix Q as

P=VvQyV (4.58)

g,

where the symmetrical matrix V is given as S(S' S)
Returning to Equation (4.50), the objective may be written in terms of
the unknown transformation matrix S as

n n

min I I g log [q../(S; (5'S)7! s q S(s.5)”
S i=1 j=1 Wt

Y
Sj.)] (4.59)

th and jth rows respectively of matrix S.

where Si and Sj are the i
Now, Equation (4.50) may be simplified by firstly using Equations (4.52)

and (4.54) to write

S:I P S.J = S:I Q S.J = PIJ (4.60)
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th and Jth columns of matrix S respectively.

where S.I and S.J are the I
If, in Equation (4.57), all terms in matrix P except ﬁIJ are set to zero,
the contributions to matrix P are seen to comprise [d(I). d(J)] identical
terms of value ﬁIJ/ (d(I). d(Jd)] . The combination of these facts allows
Equation (4.50) to be written as

n

z (q.. log A5 = Py log pij) (4.61)

I1(Q:P) = )
1j3=1 W

.i

nmo™M3s

or, alternatively, in the form

n m m

I (a;;loga;) - Tz P log (B /(d(1). d(3))] (4.62)

I1(Q:P) = .. .
1 j=1 1 I 1=1 91

.i

| L gt e |

where Equations (4.52), (4.56) and (4.57) allow the expressions to be
given entirely as a function of the original matrix Q and the sought

transformation matrix S.
From Section 4.3.1, the expected information content U(x) for a proba-
bility distribution x is defined as

U(x) = - x; 1og x; (4.63)
enabling Equation (4.61) to be given as

I(Q:P) = U(P) - U(Q) . (4.64)

A coefficient of information loss CI may then be defined as

¢; = [U(P) - U(Q)1/U(Q) (4.65)
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which is to be minimized in terms of S, via minimization of I(Q:P) in
Equations (4.59), (4.61) or (4.62). The spread of CI values for trial
aggregation orderings S will provide some measure of the advantage of
having a systematic approach to the choice of aggregation scheme, rather

than merely relying on chance.

Theil proposed a clever separation of the information loss in his

model into a column effect, a row effect and a cell effect, in order to

analyse the effects of input and output heterogeneity.36

37

An analogous
separation of I(Q:P) has been reported elsewhere. If we are primarily
interested in minimizing aggregation bias, we should concentrate on the

input heterogeneity criterion.

Two alternative approaches may be adopted to solve the .above aggregation
problem in practice. Firstly, when one has a good intuitive feel of the
economic sectors which seem to belong together, one may form a list of
preferred alternatives, and merely run them through a function evaluation
via the relevant objective, choosing that which produces the minimum
value. The information loss coefficients CI should also be computed to
check if they are reasonable. Secondly, in larger problems or cases when
aggregation strategies are far from obvious, a more formal procedure
must be employed. One obvious possibility would be to employ a random

search method.

Although further work is required to see if any algorithms which work

directly on minimization of I(Q:P) are feasible, one promising approach
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warrants attention. In a recent unpublished report, Marksjo outlines an
algorithm which involves a multi-knapsack formu]ation.38 An interesting

feature of this approach is the capacity to handle rectangular input-

output tables as well as the usual square matrices.

In order to clarify the manual application of the criteria developed in

this section, two small test problems are described in Appendix D.

4.3.3 Adjusting Input-Output tables over time

We shall now return to the subject of biproportional matrices and changes

39

in input-output coefficients over time. In Chapter 2, we suggested

that studies of changes in input-output relations over time have been
frustrated by lack of comparable time-series data. To overcome this
problem, Stone suggested a method of biproportional matrix adjustments
for estimating the transactions matrix {pij} for a specific year, by
adjusting a known matrix {qij} to fit the known row sums, Pj » and

40

column sums, p.j, for that specific year. This approach, termed the

RAS method, determines elements in { pij} by an equation of the form:

where the coefficients rs and Sj are defined by the following iterative

adjustment process (in which t numbers the iteration):

2t-1 _ t 2t-2 _ .t t 2t-3 _
=r —Y‘_iSj 'IJ —k

2 0
P35 i P (4.67)
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as

vt (2 ety (4.68)
i IR
j
t 2t-1,-1
Loy L (5 et :
S5 =P ;5 (z i3 ) (4.69)

where p?j =4

This adjustment process turns out to be identical to an iterative pro-
portional fitting procedure ( IPFP) proposed by Deming and Stephan to
estimate cell probabilities {pij } in a contingency table for which

the marginal totals P; and p j are knownw4] This latter procedure

operates as follows:

(1) Suppose we have n.. observations in the (i,j) cell, where

ij

ZZn,.=n ., (4.70)
ijg M

(2) At the (2t) step, we take

2t-1 _ 2t-2 Pj,
ij "Pij T o (4.71)

p :
Pi.

(3) At the (2t + 1) step, we take

2t _ 2t-1 Pj
Pig TPy T (4.72)
.J
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(4) These iterations are continued until two successive sets of

values for the cell probabilities agree closely.

Various proofs of convergence on a solution for {pij} can be found in the
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literature. From their respective formulations, it is a straightforward

task to demonstrate the equivalence of the RAS and IPFP algorithms.

The IPFP was suggested originally as a means of arriving at estimates

which minimized
_ 2
(pij qij)

(4.73)

D)
i3]

subject to the known marginal totals, p; and P, Expression (4.73) is
a modified Chi-square statistic, which is normally used to measure
goodness of 4it. Several authors have already noted that identical
solutions to those obtained by minimizing (4.73) can be achieved by

formulating the problem as one of minimum information gain,43 namely

“minimize I = % p.. 1og (p../q::) (4.78)
PN 13073
subject to

; Pij = pi. (4.75)
J
LPp::=p . (4.76)
PERA N oJ
p..>0.% (4.77)
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The equivalence of these forms is evident from the observation that a
classical Lagrangian derivation of a solution to the system (4.74) through

~(4.77) can be made to produce (4.66) directly. The‘re1evant Lagrangian, ,

is given by
L= ? § Pij Tog (pij/qu) + § “i(§ Pij = Pi.)
(4.79)
B pis - p )
j‘]i 1] oJ

where @, and ?j denote the multipliers associated with constraints
(4.75) and (4.76), respectively. After differentiation of £, the solution

follows as

Pij = 9j; P (-1-ai-8j) . (4.80)

It is obvious that Equation (4.80) reduces to (4.66) if we make the simple

substitutions

r; = exp (-1-ai) (4.81)
and

Sj = exp (-Bj) . (4.82)

Explicit values of rs and sj may be determined using the constraint

equations (4.75) and (4.76).

The RAS method is therefore equivalent to (i) the estimation of cell

-probabilities in two-way contingency tables given marginal totals, and
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45 e shall

(ii) a doubly constrained model of minimum information gain.
now attempt to identify those conditions under which one approach may
prove superior to another. Since the RAS method can be regarded as a
special case of contingency table ana]ysis,46 we shall restrict our

comparision to two approaches:
(i)  the estimation of cell probabilities in contingency tables, and

(ii) the family of models employing the principle of minimum

information gain.

For the popular situation in which both row and column sums are known,
or can be estimated independently, both approaches are feasible. Standard

4 Although compafative

computer packages exist for both techniques.
tests of both approaches have yet to be reported, we suspect that con-

| vergence would be rapid for either approach.

However, standard packages based on the iterative proportional fitting
procedure are currently unsuitable for problems involving ad hoc sets

of constraints. This does not imply that such procedures cannot be de-
vised to handle different conditions. Modified versions of the RAS method
have been developed for this very purpose. The problem is simply that con-
tingency table analysis is designed to test hypotheses which conform to
standard sets of equality constraints. In marked contrast, a standard
1nformation-hinimizing algorithm is designed to accommodate any set of
equality constraints. Accordingly, various sets of constraint information
can be handled by the same routine without any algorithmic modigications.

Algorithms have also been developed to handle a mixture of equality
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48 The flexibility of these algorithms

and inequality constraints.
extends far beyond the boundaries of standard procedures devised for

multidimensional contingency table analysis.

In conclusion, it appears that the minimum information principle has
more general application because it is capable of incorporating addi-
tional or alternative information to that assumed in methods of bipro-
portional matrix adjustment. Although this flexibility may not always
be necessary when making comparative static adjustments, it is
certainly needed when attempts are made to adjust these matrices over
space. Further comparisons of the two approaches will therefore be
undertaken, when we discuss the estimation of intra- and interregional

flows in Chapter 5.

4.3.4 The Estimation of Intersectoral Commodity Flows

The publication of one or more historical matrices recording total inter-
- sectoral flows {Xij} within the national economy is now commonplace
among most developed countries. These historical tables canh be regularly
updated using methods like those discussed in the previous section. Much
less common, however, is the existence of a matrix describing the inter-
sectoral flow of each commodity {Xijk} . A typical element in this
array defines the intermediate flow of commodity k from sector i to
sector j. We shall now.consider possible means by which information

theory may assist in the estimation of this three-dimensional flow matrix.
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Assuming that no a prioni flow matrix is available, a simple approach

to the generation of {xijk} estimates would match directly the terms
in a known intersectoral matrix {xij}’ to theirmost likely counterparts
in the absorption matrix {ukj} and the make matrix {Vik} » taking due
account in the make matrix of outputs destined for final demand. The

intersectoral matrix immediately furnishes the constraints

E Xi5k = %43 (i, = 15...50) (4.83)

a corresponding absorption matrix the constraints
? Xijk = Ykj (3 =15.005n3 k=1,...,m) (4.84)
and a corresponding make matrix the constraints

=V,

ik - y.ik (-i = 1,...,”; k = 1,...,m) (4.85)

j ijk
where Yik denotes the amounts of commodity k produced by sector i for
final demand. Equation (4.85) simply signifies that a typical make matrix
includes outputs that are destined for final as well as Tntermediate con-
sumption.

The estimation of elements in {x.. } 1is analogous to that of estimating

ijk
the expected frequencies in a three-way contingency table with three sets
of one-way marginal constraints. Standard results for three-way tables
indicate that the problem can be solved directly, with the elements in

{ xijk} being given by

_ 2
Xijk = %43 Yki (K - Yi)/Q (4.86)
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where
Q=5 35X =5 % ULs =% 5 V., . (4.87)
S N j ki ik |

An identical result could be obtained from a standard Lagrangian solution
to the entropy problem:
n n m

maximize U = - 151 351 k§1 X5k Tog X, ik (4.88)

subject to Equations (4.83), (4,84) and (4.85) as constraints.C

In the absence of any additional information, the direct solution afforded
by Equation (4.86) is very convenient. However, if the set of available
information includes suitable data on freight costs, or the physical
capacities for handling deliveries, an additional set of constraints should

be included. If we .know freight costs, for example, we may have

n n
L T C
i=1 j=1

=C (k = 1,...,m) (4.89)

ik Xijk T “k
where Cik is the unit cost of delivering one unit of commodity k from
sector i, and Ck is the total cost of delivering commodity k. In this
instance, standard iterative procedures devised for three-way contingency
tables are no longer suitable because of the appearance of weighted co-
efficients in the system of constraints. An entropy-maximizing formulation

is then required to obtain the solution.

Having determined an historical estimate for each element in a base year

array (which we shall henceforth refer to as iijk)’ it is interesting to

speculate on how this particular array might be updated to reflect
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existing or future intersectoral commodity flows. Macgill proposes a
second stage of modelling in which the cells in the base year array

{x,., } are updated, to derive new estimates { Xijk } » by minimi-

ijk
zing the information gain between the old and new arrays, namely
3 3 3 n n n -
minimize I = 151 j§1 k§1 X5k Tog (Xijk/xijk) (4.90)

subject to the following constraint:S]

? Xiik = bkj(g E X5ik * yj) } (4.91)

In this formulation, bkj are coefficients derived from the absorption

matrix,52 and yj is the output of sector j which is destined for final

consumption.

Equation (4.91) supposedly defines the assumed constancy of commodity
inputs to total sectoral outputs. Rather curiously, elimination of the

absorption coefficients from (4.9) and (4.12), using (4.84), leads to
a slightly different relationship, namely

? Xijk = bkj(f i Xijk + ej) (4.92)

A notable omission from Macgill's system is a set of constraints derived
from the make matrix. Macgill argues that adoption of either the commo-
dity technology assumption or the industry technology assumption should

53

- be avoided, because

(i) inclusion of a prioni values { iijk} adequately replaces

assumptions embodied in the Ci and dki coefficients; and
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(ii) 1inclusion of either assumption determines an unique

solution for IX;ijk» Dy reducing the system of make

J
equations to one of (m by n) equations in (m by n)

unknowns.

