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Umeå University 2013



Doctoral Dissertation
Department of Statistics
Ume̊a School of Business and Economics
Ume̊a University
SE-901 87 Ume̊a

Copyright c⃝ 2013 by Maria Josefsson
Statistical Studies No. 47
ISBN: 978-91-7459-760-8
ISSN: 1100-8989
Cover: H̊akan Gustafson
Electronic version available at http://umu.diva-portal.org/

Printed by: Print & Media
Ume̊a, Sweden 2013



As we grow older, we may grow wiser...
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Abstract

Longitudinal studies of cognition are preferred to cross-sectional stud-
ies, since they offer a direct assessment of age-related cognitive change
(within-person change). Statistical methods for analyzing age-related
change are widely available. There are, however, a number of challenges
accompanying such analyzes, including cohort differences, ceiling- and
floor effects, and attrition. These difficulties challenge the analyst and
puts stringent requirements on the statistical method being used.

The objective of Paper I is to develop a classifying method to study
discrepancies in age-related cognitive change. The method needs to take
into account the complex issues accompanying studies of cognitive aging,
and specifically work out issues related to attrition. In a second step,
we aim to identify predictors explaining stability or decline in cognitive
performance in relation to demographic, life-style, health-related, and
genetic factors.

In the second paper, which is a continuation of Paper I, we investigate
brain characteristics, structural and functional, that differ between suc-
cessful aging elderly and elderly with an average cognitive performance
over 15-20 years.

In Paper III we develop a Bayesian model to estimate the causal effect
of living arrangement (living alone versus living with someone) on cog-
nitive decline. The model must balance confounding variables between
the two living arrangement groups as well as account for non-ignorable
attrition. This is achieved by combining propensity score matching with
a pattern mixture model for longitudinal data.

In paper IV, the objective is to adapt and implement available impu-
tation methods to longitudinal fMRI data, where some subjects are lost
to follow-up. We apply these missing data methods to a real dataset,
and evaluate these methods in a simulation study.

Keywords: Attrition, missing data, age-related cognitive change, non-
ignorable dropout, monotone missing pattern, mixture models, pattern-
mixture models, imputation
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1 Introduction

Normal aging is associated with decline in memory and other higher-
order cognitive functions (Rönnlund et al., 2005; Schaie et al., 1994;
Verhaeghen and Salthouse, 1997). There are, however, large discrepan-
cies between individuals (Habib et al., 2007), where some elderly adults
have atypically large decline, whereas others maintain high levels of cog-
nitive functions in old age (Christensen et al., 1999). Accelerated decline
has been much studied and linked to pathology such as dementia diseases
(Bäckman et al., 2001; Palmer et al., 2008). By contrast, factors deter-
mining well-preserved cognition, “successful aging” (Rowe and Kahn,
1987), in older age remain less well characterized (Yaffe et al., 2009).

Longitudinal studies offer a direct assessment of age-related change
(within-person change), in contrast to cross-sectional studies, where es-
timates rather show age differences (between-person change). Statistical
techniques for analyzing longitudinal change are widely available (Laird
and Ware, 1982; Zeger et al., 1988). However, a number of challenges
accompany analyses of cognitive aging, such as cohort differences, ceiling
and floor effects, and attrition. These difficulties challenge the analyst
and puts stringent requirements on the statistical method being used.
First, attrition - loss of participants to follow-up, is one of the major
methodological problems in longitudinal studies. There is evidence of
attrition causing severe positive bias (Cooney et al., 1988; Yaffe et al.,
2010; Dufouil et al., 2004; Caracciolo et al., 2008), because those remain-
ing in the study have systematically better cognitive performance than
those dropping out. Furthermore, if participants with a more rapid de-
cline in memory performance tend to drop out earlier from the study, the
attrition is related to this progression and hence is informative (Little,
1995).

Second, cohort differences are group discrepancies that appears, when
examined at the same age, later born cohorts are found to be cognitively
fitter and experience less rapid cognitive decline than earlier born cohorts
(Aldwin et al., 2006; Bäckman et al., 1999; Schaie, 2012; Gerstorf et al.,
2011). It is important to separate the effects of cohorts and historical
differences from those processes underlying aging.

A third consideration arises from the fact that when tests are per-
formed repeatedly over time participant may perform better at subse-
quent test occasions because of practice effects.

