This is the published version of a paper published in *International Journal of Circumpolar Health*.

Citation for the original published paper (version of record):


Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-83798
CONFERENCE ABSTRACTS

CLIMATE CHANGE AND POTENTIAL HEALTH IMPACTS OF INFECTIOUS DISEASES IN THE CIRCUMPOLAR NORTH: FORMATION OF AN INTERNATIONAL CIRCUMPOLAR SURVEILLANCE CLIMATE CHANGE AND INFECTIOUS DISEASE WORKING GROUP

A. Parkinson1, B. Evengard2
1Centers for Disease Control & Prevention, 2Umea University Hospital

The Arctic, like most other parts of the world, has warmed substantially over last few decades. It is well known that temperature and humidity also affect the incidence of many infectious diseases in both animal, insect and bird species. Warmer temperatures may allow infected host animals species to survive winters in larger numbers, increase in population and expand their range of habitation thus increasing the opportunity to pass infections on to other animals and humans. The impact of these changes on human disease in the Arctic is unknown. Pathogens of circumpolar concern include Brucella, Toxoplasma, Trichinella, Clostridium botulinum, Francisella tularensis, and West Nile virus, while Puumalavirus, Tick borne encephalitis virus and Borrelia are of particular concern in Sweden, Norway, Finland, and northern regions of the Russia Federation. The impact of climate change on the incidence of Echinococcus, rabies virus, Giardia, Cryptosporidium are of concern in the US Arctic (Alaska) and northern Canada, while the reemergence of Anthrax and leptospirosis remain a risk in some regions of northern Russian Federation. At a meeting in Copenhagen, September 19, 2011 an International Circumpolar Surveillance Climate Change and Infectious Disease Working Group was formed to share information on climate sensitive infectious diseases in the North. The purpose of the meeting was to identify and coordinate potential cross border collaborative surveillance or research activities that would allow the monitoring of climate sensitive diseases of concern that have the potential to spread. Members consist of subject matter experts from all eight Arctic Countries, WHO and ECDC. Priority areas of collaboration identified include: sharing standardized surveillance and seroprevalence information between countries on diseases of common concern; detection of climate sensitive infectious agents in hunter killed wildlife; and the generation of a “white paper” on climate sensitive infectious diseases in the Arctic.

Contact: A. Parkinson (ajp1@cdc.gov)

CHANGES IN SEASONALITY OF RESPIRATORY SYNCYTIAL VIRUS (RSV) IN A SOUTHWEST REGION OF ALASKA (1994–2010)

R. Singleton1, D. Brudin2, S. Bentley1, T. Hennessy2
1Alaska Native Tribal Health Consortium, 2AIP/CDC


Results. Since 1994–2004, a period when RSV rates declined (178 to 107 per 1000 infants <1 year of age), RSV rates have remained stable at 97 per 1000 infants (2005–7) and 99 per 1000 infants (2008–10). In the first eight years of surveillance (1994–2002), the average length of the RSV season was 32 weeks which decreased to 19 weeks more recently (2003–2010). The average offset of the RSV season shifted 2 weeks between the 2 surveillance periods (May 8–14 [94–02] to May 22–28 [03–10]). The onset of the RSV season, however shifted from an average of Oct 11–17 (94–02) to not starting until Jan 10–16 (03–10).

Conclusions. In this southwest region of rural Alaska, the RSV rate among infants <1 year of age has remained stable in recent years. However, the length of the RSV season has been shorter and started later in the last 8 years of surveillance. Accordingly, the palvizumab administration season for high risk infants has been adjusted.

Contact: R. Singleton (ris2@cdc.gov)

RISK FACTORS FOR RESPIRATORY VIRAL INFECTIONS IN CHILDREN IN GREENLAND

A. Koch1, M. Andersson1, L. Nielsen1, P. Homoe2, J. Wohlfahrt, M. Melbye1
1Statens Serum Institut, 2Main University Hospital

Background. Respiratory tract infections (RTI) are highly prevalent in Greenlandic children. Yet, very little is known about virus causing these infections and risk factors for such.

Methods. An open cohort of children aged 0–4 years was formed in Sisimiut, West Greenland, and followed for 2 years 1996–98 by regular visits. In case of symptoms of upper or lower RTI and regularly at year intervals irrespectively of symptoms nasopharyngeal aspirates were taken and stored frozen until analysis by PCR for 12 respiratory virus (Rhinovirus, Adenovirus, RSV,