Both these arguments appear rather tenous. Firstly, there is no empirical
evidence available to support her implicit suggestion that a prioni flow
values can more aptly replace assumptions embodied in the base-year Cri
and dik coefficients, than those embodied in the corresponding technical
coefficients, bkj’ Secondly, inclusion of an assumption like (4.92)
determines an unique solution for ?xijk - » by reducing the system of
absorption equations to a similar system of (m by n) equations in

(m by n) unknowns. In other words, the inclusion of assumptions based

originally on either technology assumption appears no more restrictive

than those embodied in Equations (4.92).

There is some evidence to suggest that the industry-commodity coefficients
(bkj’ C,; and dik) may be less stable than their intersectoral counter-
parts (aij)’ This stems mainly from the aggregate nature of intersectoral
flows, which disguises the overall effects of individual changes in com-
hodity technologies. It may therefore be wiser to revert to entropy-
maximizing models for all { xijk} estimates, rather than to speculate

on the use of a two-stage model which attempts to perpetuate the base-

~ year technologies.
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4.3.5 The Estimation of Capital Coefficients

In Section 4.2.3 of this chapter, we introduced the basic elements of
dynamic input-output theory. To overcome the scarcity of survey-based
capital coefficients, a direct method of estimation was proposed.54
To implement this method, however, an assumption was required concerning
the proportional relationships between any two elements in the same row‘
(or delivery sector i) of the capital matrix. In this section, a simple

information-minimizing model will be formulated wherein no such assump-

tion is required.

We shall commence where we left off in Section 4.2.3, by considering
the declining productivity of capital goods over time. Equation (4.38)

will be repeated here for convenience:

>
1]
n ™Mm33
o 7]
—
+
I M3

A i =
4 bij (qi + j)xj Y (i =1,...,0) . (4.38)
n

I o,,b..=8B. (i =1,...,n) (4.39)

where aij and 61 are coefficients which can be computed in advance.

Equations -(4.39) will first be complemented by a description of capital

useage, namely

M3

L ¥ bij = Ij (3 = 1,...5n) (4.93)

where Ij is the total investment demand for capital goods by sector j.
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In the absence of any further information relating to the unknown
coefficients {bij} » we could estimate them directly using a standard

two-factor model of 1'ndependence,55 namely

B. I.
bis = ot (1,3 = 150u0sn) (4.94)
ij
n n
where I = £ 8. = T I..
i=1 ] j=1 J

As we suggested earlier, the accuracy of any estimates can partly be
gauged by comparisions with existing capital stocks in each sector. In
reality, most sectors are not operating at full capacity, so Equations
(4.35) will not strictly hold. It is more appropriate to regard the
existing capital stock in each sector, Ki’ as a capacity constraint,

namely

321 bij X; <Ky (i =1,...,n) (4.95)
This introduction of inequality constraints (4.95) necessitates an
entropy-maximizing approach. Algorithms have been developed recently
to solve problems containing both equality and inequality constraints.
Thus the capacity constraints can be included in the following formula-
tion:
n n

maximize U = - 151 551 b, 5 Tog by (4.96)

subject to the constraints (4.39), (4.93) and (4.95), together with the

usual nonnegativity conditions.
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Unfortunately, this maximum entropy estimate is only satisfactory if we
ignore the real influence of time. In reality, current investments are
usually made well in advance of the resultant production equipment

being ready for use. In other words, our assumed Bi and Ij values do
not necessarily relate to the same time period as the capacities, Ki'

A number of models which allow for various gestation lags (together
with finite durabilities and declining productivity of capital equipment)
have been proposed.56 We do not intend to review these nonlinear models
at this present stage. Instead we shall describe a simple modification

to our maximum entropy estimate which introduces some temporal reality.

In the first stage of our modified approach, we determine the elements
of an array { Eij} » which describes the capital flows (coefficients)
during our base period, using Equation (4.94). This base period is con-
veniently chosen to precede our real period of interest by the average
construction or gestation period for all sectors and types of capital
equipment. The matrix { Bij} respresents an a priornl hypothesis that
base period coefficients relate more to base period investments than

to base period capacities.

In our second stage of estimation, the base period coefficients are
adjusted to satisfy existing capacity constraints at the end of the
gestation period. This is done using the principle of minimum information
gain, namely

n

1 ji1 bij log (bij/bij) (4.97)

minimize I =
i

o3
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subject to the inequality constraints (4.95) and the usual nonnegativity

conditions.

In practice, the assumption of a uniform gestation period for all sectors
and types of capital equipment is unrealistic. Different construction
periods may be very important, ranging from less than one year up to some

seven or more years.57 To introduce these variations, we could decompose

bij into elements bijl’ b1j2’°"" bijT such that
T
... =Db.. 4.98
951 bise = Byj (4.98)

where bije is the capital input which must be delivered 8 periods before
the new production capacity, of which it is a part, is ready for use
(8=1,...... »1). Accordingly, T is the longest gestation period. However,
the introduction of this new subscript (8) necessitates an evaluation
of the complete time profile of each input into capital construction,

which is a task considered beyond the scope of this dissertation.
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FOOTNOTES FOR CHAPTER 4

1 See Leontief (1951, 1953).

2 The former measure can be found in Theil
(1967, p 333), whereas the latter is based on Equation
(2.15).

3 The Iterative Proportional Fitting Procedure
(IPFP) was developed originally for contingency table
analysis, but may also be applied to the adjustment of
input-output tables.

4 Canadian tables have been published by the
Dominion Bureau of Statistics (1969), whereas rectangular
accounts of the Norwegian economy have appeared in
Statistisk Sentralbyrd (1978). For an outline of the
United Nations proposal, see either United Nations (1968)
or Aidenoff (1970).

5 Similar tables have appeared in Aidenoff (1970),
Gigantes (1970), and Macgil1(1978).

6 An assumption of this type is central to the
development of a Norwegian input-output model known as
MODIS IV, which distinguishes between commodities, sectors
and activities. For a detailed outline of this model, see
Bjerkholt and Longva (1980). The assumption itself has
been thoroughly investigated using Norwegian data by
Sevaldson (1970; 19723 1974).

7 This inverse is commonly referred to as the
Penrose Anverse in memory of its proponent. For further
details, see Penrose (1956).

8 See, for example, Gigantes and Matuszewski
(1968), Aidenoff (1970), or Gigantes (1970).

9 Namely, Equations (4.8) through (4.18).

10 This array is actually an aggregated form of
an even larger array which appeared originally in Cripps,
Macgill and Wilson (1974).

11 See Leontief (1953).

12 Lange (1957) defines this process as pro-
ductive investment.

13 See Leontief (1970).
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14 See, for example, Jorgenson (1960), Tsukui
(1961; 1968) and Petri (1972).

15 Early efforts to develop capital coefficients
were made by the Harvard Economic Research Project and the
Interindustry Analysis Branch of the U. S. Bureau of Mines.
The Harvard group's work dates back to at least 1948, and
was terminated in 1972. The :Bureau groups have made estimates
of incremental capital coefficients for many sectors. Fixed
capital coefficients for the U. S. economy in 1939 were com-
puted by Grosse (1953). For a review of some of the problems
encountered in these efforts, see Carter (1957).

16 Brdody (1966; 1970) developed this simplified form
from the original dynamic model proposed by Leontief (1953).
The first closed-model computations were made at Harvard in
the early fifties. Their results, and Tsukui's (1966) earlier
work, were never published.

17 In discussing a similar model, Hawkins (1948)
noted that the quotient of the respective elements of the

two matrices, bij/aij, is of the dimensionality of time.

18 Lange (1957) did not distinguish between durability,
a physical characteristic of capital goods, and turnover time
which is an economic characteristic. Brody (1966; 1970) sub-
stituted physical life spans for turnover times, taking some
of his guesses from Domar (1957). Lange's interpretation of
the concept of turnover time is worthy of recollection. Let
the durability of that part of the output of sector i which
is allocated to sector j as additional means of production
be tjj units of time. In order to produce a unit of output
from sector j during a unit period of time, the quantity
aj of products from sector i must be used up during that
period of time; ajj is the technical coefficient. Thus to
increase (in the next period) the output of sector j by one
additional unit, a quantity of output ajj 'tij from sector i
must be allocated to sector j. In this way, exactly ajj of
output from sector i will be used up in the next unit period
in sector j, and this will produce one unit of output.
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19 This method was originally proposed and
evaluated in Batten (1979), and an extension was
suggested in Batten (1981).

20 This rate of expansion corresponds to the
von Neumann growth rate. The associated solution vector
represents a unique equilibrium structure which is often
referred to as the turnpike solution. For a discussion
of turnpike theorems, and their application to multi-
sectoral models, see Tsukui (1966, 1979), Murakami et al.
(1970), and Tokoyama et al. (1976). See also Appendix C.

21 Since there are n trivial equations in which
j=1.

22 As defined in Equations (4.28).

23 Stone (1962) suggested a method of biproportional
matrix adjustment to modify a known matrix in order to fit
new row and column sums. Bacharach (1970) elaborated further
on this approach . Equation (4.32) is really an independence
model, since a priornd coefficients are not available. For
further information on the latter, see Fienberg (1977).

24 See Brody (1966).

25 As suggested, for example, by Wurtele (1960)
and Morishima (1964). Wurtele divided the economy into
two industries: consumption goods and capital goods.
He then proposed that 357 qibij for the capital goods
industries alone. Equations (4.37) are more general,
in that they allow the goods produced in any sector
to be used for intermediate consumption, capital
maintenance, or both.

26 Theil (1967, p 331) acknowledges Skolka
(1964) as the first proponent. Skolka's work appeared
in Czech with only a summary in English. For other

examples, see Theil and Uribe (1965) or Tilanus and
Theil (1965).

27 Which was introduced originally in Section 4.2.1.
28 See Theil (1967, p 332).

29 This latter expression represents the contingency
table solution.
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Under the assumption of complete ignorance, S attains

its maximum value, namely log nz.

3
32

See Hatanaka (1952).

See, for example, Balderston and Whitin (1954), Theil

(1957), Ara (1959), and Morimoto (1970; 1971).

33

See, for example, Balderston and Whitin (1954), Fischer

© (1958), and Kossov(1970).

34
35
36
37
38
39
40
4
42

See Kullback (1959).

See Fei (1956).

See Theil (1967, pp 331-8).

See Roy, Batten and Lesse (1981).
See Marksjo (1981).

See Bacharach (1970).

See Stone (1962).

See Deming and Stephan (1940).

See, for example, Ireland and Kullback (1968), or

Fienberg (1970).

43

Notably Ireland and Kullback (1968), Bacharach (1970),

Kadas and Klafszky (1976), and Macgill (1977). The proposed

measure of information gain is equivalent, at its first-order
approximation, to the sum of the squares of the relative deviations.
The following proof is due to Kadas and Klafszky :

For |x] << 1, we have
Tog (1+x) = x .

The following simplification is therefore possible:

Ps s P::=Q.:
1] ) = J 13, 1)
qij

Tog ( 3

T% P
ij

1
- ™M

z p.. log (
ij ijg M
. pij_qij )
J qij

123
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o
)
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44 Note that p, ]°9(pij/qij) = 0 whenever p;; = 0,

and Pi; = 0 whenever qij = 0.

J
45 Which may alternatively be described as an entropy-
maximizing model incorporating non-uniform prior probabilities.

46 In which the marginal probabilities, P; and p ., are
known. : -J

47 See Haberman (1973) or Fay and Goodman (1975) for
algorithms based on the Iterative Proportional Fitting Procedure.
Eriksson (1978; 1980) has developed a versatile information-
minimizing algorithm.

48 See, in particular, Eriksson (1980).
49 See Fienberg (1977, p 25).

50 A normalization constraint, corresponding to Equation
(4.47), is redundant here, and has therefore been omitted.

51 Macgill (1978) actually maximizes the function
S =3 ? E Xk 10g(x; 51/%5 %)
which is, of course, identical to (4.90).
52 See Equation (4.12). |
53 See Equations (4.13) and (4.14), respectively.
54 See Equations (4.32) and (4.41).
55 See, for example, Fienberg (1977, p 12).

56 See, for example, Johansen (1978), and Aberg and
Persson (1980).

57 See Johansen (1978).



ChaEter 5

INTERSECTORAL FLOWS IN SPACE: STATIC FORMULATIONS

5.1 Introduction

Intraregional and interregional input-output models both represent spatial
disaggregations of the standard Leontief model introduced in Chapter 4.
Leontief's original model was developed primarily for a national economy.

A regional economy is, however, much more open or trade-oriented than its
national counterpart. Interregional transactions therefore play a significant
role in determining the structure of economic activity within any single

region or system of regions.

The purpose of the present chapter is essentially twofold:

(i) to examine various non-survey techniques, both .intwa- and inten-
negional, which have been adopted for the spatial estimation of

intersectoral flow coefficients; and

(i1) to suggest certain alternative approaches to these estimation

problems based on elements of information theory.

