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Abstract 
Gene flow and hybridization are pervasive in nature, and can lead to different 

evolutionary outcomes. They can either accelerate divergence and promote speciation 

or reverse differentiation. The process of divergence and speciation are strongly 

influenced by both neutral and selective forces. Disentangling the interplay between 

these processes in natural systems is important for understanding the general 

importance of interspecific gene flow in generating novel biodiversity in plants. This 

thesis first examines the importance of introgressive hybridization in the evolution of 

the genus Pinus as a whole, and then focusing on specific pine species, investigates 

the role of geographical, environmental and demographical factors in driving 

divergence and adaptation.  

By examining the distribution of cytoplasmic DNA variation across the wide 

biogeographic range of the genus Pinus, I revealed historical introgression and 

mtDNA capture events in several groups of different pine species. This finding 

suggests that introgressive hybridization was common during past species’ range 

contractions and expansions and thus has played an important role in the evolution 

of the genus. To understand the cause and process of hybrid speciation, I focused on 

the significant case of hybrid speciation in Pinus densata. I established the 

hybridization, colonization and differentiation processes that defined the origin of 

this species. I found P. densata originated via multiple hybridization events in the 

late Miocene. The direction and intensity of introgression with two parental species 

varied among geographic regions of this species. During the colonization on Tibetan 

Plateau from the ancestral hybrid zone, consecutive bottlenecks and surfing of rare 

alleles caused a significant reduction in genetic diversity and strong population 

differentiation. Divergence within P. densata started from the late Pliocene onwards, 

induced by regional topographic changes and Pleistocene glaciations. To address the 

role of neutral and selective forces on genetic divergence, I examined the association 

of ecological and geographical distance with genetic distance in Pinus yunnanensis 

populations. I found both neutral and selective forces have contributed to population 

structure and differentiation in P. yunnanensis, but their relative contributions 

varied across the complex landscape. Finally, I evaluated genetic diversity in the 

Vietnamese endemic Pinus krempfii. I found extremely low genetic diversity in this 

species, which is explained by a small ancestral population, short-term population 

expansion and recent population decline and habitat fragmentation.  

These findings highlight the role of hybridization in generating novel genetic 

diversity and the different mechanisms driving divergence and adaptation in the 

genus Pinus.  

Keywords  
Adaptation, biogeography, coalescent simulation, cytoplasmic genome, demographic 

history, genetic diversity, hybridization, migration, Pinus, population structure, 

selection, speciation   

 



 
 

 

Sammanfattning 
Genflöde och hybridisering är vanligt förekommande i naturen och kan leda till olika 

evolutionära lösningar. De kan leda till en uppsnabbad diversifiering och facilitera 

artbildning eller motverka differentiering. Diversifiering och artbildningsprocesser är 

starkt influerade av både neutrala och direkta urvals processer. Genom att separera 

interaktionen mellan dessa processer hos system i naturen ökar förståelsen för hur 

viktigt ett genflöde mellan arter är för att skapa ny biodiversitet hos växter. Denna 

avhandling kommer till att börja med undersöka hur viktig inkorporering av DNA 

mellan arter i släktet Pinus är för släktets evolution och gå vidare med att undersöka 

rollen hos geografiska, miljömässiga och demografiska faktorer i artbildning och 

anpassningar hos arter av tall.    

Genom att undersöka den geografiska fördelningen av DNA variationen i 

cytoplasma hos flertalet arter av tall, kunde vi påvisa en historisk inkorsning mellan 

arter från samma släkte samt inkorporering av mtDNA mellan arter av tall. Detta 

påvisar att både hybridisering och inkorporering av främmande DNA från en 

närbesläktad art har varit vanligt förekommande under den historiska utbredningens 

expandering och kontraktion och har på så sätt bidragit till evolutionen hos släktet. 

För att bättre förstå orsaken och hur artbildning genom hybridisering sker, 

fokuserade vi på en särskild artbildning hos Pinus densata som skett genom 

hybridisering. Vi påvisar hur hybridisering, kolonialisering och differentiering 

processen ser ut för ursprunget av denna art. Vi såg att P. densata är sprungen ur 

flera hybridiseringar under sen Miocene. Vilken och hur mycket DNA som 

inkorporerats mellan de två föräldraarter varierade mellan olika regioner av P. 

densata utbredning. Under kolonialiseringen av den Tibetanska platån från en 

ursprunglig hybridiseringszon, orsakade upprepade genetiska flaskhalsar och 

genetisk drift i expansionszonen kraftig minskning av den genetiska diversiteten 

samt en väldig populations differentiering. Uppdelningen inom P. densata började i 

sen Pilocene som en följd av regionala topografiska förändringar och 

glaciärbildningen under Pleistocene. För att undersöka neutrala och selektiva 

evolutionära krafter på uppdelning tittade vi på hur ekologiskt och geografiskt 

avstånd förhåller sig till genetiskt avstånd hos Pinus yunnanensis populationer. Vi 

kunde se att bägge dessa avstånd har bidragit till populationsstruktur och 

differentiering hos P. yunnanensis, men deras bidrag varierade över det heterogena 

landskapet. Avslutningsvis utvärderade vi den genetiska diversiteten hos den för 

Vietnam endemiska Pinus krempfii. Vi fann en extremt låg genetisk diversitet hos 

denna art, vilket förklaras av en liten ursprungspopulation, en kortvarig geografisk 

expansion och en nylig reduktion av antalet individer samt habitat fragmentering. 

Dessa upptäckter belyser hybridiseringens roll i att skapa ny genetisk diversitet och 

de mekanismer som driver uppdelning och anpassning inom släktet Pinus. 
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Introduction 

Introgression and Cytoplasmic Genome Capture 
Gene flow and introgressive hybridization are pervasive in nature. About 10–
30% of animal and plant species are known to hybridize and/or to regularly 
exchange genes with other species, and a large proportion of the currently 
non-hybridizing species likely (repeatedly) hybridized in the past (Mallet 
2007; Soltis & Soltis 2009; Abbott et al. 2013). Hybridization can have 
different evolutionary outcomes. It can accelerate differentiation and 
facilitate speciation through the rapid origin of novel biochemical, 
physiological, or morphological phenotypes that allow hybrid species to 
invade novel habitats, inaccessible to parental species (Mallet 2007; Abbott 
et al. 2010; Nolte & Tautz 2010). Conversely, hybridization may reverse 
differentiation of diverging species through the homogenizing effects of gene 
flow and recombination. The homogenizing effect of hybridization can be 
overcome by divergent selection that maintains or reinforces differentiation 
in the face of gene flow (Feder et al. 2012; Nosil & Feder 2012; Abbott et al. 
2013).  

The direction of introgression between species and populations is usually 
asymmetric because of various intrinsic and extrinsic factors (Hamilton et al. 
2013a, b). Premating barriers, such as phenology and physical pollination 
environments, can influence the direction of pollen-mediated gene flow in 
natural populations (Gérardi et al. 2010; Hamilton et al. 2013b). After 
pollination, pollen competition could be prominent or exclusively present in 
one of the hybridizing species, thus reducing the number of hybrids in this 
species and resulting in directional introgression (Rahme et al. 2009; Lepais 
et al. 2013). Once the zygote is formatted, selection on the fitness of hybrids 
and their ability to backcross with parental species could also induce 
asymmetric introgression (Whitney et al. 2006; Lepais & Gerber 2011; 
Holliday et al. 2012).  

In addition to asymmetric reproductive barriers, unidirectional or 
unbalanced gene flow can also be due to species distribution patterns. The 
relative abundance of species in sympatry or parapatry can affect 
hybridization dynamics with the expectation that introgression will be from 
the more abundant species towards the less abundant one (Lepais et al. 
2009). One situation where population sizes between potentially hybridizing 
species are likely strongly imbalanced, is when a colonizing species spreads 
into an area already occupied by a related species. In this case, the invading 
species is initially rare, and thus genes from abundant resident species would 
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be incorporated into the colonizing species, amplified by the subsequent 
demographic growth of invading population, resulting in a massive 
introgression of resident genes into the invader’s gene pool (Currat et al. 
2008). The asymmetric introgression from local species into invader is 
stronger for genome components with less gene flow, such as chloroplast 
(cp) genome in angiosperms and mitochondrial (mt) genome in conifers 
(Currat et al. 2008). The rationale is the following: if intraspecific gene flow 
is low, then genes from the resident species that have introgressed into the 
invading species will not be diluted by migrants from other populations of 
the invading species, and will become rapidly fixed in the gene pool of the 
invader following demographic growth. Hence, the less intraspecific gene 
flow there is, the more interspecific gene flow is expected (Petit & Excoffier 
2009).  

