This is the published version of a paper published in *PLoS ONE*.

Citation for the original published paper (version of record):

http://dx.doi.org/10.1371/journal.pone.0078191

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-83838
Helicobacter pylori Cholesteryl α-Glucosides Contribute to Its Pathogenicity and Immune Response by Natural Killer T Cells

1 Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
2 Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
3 Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
4 La Jolla Institute for Allergy & Immunology, La Jolla, California, United States of America
5 Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
6 Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden

Abstract

Approximately 10–15% of individuals infected with *Helicobacter pylori* will develop ulcer disease (gastric or duodenal ulcer), while most people infected with *H. pylori* will be asymptomatic. The majority of infected individuals remain asymptomatic partly due to the inhibition of synthesis of cholesteryl α-glucosides in *H. pylori* cell wall by α,1,4-GlcNAc-capped mucin O-glycans, which are expressed in the deeper portion of gastric mucosa. However, it has not been determined how cholesteryl α-glucosyltransferase (αCgT), which forms cholesteryl α-glucosides, functions in the pathogenesis of *H. pylori* infection. Here, we show that the activity of αCgT from *H. pylori* clinical isolates is highly correlated with the degree of gastric atrophy. We investigated the role of cholesteryl α-glucosides in various aspects of the immune response. Phagocytosis and activation of dendritic cells were observed at similar degrees in the presence of wild-type *H. pylori* or variants harboring mutant forms of αCgT showing a range of enzymatic activity. However, cholesteryl α-glucosides were recognized by invariant natural killer T (iNKT) cells, eliciting an immune response *in vitro* and *in vivo*. Following inoculation of *H. pylori* harboring highly active αCgT into iNKT cell-deficient (Jα18−/−) or wild-type mice, bacterial recovery significantly increased in Jα18−/− compared to wild-type mice. Moreover, cytokine production characteristic of Th1 and Th2 cells dramatically decreased in Jα18−/− compared to wild-type mice. These findings demonstrate that cholesteryl α-glucosides play critical roles in *H. pylori*-mediated gastric inflammation and precancerous atrophic gastritis.

Introduction

The gastric pathogen *Helicobacter pylori* is a bacterium that infects over 50 percent of the world's population [1]. If untreated, this infection leads to chronic gastritis and development of pyloric gland atrophy, peptic ulcer, intestinal metaplasia, gastric carcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma [2].

The initial host response to *H. pylori* is strong neutrophilic recruitment, which leads to gastric epithelial damage and is followed by chronic inflammation [3,4]. Such chronic inflammation is associated with infiltration of lymphocytes and plasma cells, forming MALT. In this process, venules in the gastric lamina propria begin to exhibit a high-endothelial venule (HEV)-like phenotype, which likely facilitates immune cell infiltration. Indeed, we have shown that induction of HEV-like vessels is associated with recruitment of mononuclear cells to inflammatory sites, and that eradication of *H. pylori* with antibiotics and treatment with proton pump inhibitors leads to disappearance of HEV-like vessels and diminished mononuclear cell infiltration [3].

After infection, *H. pylori* primarily colonizes surface mucosa of the stomach and rarely reaches deeper portions of the gastric mucosa [3,6], although a more invasive and intracellular infection has also been proposed [7]. Gastric mucins are divided into surface...
and gland mucins [8]. The latter, consists of MUC6, are found in deeper regions of the stomach and are characterized by expression of α1,4-linked N-acetylgalcosamine (α1,4-GlcNAc) attached to core 2-branched O-glycans, which is absent in the surface mucin, MUC5AC [6,9]. It is known that MUC6 is exclusively expressed in mucous neck cells and pyloric glands of the gastric mucosa, while MUC5AC is expressed in gastric surface mucous cells in the stomach [10]. These two types of mucins form a surface mucous gel layer exhibiting an alternating laminated array [11]. Since this differential distribution coincides with distribution of H. pylori, we previously examined the antibioic activity of α1,4-GlcNAc mucin and found that α1,4-GlcNAc-containing mucins inhibit H. pylori growth by blocking synthesis of cholesteryl α-glucosides [12], the major component of H. pylori cell wall lipids [13]. Moreover, mutant mice deficient in α1,4-N-acetylgalcosaminyl-transferase exhibit adenocarcinoma, indicating that α1,4-GlcNAc-containing mucins function as tumor suppressors [10]. Significantly, H. pylori lacks cholesterol and must incorporate it from surrounding host epithelial cells [14]. Cholesteryl α-glucosyltransferase (αCgT) adds an α-glucosyl residue to cholesterol [15], forming cholesteryl α-glucoside (αCGL). αCGL is further derivatized in H. pylori to form cholesteryl acyl α-glucoside (αCAG), cholesteryl phosphatidyl α-glucoside (αCPG), and cholesteryl phosphatidyl monoacyl α-glucoside (αCPG monoacyl) [13]. We previously cloned αCgT using the shotgun method [16] and showed that its activity is inhibited by core 2 O-glycan capped by α1,4-GlcNAc residues [17]. However, the function of cholesteryl α-glucosides in the pathogenesis of H. pylori infection has not been determined.