Finally, cognitive tests are usually discrete and consists of sum-scores
of different items, which gives a limited range of possible values. If
the participant’s performance level is outside the range of the test, this
results in problematic distribution of the cognitive tests such as ceil-
ing and floor effects (Morris et al., 1999; Jacqmin-Gadda et al., 1997;
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Proust-Lima et al., 2011). Causing an artificial association between ini-
tial level and change, since individuals in the upper or lower end of the
distribution only can change in one direction.

The aim of this thesis is to develop methods for studying age-related
cognitive change. Importantly, these methods must take into account
the complex issues accompanying longitudinal studies of cognitive aging,
and specifically work out issues related to attrition.

2 The Betula Study

The Betula project (Nilsson et al., 1997, 2004) is an ongoing prospec-
tive cohort study of nearly 4500 adults. The objective is to study how
memory functions change over time and identify risk factors for demen-
tia. Data has so far been collected every 5th year since 1988-1990. At
present, five waves of data collection have been completed and a sixth
wave started during the fall of 2013. Participants were recruited using
random selection from the population registry in Ume̊a, Sweden, com-
prising of individuals evenly distributed across 11 age cohorts, 35, 40,
45,. . . 85 years of age, and balanced on sex to reflect the distribution in
the population within that age-cohort. At each visit participants under-
went a health examination, questionnaires, and an extensive battery of
cognitive tests.

Participants from several samples have been tested over the years,
though not all were tested at each wave. Two samples have been followed
longitudinally over 15-20 years; Sample 1 (S1) was recruited in 1988-1990
and Sample 3 (S3) in 1993-1995. Data from these two samples, and one
additional sample, Sample 6 (S6), are used in this thesis. These are
further described below.

In addition to cognitive data, structural and functional MRI (mag-
netic resonance imaging) was also available. First, we considered a longi-
tudinal brain imaging study, where the initial objective was to study ge-
netic variation in relation to brain function. Participants (n=60), mainly
from S1 (additionally three individuals from Sample 2), were recruited
in 2002-2003 which was followed by a second test wave in 2008-2009.
Second, in connection with the fifth measurement wave, (2008-2010) in
Betula, another subsample from S1 and S3 were also scanned with struc-
tural and functional MRI. Additional participants from a newly recruited
sample (S6) were also included in the latter imaging study, adding up to
375 persons in total. Participation in this study was randomly offered to
individuals, stratified by age and gender, who had completed cognitive
testing at T5 until all slots were fille.

The study was approved by the Regional Ethical Vetting Board at
Ume̊a University and all participants gave informed written consent.
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Figure 1: Lowess curves fitted to Episodic memory score at enrollment
for approximately 2000 participants in the Betula study. Participants were
stratified into four groups on the basis of their last available measurement;
{1, 0, 0, 0},{1, 1, 0, 0},{1, 1, 1, 0} and {1, 1, 1, 1}, where 0 indicates missing and
1 indicates observed for each of the four measurement waves.

2.1 Study participants: Paper I

The study participants consisted of 1954 individuals from S1 and S3.
At enrollment the samples comprised of approximately 1000 individuals
each, evenly distributed over 11 age-cohorts with 5-year intervals ranging
from 35-85 years of age, and approximately balanced on sex. Cognitive,
lifestyle and medical data from four test waves were used in this study.

Memory was assessed using number of correct answers from a com-
posite of five validated episodic memory tasks sensitive to mild cognitive
deficits (Nilsson et al., 1997). The composite consisted of: (1) immedi-
ate free recall of 16 imperative verb-noun sentences that were enacted
by the participant, (2) delayed cued recall of nouns from the previously
enacted sentences, (3) immediate free recall of 16 verbally and visually
presented verb-noun sentences, (4) delayed cued recall of nouns from
the previously presented sentences, and (5) immediate free recall of 12
verbally presented nouns. Testing procedures remained constant across
measurement occasions. The range of the episodic memory composite
scores is 0 to 76, with a higher score indicating better episodic memory.

Only 45% of the participants from S1 and S3 completed the fourth
test wave. Reasons for attrition included withdrawal, moving out of the
area, sickness and dementia, death, no contact, and unknown/unspecified
reasons. Although the study was based on a random sample, attrition
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Figure 2: Longitudinal average episodic memory score for approximately 1500
participants in the Betula study with two or more measurements. Participants
were stratified by age and dropout groups, where each line represents a dropout
group stratified by age, and each color represents an age cohort.

was expected to be related to observed as well as unobserved memory
performance. Participants were combined into four groups on the basis
of their last available measurement. The performance level differ be-
tween the dropout groups, where individuals participating longer in the
study perform better on the episodic memory composite test, both at
baseline and over time, compared to early dropouts. When stratified by
age, middle aged participants do not show this attrition bias. However
among elderly participants the bias increases, see Figure 1 and 2.