In plants, seed dispersal is usually less effective than pollen dispersal. 
Therefore, maternally inherited organelle markers (e.g. cpDNA in 
angiosperms and mtDNA in conifers) that are only dispersed by seeds should 
be more frequently introgressed, and hence more susceptible to interspecific 
cytoplasmic genome capture. In angiosperm species, cpDNA capture 
through hybridization and introgression is frequently observed (Rieseberg & 
Soltis 1991). In conifer species, the mt genome is maternally inherited and 
dispersed via seeds, while the cp genome is paternally inherited and 
transmitted via pollen and seeds. The contrasting patterns of inheritance and 
high migration ability of wind-dispersed pollen usually result in higher gene 
flow for cpDNA than for mtDNA (Petit et al. 2005). In keeping with the 
prediction that introgression is negatively correlated with intraspecific gene 
flow, mtDNA should introgress more readily than cpDNA in conifers, thus 
resulting in capture of mtDNA from local species by invading species. 
Historical lateral transfer of the mt genome has been documented in conifers 
by phylogeographical studies, such as in pine (Senjo et al. 1999; Godbout et 
al. 2012) and spruce (Du et al. 2009). In all cases reported, the sharing of 
mitotypes between species (lineages) in their zone of sympatry or parapaty 
was proposed to be caused by mtDNA introgression during range expansion, 
with the mitotypes of local species (lineage) captured by invading species 
(lineage). The frequent cytoplasmic genome capture events detected in 
nature, e.g. cpDNA capture in angiosperms and mtDNA capture in conifers, 
indicate that hybridization and reticulate evolution are common in plants. 
Elucidating the patterns and consequences of historical introgression could 
shed light on the evolution of plant diversity.  
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Hybrid Speciation  
One potential outcome of hybridization is hybrid speciation through the 
creation of either novel polyploid (allopolyploid speciation) or homoploid 
(homoploid hybrid speciation, HHS) species. In allopolyploid speciation, 
genome duplication can restore fertility in new hybrids and create nearly-
instantaneous reproductive isolation of incipient hybrids from their 
progenitor species. In contrast, HHS may encounter two difficulties during 
hybrid species formation and development. Firstly, hybridization between 
parental genomes that show certain degree of incompatibility may result in 
low-fitness homoploid hybrids (Soltis & Soltis 2009; Aitken & Whitlock 
2013). Secondly, the lack of strong reproductive isolation between the 
hybrids and their parents would inhibit the hybrid genome stabilization 
(Buerkle et al. 2000; Abbott et al. 2010). Therefore, allopolyploid speciation 
was assumed to be the major mode of hybrid speciation in plants, while HHS 
was thought not as prevalent (and therefore important) as polyploid hybrid 
speciation. However, recent scientific research suggests that HHS in plants 
may be more common than previously thought. This recognition was 
facilitated by the increasing applicability of molecular genetic techniques to 
detecting homoploid hybrids in the wild (Wang & Szmidt 1994; Rieseberg 
1997; Gross & Rieseberg 2005; Abbott et al. 2010). 

Both theoretical and experimental studies indicate that HHS can be a 
rapid form of speciation (McCarthy et al. 1995; Rieseberg et al. 1996; 
Buerkle et al. 2000). However, a more recent analysis suggests that genomic 
regions associated with the initial evolution of reproductive isolation may 
become stabilized quickly, but the reminder of the genome likely takes a 
much longer time to be stabilized (Buerkle & Rieseberg 2008). Reproductive 
isolation in HHS could arise through rapid chromosomal reorganization, 
spatial isolation and/or ecological divergence (Rieseberg 2006). Early 
studies of the HHS emphasized the importance of chromosomal sterility 
barriers, but it has become evident that changes in the ecological attributes 
of hybrid populations and ecological selection promoting adaption to novel 
habitats may be particularly important in HHS (Gross & Rieseberg 2005). 
Theoretical studies show that availability and colonization of a novel habitat 
are key elements associated with the success of HHS, and chromosomal 
isolation alone is unlikely to lead to speciation at an appreciable rate 
(McCarthy et al. 1995; Buerkle et al. 2000). Divergent selection, leading to 
local adaption to new habitats, may provide critical ecological isolating 
barrier between hybrids and their progenitors (Gross & Rieseberg 2005; 
Abbott et al. 2010). The importance of ecological selection in HHS is also 
confirmed by the observations that hybrid species often occupy habitats that 
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differ from those occupied by their parental species (Rieseberg 1997; Mao & 
Wang 2011). 

When ecological divergence is an important driver of speciation, it is 
possible that new ecologically similar lineages originate multiple times 
within different patches of the same habitat type. Molecular evidence 
suggests that multiple origins of homoploid hybrid species is the rule rather 
than an exception (Gross & Rieseberg 2005; Abbott et al. 2010). Strong 
genetic differentiation is expected in hybrids with multiple origins from 
genetically differentiated parental populations. The genetic structure of 
hybrid species could be potentially even more complex due to historical 
events following hybridization, such as the sorting of ancestral variation, 
local introgression between the hybrid and its parental species, and genetic 
drift during colonization of new niches (Arnold 1993; Abbott et al. 2010). 
Because extrinsic isolation barriers, such as those due to ecological selection, 
are often incomplete between closely related species, gene flow from parental 
species could lead to complex genetic structures in the hybrid species. 
Nonetheless, the hybrid species can maintain their ecogeographic 
distinctiveness, perhaps defined by just a few important genetic differences. 
If only a small number of factors contribute to reproductive isolation, then 
most of the hybrid genome should be influenced by introgression from 
parental species. This is supported by the findings of genome-wide 
introgression between hybrid Helianthus annuus texanus and its parental 
species, where the genetic islands of differentiation between species were 
smaller than 1cM (Scascitelli et al. 2010).  

For hybrid populations established by the colonization of new niches that 
are geographically isolated from their parental species, introgression from 
parental species should not be a complicating factor during population 
establishment and subsequent evolution. Instead, selection and founder 
effects occurring during range expansion should have important roles in 
generating and shaping the resulting genetic structure of the hybrid species. 
Spatial expansion can generate allele frequency gradients, promoting the 
surfing of rare alleles into newly occupied territories, and inducing genetic 
structure in newly colonized areas (Klopfstein et al. 2006; Excoffier et al. 
2009). Rare or low-frequency alleles should theoretically have a higher 
probability of reaching high frequencies at the expansion wave front, in 
addition to rare alleles becoming fixed by drift in newly colonized areas, 
particularly when the founder population is relatively small (Klopfstein et al. 
2006; Hallatschek & Nelson 2008). In contrast, in their place of origin, these 
mutations may often disappear or remain at low frequencies (Edmonds et al. 
2004). In this process, some ancestral haplotypes can be lost over time by 
lineage sorting, and the populations established in the newly colonized 
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regions would have genetic patterns distinct from those occurring in the 
hybrid zone. 

Clearly, elucidating the processes that have influenced the distribution 
and genetic composition of a hybrid species requires the reconstruction of 
hybridization and colonization events over a range of temporal and spatial 
scales. For this purpose, phylogeographic studies based on molecular 
markers with different modes of inheritance and patterns of recombination, 
provide opportunities to trace the direction and intensity of hybridization 
during speciation. To gain further understanding of the processes and 
driving forces in any hybrid speciation event, more specific investigation of 
the demographic history and patterns of ecological and genomic divergence 
are needed. 

Divergence in the Face of Gene Flow  
In the case of speciation in the presence of gene flow, two species generated 
by a splitting event from their common ancestor will diverge whilst 
exchanging genes (Pinho & Hey 2010). Under this scenario, patterns of 
shared and fixed differences between species will depend on divergence time 
and the migration rates among species, as well as the population size of the 
ancestral and descendent populations. Fixed polymorphisms will accumulate 
over time, while shared polymorphisms will be (re)introduced by 
introgression. Large ancestral populations contain higher levels of sequence 
polymorphism and larger descendent populations retain polymorphisms 
longer. An isolation-with-migration (IM) model has been developed to 
quantify the gene flow and establish the population demography in the 
process of divergence with gene exchange (Nielsen & Wakeley 2001). 

The basic IM model considers an ancestral population that gives rise to 
two descendent populations that are connected by gene flow (Nielsen & 
Wakeley 2001; Hey & Nielsen 2004). This model has six parameters: 
population size parameters for one ancestral (θA) and two descendent 
populations (θ1 and θ2), a parameter for the timing of the split (t), and two 
gene exchange parameters (m1→2 and m2→1; Figure 1A). The IM model will be 
more complex than this basic one when considering more populations. A 
scenario considering three modern populations has 15 parameters, a four-
population model has 28 parameters, and a ten-population model has as 
much as 190 parameters (Hey 2010). Figure 1B shows an IM model for three 
sampled populations in which sampled population 1 (θ1) and 2 (θ2) are the 
most recently diverged population pairs. Parameters in the IM model are 
usually scaled to the mutation rate when the model is fitted to genetic data. 
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In this framework, each population is represented by a population mutation 
rate, θ = 4Neμ, where Ne is the effective population size and μ is the mutation 
rate. Gene flow (m) is expressed as the rate of migration for each gene copy 
per mutation event, and the time parameter (t) is also scaled by the mutation 
rate. 