Invariant natural killer T (iNKT) cells are recognized as immune cells that react with glycolipids. iNKT cells express the T cell receptor (TCR) encoded by Vβ24-Jα18 and Vβ14-Jα18 rearrangements in human and mouse, respectively [18,19]. These TCRs recognize glycolipid antigen presented by CD1d, a non-classical MHC class I-like antigen distinct from c-type lectins that TCRs recognize glycolipid antigen presented by CD1d, a non-classical MHC class I-like antigen distinct from c-type lectins that TCRs recognize. CD1d-restricted iNKT cells express the T cell receptor αβ and produce IFN-γ and IL-4 upon stimulation with α-galactosylceramide from Streptococcus pneumoniae [20]. iNKT cells exhibit unique aspects of both innate and adaptive immunity, distinguishing them from innate immune natural killer (NK) cells [22–24]. Both activated iNKT and NK cells can rapidly produce large amounts of various cytokines such as interleukin (IL)-4, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and IL-17, which likely stimulate different immune cell populations with diverse functions [19]. The potent TCR antigen of iNKT cells is α-galactosylceramide but also includes galactosyl diacylglycerol present in Lyme disease-causing Borrelia burgdorferi [25,26], α-galacturonaric ceramide from Sphingomonas spp [27], and α-glucosyl diacylglycerol from Streptococcus pneumoniae [28]. However, how iNKT cells respond to these bacteria during the course of infection in human patients is not known.

Here, to characterize αCGL function in the innate immune response, we first isolated the αCgT gene from H. pylori retrieved from stomach tissues of H. pylori-infected patients. We found that the activity of cloned αCgT from clinical isolates positively correlates with the atrophy score of stomach tissue. We then constructed recombinant H. pylori harboring αCgT from different clinical isolates and found that αCgT activity is positively correlated with susceptibility to iNKT cells. Moreover, H. pylori containing highly active αCgT were recovered from iNKT cell-deficient mice at levels dramatically higher than from wild-type (WT) mice. In vitro and in vivo analysis identified αCPG (monoacyl) is the most potent antigen for iNKT cells among H. pylori cell components. These findings demonstrate that cholesteryl α-glucosides induce an immune response by iNKT cells, thus causing stomach inflammation due to H. pylori infection.

Results

H. pylori αCgTs isolated from Japanese patients show varying levels of activity relative to αCgT from H. pylori 26695

To determine the role of cholesteryl α-glucosides in H. pylori pathogenesis in the stomach, αCgT genomic DNA was isolated from clinical H. pylori isolates from the stomachs of 24 H. pylori-infected Japanese patients. Amino acid sequences deduced from various αCgT genomic sequences showed at least 20 different amino acid substitutions compared to αCgT from control WT H. pylori 26695, whose whole genome has been sequenced [29] (Figure 1A). DNA encoding αCgT H. pylori 26695 WT was mutated by site-directed mutagenesis to create sequences corresponding to clinical isolates, and mutant proteins were expressed in a bacterial expression vector [30] and their activities measured. Some enzymes showed activity higher than WT αCgT from H. pylori 26695, while others showed decreased activity (Figure 1B), as indicated in yellow and blue, respectively, in Figure 1A.

The amino acid sequence of αCgTs derived from clinical isolates of 18 European and 5 Indian patients was also determined (data not shown). A tyrosine substitution for WT histidine at position 41, which is an activating mutation, is observed in all Japanese isolates; that mutation was only occasionally seen in isolates of European and Indian origin (data not shown), indicating that protein sequences from Japanese patients are more uniform than those isolated from Indian and European individuals. Moreover, all H. pylori isolates from Japanese patients harbored genes encoding the most toxic form of cagA and vacA (vacA-positive and vacA s1/m1, data not shown) [31–33]. However, more than half of the Indian and European clinical isolates harbored the much less toxic vacA s1/m1 or non-toxic vacA s2/m2, and about a quarter of the European H. pylori specimens lacked cagA (data not shown). Due to this diversity, for the remainder of the experiments reported here, we analyzed H. pylori from Japanese patients only.

To determine the effect of amino acid substitutions seen in different H. pylori clones, the entire αCgT sequence in H. pylori 26695 was replaced with sequences present in the 16 different patterns of substitutions of αCgT amino acids and expressed in Escherichia coli, and the mutant αCgT proteins were purified. The activity of those recombinant proteins showed significant variation among clinical isolates, and more than half of the αCgT variants showed increased activity relative to WT H. pylori (Figure 1C).

To determine potential effects of amino acid substitutions on αCgT structure, we firstly attempted to determine the αCgT crystal structure. However, since we could not accomplish this task due to αCgT hydrophobicity, we searched databases for enzymes of similar structure [34]. Our search clearly identified αCgT as a member of the GT-4 family. GT-4 proteins exhibit two Rossmann-fold domains with the active site in a cleft between the two domains. The best hit with a known 3-dimensional structure was phosphatidylinositol mannosyltransferase from Mycobacterium smegmatis (pdb code 2GEJ) [35]. In this case, sequence identity was only 17%, but a “Z-score” of −65.2 indicated high structural similarity (a value of −9.5 indicates 97% confidence) [34]. There was only one major gap in the primary sequence of αCgT: a 12-residue insertion in a loop far from the GDP-mannose binding site. We next built a 5-dimensional model using 2GEJ as template (Figure 2). The model was of high quality as judged by the distribution of hydrophobic residues in the protein core and hydrophilic residues on the surface. Moreover, analysis of the UDP-glucose binding pocket revealed that most of the critical binding residues were identical, including residues implicated in catalysis [35]. Notably, all of the αCgT amino acid
substitutions from Japanese patients are located in the surface region of the αCGT sterical structure and are absent in the UDP-Glc binding pocket (Figure 2).

We next used homologous recombination to replace the *H. pylori* 26695 αCGT sequence with sequences from *H. pylori* harboring αCGT of higher (αCGT_high, strain #10) and lower (αCGT_low, strain #17) activity or to create *H. pylori* lacking the αCGT gene altogether (αCGT_D) in order to compare these variants with parental *H. pylori* 26695 (αCGT_cont) (Figure S1 and Table S1 in File S1). As anticipated, *H. pylori* αCGT_high synthesized greater amounts of cholesteryl α-glucosides than did *H. pylori* αCGT_low, while *H. pylori* lacking αCGT synthesized no cholesteryl α-glucosides (Figure 3A). Among different cholesteryl α-glucosides, αCGL was the most abundant in products of *H. pylori* αCGT_low, most likely because αCGL was not converted to αCAG or αCPG.