2.2 Study participants: Paper II

The study participants consisted of individuals that underwent struc-
tural and functional MRI in the imaging study. Participants were sub-
divided into three groups. One group of successful-agers (n=51): all
elderly participants in the imaging sample who had been classified as
cognitive maintainers using the model presented in Study I, and one
control group (n=51): participants classified as having average cogni-
tive development over 15-20 years, matched on age (person by person).
The classification is based on data up to the fifth test wave (when the
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imaging study started), 20 years for S1 and 15 years for S3. Finally, one
young reference group (n=45): 45 years of age or younger were included.
The young reference group was used to interpret the group differences
between the successful and average elderly.

Participants were excluded for the following reasons: problems with
visual acuity, poor-quality structural T1 image preventing satisfactory
normalization, not fulfilling pre-established performance criteria for the
scanner task, and health-related issues, remarks from the radiologist
screening the structural scans for abnormalities or outlier status across
all voxels/clusters.

All included participants were in good general health, without major
neurological impairments or diagnoses, and had normal, or corrected to
normal, vision.

2.3 Study participants: Paper III

For Paper III the same samples as for Paper I were used. With the
aim to study differences in longitudinal change of cognitive performance
among individuals living alone versus living with someone, only indi-
viduals participating in two or more test waves and the variable “liv-
ing arrangement” observed (at enrollment) were included (n=1552). Of
these, 1213 individuals were living with someone and 339 living alone at
enrollment. Many of the participants who dropped out were due to the
event of death which further complicates analysis. In the event of death
after a participant drops out, information regarding participant’s date
of death is available for all individuals including those who dropped out
for other reasons.

2.4 Study participants: Paper IV

Participants included in Study IV were a subsample of 60 Betula par-
ticipants (mainly from S1, although three subjects were from Sample
2). Longitudinal fMRI data from two test waves was available. Partici-
pants were originally recruited for a brain imaging study in 2002-2003.
The initial objective was to study genetic variation in relation to brain
function. For this reason, 50% of the participants were carriers of at
least one APOE e4 allele. Of the 60 individuals who participated in the
baseline study, 38 completed the follow-up study in 2008-2009. Reasons
for nonparticipation included dementia, illness, death and other.
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3 Brain Imaging - Functional MRI

Functional Magnetic Resonance Imaging (fMRI) is a noninvasive imag-
ing technique that can be used to study neural activity in a subjects
brain. The technique does not measure neural activity directly, in-
stead, the vast majority of fMRI experiments measures the blood oxygen
level-dependent (BOLD) signal, the ratio of oxygenated to deoxygenated
hemoglobin (Ogawa et al., 1992).

In most fMRI research studies, subjects are given some task(-s) to
perform inside the scanner. The goal is then to identify brain areas
activated by the task under study. Commonly, fMRI experiments often
use a so called block-design, where each session consists of a series of
blocks. Within each block subjects perform a task of interest (e.g. a
memory task) which is often alternated with blocks where the subjects
rest. Each session runs for about 30-60 minutes creating an immense
amount of data, and the sheer amount of data greatly contributes to
the difficulties in data analysis. A typical fMRI scan of a whole-brain
collects data in 30-40 slices, where each slice consists of a 64 × 64 array
of voxels, dividing the brain into a set of cubes denoted voxels. The
time required to collect all slices, called repetition time, typically ranges
between 2-3 seconds if the whole brain is scanned.

3.1 Preprocessing

The preprocessing steps basically consist of transformations to prepare
the data for the more interesting task-related analyses. The goal of
preprocessing is to reduce the systematic variability in the data that
comes directly from the scanner environment, and thus isolate or at
least enhance the task-related signal. The major steps involved in fMRI
preprocessing are briefly described below. For an extended overview see
e.g. Ashby (2011, chapter 4) or Lazar (2008, chapter 3).

Usually Slice-timing correction is applied as a first step, since subse-
quent analysis steps usually assume that all voxels are measures simulta-
neously. The slice-timing correction accounts for the fact that slices are
collected one at a time, rather than all at once, by shifting the observed
time series for each voxel.

Even small head movements inside the scanner may create artificial
changes in the BOLD signal, causing errors in latter statistical analyses.
To correct for head-movements, each scan is aligned to a ”reference”
scan, e.g. the first image/scan. Most head motion algorithms assumes
the head motion is ”rigid body” motion, i.e. the head and the brain only
change their position and orientation but not their shape.