Nielsen & Wakeley (2001) developed a likehood-based method to 
estimate the parameters of the IM model for a single non-recombining 
genetic locus. There have been several extensions and alterations of the 
original method: the use of multiple unlinked loci (Hey & Nielsen 2004), 
relaxation of the assumption of constant populations sizes (Hey 2005), 
reduction of the state space of MCMC simulation to just genealogies (Hey & 
Nielsen 2007), intralocus recombination (Becquet & Przeworski 2009), and 
the inclusion of more than two related populations (Hey 2010). These 
methods have been used extensively to estimate levels of gene exchange 
between species, subspecies and populations of the same species, and found 
convincing evidences for speciation in the presence of gene flow (Pinho & 
Hey 2010). However, the estimated gene flow with IM model could be biased 
by violation of assumptions, e.g. existence of population structure and gene 
exchange from unsampled species (Becquet & Przeworski 2009; Strasburg & 
Rieseberg 2010). Moreover, changes in the amount of gene flow over time 
cannot be investigated by current likehood-based methods (Strasburg & 
Rieseberg 2011). One way to address these concerns is to use more complex 
models with additional parameters. However, for more complex models, an 
analytical formula for the likelihood function might be elusive or the 
likelihood function might be too computationally intensive to evaluate.  

 

θ N μ
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θ N μ θ N μ

θ N μ

θ N μ

t
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m →
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Figure 1. Isolation with migration (IM) model for (A) two sampled 
populations and (B) three sampled populations. 
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Approximate Bayesian computation (ABC) methods bypass the 
evaluation of the likelihood function, and thus can potentially be used to fit 
very complex demographic models to the genetic data (Beaumont et al. 
2002). ABC involves simulating large numbers of data sets for the 
demographic model, where parameters of the model are drawn from a prior 
distribution. Each simulated data set is then compared to the observed 
genetic data using summary statistics. The simulated samples are accepted 
only when they are sufficiently close to the observed data. The accepted data 
points are then used to estimate the posterior distribution for the parameters 
of the model. Despite the capability in handling more parameters, ABC 
methods are based on comparing the summary statistics for simulated and 
observed data, and thus they are less accurate than likelihood-based 
methods using the complete data (Beaumont et al. 2002). Furthermore, in 
scenarios where many parameters need to be considered, it is not obvious 
how many summary statistics will be required to accurately capture complex 
demographic processes (Beaumont et al. 2002), and ABC methods suffer 
from the curse of dimensionality when the number of summary statistics is 
increased (Blum & Francois 2010). Therefore, the complex models still 
represent a computational challenge and demand more sequence 
information. 

IM model tracks the history of population development and gene flow, in 
which gene exchange could occur at any point following the onset of 
divergence in sympatric or parapatric speciation, or even be induced by 
secondary contact after allopatric speciation. However, the IM model is 
unlikely to capture all the complexity of the divergence process. It alone 
cannot fully disentangle the interplay between selection, gene flow and 
recombination that occur during speciation.  

Mechanisms that Drive Genetic Divergence: Isolation-
by-Distance (IBD) vs. Isolation-by-Ecology (IBE) 
Understanding the factors that contribute to population differentiation is a 
long-standing goal in ecology and evolution. Patterns of genetic divergence 
often reflect spatial variation in gene flow, which can be influenced by 
neutral processes and natural selection. In most species, the distance of 
individual migration is much smaller in comparison to the distribution 
ranges of the species. This limited dispersal can result in patterns of spatial 
autocorrelation in the distribution of genetic variation: individuals that are 
close to each other are likely to be more related and genetically more similar 
than individuals that are geographically further apart. In other words, a 
positive relationship is expected between genetic divergence and geographic 
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distance: isolation-by-distance (IBD; Wright 1943). IBD is among the most 
common eco-evolutionary patterns observed in nature, and could lead to 
parapatric speciation (Jenkins et al. 2010). For example, under a strong IBD 
for enough time, novel mutations can arise and become fixed in different 
populations as gene flow has been greatly reduced. These mutations can 
eventually cause genetic incompatibilities and the evolution of reproductive 
isolation, known as the Bateson–Dobzhansky–Muller model (Muller 1942).  

Most studies have tested IBD by performing Mantel tests. However, tests 
of IBD could be biased by hierarchical population structure. In a simulation 
study, the Mantel tests clearly show a positive correlation between 
geographical distance and genetic distance under a hierarchical island model 
with the assumption of no IBD (Meirmans 2012). Also a study on alpine 
plants showed that the results of Mantel tests were not related to IBD, but 
instead were strongly affected by geographically clustered population 
structure that resulted from postglacial recolonization (Meirmans et al. 
2011). It is therefore advised to perform a test for IBD in combination with 
an analysis of higher level population structure, e.g. a partial Mantel test that 
takes the effects of hierarchical structure into account or a standard Mantel 
test performed in each of the clusters separately (Meirmans 2012). 

Ecological divergence could limit gene flow between populations adapted 
to distinct niches, and thus produce genetic divergence. In this process, 
divergent selection first acts on a few (ecologically) relevant loci with the 
remainder of the genome unaffected. Over time and under favorable 
conditions of selection and recombination, localized divergence can extend 
to areas surrounding the loci under selection by divergence hitchhiking, and 
eventually to the entire genome via genome hitchhiking (Feder et al. 2012; 
Nosil & Feder 2012). At the genome hitchhiking stage, gene flow is effectively 
reduced across the entire genome and a generalized barrier to gene flow 
forms that can be detected with smaller sets of neutral molecular markers 
(Thibert-Plante & Hendry 2010; Feder et al. 2012). It is thus expected that 
environmental dissimilarity will correlate to neutral genetic population 
differentiation: isolation by ecology (IBE). Ecologically induced population 
differentiation has been well documented in natural populations (Schluter 
2009) and a positive correlation between reproductive isolation among 
species and ecological divergence has been established (Funk et al. 2006). A 
correlation between neutral genetic differentiation and ecological 
divergence, or IBE, is generally recognized as evidence for the ecological 
speciation model (Nosil 2012). 

A common approach used to test IBE mirrors that of IBD where a matrix 
of population differentiation is correlated with a matrix of ecological 
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distance. However, most environmental variables are spatially autocorrelate-
d, and the spatial autocorrelation in the distribution of genetic variation 
(IBD) is also ubiquitous (Jenkins et al. 2010). Overlap between the spatial 
patterns of the environmental and genetic variables can easily lead to 
significant, but spurious, correlations (Meirmans 2012). Thus, to ensure the 
IBE pattern is not being driven by spatial autocorrelation, geographic 
distance should be controlled for in the model by using a partial correlation 
equation: 
 

 

 
In this model, a partial IBE correlation (rE×G | D) is equally influenced by 
IBD (rG×D) and eco-spatial autocorrelation (rE×D). A simulation study 
examined the impact of co-linearity among geographical distance, ecological 
divergence and genetic differentiation on inferences of IBE, and found that 
in scenarios with moderate to high IBD and eco-spatial autocorrelation, 
detecting IBE might be a fruitless pursuit (Shafer & Wolf 2013). 

 Whether neutral processes or divergent selection under conditions of 
gene flow are the major drivers of population divergence is heavily debated. 
Based on Jenkins et al.’s (2010) meta-analysis, approximately 22% of the 
variance in neutral genetic differentiation could be explained by genetic drift. 
In contrast, only ~5% of neutral genetic differentiation can be purely 
explained by ecological divergence (Shafer & Wolf 2013). However, the 
relative role of IBD and IBE varies between species and across the 
distribution range within species. For example, a study of Boechera stricta 
suggested that while isolation by distance alone is sufficient to explain the 
moderate and continuous north–south divergence, environmental variables 
show larger contributions than geographical factors in the discrete genetic 
divergence between east and west (Lee & Mitchell-Olds 2011). The 
combination of informative molecular markers, spatial statistics and high 
resolution geographic information system (GIS) data provide the 
opportunity to explicitly evaluate the influence of environment and 
geography on the distribution of genetic variation within each species 
(Storfer et al. 2007; Manel et al. 2010; Sork et al. 2013). 
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Study System 

Phylogeny and biogeography of the genus Pinus 

The genus Pinus (Pinaceae) is one of the largest extant gymnosperm genera, 
with more than 100 species spread across the Northern Hemisphere (Mirov 
1967). Over 40 taxonomic treatments have been proposed for the genus 
Pinus (reviewed in Price et al. 1998). In this thesis, the classification scheme 
of Gernandt et al. (2005) is followed. This scheme is based on cpDNA, 
ribosomal DNA and morphological information and widely accepted today. 
In Gernandt et al.’s (2005) classification, the genus Pinus is divided into two 
subgenera Pinus and Strobus, each with two sections: sections Pinus and 
Trifoliae in the former, and Parrya and Quinquefoliae in the latter. Further 
divisions generate 2-3 monophyletic subsections in each section, and totally 
11 subsections are recognized (Figure 2).    