Significantly, the αCGT_D *H. pylori* strain grew much more slowly and entered plateau phase earlier than did the parental *H. pylori* 26695 (WT *H. pylori*), and the αCGT_high *H. pylori* clone grew faster than the WT form in liquid culture (Figure 3B). Electron microscopic analysis showed that some αCGT_D *H. pylori* exhibited an aberrant coccoid form [36,37] (Figure 3C). These results indicate that cholesteryl α-glucosides are critical for *H. pylori* growth and normal morphology.

H. pylori αCGT activity is highly correlated with stomach atrophy

We then asked if αCGT levels, and thus those of cholesteryl α-glucosides, were correlated with pathogenesis of *H. pylori* infection. Histological grading of 24 human biopsy samples of the gastric mucosa collated together with the 24 Japanese *H. pylori* strains were judged by five different criteria using the updated Sydney classification.

Figure 1. Amino acid sequences of αCGT from clinical isolates and αCGT activity of protein variants. (A) The αCGT amino acid sequence from 24 clinical isolates was compared to that of *H. pylori* 26695, whose whole genome sequence has been reported. Only variant residues are shown. Residues in yellow and blue represent substitutions that yield higher and lower αCGT activity, respectively, relative to αCGT from *H. pylori* 26695. Proteins of which amino acid residues shown in white boxes were substituted, were not soluble as a recombinant protein in a bacterial expression system and therefore enzyme activity was not assayed. (B) cDNA encoding the amino acid sequence of αCGT from *H. pylori* 26695 in an expression vector was mutated by site-directed mutagenesis to reproduce residues seen in *H. pylori* clinical isolates. Bacterially expressed αCGT was assayed using [3H]UDP-glucose and cholesterol as described in File S1. (C) The entire αCGT sequence in the expression vector was replaced with sequences from *H. pylori* clinical isolates and activity of expressed αCGT was assayed. The assay was performed in triplicate and repeated twice in both (A) and (B). Representative results are shown.

doi:10.1371/journal.pone.0078191.g001
colonies was inversely correlated with
which were reviewed by one senior pathologist (J.N., Figure S2B).
the gastric mucosa was undertaken based on pathology reports,
intestinal metaplasia (data not shown). Histological assessment of
associated with recruitment of mononuclear cells and formation of
in the number of pyloric glands in the antrum and fundic glands in
general, more advanced atrophy was characterized by a decrease
to 3: normal (score 0), mild (1), moderate (2), and marked (3). In
B. These criteria were evaluated each as four grades scored from 0
infiltration of mononuclear cells, glandular atrophy (antrum and
corpus) (Figure 4A). Replotting of those data, as
parameters, activity was highly correlated with the total atrophy
score (antrum and corpus) (Figure 4A). Replotting of those data, as
characterized by a decrease in the number of pyloric glands in the antrum and fundic glands in the
corpus (data not shown). More advanced atrophy was also
associated with recruitment of mononuclear cells and formation of
intestinal metaplasia (data not shown). Histological assessment of
the gastric mucosa was undertaken based on pathology reports,
which were reviewed by one senior pathologist (J.N., Figure S2B).
When αCgT activity of all strains was plotted against these
parameters, activity was highly correlated with the total atrophy
score (antrum and corpus) (Figure 4A). Replotting of those data, as
indicated by the dotted rectangle in Figure 4A, showed that the
total atrophy score is positively correlated with mononuclear cell
recruitment (Figure 4B). Moreover, the number of H. pylori
colonies was inversely correlated with αCgT activity (Figure 4C).
These results strongly suggest that cholesteryl α-glucosides induce
an immune response causing increased inflammation, yet that
response decreases the number of surviving H. pylori. Furthermore,
the atrophy score was correlated with intestinal metaplasia
(Figure 4D), a precancerous phenotype [39], indicating that a
high atrophy score predicts progression to gastric carcinoma.

Figure 2. Ribbon model of αCgT adapted from crystal structure of phosphatidylinositol mannosyltransferase (PimA) from Mycobacterium smegmatis. Homology modeling of αCgT was performed by alignment of αCgT in H. pylori 26695 (wild type) and PimA in M.
smegmatis. Amino acid substitutions observed in Japanese clinical isolates that increase (yellow) and decrease (blue) enzyme activity relative to WT αCgT are shown. The figures are adapted from a figure previously reported in [35].
doi:10.1371/journal.pone.0078191.g002

System [38]: H. pylori infection load, recruitment of neutrophils,
infiltration of mononuclear cells, glandular atrophy (antrum and
corpus), and intestinal metaplasia, as illustrated in Figure S3A and
B. These criteria were evaluated each as four grades scored from 0
to 3: normal (score 0), mild (1), moderate (2), and marked (3). In
general, more advanced atrophy was characterized by a decrease
in the number of pyloric glands in the antrum and fundic glands in
the corpus (data not shown). More advanced atrophy was also
associated with recruitment of mononuclear cells and formation of
intestinal metaplasia (data not shown). Histological assessment of
the gastric mucosa was undertaken based on pathology reports,
which were reviewed by one senior pathologist (J.N., Figure S2B).
When αCgT activity of all strains was plotted against these
parameters, activity was highly correlated with the total atrophy
score (antrum and corpus) (Figure 4A). Replotting of those data, as
indicated by the dotted rectangle in Figure 4A, showed that the
total atrophy score is positively correlated with mononuclear cell
recruitment (Figure 4B). Moreover, the number of H. pylori
colonies was inversely correlated with αCgT activity (Figure 4C).
These results strongly suggest that cholesteryl α-glucosides induce
an immune response causing increased inflammation, yet that
response decreases the number of surviving H. pylori. Furthermore,
the atrophy score was correlated with intestinal metaplasia
(Figure 4D), a precancerous phenotype [39], indicating that a
high atrophy score predicts progression to gastric carcinoma.