In Section 5.2, we begin by re-examining Leontief's original static model
from an intra- and interregional viewpoint. Although the intraregional
input-output model is of a comparable form to the national model, important
structural differences exist between the two formulations. For example,
because each region is largely dependent on other regions for its economic
survival, detailed account must be taken of the trading patterns between

regions. To analyse these regional interdependencies meaningfully, an

130



131

interregional approach is necessary. Section 5.2.2 introduces the basic

flow relationships of the static interregional input-output model.

In Section 5.3, various non-survey techniques which have been adopted for
the spatial estimation of input-output coefficients are discussed. For the
estimation of intraregional coefficients, the methods outlined may be broadly

categorized as

(i)  location quotient approaches;
(ii) commodity balance approaches;
(i11) biproportional matrix adjustments; and

(iv) semi-survey techniques.

Because of their inability to make allowances for cross-hauling, it appears
that the first three methods underestimate regional imports and exports.
Consequently, no acceptable non-survey method can be cited for deriving

intraregional coefficients from their national counterparts.

For the estimation of interregiona1ycoefficients; two approaches are
reviewed, namely (i) quotient methods; and (ii) efficient information
adding. The latter approach, which éan ihvo]ve two stages of estimation,
appears quite promising for a number of reasons. Not the least of these

is its ability to cope with Cross-hauling. It represents a practical
compromise between‘two extremes, namely full survey methods and theoretical

trade models.

Section 5.4 proposes three alternative approaches to the estimation of
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interregional, intersectoral flows from a limited database of industrial
and regional information. For each method, a distinction is made between
flows to intermediate and to final demand. In contrast to earlier approaches
which have adopted various a paioni flow assumptions, the present study
investigates four different cases describing the extent to which information

is available on intraregional demands.

In the first approach, each case is treated as a simple form of hypothesis
testing, in which the expected frequencies in a four-dimensional contingency
table are estimated using various sets of marginal constraints. In these
formulations, flow capacities at the different nodes are not taken into
account, and supplies and demands are regarded as pooled. By dealing with
this simple interregional accounting system, it is possible to solve all
four cases using a standard iterative proportional fitting procedure.
Furthermore, an explicit solution for two of these cases is possible, since
their maximum-1ikelihood estimates can be expressed in closed form. It is
concluded that the extent to which information about intraregional demands
is available determines the viability of an explicit solution.

If we now add a set of capacity constraints to our interregional accounting
system, the iterative procedures devised for multidimensional contingency
table analysis are no longer appropriate. The introduction of these constraints
prompts our second approach, namely adoption of the entropy-maximizing
paradigm. This approach is sufficiently flexible to accommodate all types
of linear constraints, including those on handling capacities at the nodes,

which involve inequalities. It is also possible to specify some of the flows
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in advance without any need to modify the solution algorithms. Explicit

solutions are found numerically using iterative methods.

The existence of an a prioni flow pattern allows us to relax the equi-
probability assumption associated with the entropy-maximizing paradigm.

In modifying our objective function to allow for non-uniform prior
probabilities, we introduce our third approach, which employs the principle
of minimum information gain. Although this technique enjoys most of the
advantages possessed by the entropy-maximizing paradigm, it also embodies
some important differences. These contrasting features are compared near

the end of the chapter.

5.2 Basic Model Characteristics

5.2.1 Intraregional Input-Output Models

Consider a single region r whose economy is divided into n production
sectors. Denote by x: the total output of sector i in region r, and by
. the intermediate demand by sector j in region r for goods produced by

J
sector i in the same region. Further denote by y: the local final demand

X"
j

for goods produced by sector i in region r. The overall input-output balance
of this regional economy can be described in terms of our characteristic

set of n linear equations:

n r
X. = I X.. *Y. . (i

]
—
-

vesn) (5.1)



134

The input-output structure of any particular sector j in region r can be

described by a vector of technical coefficients, agj, each of which states
the amount of a particular input produced by sector i in region r which is
absorbed by sector j per unit of its own regional output. This implies the

following set of structural relationships:

xh.=al. X (i,d = 1,...,0) (5.2)

Y: r . (.i & 1,..-,") (5‘3)
In this familiar form, input-output analysis is often used to determine
future levels of production in the endogenous sectors (x?), given
exogenously determined levels of final demand (y?), and assuming constant
technical coefficients (a’.). This is done by forming the standard

1]
Leontief inverse.1

Although the comparable rélationships are identical, a number of important
structural differences exist between this regional model and its national
counterpart. Because intraregional tables are more open than the national
table to which they correspond, exports and imports account for a larger
share of total transactions in the region than in the nation. So, the size
of the import coefficient in any given column of the intraregional matrix
may be quite large, causing local input coefficients in the same column

to fall below those in the national table. For this reason alone, it is
easy to understand why the adoption of national coefficients in regional

- models can be misleading. Clearly, there are wide variations in export and

import patterns from region to region.
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Miernyk acknowledged the importance of these variations when he suggested
extensions to the basic model designed to separate the technical requirements
of local industries from the interregional trade patterns of the economy.2
The result was the so-called dog-£eg input-output model, the acﬁounting
system for which is depicted in Figure 5.1. This variant of Leontief's
original model recognizes explicitly that the regional economy is not a
self-contained production-consumption entity. Consequently, the coefficients
underlying the intraregional transactions matrix in Figure 5.1 can be

redefined as intraregional requirements coefficients.

Further concern often centres on the assumption of coefficient stability.
Several factors can cause the coefficients to alter over time: technological
change, variations in product mix, price changes, input substitutions, and
shifts in trade patterns.3 The question of coefficient instability, however,
is essentially an empirical one. Since we are not concerned with long-term
forecasting using static models, the question of coefficient stability will
not trouble us here. On the other hand, the interindustry structure does
appear to be sensitive to short-run disturbances in a region's propensity
to import,4 s0 an accurate picture of the trading patterns existing between
regions is essential. To examine these regional interdependencies, a full

interregional approach is required.



136

Figure 5.1
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5.2.2 Interregional Input-Output lModels

The original static interregional model was formulated by Isard, whereas
the scheme proposed by Leontief was designed specifically as a theory of
intranational re]ationships? Since those early days, a number of other
approaches have emerged in an attempt to develop an empirically workable
model. We shall examine some of these proposals a little later. The present
introduction will be limited to the basic structural and flow relation-
ships suggested by Isard.

Consider a system of regional economies containing n production sectors
which are distributed over m regions. Denote by x?? the intermediate flow
from sector i in region r to sector j in region s, and by y?s the deliveries
from sector i in region r to final demand in region s. The basic set of
interregional flow relationships for intersectoral balance can be specified
in the form

n m
x? = 1 z xrs

m
rs .
&G i * z oYy - (1:1, ..... N , (5.4)

s=] r=l,..... ,m)

We can add to this the corresponding inflow of factors needed to satisfy
regional production requirements in each sector, namely
M rs s

I Xi: + V3 (§=1,..... sN; (5.5)
istr=]

x
"
™M 3

where v? is the value added to sector j in region s. The input-output
structure of a particular sector j in any individual region s is then

described by a matrix of interregional technical coefficients. Each element,
a??, states the amount of goods produced by sector i in region r which are
absorbed by sector j per unit of its own output in region s. This implies
the following set of structural relationships:

et X3 o (i,d=1,.. ... N (5.6)

4570 nE:
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Substituting (5.6) into (5.4) yields

n m
x? = I X ars xS +

5 S rs (i=1,..... ,n; (5.7)
je1s=1 W g =1

i
1 i - r=l,..... ,m)

n~3

If we assume constant technical coefficients and a given pattern of final
demands, this system of equations can be solved for regional outputs. The
solution is obtained by forming the standard Leontief inverse. The model
is regarded as an {ideal .intewegional input-output a&cheiype,s

empirical implementation has been restricted severely by inadequate data
rs
ij)

whose

describing the interregional coefficients (a themselves.

As we shall see shortly, elements of information theory can assist us to
obtain reasonable estimates of these coefficients. But before turning to
these, it is appropriate to review some of the earlier attempts to esti-
mate intra- and interregional input-output tables. We shall begin with
intraregional estimation.

5.3 Existing Nonsurvey Techniques for Estimating Spatial Flows

5.3.1 Intraregional Coefficients

The various approaches to the estimation of intraregional input-output
tables can be categorized rather broadly as sutwvey or non-survey
techniques. Although it is generally agreed that there is still no
acceptable substitute for a survey-based study, there have been numerous
articles promoting or assessing the feasibility of various non-survey
methods.7 Most of these non-survey methods attempt to adapt national
coefficients for regional purposes, an approach which has much in common
with similar attempts to adjust for temporal changes in the national

tab]es.8

~Some authors have been extremely critical of the use of national
coefficients in regional estimation.9 We are generally in agreement
with much of this criticism, since it is rather unlikely that adjustment
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of national figures can take all the pertinent regional influences
into account. Nevertheless, many of these non-survey techniques seem
likely to proliferate on purely pratical grounds, so we shall briefly
examine the following methods which already exist in the literature:

i) location quotient approaches;

ii) commodity balance approaches;

iii) biproportional matrix adjustments; and
iv)  semi-survey techniques.

The first three procedures have been applied and compared extensively.
A11 three attempt to adjust the national coefficients to the regional
Tevel, by assuming that intraregional trade coefficients differ from
their national counterparts only by the magnitude of the regional
import coefficient. More explicitly,

re: = a;: - M. (5.8)

where aij is the national input-output coefficient, rij the regional

trade coefficient, and mij is a regional import coefficient. None of
these techniques can therefore account for region-specific product

mixes or local production 1’un1:1'ons.]0

5.3.1.1 Location Quotients

The Location quotient is a measure which compares the relative regional
importance (usually measured in terms of output or employment) of an
industry to its standing at the national level. In its simplest

form, this quotient is defined for industry i as

LQ; = (X§/X")/ (X, /x) (5.9)
where Xi denotes output (or employemnt) in sector i, X denotes total

output (or employment), and r denotes regional values. When LQi > 1,
the assumption is that intraregional requirements for commodity i can
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all be met locally. The national technical coefficients are thus used

in row i of the regional trade coefficients matrix, that is,

rij = aij for all j. If LQ1A< 1, then rij = aij(LQi) for all j.

To overcome some of the deficiencies in the simple Tocation quotient
approach, various other quotients have been suggested. The putchases-
only location quotient ensures that the summation of total output (or
employment), in the calculation of the quotient for industry i, is con-
fined to those industries which make purchases from industry i. The
cross-industry location quotient compares the national output proportion
of selling industry i, in thevregion, to that of purchasing industry j.
The Logarithmic cross-industry location quotient refines the cross-industry
approach, by considering the relative size of the region compared to the
nation.

5.3.1.2 Commodity balances and supply-demand pooling

The commodity balance approach was first suggested by Isard in 1953,
and relies upon calculating the balance, bi’
of commodity i, namely x?, and the local demand for commodity i, di;
the latter being estimated using national coefficients. The net surplus

(deficit), or commodity balance, for each industry is obtained by simple

subtraction:

between the local output

b. = x. - d. . (5.10)

The resulting table indicates whether each product should be imported
into or exported from the region. It does not, however, indicate the
origins of inputs, so further assumptions are required to complete the
intraregional table. |

Extensions to Isard's work were accomplished by a technique know as
supply-demand poo]ing.]] When bi is positive, the national coefficients
are substituted into the appropriate row of the regional matrix, imports
are set at zero, and exports are then calculated. If bi is negative, the



national coefficients of row i are reduced by the factor (x:/di), exports
are set at zero, and imports may then be computed. Further modifications
of supply-demand pooling have also been suggested, to allow for predeter-
mined estimates of final demand. Schaffer and Chu introduced an additional
refinement by employing an iterative approach. Their RIOT (Regional Input-
Output Table) simulation attempts to distribute local production according
to both the national sales pattern and local needs.

5.3.1.3 Biproportional matrix adjustments

Various biproportional matrix methods have been used to adjust national
coefficients until they conform to predetermined sectoral totals of
intermediate inputs and outputs for each region. Of all these techniques,
the RAS method has received the most attention in the 11terature.]2
This latter method has already been described in the context of matrix
adjustments over t1'me,]3 where it was suggested that the approach is
equivalent to both the estimation of cell probabilities in two-way
contingency tables given marginal totals, and a doubly-constrained

model of minimum information gain.]4

The virtues of the RAS method lie in its simplicity and economy. When-
ever it has been used for the estimation of regional coefficients, it
has consistently outperformed the two approaches discussed ear]ier.]s
Yet the biproportional assumption has no special economic meaning;
there is no reason to believe that input coefficients should change in a
uniform manner along each row and column. Consequently, a number of writers
have opposed the use of this method for the estimation of intraregional

coefficients.]G

5.3.1.4 Semi-survey techniques

Attempts have been made to improve on the basic RAS method by incorpora-
ting a limited amount of survey information. Cther semi-survey techniques

- have also been proposed. Su proposed a technique which relies on the direct
determination of regional imports by survey.]7 Schaffer outlined a
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framework within which a nonsurvey procedure could be improved by direct
estimation of regional exports, and insertion of known local transactions.]8
But, perhaps the most ambitious attempt to develop a semi-survey approach
has been completed recently by Jensen and his associates.]9 Their method,
known as the GRIT technique, applies various adjustments to the national
table to allow for prices, international trade, and regional imports; and
then advocates the systematic insertion of superior data whenever reliable
flow statistics are available. Their system has been adopted in a number of

empirical studies for Australian regions.