 

Balfourianae

Pinaster
Pinus

Australes
Ponderosae

Contortae

Nelsoniae

Cembroides

Gerardianae
Krempfianae
Strobus

Subsection Section Subgenus

Pinus

Trifoliae

Quinquefoliae

Parrya

Pinus

Strobus

 

Figure 2. Subgenera, sections and subsections recognized by Gernandt et 
al. (2005), and their phylogentic relationships based on full chloroplast 
genome sequences (adapted from Parks et al. 2012)  

 
CpDNA data, including restriction fragments and gene sequence data, 

have been used extensively to infer phylogenies in the genus Pinus, and have 
generated largely consistent results on the relationships of the major 
lineages within this genus (Wang & Szmidt 1993; Wang et al. 1999; Gernandt 
et al. 2005; Eckert & Hall 2006; Parks et al. 2009; Parks et al. 2012). 
However, phylogenetic resolution at low taxonomic levels is still ambiguous, 
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and even the entire chloroplast genome is insufficient to fully resolve the 
most rapidly radiating lineages in the genus (Parks et al. 2009; Parks et al. 
2012). Compared with cpDNA-based phylogenetic studies on the genus 
Pinus, studies utilizing mtDNA and nuclear DNA data tend to be more 
limited in their sampling, both in the number of different genomic regions 
and the taxa included, but have contributed new insights on the evolution of 
the genus (Syring et al. 2005; Syring et al. 2007; Willyard et al. 2007; 
Tsutsui et al. 2009; Willyard et al. 2009).  

A few established mtDNA phylogenetic trees for subgenus Strobus differ 
from that of the cpDNA trees (Tsutsui et al. 2009). Incongruence has been 
also detected between nuclear gene trees (Syring et al. 2005), and both 
hybridization and incomplete lineage sorting have been proposed to be 
responsible for the lack of allelic monophyly within pine species (Syring et al. 
2007; Willyard et al. 2009). In light of these findings, phylogenetic 
inferences based on a single source of molecular data (e.g. cpDNA) would be 
insufficient to derive strong conclusions regarding species relationships, and 
comparison of the three genomes would validate better the ambiguities in 
the evolutionary history of Pinus. 

The origin of the genus Pinus is thought to be Early Cretaceous in the 
middle latitudes of Laurasia, as the earliest fossil attributed to Pinus belgica 
was found in Belgium and was dated to 145-125 MYA (Alvin 1960). By the 
Late Cretaceous, pines had a widespread distribution in Laurasia and had 
differentiated into two subgenera Pinus and Strobus (Millar 1998; Willyard 
et al. 2007). The evolution of the genus Pinus in Tertiary and Quaternary 
was highly influenced by climatic changes. The impacts of Quaternary glacial 
cycles on the distribution of pines and their genetic diversity have been well 
documented. For example, pine trees in boreal regions (e.g. P. sylvestris, P. 
contorta and P. banksiana) have shifted to southern latitudes during 
glaciations and colonized their current natural ranges from multiple and 
genetically differentiated glacial refugia (Naydenov et al. 2007; Godbout et 
al. 2012). In contrast, evolution of the genus during Tertiary remains 
obscure. Changing climates in the early Tertiary established warm and 
humid tropical/subtropical conditions throughout middle latitudes. 
Temperatures and rainfall reached their maxima in the early Eocene. Millar 
(1998) hypothesized that pines retreated into three important refugia 
(circumpolar high-latitude zone, low latitudes in North America and 
Euriasia, and upland regions in the middle latitudes of western North 
America) during the warm and humid periods of the Eocene, and 
recolonized middle latitudes following the cooling and drying of the climate 
at the end of Eocene. However, the history of isolation in the Eocene and the 
expansion process during Oligocene-Miocene remain unconfirmed, and 
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Millar’s hypothesis about Eocene refugia has not yet been tested using 
molecular data (but see Eckert & Hall 2006). Contractions and expansions 
out of Eocene and Pleistocene refugia could have resulted in contact between 
previously geographically separated species, and provided additional 
opportunities for hybridization and introgression. Therefore, hybridization 
and reticulate evolution could have been common in pines and played an 
important role in the evolution of the genus as a whole. 

In the first study of this thesis (Paper I), I investigated historical 
introgression in the genus Pinus by comparing mtDNA trees with cpDNA 
trees. By using ancestral region reconstruction and molecular dating, we 
inferred the biogeographical history of the genus and the Eocene impacts on 
pine distribution and evolution. 

Pinus densata – a homoploid hybrid species on the Tibetan 
Plateau 

Pinus densata represents a highly successful case of homoploid hybrid 
speciation (HHS) with far-reaching evolutionary consequences. This species 
forms extensive forests that regenerate well on the south-eastern (SE) 
Tibetan Plateau at elevations ranging from 2700 to 4200 m above sea level 
(Mao et al. 2009; Mao & Wang 2011). Ecological niche modeling has 
projected a vast area that may potentially be inhabited by P. densata, making 
it perhaps the most successful plant homoploid hybrid species in terms of 
the geographic scale of establishment reported to date (Mao & Wang 2011). 
Genetic analyses suggest that P. densata originated from hybridization 
between Pinus tabuliformis and Pinus yunnanensis without any change in 
ploidy level (Wang & Szmidt 1994; Wang et al. 2001; Liu et al. 2003; Song et 
al. 2003). Pinus tabuliformis is widely distributed from northern to central 
China, while P. yunnanensis has a relatively limited range in southwest (SW) 
China (Mao & Wang 2011). The distribution of the three pine species forms a 
geographical succession, with P. tabuliformis, P. densata and P. 
yunnanensis generally being found in northerly, intermediate and southerly 
latitudes, respectively (Mao & Wang 2011). 

It was hypothesized that the evolution of P. densata following the initial 
hybridization events into a stabilized taxonomic unit was promoted by the 
uplift of the SE Tibetan Plateau, after which the successful hybrid lineages 
colonized the new, empty plateau habitat that was inaccessible to both 
parental species (Wang & Szmidt 1994; Wang et al. 2001; Ma et al. 2006). 
Patterns of variation in allozymes, cp, mt, and nuclear DNA show that 
individual populations of P. densata have very diverse genetic compositions, 
with reciprocal parentage and varying degrees of genomic contribution from 



13 
 

each parental species (Wang & Szmidt 1994; Wang et al. 2001; Song et al. 
2003; Ma et al. 2006). These results suggest that individual populations of 
P. densata have unique evolutionary histories e.g. originated from 
independent hybridization, established by different colonization events, and 
varying introgression from parental species. However, due to inadequate 
geographic sampling in previous studies, the historical processes responsible 
for the current distribution and population structure of the species remain 
ambiguous.  

In Paper II of this thesis, mt- and cpDNA variation was surveyed in P. 
densata and its two putative parental species throughout their ranges. We 
addressed the following questions: 1) Where did P. densata originate, and 
how did it colonize the SE Tibetan Plateau? 2) What genetic events occurred 
in the hybrid zone, and accompanied its colonization and evolution? In 
Paper III, we surveyed nucleotide polymorphisms in nuclear genes in P. 
densata and its parental species. Using this information and coalescent 
simulations, we inferred the divergence process of P. densata during its 
origin and subsequent colonization of vast new territories. Our specific 
objectives were: 1) to establish timeframes for the origin and subsequent 
divergence of P. densata lineages, 2) to determine how the size of the P. 
densata population varied throughout its speciation history, and 3) to 
characterize the patterns of introgression from parental species and the gene 
flow between divergent gene pools of P. densata.  

Pinus yunnanensis – a subtropical pine endemic to 
southwest China 

Pinus yunnanensis is a subtropical pine endemic to SW China, which has a 
continuous distribution in the Yunnan-Guizhou region at elevations ranging 
from 700-3000 m above sea level across all the major river valleys (Mao & 
Wang 2011). Climatic conditions vary between regions divided by the 
mountain chains, and pronounced morphological variations in this pine have 
been recorded across its range (Yu et al. 1998; Mao et al. 2009). Pinus 
yunnanensis was involved in the speciation of P. densata as one of the 
parental species (Wang & Szmidt 1994; Wang et al. 2001; Song et al. 2003).  

The topography of SW China is characterized by a number of large valley 
systems, which were reorganized and reinforced during the uplift of the SE 
Tibetan Plateau in the Late Miocene-Pliocene (Clark et al. 2004). Species in 
this region responded uniquely to these landscape changes. In a number of 
conifers, herbs and shrubs, phylogeographic studies have revealed major 
landscape effects in which the current mountain and valley systems have 
acted as natural dispersal barriers (Gao et al. 2007; Yuan et al. 2008), while 
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in some other plants, the spatial genetic structure was found to reflect the 
historical geography of the region rather than the current geography (Zhang 
et al. 2011; Yue et al. 2012). SW China has been free from glacial advances 
and retreats, creating a region with high biodiversity that has been 
maintained for millions of years (Yao et al. 2012). Thus, local adaptation and 
ecological divergence have potentially had sufficient time to influence the 
pattern of genetic differentiation in many local species. Similarly, the genetic 
divergence of P. yunnanensis could have been driven by both neutral and 
selective processes.  