Cholesteryl α-glucosides are responsible for an iNKT cell immune response

To determine which immune cells play a critical role in H. pylori
infection, we first assayed phagocytes by macrophage-like
differentiated THP-1 cells (Figure S3A) and antigen presentation by
dendritic cells (DCs) (Figure S3B). Phagocytes was observed in all
αCgT clones, regardless of αCgT activity (Figure S3A).
Activation of DCs was measured by the expression of 3 markers,
CD86, HLA-DR, and CD40. CD86 and HLA-DR are known antigen-presentation markers and CD40 is a differentiation
marker of mature DCs. None of αCgT clones exhibited a
significant difference in terms of recognizing H. pylori expressing
αCgT^{high}, αCgT^{low}, or αCgT^N, in antigen presentation by DCs
(Figure S3B). This result suggests that generally all αCgT clones
analyzed are similarly recognized by macrophages and DCs.

We then tested the possibility that αNKT cells exert a differential
response to H. pylori expressing αCgT^{high} or αCgT^N. Upon
recognition of WT H. pylori, a mouse hybridoma αNKT cell line
produced significant amounts of IL-2, an indicator of αNKT cell
activation. Those levels were roughly equivalent to stimulation by
α-galactosylceramide, a bona fide antigen for αNKT cells. By
contrast, H. pylori lacking αCgT were barely recognized by the
same αNKT hybridoma based on failure to elicit an IL-2 response
(Figure 5A). These results indicate that αNKT cell immune
responses are largely due to recognition of cholesteryl α-glucosides.

Cholesteryl α-glucosides constitute 25% of total H. pylori lipids and
comprise three major forms and one minor form (Figure S4) [13]. All four forms were synthesized and their structure confirmed
by NMR. When we evaluated the three major forms of synthetic
cholesteryl α-glucosides <i>in vitro</i>, cholesteryl phosphatidyl α-glucoside (αCPG) elicited the highest αNKT cell response when
glycolipids were initially dissolved in DMSO (Figure S5A), although the response toward αCPG was significantly less robust
than to α-galactosylceramide. This observation is consistent with a
generally weak interaction of the glycolipid with CD1d (Figure
5D), a α-galactosylceramide receptor. Cholesteryl β-glucoside (βCGL)
was not recognized by αNKT cells (Figure S5A). In other
experiments, DCs were isolated from bone marrow and differen-
tiated using GM-CSF. These immature DCs were then incubated with the four synthetic forms of cholesteryl α-glucosides and
injected intraperitoneally into WT mice. The presence of αNKT
cells in liver, where they are more abundant than in other tissues,
was evaluated 16 hours later. Interestingly, the monocacylated
form of αCPG, which is reportedly a minor component of
cholesteryl α-glucosides [40], was the most potent antigen in the
<i>in vivo</i> assay (Figure 5B). Consistently, an isoelectrofocusing assay
showed that αCPG (monoacyl) was the only lipid that interacted with CD1d (Figure S5B). These results suggest that fatty side chain(s) in cholesteryl α-glucosides are potentially important for CD1d recognition.

H. pylori growth increases in Vα14 iNKT cell-deficient mice

To determine the role of iNKT cells in the *in vivo* immune response to cholesteryl α-glucosides, *H. pylori* clones expressing different αCgT's were inoculated into the stomach of WT or Vα14 iNKT-cell knockout (Jx18−/−) mice, which were generated by genetic deletion of a T cell receptor (Vα14) that recognizes CD1d-bound glycolipids and is unique to iNKT cells [41]. Ten days after the 3rd inoculation, mice were sacrificed and the stomach was excised. Previous reports indicate that macrophage and neutrophil recruitment subsides by 10 days after *H. pylori* inoculation, while T lymphocyte recruitment is initiated 10 days after inoculation [42]. Indeed, histochemical analysis showed that surface mucosa from *H. pylori*-infected Jx18−/− and WT mice was indistinguishable and only a few mononuclear cells, neutrophils or macrophages had been recruited by the 10 day time point (Figure S6A and B). Under these same conditions, αCgThigh *H. pylori* were recovered at lower levels from the stomach of WT mice than from αCgTcont *H. pylori*-infected WT mice. Furthermore, recovery of αCgThigh *H. pylori* was five times greater in Jx18−/− than in WT mice.
Such a substantial increase relative to WT mice was not observed when CgT H. pylori were inoculated into Jα18−/− mice. Significantly, increased mRNA expression of iNKT cells (Table S2 in File S1) were expressed in the stomach and/or underwent proliferation upon inoculation of CgT H. pylori and WT H. pylori relative to controls (Figure 6B). Significantly, a greater number of transcripts expressed in iNKT cells were present in stomach tissue derived from patients infected with H. pylori than in control samples, based on quantitative real-time PCR analysis of polyA+ RNA isolated from those tissue specimens (Figure S7). Overall, these results suggest that H. pylori containing cholesteryl α-glucosides induce proliferation and/or recruitment of iNKT cells to the stomach, where they attack H. pylori in infected tissue.