There is, sometimes substantial, between-individual variation in the
size and shape of the human brain, but also regularities shared among
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individuals. To merge subjects in a group analysis, it is important that a
specific voxel is assigned to the same brain structure for all individuals.
The Coregistration procedure aligns the subjects structural and func-
tional images, to improve spatial localization of the functional data , i.e
the location of an activation is determined more precisely. Normalization
is the process of registering each subjects images to a standardized space
defined by a template, e.g. Talairach (Talairach and Tournoux, 1988) or
Montreal Neurological Institute (MNI) atlas (Evans et al., 1993), further
facilitating localization.

The next, and usually final, preprocessing step is spatial smooth-
ing. The main advantages of smoothing are, first, to reduce noise, thus
increasing the signal-to-noise ratio (unless the signal is very spatially
narrow), and second, making the data distribution closer to the normal
distribution to better satisfy the assumptions of many statistical models,
perhaps most importantly those of Random Field Theory, for handling
the multiple comparisons problem (further described below).

The most common approach is to spatially smooth the data us-
ing a Gaussian kernel function centred at the voxel ”to be smoothed”.
The kernel is commonly characterized by the full width half maximum
(FWHM), which is connected to the standard deviation σ of the Gaus-
sian distribution by the expression FWHM = σ · 2

√
2 log 2 .

3.2 Data analysis

Statistical analysis of fMRI data involves working with data of massive
size, complicated even further by the spatial and temporal dependence
structure. The standard methods for group analysis uses two stages of
analysis (since most modern fMRI studies have more than one subject,
focus here is on group analysis). The goal with the first stage is a sta-
tistical parametric map for each subject and the second stage combines
these maps into a single group map, to make group inference. Note
that only brief outline of analysis is given here, for a more in-depth
description see, e.g. Lazar (2008, chapter 5).

For the first-stage analysis, a time series regression model is often
used for modeling the BOLD response observed over time in each voxel
for each subject, individually.The subject-specific first-level model for a
voxel is then written as

y = Xβ + ε,

where y is the timeseries of BOLD responses, X the design matrix, β
a parameter vector, and ε the error term, normally, it is assumed that
ε ∼ N(0, Iσ2). The design matrix, X, is general and may contain any
variable which is deemed of interest at subject level, e.g. a task/rest
indicator. Another especially important regressor which is practically
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always used in the first-stage model is the predicted hemodynamic re-
sponse. Put briefly, it takes into consideration the fact that BOLD
response does not start immediately upon presentation of a stimuli (the
peak of the BOLD signal is usually seen 5-6 seconds after presentation),
i.e. a change in experimental condition from baseline to task. The pre-
dicted hemodynamic response also accounts for an undershoot in the
BOLD signal before returning to its baseline value.

The result of the first-stage analysis is an individual parametric map
that specifies a statistic (e.g. a β-value) in every voxel.

The second-stage group analysis involves running a group-level anal-
ysis using the subject-specific values in each voxel, e.g. using Student’s
t-test, ANOVA, multiple regression, or linear mixed-effects models. The
second-stage model can be written in a general way as:

β = XGβG + εG,

where XG the second-level design matrix (e.g. indicators for cases
and controls), βG the second-level parameters and the error term is
εG ∼ N(0, Iσ2

G). The result of the second-stage analysis is a group-level
parametric map, again giving a statistic (at the group level, usually a t-
or F-statistic) at every voxel.

3.3 The multiple comparisons problem

The result from a group analysis as described above is summarized in a
statistical parametric map (SPM). The SPM:s are used for locating vox-
els who are e.g. activated by the experimental task across all groups or
differentially activated by the task, between groups. Thus, hypothesis
tests are carried out simultaneously for each voxel of the brain, typ-
ically hundreds of thousands, and it is crucial to correct for multiple
comparisons.

A standard quantity to control is the family-wise error rate (FWER),
the probability of having one or more false positives across all tests.
The perhaps most common approach, considering all areas of applica-
tions and not just fMRI, for controlling the FWER is the “Bonferroni
correction”, where a p-value threshold of α/V , where V is the number
of tests, is used instead of α in each individual test. The procedure
becomes conservative if there is a correlation between adjacent voxels,
which is expected here.