5.2.1.5 Discussion

A major weakness of the location quotient and commodity balance approaches
is that balances are calculated in net terms. The possibilities of
accounting for cross-hauling (the import and export of similar goods by
the same sector) are denied, thereby implying that intraregional trade

is maximized.20 Consequently, these two approaches (along with the RAS
method) tend to underestimate regional imports and exports.

An acceptable method of deriving intraregional input coefficients from
their national counterparts has yet to be formulated. To develop a
realistic representation of the technical structure existing inside any
single region, proper cognizance must be taken of various development
patterns occuring outside the region. To this extent, an acceptable hybrid
model should contain a certain amount of interregional survey material to
supplement any nonsurvey technique. This interregional data would enable
the model to accurately define regional imports and exports, which are the
key to successful estimation. If this trade data could be supported by
survey information about industries in which the regional economy specia-
lizes, a promising hybrid model might emerge. To the author's knowledge,
such an approach has not yet been reported.

To take proper account of the interdependent trading patterns which exist
between regions, a full interregional analysis is required. Faced with the
daunting task of finding sufficient data to implement an interregional
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model accurately, it is no surprise to find that most regional economists
have concentrated on less demanding problems. In the long run, however,
it is the author's firm belief that the interregional approach is the

only one which can provide satisfactory results in the spatial context.
Accordingly, we shall now evaluate the few attempts which have been made
to develop non-survey estimates of interregional tables.

5.3.2 Interregional Coefficients

The key to the successful calibration of any interregional model is the
extent to which information on the interindustry flows between regions

is available, toghether with the accuracy and consistency of these inter-
regional statistics. In the absence of survey information, various models
have been used to estimate the interregional trade flows for aggregate
commodity groups. Models incorporating fixed column coefficients were

the forerunners of a linear programming approach, but the empirical
results were not very impressive.Z] In cases where heterogeneous products
are combined within sectors, the effects of cross-hauling appear to rule
out linear programming approaches.

An important contributionoccurred in 1963, when Leontief and Strout
proposed their gravity trade model; which requires the bare minimum of
information, but allows for cross-hauling between regions.22 This elegant
multiregional model has been adopted in a number of empirical studies,23
and served as useful vehicle for Wilson's classic integration of the
gravity and input-output assumptions using entropy-maximizing principles.
In later formulations, further use will be made of their notion of
supply-demand pooling.

Few other analysts have enjoyed comparable access to the comprehensive
data on interstate commodity shipment available to Polenske. As a result,
many other modelling exercises have been forced to rely on crude or
inadequate data, together with some rather arbitrary assumptions.24
results of these exercises must therefore be treated cautiously.

The



144

Among the more recent contributions to the estimation of interregional
trade flows, two nonsurvey approaches to the static problem warrant
special attention. The first is based upon multiregional extensions of
location quotient methods, whereas the second involves efficient informa-
tion adding. We shall begin with the quotient approach.

5.3.2.1 Quotient methods

It has been argued that quotient methods are typical representatives of

a general class of techniques which include all iterative and commodity
balance methods.25 Building upon earlier work which basically followed

a commodity balance approach,26 Round defines five different quotients

to determine alternative sets of trading coefficients. The general
procedure is to consider a quotient, “:j’ defined for every pair of
sectors i and j in region r. The value of “?j identifies import or export
orientation of the sector i in supplying the needs of sector j. A value
less than one indicates import orientation, whereas a value greater than
one implies exports.

The method devised relates this quotient, “?j’ to the trading coefficient,
t?j. If “?j is less than one, t:j is set equal to it. If, on the other
hand, “:j indicates self-sufficiency (export orientation), then this is
reflected by a trading coefficient of unity; implying that all the local
demand from sector j for the products of sector i are satisfied by local
production. Herein 1lies a major weakness of the quotient approach.
Commodity exports are invariably ascertained as a residual, after final

and intermediate sales have been deducted from gross sales.

In extending the quotient approach to a system of two regions, Round
develops a two-stage procedure, which allows initial estimates of the
trading coefficients to be adjusted to satisfy certain consistency
constraints imposed by the full interregional system. The result is a
consistent and fully balanced set of intra- and interregional intermediate
transactions. This two-stage approach represents a significant conceptual
improvement to the estimation process. Not surprisingly, the validity of
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the quotient approach for nonsurvey estimation cannot be demonstrated
using Round's simple two-region model. What is amply demonstrated,
however, is the value of consistency comstraints describing the full
interregional system. A single region input-output framework has none

of these advantages. Substantial improvements to intraregional estima-
tion may therefore be possible by simply considering each region as part
of a two-region model: the region itself and the rest of the world.

Although two-region models make small demands for data, they inevitably
understate the true extent of interregional feedbacks and spillovers. In

a genuine interregional model, the basic requirement is that all regions

in the system be treated equivalently and directly, leading normally to
consideration of a large number of regions. There is a fundamental need

for a reliable non-survey method to estimate trading relationships within
the full interregional system which is also consistent with the informa-
tion already available on trade flows. Certain techniques based on informa-
tion theory show considerable potential, so a critical review of two
earlier formulations follows.

5.3.2.2 Efficient information adding

In order to adopt the principle of minimum information gain, a complete

a priond matrix of interregional flows is required.27 The collection of
flow statistics generally published does not furnish this complete matrix.
In the presence of incomplete information, some assumptions are needed

to estimate the unknown elements.

A complete 4 priond matrix may be estimated in a number of ways. For example,
Bigsten adopted an assumption which closely resembles the gravity hypo-
thesis, whereas Snickars regressed certain log-linear models which, he
argued, contain gravity-type models as particular cases.28 As a result,
Snickars derived his a prioni estimates using the contingency table approach.
In a manner similar to the second stage of Round's estimation procedure,
Bigsten and Snickars both used the principle of minimum information gain to
achieve consistency between their a piiond matrices, and exogenously
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determined data expressed in the form of constraints. This consistency
was achieved by an efficient addition of information to complete the
a posterioni matrix.

This two-stage process of efgicient infoumation adding warrants further
investigation. Firstly, there is a fundamental need for consistency
between the first and second stages of the estimation. Adoption of
particular assumptions, Tike the gravity hypothesis, for the estimation
of a priond values, is hardly consistent with the unbiased nature of the
second stage. In the absence of an historically complete a priond matrix
of flows, we shall later advocate use of the entropy-maximizing paradigm
for the first stage of estimation. In so doing, we then ensure that both
stages remain "maximally non-committal with regard to missing informa-

tion“.29

Secondly, there is a need for consistency with respect to the treatment
of interregional deliveries to satisfy intermediate and final demands.
Both Bigsten and Snickars derived their a prioni estimates of final demand
deliveries using assumptions which were neither consistent with those
adopted to estimate intermediate deliveries, nor suitably unbiased. We
shall attempt to overcome these deficiencies by treating intermediate

and final demands simultaneously in the same model.

Finally, there is a need to recognize that regional production levels

in various sectors may differ vastly from the region's internal demand
for the products from those same sectors. This difference assumes
considerable importance owing to the greater propensity of regions to
import a high percentage of their needs, and to export goods from only

a few sectors. These intraregional imbalances have not been considered
directly in either Bigsten's or Snickars' formulations. We shall attempt
to examine their effects by investigating four different assumptions
concerning intraregional demands.

It should be emphasized from the outset that the reservations expressed
above apply only to the 44nst stage of the estimation process. We have
no theoretical objections to the second phase, namely efficient



147

information adding. Although adoption of the principle of minimum infor-
mation gain does correspond to a tendency towards maintenance of the
status quo, this merely emphasizes the need to devote careful attention
to the first stage. In the following section, we begin our discussion

of this important stage with a brief description of the basic elements
of an interregional accounting system.

5.4 A Consistent Approach to Interregional Estimation

5.4.1 Interregional Accounts

We now return to the interregional system introduced in Section 5.1.2.
Our system of regional economies may correspond to a nation, a state,

or some other aggregate for which certain industrial statistics are
available. It contains n productive sectors which are distributed over m
regions. Each region exports (imports) some of its products to (from)
other regions and some to (from) the outside world. We shall treat inter-
regional trade endogenously, but regard international trade as exogenous
data. Assuming that all transactions are measured in real terms, and that
the location pattern of production is predetermined, the interregional
shipments can be related directly to the aggregate structure of the
economy, and movements generated by imbalances between production and
demand inside the different regions. The basic relationships may be
viewed as a collection of accounts in which the following notations are
used:

aij = amount of sector i absorbed per unit of output sector j;
*
a1§ = amount of sector i absorbed per unit of output by sector j in
region s;
a?? = amount of sector i from region r absorbed per unit of output by

sector j in region s;

c. = physical capacity requirements per unit delivery from sector i
in region r;
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total capacity for handling outgoing deliveries from region r;
exports (to abroad) from sector i;
exports (to abroad) from sector i in region r;

gross deliveries from sector i in region r to sector j in
region S;

imports (from abroad) to sector i;

imports (from ébroad) to sector i in region r;
value added to sector i;

value added to sector i in region r;

gross production in sector i;

gross production of sector i in region r;

gross deliveries from sector i to region s;
intermediate deliveries from sector i to sector j;
intermediate deliveries from sector i to region s;

intermediate deliveries from sector i in region r to sector j
in region s;

final demand (excluding exports) for sector i;
final demand deliveries from sector i in region r;

final demand deliveries from sector i to region s;
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r . . . . . .
yis = final demand deliveries from sector i in region r to region s.

In a manner similar to Snickars, we can write down the basic elements
of our interregional accounting system, commencing with the standard
equations encountered in the ]iterature.30 We begin with the outflow
relationship:

r¥ n M s

xi + mr = L X.. +

j=1s=1 9

y?s +el  (i=l,..... N; (5.11)

=]
1 r=l,..... ,m)

nm~m3

and then define the equivalent inflow of factors needed to support the
same intraregional production levels in each sector, namely

m
X: = I L X;:+vVyo. (3=1,..... sN; (5.12)
i=1 r=1 1

To maintain consistency with industrial statistics, the following additio-
nal relationships apply:

m m

rs= N i.3i=

rf} 551 Xi3 = %43 (1,d=1,..... ,Nn) (5.13)
m m

EODy o=y, (i=1,..... ,n) (5.14)
r=1 s=1]
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7 x:* - 3 x?s = x; (i=1,..... ,n) (5.15)
r=1 s=1

m r

I ey = e (i=1,..... ,n) (5.16)
r=1

m

I omg=m, (i=1,..... ,n) (5.17)
r=1

m

™
<
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<
—
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-

..... .n) (5.18)

Equations (5.15) specify that total supply equals total demand at the aggre-
gate level. Although a similar equality holds at the regional level, it is
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worthwhile stressing that interregional exports and imports are a major
part of total transactions in the region, whereas they play a minor role
in the nation's accounts. Owing to wide variations in the export and
import patterns from region to region, regional production levels in the
various sectors may differ vastly from each region's internal demand for
products from those same sectors. These intraregional imbalances have not
been explored in earlier work. Since they are of fundamental importance,
we shall examine the sensitivity of various estimation procedures to the
extent to which these imbalances can be quantified in advance.

5.4.2 The Estimation Problem

The primary aim of the present analysis is to estimate the interregional
pattern of intermediate f]ows{x?j}from a limited database of industrial
and muiti regional information. To do this, a distinction must be made
between intermediate and final demand. Consequently, a secondary but
simultaneous exercise is to estimate the interregional pattern of
deliveries to final demand {y:s}.

In terms of Equations (5.11) to (5.18), aggregate information from
industrial statistics is certainly available concerning Vis X5 Y5 and
xij' We shall further assume that regional disaggregation of industrial
statistics can provide information about e?, m:, v?
four assumptions concerning intraregional demands will be investigated:

and x:*. The following

*
Case (i) - that neither intermediate demand (xii) nor final demand
*
(yis) for each sector's products are known (or can be

estimated independently) for each region;

%k
Case (ii) - that final demand (yis) for each sector's products is known
for each region;

*g

Case (iii) - that total demand (x;

for each region;

) for each sector's products is known
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Case (iv) - that both intermediate demand (x:i) and final demand
(y?s) for each sector's products are known for each
region.

In the following discussion, estimates of unknown parameters will be
denoted by a tilde (.). Thus an estimated pattern of deliveries to

final demand would be written as ;:S. In the next section, we shall ignore
both transportation costs, and any physical capacity constraints at the
various nodes,and simply assume that supplies and demand are pooled. The
nature of this class of problem can be amply understood by regarding each
case as one of estimating the expected frequencies in a multidimensional
contingency table containing various sets of marginal constraints. In a
later section (5.4.4), consideration of capacity constraints renders this
approach infeasible, so we then turn to the entropy-maxmimizing paradigm
for assistance.