To evaluate the consequences of an iNKT response upon H. pylori infection, we examined levels of mRNAs encoding cytokines. Following infection of mice with CgT H. pylori, IFN-γ, IL-12p40, and IL-4 transcript levels were significantly decreased in Jα18−/− relative to WT mice (Figure 6C, D, and E). Similarly, expression of IL-2, IL-5, IL-10, and lymphotoxin (LT)-β was reduced in Jα18 knockout mice (Figure S8A, B, D, and F). These results indicate that iNKT cell activation by H. pylori cholesteryl α-glucosides promotes proliferation and/or recruitment of cells producing Th1 cytokines (IFN-γ, IL-2, and IL-12p40) [43], Th2 cytokines (IL-4, IL-5), and a regulatory cytokine (IL-10) [44]. Th17 cells, which are marked by RORγt expression [45], are reportedly associated with an autoimmune response [46]. We also observed increased RORγt expression as well as that of IL-10, which encodes an inducer of regulatory T cells (Tregs), in stomach tissue from WT infected mice, both indicators of iNKT cell activation (Figure S8E and G). However, Foxp3 [47] (Table S2 in File S1) and IL-22 transcripts were hardly detectable, even following analysis using different sets of RT-PCR primers (Figure 6F and Figure S8H), indicating that Tregs were not activated. These results indicate that recognition of cholesteryl α-glucosides by iNKT cells stimulates immune cell responses in various cell lineages, including Th1, Th2, and Th17 cells, and that these responses are associated with decreased recovery of H. pylori.

Discussion

Infection of the stomach with H. pylori induces an acute immune response mediated predominantly by neutrophil infiltration, but the subsequent innate response promotes chronic inflammation mediated by various immune cells. This long-term phase apparently induces HEV-like vessels in gastric mucosa, facilitating T and B lymphocyte recruitment to inflammatory sites in the stomach. We previously found that the presence of H. pylori in the stomach is necessary to facilitate lymphocyte recruitment, and that H. pylori eradication abrogated HEV-like vessels and dramatically decreased the number of mononuclear cells [3]. Similarly, we found recently that gastric MALT lymphoma is associated with the appearance of HEV-like vessels that express MECA-79 negative sialyl Lewis X [48], suggesting that non-sulfated sialyl...
Figure 5. In vitro and in vivo responses to NKT cell activation. (A) H. pylori lysates from wild type (WT) or αGtΔ clones at 10^7 CFU/well (×1) or 5-fold diluted (×5) were incubated with 10 μg/ml mouse CD1d-tetramer for 24 hours and then with mouse NKT cells for another 16 hours prior to analysis of IL-2 in supernatants. α-galactosylceramide as antigen (6 ng/well) served as a positive control. WT H. pylori and α-galactosylceramide produced equivalent levels of IL-2. IL-2 production was absent when CD1d was absent. Means ± S. D. are shown. (B) Mouse DCs were isolated from bone marrow, activated with the indicated cholesteryl α-glycosides (50 μg/ml) or vehicle, and injected into WT mice. Sixteen hours later, liver mononuclear cells were subjected to FACS analysis to assay IFN-γ and TNF-α in α-galactosylceramide/CD1d-gated cells. α-galactosylceramide (αGalCer) and BbGL-IIc glycolipid from B. burgdorferi served as positive antigens.

doi:10.1371/journal.pone.0078191.g005
Lewis X recruits lymphocytes during progression of gastric MALT-lymphoma.

Here we show that cholesteryl α-glucosides in H. pylori play a critical role in the early phase of inflammation in H. pylori-infected mice. Moreover, we observed highly significant diversity in αCgT amino acid sequences depending on clinical isolates and found that αCgT activity was highly correlated with progression of gastric mucosal atrophy. αCgT amino acid substitutions were not seen at the UDP-Glc binding site, which is located at an inner hydrophobic pocket of αCgT. This observation supports our conclusion that αCgT is essential for H. pylori growth and that mutations that alter UDP-Glc binding abolish H. pylori viability.

Amino acid substitutions that we observed in αCgT from the clinical isolates likely result in αCgT conformational changes, resulting in increased or decreased αCgT activity.

It has been reported that H. pylori is one of the most diverse and variable bacterial species studied. Genetic variation can be generated in a bacterial population by mutation and/or recombination between different strains. As a result, H. pylori exhibits extensive genetic variation, so that almost every infected individual carries their own H. pylori clinical strain. [49]. To investigate the effect of genomic diversity on αCgT activity, we analyzed 24 clinical isolates from Japanese patients, as well as samples from 5 Indian and 18 Europe individuals. Genotyping analysis of H. pylori cagA and vacA, which encode toxic factors [31–33], showed that isolates from all Japanese patients contained toxic forms of these genes (cagA-positive, vacA; s1/m1), while some H. pylori isolates from European and Indian patients showed cagA-negative or weakly toxic or non-toxic vacA subtypes. Moreover, substitution of the histidine residue at position 41 with tyrosine activated αCgT relative to wild-type H. pylori. That substitution was observed in all clinical isolates from Japanese patients, while only a fraction of European and Indian patients harbored that substitution. This finding, together with the presence of CagA and the toxin known as VacA, may account for the high prevalence of gastric cancer in Japan. Additional large-scale examination of H. pylori isolates from patients in different countries such as European nations is necessary to support this hypothesis.