Another popular approach for controlling FWER in fMRI experi-
ments is the Random Field Theory (RFT) approach (Worsley et al.,
1996) where the spatial correlation between voxels is utilized when de-
termining significance thresholds. Threshold given by RFT are generally
lower (less conservative) than those given by the Bonferroni method if
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the data is fairly smooth and sample sizes not-to-small (Nichols and
Hayasaka, 2003). Following the development in computational power
during recent years, permutation based methods (Nichols and Holmes,
2002) for FWER control are gaining popularity. The RFT and permuta-
tion approaches have in common that they take into consideration that
true activation is likely to be spread over several contiguous voxels, since
voxels are rather arbitrary divisions of the brain.

4 Missing Data in Longitudinal Studies

Participant attrition is one of the main methodological problems in lon-
gitudinal studies of cognitive aging. If participants who drops out of
the study are systematically different from those who remain there is
a potential risk of bias. In this dissertation, we consider a particular
type of dropout, monotone dropout. Assume that the full-data response
vector, for subject i possibly observed at timepoints t = 1, . . . , T , is
Yi = (Yi1, . . . , YiT )

ᵀ. Then for monotone dropout, if Yit is missing, then
Yis is missing for s ≥ t.

Monotone patterns are common in longitudinal studies, because if a
subject drops out of the study in a given time period, then his or her
data will typically be missing in all subsequent time periods.

4.1 Missing data mechanisms

The mechanism that leads to missing data plays a crucial role in the
choices of methods to analyse data that suffer from missing observa-
tions. Plausible, though untestable, assumptions about the mechanism
are required from the data analyst to conduct analyses. Three main
categories of missing data mechanisms are suggested, following the clas-
sification suggested by Rubin (1976); Little and Rubin (2002).

In general, for missing data, the response vector, Yit, can be divided
into two vectors, based on whether values are observed, Y o

it , or missing,
Y m
it . Let Mi be a integer variable (1, 2, ...,m) indicating the highest t for

which the outcome is observed. Finally, let the conditional distribution
of M given Y and covariates X, i.e. f(M | Y,X), characterize the
missing data mechanism.

If the missingness does not depend on the response vector, observed
or unobserved, the missingness mechanism is called missing completely
at random (MCAR),

f(M | Y,X) = f(M | X).

Some distinguishes between mechanisms that are completely random,
f(M | Y,X) = f(M), and mechanisms that depends on covariates,
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f(M | Y,X) = f(M | X). The latter is then called covariate dependent
missing.

If the missingness depends on observed, but not unobserved, re-
sponses, the mechanism is called missing at random (MAR),

f(M | Y,X) = f(M | Y o, X).

If the dropout mechanism depends on the unobserved responses,

f(M | Y,X) = f(M | Y m, Y o, X),

the mechanism is called missing not at random (MNAR). When the
missing data are MNAR the mechanism is said to be non-ignorable.
Then valid analysis can only be obtained by incorporating a model for
the missingness mechanism.

4.2 Methods for missing data in longitudinal studies

The literature on missing data in longitudinal studies often covers dele-
tion methods, discarding subjects or units from further analysis; impu-
tation methods, where plausible values for the missing observations are
filled in, ormodel based approaches (e.g., Little and Rubin, 2002; Schafer,
1997; Daniels and Hogan, 2008; Laird, 1988).

4.2.1 Deletion methods

Complete cases, or listwise deletion, is the most common approach in
practice to handling missing data. The method omits those cases with
missing observations (in the variables involved) and proceed with a, so
called, complete cases analysis. All analyses are calculated with the
same set of cases, which makes it possible to track individual changes
over the entire study period. However, if missingness is not MCAR,
analysis of these complete cases may be biased since they may not be
representative of the population. Moreover, by excluding large number
of individuals, the approach can lead to loss in power.

Another simple deletion approach is available cases analysis, where
all available data are used. The main problem with this approach is
that the parameter estimates will be based on different sets of cases,
with different sample sizes and different standard errors.

In some non-MCAR situations, it is possible to reduce biases from
a complete cases analysis by weighting remaining cases so that their
distribution more closely resembles that of the full sample or population
with respect to observed covariates. Weights are estimated from the
probabilities of response, e.g. by logistic regression, see, e.g., Dufouil
et al. (2000) for an application using weights to a longitudinal study of
cognition.
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4.2.2 Imputation methods

Another method of handling missing observations is to replace them by
one or more plausible values, that is imputing them. Imputation meth-
ods are more efficient than deletion methods as there is no data loss, but
are more difficult to implement and may distort relationships. Various
imputation methods have been proposed in the literature (Rubin, 1987;
Schafer, 1997; Raghunathan et al., 2001). The main difference between
methods concerns the information being used for determining a plausible
value to impute, e.g. population data, baseline data, the observed out-
come and/or covariates. However, for missing repeated measurements
data it is desirable to preserve the longitudinal properties of the data.