In Paper IV, we sampled populations of P. yunnanensis throughout its 
range to cover most of its ecological habitats. Both mtDNA and cpDNA 
variation and environmental data were analyzed to assess the influence of 
ecological and historical factors on genetic divergence in this species. We 
addressed the following questions: 1) How is genetic diversity distributed 
geographically in P. yunnanensis, and does the observed genetic pattern 
better reflect the modern or the historical geography? 2) What is the extent 
of environmental heterogeneity within the species’ range, and could 
ecological factors have promoted genetic differentiation among populations 
experiencing different habitats in this pine? 

Pinus krempfii – a Tertiary relic pine in Vietnam  

Pinus krempfii is a unique pine endemic to Vietnam.  It is a large tree, up to 
30 m in height, with diameter at breast height up to 2 m. This species occurs 
in small groups of 10-30 individuals in tropical mixed broadleaf forest. 
Morphologically it differs from all the other pines by having two flat leaf-like 
needles rather than typical pine needles (Lecomte 1921; Mirov 1967). As a 
result, since its first description by Lecomte (1921), there has been a 
considerable controversy over its classification (reviewed in Price et al. 
1998). In most recent classifications, P. krempfii has been considered to 
belong to the subgenus Strobus (Price et al. 1998; Gernandt et al. 2005). The 
placement of P. krempfii in subgenus Strobus was supported by phylogenetic 
studies based on both cp and nuclear DNA data (Wang et al. 1999; Wang et 
al. 2000; Gernandt et al. 2005; Syring et al. 2005; Parks et al. 2012). A 
fossil-calibrated phylogeny suggests that the diversification within the genus 
Pinus was relatively recent, with the emergence of the P. krempfii lineage 
dating to 14-27 million years ago (Willyard et al. 2007). 

Pinus krempfii is regarded as an endangered species and its distribution 
is limited to just two provinces in Vietnam (Nguyen et al. 2004). However, in 
spite of biological and economic importance of this unusual species, there is 
no information about the levels and patterns of genetic variation in its 
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Aims of the Thesis 
Gene flow and hybridization play important roles in plant evolution. The 
process of divergence and speciation is strongly influenced by neutral and 
selective forces and their interactions with the genetic system of the 
organisms. The dissection of these processes in natural systems is important 
for understanding the general importance of interspecific gene flow in 
generating novel biodiversity and the mechanisms driving divergent 
adaptation and speciation in plants. This thesis investigated the geographical 
distribution of introgression in the genus Pinus, the speciation history of the 
homoploid hybrid pine P. densata, and the patterns and mechanisms of 
divergence in two additional subtropical pine species. The specific aims 
were: 

I. To establish the historical introgression events in the 
evolution of the genus Pinus, and reconstruct the recent 
biogeographical history of the genus.   

 
II. To establish the origin, population structure and demographic 

history of the hybrid pine P. densata. 
 

III. To examine the impact of geography and environment on the 
genetic differentiation of the subtropical pine P. yunnanensis. 

 
IV. To evaluate genetic diversity and population demography of 

an endangered endemic pine P. krempfii. 
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Results and Discussion  

MtDNA Capture and Biogeographic History of the 
Genus Pinus 

MtDNA capture 

In Paper I, we sequenced more than 11 kbp mtDNA segments in multiple 
accessions of 36 pine species. By using phylogenetic and phylogeographic 
methods, we traced the historical introgression and mtDNA capture events, 
and reconstructed the biogeographical history of the genus. The mtDNA 
based phylogenetic tree of the genus differed from that based on chloroplast 
DNA in the placement of several groups of species (Figure 4). In subgenus 
Pinus (hard pines), the Himalayan P. roxburghii and the southeast Asian 
tropical P. merkusii are grouped with east Asian pines of the subsection 
Pinus on the mtDNA tree (Figure 4). In contrast, on the cpDNA trees these 
two species are grouped with members of the Mediterranean subsection 
Pinaster (Gernandt et al. 2005; Eckert & Hall 2006; Parks et al. 2012). Pinus 
roxgburghii and P. merkusii are morphologically similar to Mediterranean 
pines (Klaus & Ehrendorfer 1989; Frankis 1993). Klaus & Ehrendorfer (1989) 
proposed that the Mediterranean ancestor of P. roxburghii followed the 
Tethys coast to the east and reached the Himalayan region where P. 
roxburghii arose. At present, P. roxburghii is restricted to the Himalayas, 
and isolated from the species of subsection Pinus. It is possible that P. 
roxburghii colonized further east along the Himalayas and encountered the 
ancestor of those east Asian hard pines before the uplift of the Tibetan 
Plateau. Spatial expansion can induce introgression from local species into 
colonizing species in genomes with low migration ability (e.g. the mt genome 
in pine), and result in mtDNA capture (Petit & Excoffier 2009). Under these 
scenarios, P. roxburghii could have captured mtDNA from the ancestor of 
some East Asian hard pines and subsequently fixed it by drift during range 
shifts. Pinus merkusii might have followed a similar evolutionary pathway to 
that of P. roxburghii: ancestral migration from the Mediterranean and 
capture of Asian mtDNA. It is even plausible that both species shared the 
same capture event, and their separation was due to the uplift of the Tibetan 
Plateau. A long isolation history and adaptation to different environments 
could lead to distinct morphology, population structure, and chemical 
composition in these species (Mirov 1967; Szmidt et al. 1996).  

In subgenus Strobus, four Eurasian species (P. parviflora, P. cembra, P. 
armandii and P. wallichiana, which are referred to as PCAW species 
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hereafter) of subsection Strobus were grouped with subsections 
Gerardianae (excluding P. bungeana) and Krempfianae, and were well 
separated from all other species (non-PCAW species) of subsection Strobus 
on the mtDNA tree (Figure 4). In contrast, all previous studies based on 
cpDNA support the monophyly of subsection Strobus and its sister 
relationship to subsections Gerardianae and/or Krempfianae (Wang et al. 
1999; Gernandt et al. 2005; Eckert & Hall 2006; Parks et al. 2012). This 
difference in the placement of the PCAW species on the mtDNA and cpDNA 
trees indicates the capture of an mtDNA lineage from the ancestor of 
subsections Gerardianae and Krempfianae by the ancestor of PCAW. The 
time of the capture event was estimated to 27-14 MYA. This time coincides 
with the Miocene expansion of pines from Eocene refugia, where the 
ancestor of the PCAW species could have encountered that of Gerardianae-
Krempfianae and captured mtDNA from it. 

The remaining species in subsection Strobus (non-PCAW species) formed 
one strongly supported clade on our mtDNA tree, in which species of central 
to south North America (P. lambertiana, P. flexilis P. ayacahuite and P. 
strobiformis) grouped with species from both sides of Beringia (P. 
koraiensis, P. pumila, P. monticola and P. albicaulis; Figure 4). This pattern 
is different from that based on cpDNA, in which species of central to 
southern North America are distinct from those from the Beringia region 
(Gernandt et al. 2005; Parks et al. 2012). This may point to another capture 
event of mtDNA in subgenus Strobus, probably from a northern species (P. 
albicaulis or P. monticola) by central and southern North American species.  

 
 

 

Figure 4. Geographical distributions of species from subgenera Pinus (A) 
and Strobus (B) adapted from Mirov (1967). The distribution of major 
groups of species identified from mtDNA and cpDNA trees (see C for details) 
are shown by outlines and shaded areas, respectively. Species with different 
placements on the two trees are indicated in bold. (C) Contrasting 
phylogenies of mtDNA and cpDNA for the genus Pinus. Species with 
different placements on the two trees were indicated in bold. Within each 
subgenus, major groups of branches were colored individually. Two possible 
positions of P. bungeana revealed by different mtDNA segments are shown 
by a dashed red line. Branch lengths of mtDNA tree were drawn to reflect 
divergence estimations based on silent sites by using an 85 MYA calibration 
as the divergence time between the two subgenera of Pinus. The cpDNA tree 
was determined from full chloroplast genome sequences adapted from Parks 
et al. (2012). The geological time scale (MYA) was provided to refer 
branching events to specific epochs. 
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Biogeography of the genus Pinus 

In subgenus Strobus, the first two splitting events generated three main 
clades, section Parrya, and subsections Gerardiana-Krempfianae and 
Strobus, approximately 59 MYA and 45 MYA, respectively (Figure 4). These 
estimated divergence times are consistent with climate fluctuations during 
Eocene, when pine species retreated into three important refugia (Millar 
1998). Thus, the early divergence in subgenus Strobus could have started or 
have been reinforced when the three main clades survived in different 
Eocene refugia. According to their current distribution, these three main 
clades could have been preserved in different Eocene refugia with section 
Parrya, subsections Gerardiana and Krempfianae and subsection Strobus 
confined to the middle latitudes of western North America, alongside the 
Tethys Ocean, and in the circumpolar high-latitude zone, respectively. 