The present study revealed that αCgT activity is higher in H. pylori isolated from patient clinical isolates. As biospecimens were isolated upon diagnosis, the specimens used in this study came from patients who had been infected for varying periods of time. It is noteworthy that αCgT activity is highly correlated with glandular atrophy, regardless of infection history. The degree of

Figure 6. H. pylori survival in WT and Jα18−/− mice and gene expression analysis of chemokines and transcription markers. The stomachs of WT (n = 4) or Jα18−/− (KO) (n = 4) mice infected with H. pylori expressing αCgT variants were assayed for bacterial number and host response 10 days later. (A) Bacterial recovery from the stomach of H. pylori-infected WT or Jα18−/− mice. (B) Expression of Vα14-Jα18 transcripts in stomach tissue specimens from WT mice as measured by RT-PCR. Tissue specimens are the same as those shown in panel A. (C, D, E, F) Expression of IFN-γ (C), IL-12p40 (D), IL-4 (E), and Foxp3 (F) as assayed by RT-PCR. The same cDNA samples used in panel B were used in C through F. Transcript levels were normalized to the β-actin signal. PC in (F) stands for positive control for Foxp3. Statistical analysis was performed using Prism 5 and an unpaired t-test (*, P<0.05). Means ± S. D. are shown. doi:10.1371/journal.pone.0078191.g006
atrophy is also correlated with intestinal metaplasia, a putative precancerous condition, supporting the idea that the inflammatory response leads to gastric cancer [50]. Moreover, unlike normal gastric mucosa, which shows stable expression of α1,4-GlcNAc residues in gastric glands, it is reported that expression of α1,4-GlcNAc residues containing O-glycans in H. pylori-associated intestinal metaplasia is significantly reduced [51]. This fact suggests that disappearance of core 2 O-glycans capped by α1,4-GlcNAc residues may function in the process of intestinal metaplasia. Although previous studies demonstrate a role for invariant NKT cells in various chronic infection-inflammation states, our work demonstrates that invariant NKT cell-mediated chronic inflammation is directly correlated to disease progression in human patients.

Here, we generated recombinant H. pylori in which only the αCgT gene was replaced with forms seen in clinical isolates. We found that H. pylori harboring αCgT^{high} grows more efficiently than does H. pylori expressing αCgT^{low}. Moreover, some H. pylori lacking αCgT exhibited a cocccoid morphology. These results demonstrate that αCgT is critical for H. pylori growth. However, forms of H. pylori that express different amounts of cholesteryl α-g glucosides did not induce a differential response toward macrophages and DCs, suggesting the idea that cholesteryl α-g glucosides are antigens recognized by NKT cells. Notably five-fold greater levels of H. pylori αCgT^{high} were recovered from Jx18^{-/-} than from WT mice. This difference was much greater than differences observed in WT and Jx18^{-/-} mice infected with either αCgT^{Trans} or αCgT^{low} H. pylori. These results clearly show that excess cholesteryl α-glucosides are recognized by NKT, reducing H. pylori infection. Our findings differ from a previous report showing that cholesteryl α-glucosides protect H. pylori from immune cell attack [14]. That work relied on only one H. pylori mutant lacking cholesteryl α-glucosides. Thus, anomalies in that mutant H. pylori may have perturbed the immune response.

Among three major H. pylori cholesteryl α-glucosides, αCPG was identified as the most potent antigen for NKT cells based on an in vitro assay, even though the response toward αCgT was less potent than toward α-galactosylsaccharide. It has been shown that CD1d has two pockets at the α-galactosylsaccharide binding site and that the two acyl chains of the latter fit into these pockets [52]. It is possible that two acyl chains of αCPG similarly fit into these pockets. When these different cholesteryl α-glucosides are presented from DCs, αCPG (monooacyl) is the best antigen in vivo. Therefore, in vivo one acyl chain and cholesteryl with a side chain may be the optimal antigen for NKT interaction with the CD1d pocket.

NKT cells reportedly produce cytokines that stimulate different immune cells [19]. Under the experimental conditions used, an increase in mononuclear cells was not observed 10 days after infection [42]. NKT cells constitute less than 3% of all T lymphocytes in many tissues [53]. Because of their low abundance, an increase in NKT cells was not observed in either WT or Jx18^{-/-} mice. It has been reported that H. pylori infection leads to Th1 cell activation [43]. However, Th2 cell activation has not been well described [54]. The present work shows that 10 days after H. pylori inoculation, the Th2 cell response is as robust as the Th1 cell response, and that those responses largely depend on NKT cells. Since Th2 cells play a role in the tolerogenic response [44], Th2 cell activation by H. pylori may promote long-lasting attenuation of the immune response, which might underlie the chronic nature of H. pylori infections. In our present study, we did not detect an increase in Tregs ten days after infection, while a recent study reports that Tregs increase during influenza virus infection in the presence of H. pylori or αCAG [55]. Our findings suggest that the increase in Th2 cells induced by excess cholesteryl α-glucosides may promote a tolerogenic effect following H. pylori infection through NKT cell activation.

The inflammatory response toward H. pylori infection exemplifies an inflammatory response that leads to cancer [30,56]. The novel function of H. pylori glycan that we report here significantly extends our previous understanding of the roles of glycosylation in pathogenesis [57]. Future studies should determine whether αCgT inhibition constitutes an alternative treatment for H. pylori-induced inflammation and cancer.

Materials and Methods

H. pylori strain and bacterium culture

The standard H. pylori strain 26695 (ATCC700392) was purchased from American Type Culture Collection (ATCC, Manassas, VA), and routinely grown on Tripticase Soy agar with 5% sheep blood (TSA II) (Becton Dickinson, Franklin Lakes, NJ) for 2 to 3 days at 35°C in 12% CO₂. Bacteria were precultured in Brucella broth (Becton Dickinson) supplemented with 10% fetal bovine serum (FBS) (HyClone, Logan, UT). Subsequently, bacteria was diluted to 4 x 10⁷ cells/ml and cultured in brain heart infusion (Becton Dickinson) supplemented with 0.2% yeast extract (Becton Dickinson) and 10% FBS (BHI/YE/FBS). Bacteria cultured in BHI/YE/FBS were used for all experiments except for generation of recombinant αCgT mutants. For targeting of the αCgT gene, bacteria on TSAII plates were used directly without liquid culture.

Mice

C57BL/6 mice were purchased from the Jackson Laboratory. Jx18^{-/-} mice on a C57BL/6 background were generated by Dr. Masaru Taniguchi (Riken, Yokohama, Japan) [41]. All mice were housed in specific pathogen-free conditions. Animals were treated according to the guidelines of the National Institute of Health and the experiments were approved by the Institutional Animal Care and Use Committee of the Sanford-Burnham Medical Research Institute (PHS-Assurance number; A3053-01).