5.4.3 Contingency Table Analysis

In Section 4.3.3, we introduced an iterative procedure, sometimes known
as the Deming-Stephan algorithm, to estimate the cell probilities in a
two-way contingency table for which the marginal totals are known. As we
shall demonstrate shortly, this type of iterative algorithm can also be
applied to the three and four-way tables which arise in interregional
analysis. However, standard tests of multidimensional contingency table
analysis indicate that an iterative approach is not always necessary,
because certain problems can be solved exp]icit]y.32 If the model formula-
tions are such that the maximum-likelihood estimate can be expressed in

closed gornm, an explicit solution is immediately possible.
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5.4.3.1 Case (i): intraregional demands unknown

The given information for this situation can be summarized in the
following four sets of constraints:

n m - m .

T I x:% + I y:s = x?* + m: - e: (i=1,..... sN; (5.19)
j=1s=1 9 s=1 S I ,m)

n m -

A = x5 vg (35150enn. s (5.20)
i=1 p=1 M J s=1,..... »m)

m m -

rs

T I Xsa = X, . (1,d=1,..... »n) (5.21)
r=1s=1 " W

m o om - .

S, yis =Y (i=1,..... »Nn) (5.22)
r=1 s=1

This is essentially Snickars' constraint set. The estimation problem can
be regarded as one of estimating the expected frequencies in a four-

dimensional contingency table with no third or fourth order interaction
terms, but three sets of two-way constraints.33

convenient to rewrite y?s as x'° The problem can then be solved directly,

since intermediate deliveries gin:;ctor of origin (i.e, E x??) are
constrained only by (5.20) and (5.21). The solution process is decomposed
into two almost trivial parts: (a) estimate intermediate deliveries to
region s, and (b) given these, estimate interregional deliveries.

From (5.20) and (5.21), it follows that

For this purpose, it is

m -~ X s (x?* - v§)
rs 1J ) J
L X.. = . (5.23)
r=1 Mo(x3 - v3)
z J J
s=1
whereupon supply and demand pooling leads to the solutions

~ XY.‘* + mr.‘ - e?" XS.* - VS.
s o[ i i J J ... (5.24)
ij \x, +m, - e.[f\x, -v. iJ )

1 1 1 J J
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and
\ 7/ \

/Xr* +m - e v
y:"S =.( 1 1 1)(1) . (5.25)

Consider the estimates of intraregional input-output coefficients

emanating from this formulation. By definition we have

a, s =r=l__~ (5.26)
XS*

~% X. - V. X
a.s = a,, |- J . (5.27)
W W, -y, J\S

j J j

It is evident that a??
of aij for each region.

is obtained by proportional column-wise adjustment

5.4.3.2 Case (ii): final demands (y:s) known

For this case, the given information consists of three of the four
previous sets of constraints, namely (5.19), (5.20) and (5.21), together
with the following additional set:

N N3 (5.28)
m

Once again, the estimation process can be decomposed into two trivial
parts, whereupon supply and demand pooling yields the following solutions:

r* r r S
~ . + . - . . - .
rs _ x1 m1 e1 X v

ij =

X. . (5.29)

X + m. - . . = V.
1 1 e'l XJ J
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and
r* r
X. +m, - e
~rs i i *g
+m. -
X; m, e

The estimates of intraregional coefficients are identical to those given
in (5.27) above.

5.4.3.3 Case (iii): total demands (x;°) known

To quantify the total demands by all intermediate and final consumers
in each region, an interregional version of the Leontief-Strout relation-
ship is added to the four original sets of constraints, namely

n m m
ISR xS (i=1,..... s (5.31)

Whereas Equations (5.19) suggest that intraregional production levels may
be influenced predominantly by demands in other regions, Equations (5.31)
imply that levels of intraregional demand may be satisfied largely by
inflows from other regions.

We can view this problem as one of estimating the expected frequencies in
a four-way table with four sets of two-way marginal constraints. It is
again convenient to write ngn+1 for y?s. The awkward feature of this
formulation is that (5.31) does not reduce to a constraint on intra-
regional coefficients because final demands appear on the left hand side.
The problem cannot therefore be solved explicitly, but the following
iterative proportional fitting procedure will converge to the maximum-

likelihood solution:

(1) Assign arbitrary initial values (ones, for example) to all those

elements of x?? which are nonzer‘o,34 and denote these values by
(0
x}S Set t=0.

ij°



(2)

(3)

(4)

(5)

(6)

When

and

r oS
where Ai’ Bj, C
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At the (4t+1)th step, we take

(4t+1) (4%t) . nlom (4t)
S VI AR (%150 0nsnt;
) J j=1 s=1 r=l,..... ,m)
At the (4t+2)th step, we take
(4t+2)  (4t+1) | oo (At4)
Jrs _grs 5% _ S ¢S i .
ST R F B e
At the (4t+3)th step, we take
(4t+3) (4t+2) m m (4t+2)
S x../{ L I x5S } (i,d=1,5..... ,n+1)
W Y o=y s=1 M
At the (4t+4)th step, we take
(4t+4) (4t+3) nel m (4t43)
PSS _ oIS s rs L .
X_i. - X_io . X.i /{ Z Z X_i‘ ]' (1—], ooooo ,n,
! J j=1 r=1 " s=1,..... »m)
Repeat sequences (2) through (5) for t=1,2,..... , etc.until the

process converges satisfactorily.
convergence has occured, the solutions are of the form
rs _ A S s
(5.33)

ij and D? are coefficients associated with the constraints

(5.19), (5.20), (5.21) and (5.31) respectively.
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5.3.3.4 Case (iv): both intermediate (x?s) and final (y:s) demands known

In this case, the given information consists of three of the original
sets of constraints, namely (5.19), (5.20), and (5.21), together with
the following two additional sets:

n m

T XS = xfi (i=1,..... on; (5.34)
- ij i
Jj=1 r=1 s=1,..... ,m)
and
m
z y:s = y?s . (i=1,..... sN; (5.35)
r=1 s=l,..... sm)

From (5.19) and (5.35), it is immediately evident that part of the problem
is decomposable. Final demands are obtained by pooling, namely

r* r r
.o+ m, - e,
s _ 5 Mi = & *s
Yy = Yi© - (5.36)
.o+ m; - e,
X; m; - e,

The remainder of the problem is essentially one of finding % x?? to satisfy
(5.20), (5.21) and (5.34). This is analogous to a three-way (i, j, s)
contingency table with no third-order interaction, but all three second-
order terms. No direct solution is possible, but application of a three-
step procedure, similar to the four-step approach outlined for the previous
case, yields the following result:

rs _ oS s
rXij =85 G5 Fy (5.37)

where B§, Cij and F? are coefficients associated with the constraints
(5.20), (5.21) and (5.34) respectively.
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5.3.3.5 Comparison of results for each case

Although the contingency table solutions for i?; and ??s could
theoretically involve up to six two-way interaction terms,35 the
prevailing constraints dictate that general expressions for the
estimates of intermediate deliveries can be restricted to the following
four two-way interactions terms:

3'S _ Al pS S

xij Ai Bj Cij Fi (5.38)
and those for the final demand estimates need only involve two second-
order terms:

ygs = A" D . (5.39)

Using these expressions as a guide, it is possible to summarize and con-
trast the solution techniques and resulting estimates for each of the
four cases studied. Table 5.1 contains this summary.
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TABLE 5.1
rs IS
i3 Y5
. r s r
Case (i): A; Bj Cij Ai D,
demands by direct by direct
unknown solution + solution +
v r ,s r .S
Cize (i1): Ai Bj Cij Ai D;
2 known by direct by direct
solution + solution +
ciin r oS oS r .S
Czi:e (iii): A1. Bj Di Ai Di
X; known by four-way by four-way
contingency contingency
tables tables
. r oS S r .S
C?ée (iv): A1. BJ. C].J. F1. Ai Di
X5 and by three-way by direct
y?s known contingency solution +
tables
r¥ r r
A X; +ms - ey
i
X; +m, - e,
gk
B = 4 Y3
3
X, =
i~V
C1j = Xij
S _ _*s
Dy =;
Y-
D. = "
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Although a direct solution is impossible for some of the formulations
proposed above, an explicit solution for each of the four cases can
always be found using standard iterative algorithms devised for multi-

dimensional contingency table ana]ysis.36

Such an algorithm has been
included in the INTEREG package, which transforms the mathematical sets
of constraints described above into the FORTRAN programming language,
for computer estimation of the interregional flows. This package has
been used to investigate each of the four cases using a simple system
of two regions. The results are summarized in Appendix E. We shall
confine our immediate analysis of these results to a brief discussion
of the extent to which the information about intraregional demands

influences the estimated pattern of interregional flows.

Firstly, the results contained in Appendix E confirm the validity of all
the expressions included in Table 5.1. Secondly, Table 5.1 indicates that
the type of available information on intraregional demands determines
whether or not a direct solution is possible. Cases (i) and (ii), which
assume that no aggregate demand information on intermediate deliveries

is available, are easily solved by decomposition into two trivial stages.
Cases (iii) and (iv), which introduce this additional information on
intermediate demands, suffer by comparison since they require iterative
solution techniques. We are therefore entitled to ask what exactly can

be gained by collecting this costly information.

Tables E.4 to E.7 do not enlighten us greatly, except by suggesting (some-
what weakly) that the degree of cross-hauling is quite sensitive to the
level of information available. Tables E.8 to E.11, however, reveal that
the total levels of interregional trade are xeduced by the inclusion of
more detailed information on intraregional demands.37 There is a comple-
mentary increase in the levels of intraregional deliveries. This may
simply correspond to an increase in accuracy achieved by the tightening
up of certain supply-demand interactions. More elaborate studies are
needed to analyse these effects in greater detail.
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5.4.4 Maximimum Entropy Formulations

In each of the four cases discussed above, the components of our inter-
regional accounting system take the form of consistency constraints,

which simply define the sums of certain subsets of flows. In other

words, only unit coefgicients have been included in the flow constraints.
This type of information has been called an accounting constraint by some
writers, bacause it is independent of any theory concerning distribution
or dispersion.38 Accounting constraints refer, in general, either to
restrictions which must be satisfied by partial sums of the flow matrices
{x??} and {y?s}, or to Logical relationships which exist between different
elements of these two matrices.

Apart from accounting constraints, there are other sets of restrictions
which have been adopted to influence the distribution of interregional
shipments across possible states (i, j, r, s) of the system. The well-
known cost constraint is a restriction of this kind. Information about
freight or delivery costs has been used in a variety of ways to constrain
the set of feasible shipments, and therefore influence the most probable
distribution of flows.

A typical constraint of this type might assume that delivery costs are
a matter for calculation on the part of the producer,39 whereby the flows
are expected to satisfy a production-specific cost constraint of the form

n m m
S ,Irs

.z] z] z1 c‘; X3 = € (i=1,....,n) (5.40)
J= r= S=

r
where ciS

is the mean transport cost per unit delivery from sector i in
region r to region s, and Ci is the total cost of deliveries from sector
i. This type of constraint assumes that transportation costs either remain

fixed (at prescribed levels), or conform to some expected value of Ci'40

There are some serious objections to the use of constraints 1like (5.40).

Firstly, it seems premature to try to define the cost coefficients, c?s

prior to the estimation process. These costs are themselves derivable
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from some Lagrangian procedure, and are thus intrinsically associated
with any chosen formulation. To specify them {n advance is therefore
potentially contradictory. Secondly, specifications of Ci’ which assume
fixed or expected values, may be applying an artificial restriction on

41 Finally, and per-

the assumed behavior of the transportation system.
haps foremost, it is now apparent that binding constraints on the
transportation system are more likely to be associated with congestion
at the nodes (i.e.within the regions) themselves, rather than on the

links between nodes.

We shall therefore disregard the traditional cost constraint, in favour
of a general capacity constraint of the form
n n m

R R (5.41)
i=1 j=1 s=1 J

where c: describes the physical capacity requirements per unit delivery
from sector i (using a particular transport mode) in region r, and c’
defines the total capacity for handling outgoing deliveries from region r.
A similar set of capacity constraints could also be formulated for

Lncoming deliveries, but we shall not consider these in our current
formulations.

If we add a set of capacity constraints, based on node restraints,42 to our
earlier formulations which involved only accounting constraints, standard
iterative procedures devised for multidimensional contingency table analysis
are no longer appropriate. Constraints like (5.41) no longer involve unit
coefficients, but include coefficients (c:) which result in a weighted sum
of flows. Consequently, we shall adopt the entropy-maximizing paradigm to
make further progress. We now define the following entropy function:

n n m m n m m
S=-3 £ 3 1 ¥ Mg%¥3- 31 1 =z i log §° (5.42)

i=1 §=1 ral s=1 W CRE S
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and proceed to reformulate our four basic cases so as to include a set
of capacity constraints.