 In contrast to subgenus Strobus, the divergence in subgenus Pinus 
started after the Eocene, during the Oligocene-Miocene. The crown group of 
subgenus Pinus is connected by a long stem, which extends over 50 million 
years (Myr) from the Late Cretaceous to the Oligocene. The tree topology of a 
long stem leading to a cluster of short branches indicates a mass extinction 
as suggested by a previous simulation study (Crisp & Cook 2009). Thus, 
subgenus Pinus could have experienced extinctions during its contraction 
into the Eocene refugium, most likely a single refugium located in a 
circumpolar high-latitude zone, from where they could colonize North 
America and Eurasia through Beringia after they expanded out of their 
refugium. During the Oligocene-Miocene expansion, genetic drift could have 
increased the genetic differentiation between lineages that colonized 
different continents. Geographical barriers created since the mid-Miocene 
would have facilitated divergence between pine species on different 
continents, and finally generated sections Pinus and Trifoliae in Eurasia and 
North America, respectively. Further colonization by each section within 
their respective continents could have induced Miocene species radiation 
within the different sections.  

In conclusion, our analyses revealed clear discrepancies between the 
mtDNA and cpDNA trees of the genus Pinus. These discrepancies are 
associated with strong geographical patterns indicating mtDNA captures 
during past contraction and expansion histories. The multiple mtDNA 
capture events identified in this study suggest that hybridization and 
introgression were common and played an important role in the evolution of 
the genus. Patterns of divergence within the genus suggest earlier 
diversification of subgenus Strobus and its preservation in multiple refugia 
during the Eocene, in contrast to the more recent diversification of the extant 
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lineages of subgenus Pinus, which probably occurred during its expansion 
from a single Eocene refugium. These results provide new insights into the 
evolution of the genus.  

Homoploid Hybrid Speciation of Pinus densata  

Hybridization and colonization processes of Pinus densata 

In Paper II, we surveyed paternally inherited chloroplast (cp) and maternally 
inherited mitochondrial (mt) DNA variation within and among 54 
populations of P. densata and its putative parental species throughout their 
respective ranges (Figure 5). High levels of total genetic diversity and 
population differentiation were detected in P. densata at both mtDNA (HT = 
0.735 and GST = 0.841) and cpDNA (HT = 0.929 and GST = 0.126). The 
distribution of this variation was geographically highly structured (Figure 5). 
Analysis of mtDNA spatial genetic structure across all populations of P. 
densata detected seven groups of populations (Groups I-VII, Figure 5), while 
the cpDNA variation identified two groups of populations in this species 
(Groups A and B, Figure 5).  

The ancestral hybrid zone 
The most genetically complex populations were those located in the 
northeastern periphery of the P. densata range (Groups I-IV). Both major 
and rare mitotypes representative of P. tabuliformis, P. yunnanensis and P. 
densata were detected in populations from this region. The presence of the 
common P. yunnanensis and P. tabuliformis mitotypes (e.g. M4, M8 and 
M24) in populations of P. densata from this region suggests that P. 
yunnanensis and P. tabuliformis overlapped and hybridized in this place, as 
both of these species appear to have acted as maternal parents. All 
populations of P. densata in this region (Group A) were dominated by P. 
tabuliformis chlorotypes, indicating predominant pollen flow from P. 
tabuliformis. These findings are consistent with hypotheses regarding 
evolutionary history of P. densata relating to the recent uplift of Tibetan 
Plateau. Hybridization could have occurred in the previously overlapping 
zone between P. yunnanensis and P. tabuliformis. The uplift of the south-
eastern Tibetan Plateau and associated climate changes could have gradually 
pushed P. yunnanensis and P. tabuliformis range southward and northward 
to their present distribution, respectively. After that, populations in the 
ancestral hybrid zone became fragmented and isolated. The region of the 
ancestral hybrid zone between P. yunnanensis and P. tabuliformis is 
recognized as one of the lowland refugial areas at the southern and eastern 
fringes of the Tibetan Plateau (Lehmkuhl 1998; Frenzel et al. 2003), thus 
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ancestral polymorphism and unique haplotypes that arose through mutation 
and recombination could have been preserved, resulting in a mitotype-rich 
area. 

The westward colonization before glaciations 
In contrast to the spatially restricted Groups I-IV in the ancestral hybrid 
zone, Groups V-VII each spanned a large geographic region with low levels of 
mtDNA diversity in the west of P. densata range. These three groups are 
each monomorphic (or almost monomorphic) for M13, M12 and M11, 
respectively (Figure 5). A similar, but less pronounced, reduction in genetic 
diversity was also detected in cpDNA. Populations in the western part of the 
P. densata range (Group B, corresponds to mtDNA Groups V-VII) were 
dominated by P. yunnanensis chlorotypes, indicating predominant pollen 
flow from P. yunnanensis. Populations in the most western part (Nos. 15-26) 
have different frequencies of cpDNA alleles from populations in other 
regions. These populations could have been isolated from parental species by 
seed and pollen exchange for a long time. The decline in genetic diversity for 
both mtDNA and cpDNA from the east to the west of P. densata range 
indicates a westward range expansion, during which a series of bottlenecks 
occurred along the colonization route. The westward colonization of P. 
densata probably arose in three waves, leading to establishment of Groups 
V-VII, respectively. The fixation of unique mitotypes in Groups V-VII was 
likely caused by allele surfing during this range expansion.  

 
 
 
 

Figure 5. (A) Geographic distribution of the 54 sampled populations of P. 
densata, P. tabuliformis and P. yunnanensis. (B) The distribution of the 29 
mitotypes detected in the three pine species. Pie charts show the proportions 
of the different mitotypes in each population. Seven groups (I-VII) of P. 
densata are shown. In the network, each link represents one mutation step, 
and circle size is proportional to the frequency of a mitotype over all 
populations. (C) The distribution and relationships of chlorotypes. Fifty 
common chlorotypes were clustered into two major groups. In the network, 
circle size is proportional to the frequency of a chlorotype over all 
populations. The pie chart for each population shows the proportions of the 
chlorotypes from the different groups. Chlorotypes that occurred only once 
or twice over all populations are in black. The two groups (A and B) of P. 
densata populations are also shown. 
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Pinus densata colonized the Tibetan Plateau before the last glaciations 
(see Paper III). Quaternary glaciations in Tibet were geographically limited 
to isolated mountain groups or smaller plateaus in higher mountains (Shi 
2002; Lehmkuhl & Owen 2005). Thus, P. densata populations could have 
persisted during the glaciations in multiple small regional refugia, and this 
ancient genetic structure could have been preserved in extant populations. 
Repeated periods of isolation and range expansion during glaciation cycles 
could have enhanced population differentiation and independent evolution.  

In summary, strong spatial genetic structure in both cp and mtDNA was 
detected in P. densata populations. The northeastern part of the P. densata 
range represents the ancestral hybrid zone and the central and western parts 
seem to have been established by multiple colonization events. Along the 
colonization route, consecutive bottlenecks and surfing of rare alleles caused 
a significant reduction in genetic diversity and strong population 
differentiation. The direction and intensity of introgression of P. densata 
with the two parental species varies among populations across its geographic 
range. Pollen flowed predominantly from P. tabuliformis in the ancestral 
hybrid zone, from P. yunnanensis in the western part, and the most western 
populations have been isolated from their parental species by seed and 
pollen flow for a long time. The observed spatial distribution of genetic 
diversity in P. densata appears to reflect the persistence of this species on 
the plateau during the last glaciations. Our results indicate that both the 
ancient and contemporary population dynamics have contributed to the 
spatial distribution of the genetic diversity in P. densata. 

Demographic history of Pinus denasata 

In Paper III, we sampled populations of P. densata that are representative of 
different colonization events (Paper II), and surveyed nucleotide 
polymorphism over eight nuclear loci in 19 populations of P. densata and its 
parental species. Using this information and coalescence simulations, we 
assessed the historical changes in its population size, gene flow and 
divergence in time and space. 