Single Imputation, replaces each missing observation with one plau-
sible value. Once imputation is done, analysis is straightforward using
available methods for complete data.

Methods using no subject-specific information are, e.g., mean or me-
dian imputation. These methods replaces missing observations with the
mean/median of valid data for the variable in question. Because the
same value is being substituted for each missing case, this method ar-
tificially reduces the variance of the variable in question, in addition to
diminishing relationships with other variables.

“Observed outcome” methods are e.g. Baseline carried forward (BCF)
and Last observation carried forward (LOCF). These methods replaces
each missing outcome at follow-up with the same subjects baseline mea-
sure or last observed measure, respectively. This often tends to un-
derstate differences in estimated time-trends and is especially bad for
outcomes that have high variation within a subject.

Hot-deck imputation, use information regarding the subject’s ob-
served outcome measures as well as observed covariates. For each miss-
ing subject, the method finds a subject with similar values on baseline
measure and covariates and impute that subject’s observed outcome.

Another method that uses both information on covariates and ob-
served outcomes is regression imputation. The variable to impute, is
regressed on available information of interest using all subjects that are
fully observed. The value to impute is the predicted value from the re-
gression model, with or without added noise. The error value is sampled
from a N(0, s2), where s2 is the residual variance from the regression
model.

So far we have described imputation methods producing a single
complete data set. Instead of replacing each missing value with a sin-
gle value, Rubin’s (1987) multiple imputation method, substitutes each
missing value with a set of M values, typically M is 3− 10. The multi-
ply imputed data sets represents the uncertainty about the missing data
model. The imputed data sets are further analyzed, one by one, using
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standard complete data methods. Resulting in M parameter estimates
along with their estimated variances. Finally, results are combined to
give a single point estimate and confidence intervals.

4.2.3 Mixture models

The linear mixed model (Laird and Ware, 1982) accounts for depen-
dencies between repeated measurements on the same subject. Another
significant feature is the allowance for unbalanced data. These features
make it a natural candidate for modeling longitudinal cognitive data.

The model can be separated into two stages, where in the first stage
group level associations are modeled as fixed effects, and in the second
stage the within-subject dependencies are modeled as random effects.

More specifically, in the second stage one models subject-specific re-
gression coefficients, e.g. individual intercept and slope. These indi-
vidual longitudinal profiles are modeled to overcome problems with un-
balanced data that occur with other multivariate regression techniques.
The model considered is as follows,

Yi = Xiβ + Zibi + ϵi, (1)

where, Y i = (Yi1, . . . , YiT ) is the vector of longitudinal responses for
subject i (i = 1, ..., N). Xi is the corresponding matrix of covariates
and β is the vector of fixed effect coefficients. Zi is the random effects
design matrix (e.g. intercept and time from enrollment) with subject-
specific random effects bi. We assume bi ∼ N(0,Ω), and ϵi ∼ N(0, σ2I)
are independently distributed.

4.2.4 Mixture models for non-ignorable dropout

The linear mixed model provides valid inference if attrition is MAR.
However, when the missing data mechanism is MNAR, one needs to
specify a model for the missingness, which is incorporated in the full
data distribution f(Y,M | X).

There are two general classes of mixture models that account for non-
ignorable dropout in longitudinal studies, selection models and pattern
mixture models (PMM), based on different factorizations of the joint
distribution of the outcome and the missingness.

In selection models, the joint distribution is factorized as the product
of the outcome model and the missingness model (Little, 1995; Daniels
and Hogan, 2008; Diggle and Kenward, 1994)

f(Yi,Mi,bi | Xi) = f(Yi | bi,Xi)f(bi | Xi)f(Mi | Yi,bi,Xi).

In the pattern mixture model, the joint distribution is instead mod-
eled as a mixture over dropout patterns (Little, 1995; Hogan and Laird,
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1997; Wu and Bailey, 1989)

f(Yi,Mi,bi | Xi) = f(Yi | bi,Xi,Mi)f(bi | Mi,Xi)f(Mi | Xi).

For selection models, the main advantage is that they directly spec-
ify the response model, f(Yi | bi,Xi), in which the analyst is usually
interested. For pattern mixture models these parameters are not di-
rectly available. On the other hand, for pattern mixture models the
main advantage is the straightforward implementation using standard
procedures for linear mixed models.