5.4.4.1 Case (i): intraregional demands unkown
This problem can be reformulated in the following manner:

Maximize S subject to the four basic accounting constraints (5.19), (5.20),
(5.21) and (5.22), together with the following node constraints:

n n m n m

IozDocixii+e zozociyitec  (rel,..m) (5.43)
i=1 s=1

i=1 j=1 s=1 | 1

and the usual non-negativity conditions. A standard Lagrangian derivation
leads to the solutions

Srs N N _ r

xij = exp ( 3 Bj Yij " ©r Ci) (5.44)
and

Srs R _ r

Yi© = exp (- o« 8; = €. C5) (5.45)

where ag*, 33*, Yij 85 and €, are the Lagrange multipliers associated
with the constraints sets (5.19), (5.20), (5.21), (5.22) and (5.43)

respectively.

The above solutions can be expressed in a more convenient (and familiar)
form, namely
L

x°S = A" BS C. . exp (- €

r

r
and

y?s = A: Dy exp (- e, c?) (5.47)
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r .S
where Ai’ Bj, Cij

to the corresponding Lagrange multipliers.

and Di are coefficients which are exponentially related
43

Returning to our earlier contingency table solutions (which are summarized
in Table 5.1), we notice that the coefficients in (5.46) and (5.47) are
identical to those for case (i) cbntingency table analysis. In other words,
the first four sets of Lagrange multipliers defined above are simply
negative logarithms of the corresponding coefficients included in our
contingency table so]utions.44 This means that these coefficients may be
specified explicitly. We have

X, +m, - e,
r¥ _ i i i
o:_i = log r*+ m"' : er (5.48)
X 7MWy 78
- X; =V
B =log |-L—1 (5.49)
XS - VS
J
Yij = 7 109 X4 (5.50)
Y
§; = - log o (5.51)
To obtain explicit solutions for %' and y?s, the final set of Lagrange

iJ
multipliers (Er)’ associated with the capacity constraints, must also be

limited. This can be done numerically using various iterative methods.
For the INTEREG package (see Appendix E), we have adopted Eriksson's
routine.45
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5.4.4.2 Case (ii): final demands (y:s) known
In this case, our reformulation takes the form:

Maximize S subject to the constraints (5.19), (5.20), (5.21), (5.28),
(5.43) and the usual non-negativity conditions. The solutions are given
by (5.44) and

~Irs

*s
Yy

_ T _ r
= exp ( ; 8 € ci) (5.52)

with the Lagrange multipliers being defined by (5.48), (5.49), (5.50) and

Gfs = - log y:s . , (5.53)
1

5.4.4.3 Case (iii): total demands (x:s) known
For this reformulation, the constraint equation (5.28) is replaced by

(5.31). The set of multipliers (d:s) now appears in both solutions,
namely

oS _ _oTF L oSk _o¥s _ r

X-ij = exp ( i BJ Y.ij 51- €r C‘i) (5.54)
and

. o R S r

yi7 = exp (- = - 87 - e, C5) - (5.55)

The corresponding contingency table solution cannot be solved directly, so
all the Lagrange multipliers in (5.54) and (5.55) must be eliminated using
iterative techniques.
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5.4.4.4 Case (iv): both intermediate (x:i) and final (y:s) demands known

The replacement of (5.31) by two sets of constraints, namely (5.34) and
(5.35), necessitates the replacement of 6?5 in (5.54) by a new set of
multipliers A:i, so that

~rs r* S* E 3 r

X:: = exp (' a.i = Bj = 'Yij - Ai*"er C.i) (5'56)

Once again, an iterative procedure is needed to converge on an explicit
solution.

5.4.3.5 Discussion of results

General expressions for the delivery estimates to both intermediate and
final demand can be derived, and take the following exponential form:

PSS _ ar' oS S . r

Xij = A; Bj Cij Fi exp (- g, c;) (5.57)
and

§i° = AT DS exp (- €, cf) - (5.58)

The resulting estimates for each of the four cases are summarized in

Table 5.2. A quick glance back at Table 5.1 reveals that the exponential
terms, associated with the capacity constraints, are the distinguishing
feature of the maximum entropy estimates; in comparison with the correspon-
ding contingency table solutions.

Explicit solutions for each case can be found numerically using the
INTEREG package, which was also adopted earlier for the contingency table
solutions. The package includes an iterative algorithm which can solve
entropy-maximizing problems containing equality or inequality constraints.
It has been applied to a simple system of two regions in order to investi-
gate the influence of certain constraints on the flow estimates. The
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initial results are summarized in Appendix E. The marked difference
between a typical contingency table solution (Tables E.4 and E.8), and
the corresponding maximum entropy estimate (Tables E.13 and E.14),
accentuates the sensitivity of the solution to constraints containing
weighted coefficients 1ike (5.40) or (5.41).

Owing to the influential part played by capacity constraints in our entropy-
maximizing formulations, it is desirable to specify their precise role in
this first stage of our estimation process. The imposition of constraints
Tike (5.43) ensures that the solution algorithm generates a pattern of
flows wherein the capacity requirements per commodity unit are consistent
with observed nodal behaviour. These unit capacities (c?) are defined to
be the means of what is really a range of handling capacities, so much so
that if additional information about their variance, VE, is known, an
additional set of constraints of the form

n n m

I I (c - "2 X3 = vf
i=1 j=1 s=1 !

(5.59)
could be included in the formulation. In this case, the maximum entropy
estimates would no longer be of exponential form, but would result in

a normal Gaussian or truncated normal distribution depending on the

range of c¥.46

For the present, we shall assume that the available information is 1imited
to the average sectoral capacities within each region. This approach allows
for modal split, to the extent that each sector may adopt a different tran-
sport mode (or vehicle type) for the delivery of their own commodities.

If historical information about these capacities is available for the
period corresponding to our first stage of estimation, then it is appro-
priate to include a set of these constraints in the formulation. The
resulting distributions are those presented in Table 5.2.

Historical, or a priond capacity constraints, are an important ingredient
for the first stage of our estimation procedure involving the entropy-
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TABLE 5.2

<rs ~
i rs
X1J Y
r oS r r r
Case (i): A. B C.. exp (-g. c.) A; D; exp (-¢,. c3)
demands i3 i r i i r i
unknown
+
ey r oS _ r r s _ r
Cize (ii): A Bj Cij exp ( €p ¢;) A; D3 exp (-, ¢;)
Y; known
CiinL r oS s - r r
Ci:e (iii): Ai Bj Cij Dy exp ( €, Ci) Ai D; exp (_er c:)
X; known
. r oS s - r r s _ r
Cize (iv): A; Bj Cij Fi exp (-g, ¢3) A; D5 exp ( €. C5)
Xy and
yis known
r* r
+ ar X; +my - e,
i
X; +m, - e
i i i
S* S
J -
X5 v
Cij X313
s *s
Dy =,
p. =04
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maximizing paradigm. By including handling capacities which are actually
known (rather than expected), we are ensuring that our estimation procedure
minimizes statistical bias. Expected value constraints may be considered

in a second stage of estimation, where an existing flow pattern requires
modification to comply with expected changes in flow information. This
second stage is more predictive, and may require certain assumptions

about changes in the distributional mechanism (c?) and total capacities
(Cr). These assumptions will be explored in the following section, which
deals with information adding by application of the principle of minimum
information gain.

5.4.5 Information Adding

The results of the first stage calculations are a minimally biased pattern
of deliveries prevailing in a period for which some information is available.
These first-stage results are obvious candidates as prior values for a
second stage of estimation designed to calculate the expected future pattern
of flows in some later period. The task of this second stage, then, is to
forecast the flows for a later period of interest, using the a prioni flow
pattern in the base period, together with partial information about the
flows in the later period. To do this, we must modify our objective func-
tion to allow for non-uniform prior flow probabilities. In other words,

we now progress from Jaynes' entropy-maximizing paradigm (which assumes
uniform prior probalities) to the principle of minimum information gain.

Comp]ete a prioni flow matrices, which we shall denote by {x } and

{y }, can be used to derive a conservative estimate of the expected flow
pattern in a later period. We simply minimize the information gain, I,
between the prior and posterior distributions, where

_Z I Iy LT TN T ~rs ~rSs
I‘ijrs 109( i3/%3) t i s Yy 109 (¥4 /y:®) (5.60)

subject to a set of linear constraints on X?S

and y?s, containing all the
available information about the flows in the later period. For comparative

purposes, we shall investigate two possibilities concerning available
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information. Firstly, we shall assume that it is limited to the set of
accounting constraints discussed in Section 5.4.3. Secondly, our informa-
tion will be assumed to contain some expected pattern of physical node
capacities, thereby introducing an additional set of expected value
constraints, which complete a similar set of restrictions to those
discussed in Section 5.4.4.

It may be shown that there is always a unique solution to the above type
of minimization problem, which can be expressed in terms of a set of
monotonic transformations of the Lagrange multipliers pertaining to the
full set of constraints. For the set of constraints discussed in Section
5.4.3, the following general expressions for the estimated deliveries to
intermediate and final demand can be derived:

'S _ ar S s . rs

Xi3 = Ai Bj Cij Fi Xi3 (5.61)
and

yis = AL DS y[® . (5.62)

It is obvious that these two expressions reduce to our earlier results if

all a priond flows considered equiprobab]e.47

As we discussed in Section 5.3.4, an iterative approach is not always needed
to obtain an explicit solution. For cases (i) and (ii), a direct solution

is possible because the maximum-1ikelihood estimate can be expressed in
closed form. Cases (iii) and (iv), do however, require an iterative approach.
The resulting estimates for each of our four cases studied are summarized

in Table 5.3.

The inclusion of physical capacity constraints, such as Equations (5.43),
results in the appearance of an additinal exponential term in each of the
solutions. These revised estimates are also included in Table 5.3. Unfortu-
nately, inclusion of capacity constraints, which restrict the interregional
freight flows to an expected value of total node capacity, is not as easily
Jjustified in this second stage, as the inclusion of similar historical
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information in the first stage.

The influence of earlier capacity constraints will be embodied in the

a priond patterns {x??} and {y?s}. If the physical capacities do not vary
greatly over time, one may doubt the wisdom of including such constraints
in the second stage of estimation. Under such conditions, the a priond
flow patterns could at least partly reflect these restrainting influences.

Before we compare and contrast the salient features of all three approaches
discussed in this chapter, it is worth noting one other feature of our two-
stage process of estimation. The function i?? log (i??/x??) is defined to
be zero wherever i:; = 0, and i:; will automatically be zero whenever

x?? = 0. To this extent, application of the principle of minimum informa-
tion gain suffers from a similar drawback to methods of biproportional
matrix adjustment; namely unadjustable zero entries.

The principle does not, however, require a prioni knowledge or specifica-
tion of zero entries for them to appear in the final solution. If certain
expected value constraints (which involve the same two-factor interaction
terms as some of the accounting constraints) are included in the formula-
tion, the boundaries of the feasible region may prevent particular shipments
from assuming positive values. In this situation, the solution is no longer
preconditioned by the internal structure of the interindustry matrix {xij}’
Qgt depends more on interactions within the complete set of constraints.

5.3;6 Comparative Conclusions

In this chapter, three approaches to the estimation of interregional,
intersectoral flows from a limited database of industrial and regional
information have been described. In all three, a distinction has been made
between deliveries to intermediate and final demands. Four separate
assumptions concerning intraregional demands have been investigated. It is
useful to summarize what we have learnt.
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In the contingency table approach, each case is regarded as one of
estimating the expected frequencies in a multidimensional contingency
table with various sets of marginal constraints. In these formulations,
nodal capacity constraints are not taken into account; regional supplies
and demands are regarded as pooled. By dealing with an interregional
system containing only accounting constraints, it is possible to solve
all four cases using a standard iterative proportional fitting procedure.
Furthermore, a direct solution to two of these cases is possible, since
the maximum-1ikelihood estimates for these formulations can be expressed
in closed form. The extent to which information about intraregional
demands is available determines the viability of a direct solution.

If we now add a set of capacity constraints to our interregional accounting
system, the iterative procedures devised for multidimensional contingency
table analysis are no longer appropriate. The introduction of these
constraints prompts our second approach, namely adoption of the entropy-
maximizing paradigm, and high]ights some important properties of this
versatile approach to statistical estimation.

Firstly, the entropy-maximizing procedure can accommodate additional linear
constraints, which may even contain the same interaction terms as those
included in some of the accounting constraints. Secondly, if some of the
interregional flows can be ascertained in advance, this limited survey data
can be included in the constraint set. This feature is not normally possible
using the contingency table approach, since the only entries which are
certain to retain their original values, are those which are assigned zeros
at the outset of the iterative scheme. Thirdly, methods based on multi-
dimensional contingency tables suffer from the disadvantage that no zero
element can be assigned a positive value during the iterative procedure,
and no positive entry can be reduced uniquely to zero. This limitation is
severe, since a number of positive entries in any national matrix may

have zero values in the corresponding cells of some regional tables.