Genetic diversity and population structure at nuclear loci 
High levels of nucleotide polymorphism (θw = 0.0098 and πt = 0.0065) and 
population differentiation (FST = 0.282) were detected in P. densata. The 
genetic composition of P. densata varied across geographic regions, and its 
populations could be roughly divided into three groups (I-III, Figure 6). The 
genetic composition of Group I (Nos. 1-3) and Group III (Nos. 9-10) were 
dominated by ancestry from P. tabuliformis and P. densata, respectively. 
Group II (Nos. 4-8) had evenly admixed ancestry from both parental species 
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extensive forests. Rapid speciation events triggered by the uplift of the 
plateau have also been proposed for other plant species in this region (e.g. 
Liu et al. 2006). Divergence within P. densata coincides with regional 
topographic changes during the Pliocene and middle Pleistocene glaciations 
(Zheng & Rutter 1998; Clark et al. 2004). Thus, differentiation between P. 
densata groups was affected by both regional tectonic events and climate 
fluctuations. 
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Figure 7. Summary of the isolation-with-migration model for the three P. 
densata groups. Fifteen demographic parameters estimated by IMa2 are 
shown. Each block represents a current or ancestral population with their 
estimated effective population size (Ne). Arrows denote the direction of gene 
flow with the estimated migration rate labeled above or below the arrow. The 
timings of the two splitting events are indicated in MYA. 

The effective population size estimated for the ancestor of P. densata 
(ancestor of all three groups, 0.41 × 105) was much higher than that for the 
ancestor of Groups II and III (less than 1000, Figure 7), indicating that a 
severe bottleneck occurred during the westward colonization. This finding is 
consistent with the significant decline in genetic diversity in both 
cytoplasmic (Paper II) and nuclear genomes along the route of westward 
colonization. ABC simulations suggested that all three P. densata groups 
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experienced a bottleneck followed by exponential growth. The weakest and 
most ancient bottleneck was detected in Group I. This region is recognized as 
a refugial area (Lehmkuhl 1998; Frenzel et al. 2003), where populations 
could have been less exposed to climatic fluctuations than those in Groups II 
and III. In contrast to Group I, the effective population size for Groups II 
and III have increased from their ancestor by factors of 367 and 112, 
respectively. 

Patterns of intraspecific gene flow varied among different P. densata 
groups (Figure 7). Relatively high gene flow (2Nm>1.0) was only detected 
between neighboring groups. Low gene flow between geographically distant 
groups (Groups I and III) was probably caused by the long distances 
separating them and the complex topography of southeast Tibet. Gene flow 
detected between Groups I and II is more likely to be a signature of historical 
gene exchange because continued gene flow would have homogenized the 
distinct mt and cpDNA structures observed in these groups (Paper II). Gene 
flow detected between Groups II and III may reflect a secondary contact 
after the most recent glaciations, because only the most geographically close 
populations between Group II and III showed similar chloroplast genome 
components (Paper II). Gene flow from Groups I and III into Group II was 
much higher than in the opposite directions. These asymmetric gene flows 
could be caused by intrinsic or extrinsic factors affecting hybridization 
outcomes. This interesting phenomenon is worth further investigation. On 
the other hand, we have to keep in mind that violation of IM assumption due 
to gene flow from unsampled populations may result in biased estimations of 
gene flow (Strasburg & Rieseberg 2010). 

In summary, the present study based on nuclear DNA data revealed high 
levels of genetic diversity and population differentiation in P. densata. 
Coalescence analyses further established details of the demography and 
speciation history of this species, yielding four key findings. First, P. densata 
originated in the late Miocene triggered by the recent uplift of the Tibetan 
Plateau. The divergence within P. densata dates from the late Pliocene and 
was induced by regional topographic changes and Pleistocene glaciations. 
Second, the ancestral P. densata population was much larger than the 
ancestral population sizes of the central and western populations, indicating 
severe bottlenecks during the westward colonization. Third, recent 
population expansions have occurred in all geographic regions, especially in 
the western populations, but at different times in the past. Finally, gene flow 
between P. densata populations is limited and is observed only between 
adjacent geographic regions. Such genetic isolation could be due to geo-
physical, ecological and intrinsic genetic factors. 
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Role of Geography and Ecology in the Genetic 
Divergence of Pinus yunnanensis 
In Paper IV, we sampled 16 populations throughout the range of P. 
yunnanensis, and investigated the patterning of intraspecific genetic 
diversity based on mt- and cpDNA data. By using this information, together 
with environmental data, we assessed the relative roles of ecological and 
geographic factors on genetic divergence within P. yunnanensis. 

Genetic diversity and phylogeography of Pinus 
yunnanensis 

Population differentiation in mtDNA (GST = 0.538) was higher than that in 
cpDNA (GST =0.108). This result is consistent with expectations regarding 
patterns of genetic diversity for these two cytoplasmic genomes. For mtDNA, 
seven population groups (I-VII) were detected, while cpDNA variation failed 
to reveal any meaningful phylogeographic grouping. Group I, VI and VII 
each spanned a large geographical area in the western, central and 
southeastern regions of P. yunnanensis, respectively (Figure 8). The other 
four groups (II-V) were each restricted to the centre of the P. yunnanensis 
range. Sharing of mitotypes between groups was widespread even though the 
groups were separated by both paleo- and modern river systems. The sharing 
of mitotypes between regions of P. yunnanensis indicates that there was 
probably a low relief of paleo-landscape, where regional populations were 
connected and this pattern is still visible in the extant population structure. 
Group II and III each have one population with unique mitotype 
compositions. These two populations were distributed along the paleo-
Jinsha River, but separated from each other by a sharp bend in the current 
river course. The establishment of these two populations is likely to have 
been linked to the formation of the modern river course (Clark et al. 2004), 
during which distinct mitotypes could have been fixed by genetic drift. 
Taking together, we propose that the distribution of mtDNA variation in P. 
yunnanensis has been shaped by both the paleo-landscape and the 
formation of the modern regional topography. The observation of continuous 
genetic differentiation over the main range of P. yunnanensis, together with 
discrete isolated local clusters, suggests an ancient landscape that imposed 
little constraint on migration, but which was subsequently disrupted due to 
regional geological movements. 
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IBD vs. IBE 

Partial Mantel tests found that mtDNA genetic distance significantly 
correlated with both geographic and ecological distance (rgen-geo = 0.22, P < 
0.05; rgen-eco = 0.28, P < 0.05), while cpDNA genetic distance only correlated 
with geographic distance (rgen-geo = 0.25, P < 0.01; rgen-eco = -0.06, P > 0.05) at 
species level. These results indicate that both geographic and environmental 
factors contributed to the pattern of mtDNA variation across the species as a 
whole, but only geographic distance affected cpDNA relatedness between 
populations. 

Three distinct ecotypic clusters (Py-eco1, Py-eco2 and Py-eco3) were 
identified in P. yunnanensis (Figure 9). This division is broadly congruent 
with that based on mtDNA variation. The two peripheral Groups I and VII 
corresponded to Py-eco1 and Py-eco3, respectively, and all the other five 
groups (II-VI) in the central area belonged to Py-eco2. The Py-eco1 region 
has a humid subtropical climate similar to the Mio-Pliocene paleo-climate, in 
which the ancestor of P. yunnanensis was present (Xing et al. 2010). The Py-
eco3 region represents a much drier climate than Py-eco1. Populations in 
this region have a distinct morphology characterized by thin and pendulous 
needles, which is considered to be adaptation to dry and hot environments 
(Li & Wang 1981). The congruence between ecological and genetic divisions 
suggests that environmental adaptation could have contributed to the 
genetic divergence of Py-eco1 and Py-eco3. Py-eco2 covers the major range 
of the species, including population Groups II-VI. Partial Mantel test 
revealed that population genetic distance in this region correlated only with 
geographic distance (rgen-geo = 0.18, P < 0.05; rgen-eco = 0.03, P > 0.05). Thus, 
the genetic groups recognized in Py-eco2 were shaped by geographical 
factors rather than by enviromental elements.  

Overall, integrating the results of genetic analysis and ecological niche 
modeling revealed the ecological and phylogeographic processes driving 
intraspecific genetic divergence within P. yunnanensis. In this species, the 
observation of continuous genetic differentiation over the majority of its 
range and discrete isolated local clusters suggests a paleo-landscape that was 
generally well connected and imposed few migration constraints, but which 
was subsequently disrupted as a result of geomorphological movements in 
response to the uplift of the eastern Tibetan Plateau. The genetic 
distinctiveness of the western and southeastern populations is consistent 
with niche divergence and geographical isolation of these groups, suggesting 
that both geographical and environmental factors played a role in their 
differentiation. In contrast, population structure in the central area of P. 
yunnanensis was shaped mainly by neutral processes and local geography 
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Genetic Variation and Population Demography of 
Pinus krempfii 
In Paper V, we sampled 57 individuals from six natural populations of P. 
krempfii. Genetic variation of this species was analyzed at ten nuclear genes, 
14 mitochondrial mtDNA regions and seven cpSSR loci. Our analysis 
revealed extremely low levels of nucleotide polymorphism in P. krempfii. For 
nuclear loci, the mean silent nucleotide diversity in P. krempfii (πs = 0.0015, 
θws = 0.0020) was 4-10 fold lower than most of previous estimates for other 
pines (Figure 10). For mtDNA, this species showed no variation across 10 
mtDNA regions (~ 10 kbp). For the cpSSR, haplotype diversity (He = 0.911) 
detected in P. krempfii was comparable with other pines due to the hyper-
variable nature of SSR markers. Thus, P. krempfii displays one of the lowest 
nucleotide diversity among pines reported this far.  