In this dissertation, we focus on pattern mixture models to handle
non-ignorable dropout. To account for non-ignorable dropout in the
PMM, a common approach is to stratify the population by the subject’s
last observed measurement wave, as for a monotone missing data pat-
tern. After we stratify on dropout time we assume that missing data,
within a pattern, are MAR. The conditional distribution of the outcome
is further assumed multivariate normal such that

(Yi | bi,Xi,Mi = m) ∼ N(Xiβ
(m) + Zibi, σ

2I),

a modification of the linear mixed model described in previous section,
where β(m) is the vector of fixed effects for subjects with dropout pattern
m, m = 1, ...,M . σ2I is the covariance matrix. Assume also the subject-
specific random effects

bi | Mi = m ∼ N(0,Ω(m)).

The last term, the marginal distribution of Mi follows a multinomial
distribution with parameters πm = Pr(Mi = m), where πm repre-
sents the proportion of the population in dropout pattern m, such that∑M

m=1 πm = 1.
The quantities of interest in this model are usually the population av-

erage regression parameters (e.g., population intercept and slope) which
are weighted averages of the pattern-specific parameters across dropout
patterns,

∑M
m=1 πmβ(m).

4.3 Principal stratification - Truncation by death

In longitudinal studies of cognitive aging, a significant proportion of the
participants in the older cohorts die. Depending on the research question
to solve, truncation due to death could complicate analysis, since, e.g.,
memory performance is not defined after an individual dies. It does
not always make sense to impute such missing information using the
previously mentioned missing data methods, neither is a mixture mod-
eling approach useful, since a linear mixed model implicitly extrapolate
beyond time of dropout.
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Principal stratification (e.g., Frangakis and Rubin, 2002; Frangakis
et al., 2007) is a framework that can be used to define the causal effect of
a treatment on an outcome when the outcome is truncated by death and
not defined thereafter. The parameter of interest is then the “principal
stratum causal effect”, that is, the effect on cognition of a treatment
among the subpopulation of subjects that would have survived (during
the follow up period) irrespective of treatment. The principal stratum
causal effect is defined as

E(Y (1)− Y (0) | S(1) = S(0) = 1),

where Y (0) and Y (1) are assumed to be each individual’s two underlying
memory scores (often called potential outcomes), and S(0) and S(1), are
the two potential survival times (during the time of study) respectively
for each treatment status A = 0 and A = 1. However, this parameter is
not identified since we do not know which individuals in our study are
from this subpopulation.

To overcome this problem (in the setting of a randomized treatment)
Chiba and VanderWeele (2011) showed that the treatment effect esti-
mated by considering only survivors, E(Y | A = 1, S = 1) − E(Y |
A = 0, S = 1), is conservative in the sense that the estimate is atten-
uated relative to the principal stratum causal effect of interest under
the following two assumptions. First monotonicity: for all individu-
als, S(0) ≥ S(1), i.e. their survival time under treatment cannot be
longer than without treatment. The second assumption states that:
E(Y (1) | A = 1, S = 1) ≥ E(Y (1) | A = 0, S = 1). This assumption
holds if the subpopulation that has survived with treatment is health-
ier overall than the subpopulation that has survived without treatment.
This assumption is reasonable if we believe that the treatment is harm-
ful.

The two assumptions guarantee that E(Y (1)−Y (0) | S(1) = S(0) =
1) ≤ E(Y | A = 1, S = 1) − E(Y | A = 0, S = 1). This result is useful
to understand under which conditions the estimated effects based on
survivors have some validity.

5 Summary of Papers

5.1 Paper I: Genetic and lifestyle predictors of 15-year
longitudinal change in episodic memory

The objective of the first paper is to reveal distinct longitudinal trajec-
tories in episodic memory over 15 years. And further to identify demo-
graphic, life-style, health-related, and genetic predictors of stability or
decline in memory performance. For this purpose we use 1954 healthy
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participants aged 35 to 85 at enrollment from the Betula prospective
cohort study, see Section 2.1. In the first step, we analyze data using a
pattern-mixture model that consider the impact of attrition over 2-4 lon-
gitudinal sessions. Participants are further classified into three groups,
high-, average- or low performing, based on initial level and rate of
change, in contrast to a attrition-corrected average development in their
age cohort. In a second step, logistic regression is used to determine
significant predictors of stability or decline relative to average change in
episodic memory. The results show that, of 1558 individuals participat-
ing in two or more test waves, 18% were classified as high performing,
13% as low performing, and 68% show age-typical average change. More
educated, physically active, females and those living with someone are
more likely to be classified as high performing, as well as carriers of the
met allele of the COMT-gene. Less educated, non labor-force active
and male participants are more likely to be classified as low performing,
and the APOE 4 allele is more frequent among low performing par-
ticipants. To conclude, quantitative, attrition-corrected assessment of
longitudinal changes in memory can reveal substantial heterogeneity in
aging trajectories, and such heterogeneity is predicted by genetic and
life-style factors.