In general, the entropy-maximizing frame-work seems more suitable for the
first-stage estimation of interregional flows than methods devised for
multidimensional contingency table analysis. In cases where capacity
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constraints are excluded from the formulation, however, iterative procedures
devised for the latter may prove more economical. In all other respects,
the entropy approach offers greater flexibility.

For the second stage of estimation (if flow modifications are warranted),

we have advocated application of the principle of minimum information gain.
Using this approach, a prioni flow estimates are modified to satisfy known
constraints at some later date. The information gain approach enjoys most

of the advantages inherent in the entropy-maximizing paradigm. In particular,
it is possible to solve formulations involving both equality and inequality
constraints. This feature is needed if we wish to introduce capacity
constraints.

There are, nevertheless, certain fe§tures of this information-adding principle
which differ greatly from those possessed by the entropy-maximizing paradigm.
Of major importance is the'property of inentia, which perpetrates a tendency
to retain the existing (relative) pattern of flows to the largest possible
extent. Of lesser importance is the fact that a prioni flow patterns may
reflect historical capacity constraints. This may undermine the usefulness

of updated node handling information. These constrasting features emphasize

an urgent need for some empirical research measuring the degree of inertia
existing in interregional trade patterns.

AE this stage, it is important to recognize that none of the static
formulations described in Chapter 5 can provide an accurate estimation of
the gnoss interregional flows between any two sectors. The aggregate nature
of the deliveries to final demand makes it impossible to distinguish between
consumption and capital investment. Since the exact distribution of capital
flows is unknown, the gross flows between any two sectors cannot be
determined. We can express the gross flows in the form

frs - ~rS rs ~rs
ij

i3+ Py Y (5.62)

where p?? is the proportion of final demand deliveries from sector i in

region r which are used for capital investment by sector j in region s. It
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is clear that no estimates of f?? are possible unless p??

However, we shall not explore the question of capital expansion in this
form, but instead turn to a more familiar framework: Leontief's dynamic
input-output model. In the following chapter, the estimation of inter-
regional flows is reexamined using this dynamic approach.

is known.



175

FOOTNOTES FOR CHAPTER 5

1 See Equations (4.4).

2  See Miernyk (1966).

3 For a thorough discussion of these factors, see Conway (1980).

4 See, for example, Emerson (1976) or Conway (1980).

5 See Isard (1951) and Leontief (1953).

6 A term proposed by Riefler (1973, p 136).

7 A strong preference for survey-based approaches has been shared,
amongst others, by Czamanski and Malizia (1969, p 73), Schaffer and Chu (1969,
p 96), and Miernyk (1972, p 267; 1976, p 54). For a thorough discussion of
the problems associated with a survey-based study, see Isard and Langford
(1971). For assessments of various non-survey methods, see Moore and Petersen
(1955), Schaffer and Chu (1969), Czamanski and Malizia (1969), Hewings (1969:
1971), Morrison and Smith (1974), and Schaffer (1976).

8 Methods of biproportional matrix adjustment, such as the RAS method
devised by Stone (1962), were initially designed to adjust input-output tables
over time rather than space.

9 See, in particular, Tiebout (1957) and Miernyk (1968; 1976).

10  See, for example, Johansson and Stromqvist (1980).

11 Moore and Petersen (1955) initiated this extension, which was
later formalized by Schaffer and Chu (1969).

. 12 See, for example, Stone (1962), Bacharach (1970), or Allen and
Lecomber (1975).

13 See Section 4.3.3.

14  For discussions of the former approach, see Ireland and Kullback
(1968) or Fienberg (1970); on the latter, see Bacharach (1970), Macgill (1977)
or Hewings and Janson (1980).

15 See, for example, Czamanski and Malizia (1969) or Smith and
Morrison (1974).

16  See, amongst others, Malizia and Bond (1974) and Miernyk (1976).
17  See Su (1970).

18  Schaffer's (1976) exports-only approach resembles the rows-only
technique introduced by Hansen and Tiebout (1963).
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19  See Jensen, Mandeville and Karunaratne (1979).
20 See Jones, Sporleder and Mustafa (1973).

21 Fixed coefficient models were tested independently by Chenery
(1953) using Italian data, and Moses (1955) using American data. Moses
(1960) also tested a linear programming model, in an attempt to explain
the shipments of all goods within the United States.

22 For a brief theoretical introduction to this model, see
Section 2.2.3.

23  See, for example, Polenske's (1970; 1972) multiregional
input-output analyses of the Japanese and American economies.

24  For example, Courbis and Vallet (1976) relied on crudely
aggregated transportation data, whereas Vanwynsberghe (1976) integrated
features from several earlier studies to decompose the Belgian national
table. This latter approach (known as the Rococo method) suffered from
some very arbitrary assumptions, which may simply correspond to trade
minimization.

25 See Round (1978 a, b).
26 See Nevin, Roe and Round (1966).

27  This a priond matrix ihc]ude flows to both intermediate and
final demand.

28 Snickars' a priondi estimates of the intermediate flows are
of the form

rs r rs
.. = A.. B.
X1J 13

where Asj is termed the technology efpect, since it describes a typical

input structure for each receiving sector and region, and B is called
the {nterregional thanspornt effect, since it reflects a typ1ca1 inter-
regional delivery pattern for the output of each sector. This model is
of the type proposed by Chenery (1953) and Moses (1955). Bigsten (1978)
and Snickars (1979) both derived estimates of final demand deliveries
independently of intermediate shipments.

29 See Jaynes (1957, p 620).

30 See, for example, Hartwick (1971) or Richardson (1972).

31 The notion of supply and demand poofing implies that the
ultimate destination of goods is irrelevant to producers, and that the

origin of goods is irrelevant to consumers. For further elaboration,
see Leontief and Strout (1963) or Wilson (1970 a, b).
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32 See, for example, Fienberg (1977) or Haberman (1978).

33 There are three other possible sets which do not appear in
this formulation, namely i-s, j-s and r-s.

. rs - .
34 Wherein xn+],j 0 for all j.
35 Together with up to four three-way terms and four one-way
terms, if such information was available and not redundant.

36 Based, for example, on the Deming-Stephan (1940) algorithm
or the Newton-Raphson technique. For further information, see Fienberg
(1977) or Haberman (1978). See also Section 5.4.3.3.

37 Total imports into region r (I g m?r), and total exports out

. .J . .
of region r (Z Ze?s), are both affected in the same direction.
is

38 A view expressed, for example, by Williams and Wilson (1980).

39 This approach has been suggested , for example, by Macgill
and Wilson (1979).

40 Williams and Wilson (1980) define expected value constraints
as those which embody a known o expected value of total freight expenditure,
together with some assumptions regarding the distributional behaviour of
individual sectors or producers.

41 A skepticism expressed, for example, by Puu (1979).
42 As specified in Equation (5.41).

43 With the aid of the constraint equations, it is always possible
to derive general expressions for each coefficient in terms of the
exogenously-given information and the other coefficients. For this reason,
tkese coefficients are sometimes referred to as balancing factorns.

44  The fifth set of multipliers, €ns are associated with the
capacity constraints (5.43).

45  See Eriksson (1978; 1980).

46 Entropy-maximizing procedures can produce a variety of well-
known distributions, depending on the nature of the set of constraints
included in any formulation. For example, higher-order moments of the
capacities lead to normal distributions, instead of the standard exponential
distribution. Inclusion of logarithmic terms can result in a solution closely
resembling the gamma distribution. For some examples of the range of
distributions possible, see Reza (1961), Tribus (1969), Dowson and Wragg
(1973), or Lee (1974b).

47 If all x?? = yrfS = 1, then Equations (5.60) and (5.61) reduce to
Equations (5.38) and'9(5.39), respectively. |



Chapter 6

INTERSECTORAL FLOWS IN SPACE: DYNAMIC FORMULATIONS

6.1 Introduction

The static formulations introduced in Chapter 5 provide a useful intro-
duction to the various approaches which can facilitate the estimation of
intersectoral flows over space. They do, however, suffer from two major
deficiencies. Firstly, their failure to distinguish between the various
components of final demand renders them incapable of estimating the gross
intersectoral flows. Secondly, their inability to deal directly with re-
percussions of regional and sectoral growth restricts their relevance to
~analyses in the short run. For the purposes of medium to long term fore-

casting, the need for a dynamic model is obvious.

In this chapter, Leontief's dynamic input-output framework is adapted to
the interregional estimation problem. The basic difference is that flows
of capital goods are now treated endogenously, instead of being relegated
to final demand. By quantifying individual capital flows between sectors,
1t is possible to describe the expansive capabilities of our multiregional
economy. At the same time, this additional information enables the inter-

regional pattern of gross intersectoral flows to be estimated.

To the extent that productive capital flows are treated endogenously,
Leontief's dynamic model is partially closed by definition. Nevertheless,
open and closed versions of his model are usually distinguished by their
treatment of aff final demand. In Section 6.2, we analyse open and closed
versions in their basic national form, before deducing the fundamental

relationships embodying the interregional extension.
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Section 6.3 describes the approaches which enable the interregional
pattern of gross intersectoral flows to be estimated from a limited data-
base of national and regional information. Through the use of Leontief's
dynamic framework and a simple accelerator principle, a clear distinction
can be made between the intermediate flows, which are described by the
usual input-output coefficients, and productive capital flows, which are
specified by an interregional matrix of capital coefficients. Thus the
present analysis is formulated in terms of coefficients rather than

absolute flows.

Although the separable nature of the formulation allows each matrix of
interregional coefficients to be estimated simultaneously, it also limits
our choice of solution techniques. The objective function, and the asso-
ciated system of constraints, no longer relate to simple flow sums, but
rather to expressions involving weighted summation. Thus, iterative pro-
cedures devised for multidimensional contingency table analysis are now
unsuitable. The methodology therefore draws exclusively on information

theory for its solutions.

To complement the four elementary cases introduced in Capter 5, a similar
set of four assumptions concerning the information available on intra-
regional demands is investigated. The resulting interregional accounting
systems described in Section 6.3 are all formulated as fully closed models.
It is left to the reader to ponder the appropriate simple adjustments

which are needed to derive comparable open versions of each model.
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6.2 Basic Model Characteristics

6.2.1 The Open Dynamic Leontief Model

In Chapter 4, we established a fundamental system of differential equa-

tions which,] at the national level, took the form

xi(t) =z a,
J

xj(t) + 2 bi'

204 ij(t) + yi(t) (6.1)

J

and describe the dynamic interdependencies of the economy.2

According
to the acceleration principle of capital formation, the investment terms
can be expressed as a linear function of the change in production. namely

xj(t) + ? bij [xj(t+1) - xj(t)] + yi(t)

(t) = ..
x; () § %13 (6.2)
If we further assume that each economic sector is following an independent
growth path, with a corresponding average growth rate, 9is then we also

have

x;(t) = x,(0)[1 + g1.]t . (i=1,....n) (6.3)

Substituting (6.3) into (6.2), setting t = 0, and rewriting xi(O) as X
we have

n
X5 = E (a.. + bij gj)xj Yy (i =1,...,n) (6.4)

This is our basic system of equations for the open national model.

The logic of this open system is simply that by treating final demands
exogenously, we also make them decisive. As a set of independent variables,
the final demand vector may then be determined by relationships other than

those described in these equations themselves. Such an open system provides
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an analytical tool which is particularly well suited for investigating
the implications of alternative policy decisions. For this purpose, the
final demand vector may be viewed as the objective function of the eco-

nomic process.

An open model like (6.1) can therefore be transformed, or rather inter-
preted, from the viewpoint of optimal processes. The generic model used

in the theory of optimal control is also an open one, in which the be-
haviour of the system is determined by exogenous variables. In such
formulations, the course of economic development may be steered by external
agents such as consumers, overseas traders or governments, rather than

by producers or investors.

A number of authors have already discussed the instability probliem in
national and regional economic systems, arising from the assumption of

equilibrium in the dynamic Leontief formulation.3

Such systems may be
stabilized by allowing excess supply or demand conditions to occur, and
then introducing a suitable process of control to promote stabiﬁzation.4
Klthough most applications of control theory to economic systems have
been based on macroeconomic management, a small number of regional appli-

5

cations have appeared recently.” These applications emphasize the im-

portance of the open model.

It is not our purpose here to formulate a control theory approach to the
problem of multiregional instability, but merely to develop an inter-
regional extension of Leontief's open model as a basis for further analysis.