Low (5.2%) but significant differentiation was detected among the extant 
populations of P. krempfii. This level of differentiation is comparable with 
pine species of wide distribution ranges (e.g. Ma et al. 2006). Apparently, 
despite relative proximity of individual populations the fragmented nature of 
P. krempfii distribution has led to certain degree of population 
differentiation. Unlike most other pines, P. krempfii does not form pure 
stands. Individual populations consist of small groups of trees or solitary 
individuals dispersed among dense thicket of other tree species (Nguyen & 
Thomas 2004). These conditions are likely to limit dispersal of its pollen and 
seed, and contribute to differentiation between local populations. 

We used ABC to infer the demographic history of P. krempfii based on 
nuclear loci. The ABC model selection approach indicated population 
expansion in P. krempfii. Population expansion was also supported by a 
mismatch distribution test based on the cpDNA data. Assuming a generation 
time of 50 years and mutation rate per year of 7 × 10-10 estimated for the 
genus Pinus by Willyard et al. (2007), the estimated population size for P. 
krempfii was 1.43 × 104, and population growth started approximately 49 
generations ago. This population expansion history is too short to allow for 
accumulation of extensive polymorphism. Moreover, the habitat of P. 
krempfii has deteriorated and become fragmented in the last decades 
(Nguyen et al. 2004), which could have resulted in the reduction and 
fragmentation of P. krempfii populations. The reduction in population size 
and population fragmentation could decrease the frequency of rare alleles in 
a very short time (Ellstrand & Elam 1993). However, the most recent 
population decline may not be detectable by the current data and 
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Concluding Remarks 
This thesis addressed the role of hybridization, geography and climate in the 
evolution of Pinus species. The geographical distribution of cytoplasmic DNA 
variations revealed relatively common introgression between pine species 
during the past range contractions and expansions of the different species, 
resulting in multiple mtDNA capture events in different geographical 
regions. Hybridization has generated new biodiversity through homoploid 
hybrid speciation in the genus. A significant case of hybrid speciation is the 
origin and establishment of P. densata via multiple hybridization events in 
the late Miocene, during the uplift of the Tibetan Plateau. The complex 
genetic structure detected in this species has been shaped by both ancient 
and contemporary population dynamics. Multiple origins from genetically 
differentiated parental lineages and varied parental introgression across 
geographical regions have resulted in the distinct genetic composition of 
different populations across the species range. During the colonization of the 
Tibetan Plateau from the ancestral hybrid zone, consecutive bottlenecks and 
surfing of the rare alleles have caused a significant reduction in genetic 
diversity and strong population differentiation. Further genetic divergence 
among geographical regions of this species was induced by regional 
topographic changes and climate changes from the Pliocene onwards.  

Similar to the strong spatial genetic structure observed in P. densata, 
significant differentiation across complex landscapes was discovered in P. 
yunnanensis, a species distributed south of the southeast Tibetan Plateau. 
Both environmental and geographical factors were found to have contributed 
to genetic divergence in P. yunnanensis. However, their relative importance 
varied among population groupings across the species’ range. Further to the 
south in the tropical region of southeast Asia, there is a marked reduction in 
pine species diversity. This thesis conducted the first population genetic 
study on endemic, relict P. krempfii in Vietnam, and found extremely low 
genetic diversity in the species. Further simulations suggested that a small 
ancestral population size, short-term population expansion and habitat 
fragmentation were likely responsible for this low genetic diversity. 

Overall, the thesis highlights the important role of hybridization in 
generating novel genetic diversity in the genus Pinus. It also demonstrates 
the different mechanisms that drive divergence and adaptation in the genus. 
These results are important for understanding the drivers and tempo of 
adaptation and divergence in conifers, and advance our knowledge on the 
origin and maintenance of biological diversity on the Tibetan Plateau and 
other mountain systems. Future studies on adaptation and speciation should 
employ functional and population genomic data together with new statistical 
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tools to better characterize and quantify the interplay between selection, 
hybridization and other evolutionary processes, and their genomic and 
adaptive consequences. 
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Table S7 Sampling, data and references for the studies of nucleotide diversity in pines. 

Species No. of loci N πt πs θw θws Ne × 104* Reference 

Pinus krempfii 10 57 0,0011 0.0015 0,0014 0,0020 1.39 This study 

P. tabuliformis 7 43 0,0085 0.0119 0,0107 0,0153 10.93 (Ma et al. 2006) 

8 48 0,0070 0.0150 0,0092 0,0173 12.37 (Gao et al. 2012) 

P. yunnanensis 7 29 0,0067 0.0095 0,0055 0,0077 5.50 (Ma et al. 2006) 

8 40 0,0046 0.0101 0,0060 0,0101 7.21 (Gao et al. 2012) 

P. densata 7 66 0,0086 0.0122 0,0101 0,0143 10.21 (Ma et al. 2006) 

8 136 0,0065 0.0138 0,0098 0,0153 10,93 (Gao et al. 2012) 

P. pinaster 11 208 0,0055 0.0085 0,0062 na 6,07 (Eveno et al. 2008) 

6 122 0,0057 na 0,0045 na 3,20 (Grivet et al. 2011) 

8 14 0,0024 na 0,0021 na 1,52 (Pot et al. 2005) 

P.radiata 8 23 0,0019 na 0,0019 na 1,36 (Pot et al. 2005) 

P. taeda 19 32 0,0040 0.0064 0,0041 0,0066 4,70 (Brown et al. 2004) 

28 32 na na 0,0049 0,0059 4,20 (Neale & Savolainen 2004) 

16 32 na na 0,0046 0,0070 5,00 (Neale & Savolainen 2004) 

18 32 0,0051 0,0085 0,0053 0,0079 5,56 (Gonzalez-Martinez et al. 2006) 

41 32 0,0049 0,0070 0,0060 0,0093 6,6 (Ersoz et al. 2010) 

P. halepensis 10 60 0.0018  na 0,0029 na 2,07 (Grivet et al. 2009) 

6 93 0,0031 na 0,0026 na 1,86 (Grivet et al. 2011) 

P. sylvestris 16 40 0,0034† 0,0070 0,0061† 0,0050 3,57 (Pyhäjärvi  et al. 2007) 

17 40 0,0041 0.0057 na 0,0080 5.71 (Wachowiak et al. 2011a) 

14 40 0,0060 0,0077 na 0,0089 6,35 (Wachowiak et al. 2009) 

11 119 0,0032 0,0055 0,0053 0,0062 4,43 (Kujala & Savolainen 2012) 

12 40 0,0078 0,0117 na 0,0095 6,79 (Wachowiak et al. 2011b) 

8 28 0,0058 0,0076 0,0063 0,0055 3,94 (Ren et al. 2012) 

8 35 na 0,0079 na 0,010 7,14 (Pyhajarvi et al. 2011) 

P. mugo 17 12 0,0049 0.0067 na 0,0072 5.14 (Wachowiak et al. 2011a) 

12 169 0,0118 0,0185 na 0,0169 12,07 (Wachowiak et al. 2013) 

310 12 0,0077 0,0065 0,0076 0,0067 4,79 (Mosca et al. 2012) 

P. uncinata 12 93 0,0113 0,0178 na 0,0134 9,57 (Wachowiak et al. 2013) 

P.cembra 280 12 0,0018 0,0024 0,0019 0,0024 1,71 (Mosca et al. 2012) 

P.chiapensis 3 7 0,0031 na na na 2,21 (Syring et al. 2007) 

P.ayacahuite 3 8 0,0036 na na na 2,57 (Syring et al. 2007) 

P.monticola 3 9 0,0092 na na na 6,57 (Syring et al. 2007) 

P.strobus 3 10 0,0044 na na na 3,14 (Syring et al. 2007) 

P.thunbergii 15 16 0,0061 na 0,00697 na 4,32 (Suharyanto & Shiraishi 2011) 

P.densiflora 15 16 0,0053 na 0,00778 na 3,76 (Suharyanto & Shiraishi 2011) 

8 28 0,0060 0,0078 0,00642 0,0064 4,57 (Ren et al. 2012) 

P.luchuensis 15 16 0,0050 na 0,00607 na 3,59 (Suharyanto & Shiraishi 2011) 

P.balfouriana 5 40 0,0035 na 0,00325 na 2,32 (Eckert et al. 2008) 

P.canariensis 3 384 0,0036 na 0,00367 na 2,56 (Lopez et al. 2013) 

P. contorta 21 95 0,0025 0,0035 0,00251 0,0034 2,43 (Eckert et al. 2012) 
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