5.2 Paper II: Brain characteristics of individuals resisting
age-related cognitive decline over two decades

This paper is a continuation of paper I. Older participants from the
Betula study were classified as successful or average based on initial
level and rate of change in episodic memory scores across 15-20 years,
using the method developed in Study I. Successful elderly (n=51) and
age-matched average elderly underwent functional magnetic resonance
imaging while performing an episodic memory face-name paired associ-
ated task. Results showed that successful older participants had higher
BOLD-signal during encoding than average performing participants, in
the bilateral prefrontal cortex, and the left hippocampus (HC). The HC
activation of the young reference groups was higher than that of the av-
erage but not the successful older group. Task performance correlated
with HC activation, thus likely contributing to the superior memory
performance of successful older participants. The pattern might reflect
individual differences present from young age. Further, the differences
between the older groups could not be accounted for by differences in
brain structure.

The results of this study suggest that a mechanism behind success-
ful cognitive aging might be preservation of HC function combined with
a high frontal responsivity. These findings highlight sources for hetero-
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geneity in cognitive aging, and may hold useful information for cognitive
intervention studies.

5.3 Paper III: Causal inference with longitudinal out-
comes and non-ignorable dropout: Estimating the ef-
fect of living alone on cognitive decline

In this paper we develop a model to estimate the causal effect of living
arrangement (living alone versus living with someone) on cognitive de-
cline. For this purpose we use 1552 healthy participants aged 35 to 85 at
baseline from the Betula study. Episodic memory function is measured
every five years over a 15-year period. The model must both balance con-
founding variables between the two living arrangement groups, as well
as account for non-ignorable attrition. This is achieved by combining
propensity score matching with a pattern mixture model for longitudinal
data.

A fully Bayesian approach allows us to convey the uncertainty in
the estimation of the propensity score and subsequent matching in the
inference of the causal effect of interest. The analysis conducted here
adds to previous studies in the literature concerning the protective effect
of living with someone, by proposing a modeling approach treating living
arrangement as a causal agent.

The results of the current study for individuals 65 and older provide
some evidence of a negative effect of living alone on episodic memory at
enrollment and a negative effect on the rate-of-change. For middle aged
individuals no effect of living arrangement on cognition was found.

5.4 Paper IV: Imputation of missing longitudinal fMRI
data

In this paper we consider the problem with dropout in longitudinal fMRI
(L-fMRI) studies. One disadvantage with standard available methods
for analyzing fMRI data is the exclusion of subjects with missing infor-
mation, which may result in biased estimates and loss of power. One
approach to this problem is to impute the missing information to obtain
a complete dataset. We propose to adapt available imputation methods
to a setting with L-fMRI data, where some subjects had missing obser-
vations at follow-up. We apply the approaches to a real dataset, and
further evaluate the methods in a simulation study.

The current study suggest that several imputation approaches de-
scribed in this paper are feasible for L-fMRI analyses. Our results from
the simulation study indicate that multiple imputation yielded an im-
provement of the validity of the results obtained from datasets with
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missing values, while other simple imputation methods greatly increased
the risk of finding significant activity changes in areas where there were
no actual differences. Results from the analysis of the real data showed
an overlap consisting of four regions, all found by a majority of the miss-
ing data methods including those who performed best in the simulation
study. These findings suggests that imputation may greatly aid L-fMRI
analyses.

6 Final Remarks and Further Research

In this thesis we have proposed methods to study age-related change
in longitudinal studies. These methods were adapted to take into ac-
count the complex issues accompanying studies of cognitive aging, and
specifically work out issues related to attrition.

We further developed a model to estimate the causal effect of a causal
agent (living alone versus living with someone) on cognitive change in
paper III. There are several aspects of our approach that allow for sen-
sitivity analyses. This would be interesting to study in future work, e.g.
sensitivity to the existence of unobserved confounders, or sensitivity to
changes in slope after dropout.

Moreover, in paper IV, the objective was to adapt and implement
available imputation methods to L-fMRI data, where some subjects are
lost to follow-up. In this study we made rather strong assumptions
on the missing data mechanism to be MCAR. Therefore, it would be
of great interest to study how relaxations of these assumptions would
effect results from imputing L-fMRI data.
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