To do this, we firstly return to the interregional system introduced in
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Chapter 5. Defining b?? as the amount of capital goods required from
sector i in region r per unit increase of output by sector j in region s,
and g? as the average rate of growth in output from sector i in region r,
we can derive a modified version of Isard's original outflow relation-

ship,6 namely

m

rs
Ly,
=1 !

m
. (a

rs rs _S,.S
.2+ b.> XS +
1s=1 1J )

gl )X
I3

>
]
ne1=

. (6.5)
J

(i =1,.0.5n3r=1,...,m

Equations (6.5) define our basic set of relationships for balanced inter-

regional commodity flows in Leontief's open model.

6.3.2 The Closed Dynamic Leontief Model

An interesting feature of systems such as (6.1) is that it is much easier

to study the corresponding homogenous system in which yi(t) = 0, namely

‘ x;(t) = ? 35 X(t) + ? b, 5 ij(t) . (6.6)
This closed formulation does not actually eliminate final demand activites
from the model; it is not a consumptioniess model. Instead, (6.1) is closed
by the introduction of an additional equation with coefficients reflecting
the structural properties of this particular sector.7 For example, the
behaviour of households can be viewea as an industry supplying its output,
mainly labour, to other industries and receiving consumer goods from them.
Household activities would then appear in the enlarged system as two sets

of additional parameters: the flow coefficients, a],n+], a2’n+], ..... and
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an+]’], an+]’2, ..... , and the capital coefficients, bl,n+]’ b2,n+1’ ,,,,,

and b bn+l IREREE » the latter describing consumer's investments

n+1,1°
in housing, automobiles, appliances, and other kinds of household durables.

Interest in the closed model has been restricted mainly to theoretical

economists who aim to study a system which is as endogenous as possib]e.8
For the case in which there is only a single output, (6.6) reduces to the
familiar Harrod-Domar growth model.9 The input-output matrix corresponds
to the marginal propensity to consume, whereas the capital matrix corre-

sponds to the accelerator coefficient.

By adopting the acceleration principle of capital formation, together

with the assumption of fully utilized capital stocks in each period, it

is possible to calculate a balanced growth path which attains the largest
possible rate of expansion of this closed system. The resulting proportio-
nate growth path corresponds to the von Neumann trajectory,]o and yields
an unique equilibrium structure known as the turnpike solution.

Far from being only of academic interest, the turnpike solution may be

used to assess the Tong-term growth potential of an existing technological
structure. It may also be used to evaluate the development potential (or
efficiency) of alternative technologies. Further discussion of its inherent
properties, as well as various solution algorithms, is postponed to

Chapter 7 and Appendix A. For the present, we shall restrict our discussion
of the closgd national model‘té a statement of the complementary system of

equations to the open version (6.4). Following similar arguments to those
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adopted for the open model, we arrive at

g )xj (i =1,...,n+1) (6.7)

+
X: = ¥ (a.. +b .
= ( J

AR NN
where (n+1) stands for the additional household sector.

An interregional extension of (6.7) will be developed in the following
section, prior to the application of information theoretical techniques

for the simultaneous estimation of both intermediate and capital flows

on an intersectoral and interregional basis.

6.3 A Closed Model Approach to Interregional Estimation

6.3.1 Interregional Accounts

We now return to the interregional system developed in Section 5.4.1 of
the previous chapter. As before, our system of regional economies is
divided into n sectors and distributed over m regions. We shall now close
this system by treating capital investment, consumption, and overseas
trade as endogenous components of the model.

Capital flows which serve to maintain or revive existing prodictive capa-
city will be treated as intermediate consumption, by including them in
the input-output matrix. Capital flows which are designed to expand
existing productive capacity will be represented by a matrix of capital
coefficients describing the interregional distribution of productive
investment between various sectors. Household behaviour and international
trade will be treated as additional industries, and are therefore included

in the original n sectors. Once again, the basic relationships can be
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viewed as a collection of accounts in which the following additional

notations are introduced:

b.. = amount of capital goods required from sector i per unit

increase of output by sector j,

b?? = amount of capital goods required from sector i in region r
per unit increase of output by sector j in region s,

g; = average rate of growth in output from sector i,

g? = average rate of growth in output from sector i in region r,

k:i = investment demand in region s for capital goods from sector i,

u; = gross operating surplus in sector i,

ub o= gross operating surplus in sector i of region r.

If we assume full utilization of capital stocks in each period, the non-
spatial input-output equilibrium for our economy is derived from Equation
(6.7). We shall now assemble the basic elements of our interregional
accounting system for this closed model. It is left to the reader to make
the appropriate simple adjustments to derive a comparable system for the
open model. We begin again with a modified version of Isard's original
outflow relationship, namely

n m

rs rs S,._s* .
x;, = ¢ 1 (a;3 +b.; a)x> (i
1 j=1 s=1 1] LIS N RN |
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and add to this the corresponding inflow of factors required to satisfy
regional production in each sector, that is
s* M s s* S

X3 = I T a.: Xy +u. . (3 =1,.0.,5n; (6.9)
S I I

s =1,...,m)

To ensure consistency with industrial statistics, the following additional

relationships apply:

m
rs _s* ..
z r a.. X. = a.. X. = ey .
AL TR 335 %y (i,d = 1, n) (6.10)
mom rs s _s*
21 21 b1J gj xj = bij 9; X; (i, = 1,...5n) (6.11)
r=1 s=
m
r r* .
r§1 g1 X'i = 91X1 (1 = 1,...,!’\) (612)
m r
21 u; = ug (i =1,...,n) (6.13)
. re
and as before
m * m
21 x: = 21 xiS =X (i =1,0..,n) (6.14)
r= S=

This completes the specification of our interregional accounting system

for the closed model.
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6.3.2 The Estimation Problem

The main aim of the present analysis is to estimate the interregional
pattern of gnoss intersectoral flows {fgj} from a limited database of
industrial and regional information. To do this, we have expressed these

flows in the form

rs _ ,.rs rs s, s*
fi3° ( i3 * Pi3 gj)xj (6.15)
In contrast to the formulations derived in Chapter 5, we have now made
a distinction between intermediate and capital flows. Consequently, it
is possible to estimate interregional matrices of input-output and capital

coefficients simultaneously. The present analysis is therefore formulated

in terms of coefficients rather than actual flows.

In terms of Equations (6.8) to (6.14), aggregate information from indust-

rial statistics is certainly available concerning 9y Uss X; and aij'

Some countries are fortunate enough to have compiled a matrix of capital

coefficients (b at the national level. Others may be forced to estimate

ij)
these coefficients by alternative means. A number of non-survey approaches

to this problem have been proposed in Chapter 4,]]

so we shall treat bij
as a matrix which can be estimated independently at the aggregate level.
We shall further assume that regional disaggregation of industrial data
can provide information about g;, u: and x?*. OQur closed model investiga-
tions will be limited to the following four assumptions concerning intra-

regional demands:
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Case (i) - that neither intermediate demand (x:i) nor investment
demand (k:i) for each sector's products are known (or
can be estimated independently) for each region;

Case (i1) - that intermediate demand (x:i) for each sector's
products is known for each region;

*

Case (iii) - that total demand (xis) for each sector's products

is known for each region; '
*.
Case (iv) =~ that both intermediate demand (xii) and investment

demand (k:i) for each sector's products are known

for each region.

Although the separable nature of the gross flows (f??) allows inter-
regional tables of input-output and capital coefficients to be estimated
simultaneously, it also limits our choice of solution techniques. The
inclusion of growth rates (gs) in the present formulation alters the
nature of the constraint system from one of simple flow sums to one of
weighted summation. This means that standard solution procedures devised
f;r multidimensional contingency table analysis are no longer suitab]e.]2
Consequently, we shall draw exclusively on information-theoretical proce-
dures for our solutions. In so doing, we are now at liberty to include

a set of nodal capacity constraints, similar to Equations (5.41), in all

our model formulations.
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6.3.3 Maximum Entropy Formulations

In the absence of any prior knowledge about the individual flows (that

is, assuming that each shipment is equi-probable), we can define the

following entropy function:

S =

n
-z

n
z

m m
I I

i=1 j=1 r=1 s=1

which serves as

below.

6.3.3.1

(a

s
1J

+ b3
ij

*
g?)x% log (

J J

E
1

nrsS

J

g9

s
J

s*
)xj (6.16)

our objective function for the four cases discussed

Case (i): intraregional demands unknown

The relevant information from our interregional accounts can be written

as the following four constraint sets:

nm™Mm>3

J=1

M <rs
z (a3
s=1 '

n~m 3

I
r=1 J

s
p 1

nm~3
o,

S

grs
p 1

W~ 3

S

£rs s
+ b.t g%
13 73

s _s*
. X.
95 %;

g3)x

s*

J

d.. X.
LRUREN

iJ

sy r=1,...

,m)  (6.17)

..,m) (6.18)

(6.19)

(6.20)
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The resulting entropy-maximizing problem is then to maximize S subject
to the constraints (6.17) through (6.20) and the usual non-negativity

conditions. A standard Lagrangian derivation yields

<rs s* _ N SN L
ij xj = exp( oy Bj Yij) (6.21)
and
~rs s s¥ *
bij 95 X5 = exp(- a: - 61j) (6.22)

where u:*, B§*, Yi; and 51j are the Lagrange multipliers associated
with the constraint sets (6.17) to (6.20) respectively. These solutions

may be expressed in a more familiar form, namely

~rs _s¥* r LS
.2 X3 =A. BY C..
1] XJ LN C"J (6'23)

and

£rs s o s* .y

where A:, B?, Cij and Dij are coefficients which are related exponentially

to the corresponding Lagrange multipliers.

L d

S
_ J
may be obtained by eliminating the balancing factors or their corresponding

Explicit solutions for 5? and 5?; in this and all succeeding formulations

Lagrange multipliers. As suggested in Chapter 5, this can be done numeri-

cally using the INTEREG package described in Appendix E.
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6.3.3.2 Case (ii): intermediate demands (x:i) known

For this case, the given information consists of the four previous sets
of constraints,]3 together with the following additional set:

n m
.r * * .
oz oasxd = Xii (i

j=tr=st W
The entropy-maximizing problem is now to maximize S subject to the con-
straints (6.17) through (6.20), (6.25), and the usual non-negativity

*
conditions. An extra multiplier ( uii) appears in the solution to repre-

sent the new set of constraints (6.25). The results are:

~rs _s* r* s* *g

a3 %5 = exp(- o - B - Yij " “i*) (6.26)
and
£rs s s* _ N ol
i3 9% - exp(- o, Gij) . (6.27)

*
6.3.3.3 Case (iii): total demands (xis) known

-

To quantify the total demands by all intermediate and capital users in

each region, a modified version of the Leontief-Strout relationship is

13

added to the four original sets of constraints. We have

n m rs £rs S
T I (3.7 +b.>g

s* _ _*s (i
pfi=iat BN N S R

X

)xj ;

=1,.0ee5n3 5 =1,...,m) (6.28)
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The resulting entropy-maximizing problem is now subject to the constraints
(6.17) through (6.20), together with (6.28) and the usual non-negativity
conditions. A new multiplier ( n:S) is now included in the solution, and

on this occasion it appears in both equations. The solutions come out as

Srs  S* o s _ *s

43 % exp(- o, BS = Yi5 " N ) (6.29)
and

£rs s s* ot _ . *s

biy 95 X5 =expl-a; - 85 -n7) . (6.30)

*
6.3.3.4 Case (iv): both intermediate demands (xii) and capital

*S ’
demands (ki*) known

In this situation, the available information consists of the five sets

14

of constraints appearing in case (ii), together with the following

additional set:

n m
T I b3,
=t et W

-

~rs s _S* *g .
b 95 X5 = ki* (i

=1,...5n3 s =1,...,m) (6.31)
The replacement of (6.28) by the two independent sets of constraints,
namely (6.25) and (6.31), necessitates the introduction of another new
Lagrange multiplier ( A;i) to represent Equation (6.31). The resulting

solutions are

Zrs s* _ (. r* _s* _ s

&3 %5 ° exp( a; Bj Vi3 “i*) (6.32)
and

crs s sx o r* v  -_~ *sy S

bij 93 %y T ePloy Syt (6.33)
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6.3.3.5 Discussion of results

The resulting estimates for both intermediate and capital flow coeffi-

cients can be expressed in the general form:

~rs _ ,r .s S s*\-1
and
b’ = AT b, 65(gS x3T)7! (6.35)
ij LS Y I :

where Ag, B%, C D

Jj’ Uige tige
exponentially to the correspondingly subscripted Lagrange multipliers

F? and G? are coefficients which can be related

introduced for each case. Estimates for the gross intersectoral flows

(%:;) can therefore be expressed as

ErS _ arnS S
fij = Ai(Bj C_ij Fi + Dij Gi) . (6.36)

Table 6.1 contains expressions for the balancing coefficients defined

in terms of the appropriate Lagrange multipliers for each case.

6.3.3.6 Inclusion of capacity constraints

If we wish to incorporate a similar set of nodal capacity constraints

to the onesintroduced in Chapter 5, the result is an additional Lagrange

15
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