Ethics statement

The experimental protocol and use of all human pathology specimens for research were approved by the Ethical Committee of Shinshu University School of Medicine (Matsumoto, Japan). The Ethical Committee also granted a waiver of informed consent to use H. pylori clinical isolates and the formalin-fixed and paraffin-embedded biopsy specimens retrieved from the pathology file of the Shinshu University Hospital, because the diagnostic use of the samples was completed before the study. Thus no risk to the patients involved was predicted. Samples were also coded to protect patient anonymity.

Clinical isolates

Twenty-four gastric biopsy specimens from Japanese patients were obtained by endoscopic examination at Shinshu University Hospital, Matsumoto, Japan. The patients consisted of 7 male and 17 female (ranging in age from 12 to 83 years; average 49.7 years), and only H. pylori-positive patients were evaluated. For histological assessment of chronic gastritis, at least 5 biopsies were taken; biopsy specimens were fixed in phosphate-buffered 10% formalin (WAKO, Osaka, Japan), embedded in paraffin, and cut into 5-µm-thick sections. Pathological diagnosis was evaluated based on the updated Sydney System.

Clinical bacterial stocks from each specimen were stored at −80°C. H. pylori were cultivated at 35°C under microaerophilic conditions. H. pylori-selective agar plates were utilized (Eiken,
Tokyo, Japan), and single colonies were incubated on TSAII plates (Becton Dickinson) for isolation of genomic DNA. Similarly, genomic DNA was isolated from 5 clinical isolates from India, 10 from Sweden, 3 from Germany, and 5 from Spain, all of which were stored in Umeå University, Umeå, Sweden [30]. Genotyping for cagA and vacA was conducted using published PCR primers [30]. The experimental protocol was approved by the Ethics Committee of Shinshu University School of Medicine and Umeå University.

Generation of αCgT mutants by homologous recombination

The strategy used to disrupt the αCgT gene and replace mutated αCgT from clinical isolates is shown in Figure S2 and File S1. Briefly, αCgTΔα were bacteria deficient in αCgT, and αCgTΔhigh and αCgTΔlow harbored high and low activities, respectively, of αCgT. αCgTmut was a control clone.

Preparation of lysates from WT H. pylori and αCgT mutants

Precultured H. pylori (WT and recombinant αCgT mutants) were washed with PBS twice. 1×10⁶ CFU of bacteria were resuspended in 200 μL PBS, sonicated 10 times each for 10 sec at 30 sec intervals, and then stored at −80°C until use.

In vitro response to αNKT hybridoma cells

Lysates from recombinant αCgTΔα or WT H. pylori (at 1×10⁷ or 2×10⁶ CFU/well, respectively), or 1 μg/well of synthetic compounds were incubated for 24 hours in 96-well microplates coated with 10 μg/ml mouse CD1d-tetramer, according to published methods [60]. For controls, 6 ng/well of α-galactosylceramide and/or 1×10⁶ CFU/well S. yanoikuyae lysate were used [27]. After washing wells with PBS, 1×10⁵ of mouse αNKT hybridoma cells (clone 1.2 or 1.4) were cultured for 16 hours, and then IL-2 secreted into supernatants was measured by a sandwich ELISA (BD Pharmingen, CA, Jolla, CA). Synthetic glycolipids were initially dissolved in dimethyl sulfoxide (DMSO) and then prepared using a series of 10-fold dilutions with assay medium prior to the assay. In parallel, the glycolipids were incorporated in liposomes as described previously [61] and assayed after 20-fold dilution.

In vivo αNKT cell activation

Mouse dendritic cells were prepared by culturing bone marrow cells in media containing 10 ng/ml mouse recombinant GM-CSF (Kyowa-Hakko-Kirin, Tokyo, Japan) for 7 days. 1×10⁶ DCs were then incubated with 50 μg/ml of synthetic cholera toxin α-glucosides, 100 ng/ml of α-galactosylceramide, or 500 ng/ml of BbGL-I.Hc (a glycolipid derived from B. Budorferi) for 24 hours. After washing cells with PBS, 5×10⁵ of glycolipid-pulsed DCs were intravenously injected into C57BL/6 WT mice. Liver mononuclear cells were collected 16 hours later and analyzed directly for IFN-γ and TNF-α levels by FACS Calibur (BD Bioscience) in αNKT cells. Intracellular cytokine staining of α-galactosylceramide-CD1d tetramer-positive cells was carried out according to a published protocol [60].

Short-term H. pylori infection assay

C57BL/6 WT or Jx18−/− mice were fasted overnight and orogastrically inoculated with 3×10⁶ CFU H. pylori in BHI/YE/FBS by a gastric intubation tube three times at one-day intervals. Mice were maintained on a fasting regime for an additional 4 hours after each infection. Control mice were administered media only.

Mice were sacrificed at post-infection day 10 after the third bacterial infection, and the stomach was cut into along the greater curvature, washed with diethylpyrocarbonate (DEPC)-treated PBS, and divided into two pieces along the lesser curvature. For each stomach, one piece was used for measuring wet weight and then placed in 1 ml PBS for quantification of bacterial colonies. The other piece was immediately frozen on dry ice and stored at −80°C for total RNA isolation. RNA extraction and RT-PCR analysis was performed as described in File S1.

Quantification of H. pylori colonies from mouse stomach

Stomach tissue prepared as described above was homogenized in 1 ml of PBS three times. Homogenates at 1:3, 1:10, 1:20, and 1:40 dilutions were prepared in PBS, and then 50 μl of each dilution was put onto an H. pylori selective-agar plate containing 30 μg/ml kanamycin in duplicate. Plates were incubated at 35°C for 5 days under microaerophilic conditions, and colonies were evaluated as CFU/gram of stomach tissue.

Statistical analysis

Statistical analysis was carried out using Prism 5 (GraphPad Software, Inc., La Jolla, CA) and evaluated by an unpaired t-test. P values of <0.05 were considered statistically significant. Correlation coefficients as described by r values were analyzed by calculating Spearman’s rank correlation coefficient.

Other experimental procedures are described in File S1.

Supporting Information

Figure S1 Homologous recombination strategy used to generate H. pylori harboring αCgT from different H. pylori isolates, related to Figure 3. For all manipulations, the kanamycin resistance gene served as a selectable marker. (A) Construction of αCgT-deficient H. pylori (αCgTΔα). (B) Replacement by homologous recombination of the H. pylori 26695 αCgT gene with entire sequences of mutant αCgT derived from clinical isolates, generating H. pylori αCgTΔhigh and αCgTΔlow. αCgTΔmut harboring no αCgT mutations was created as a control. The efficiency of homologous recombination was improved over the previous report [14]. (TIF)

Figure S2 Evaluation of progression of stomach anomalies including peptic ulcer and inflammation, related to Figure 4. (A) Schematic representation of 5 biopsy sites evaluated using the updated Sydney System. Assessed were the lesser curvature of the antrum (A1), the greater curvature of the antrum (A2), the smaller curvature of the angle (IA), the lesser curvature of the middle body (B1), and the greater curvature of the upper body (B2). (B) Histological criteria were evaluated as normal (0), mild (1), moderate (2), and marked (3) degrees of (from left to right) H. pylori infection, infiltration of neutrophils and mononuclear cells, atrophy (antrum and corpus), and intestinal metaplasia in five stomach regions of the stomach (left). Scores of each for sample #1 are shown. (TIF)

Figure S3 Macrophage and dendritic cell responses to different H. pylori clones. (A) THP-1 cells were differentiated by adding phorbol 12-myristate 13-acetate, and 72 hours later different forms of H. pylori (4×10⁶ CFU/ml) expressing αCgTΔhigh, αCgTΔlow, αCgTΔmut, αCgTΔmut, or WT H. pylori 26695 were added to 2×10⁵ differentiated THP-1 cells followed by washing. After 20 hours phagocytosis was evaluated by counting remaining H. pylori. Two H. pylori clones for each mutant were analyzed. Means
CD14-positive cells isolated from human peripheral blood were incubated with IL-4 and GM-CSF for 6 days and those differentiated dendritic cells were then incubated with *H. pylori* lysates at a MOI (*H. pylori/dendritic cells*) of 5 for 48 hours at 37°C. DC maturation/activation was then determined by FACS analysis. CD11c was used to gate mature DCs, and CD86 and HLA-DR expression was determined as markers of antigen-presentation. Expression of CD40, a differentiation marker for DC cells, was also measured. Expression on immature DC cells before pulse is shown in blue. The results represent one of two repeated experiments.

Figure S4 Structures of αCGL, αCAG, and αCPG (monoacl), related to Figures 5 and S6. Structures of αCGL, βCGL, αCAG, αCPG, βCPG (monoacl), and α-L-galactosylceramide are shown. α-linkage is included in all structures except βCGL, αCPG and βCPG (monoacl) possess fatty acid chain(s) as does α-L-galactosylceramide.

Figure S5 iNKT cell activation by synthetic cholesterol α-glycosides and their binding to CD1d, as assessed by isoelectrofocusing. (A) iNKT cell activity toward different cholesterol α-glycosides in *vitro*. 1 µg/well of synthetic αCGL, βCGL, αCAG, αCPG were presented in liposome form or dissolved initially in DMSO. α-L-galactosylceramide (6 ng/well) (αGC) and 1×10^5 CFU/well of a lysate of *S. yamakayae* served as positive controls. IL-2 was measured as in Fig. 5A and Fig. S5. As indicated, αCPG is a much more potent antigen than αCGL in *vitro*. Data represent means ± S. E. M. (B) Binding of αCPG (monoacl) to CD1d assessed by isoelectrofocusing. Incubation of CD1d with indicated lipids resulted in the appearance of a band with altered mobility (arrow) only in presence of αCPG (monoacl). The extent of that shift is comparable to the one observed for the negatively charged sulfated glycolipid. That shift is interpreted as resulting from addition of negatively charged phosphate present on lipid of the protein-lipid complex.

Figure S6 Photomicrographs of stomachs from WT and Jx18−−− mice, related to Figure 6 and S9. Stomachs (fundus and antrum) from WT (A) and Jx18−−− (B) mice were collected 10 days after the last infection with *H. pylori*. Hematoxylin and cosin staining was used. Bar, 100 µm.

Figure S7 Expression of human Vx24Jx18 in paraffin-embedded gastric tissue specimens. Q-PCR analysis of Vx24Jx18 transcript levels in formalin-fixed, paraffin-embedded gastric biopsy specimens relative to levels seen in control human stomach (values set to 1.0). Shown are relative expression of Vx24Jx18 mRNA in 7 patients (A) and median values (25–75 percentile) (B). Vx24Jx18 mRNA expression was not detected in specimens from the remaining 9 patients. Total RNA derived from normal human stomach (purchased from Clontech) served as a reference control. The transcript of αCgT was not detected by RT-PCR. Anomalous levels seen in patient #16 sample could be due to decreased *H. pylori*, which was eradicated by antibiotic treatment before biopsies were taken.

Table S1. Primers used to amplify fragments of the 5’ arm, the KanR gene, (CgT and the 3’ arm in targeting vectors.

Table S2. Primers used for RT-PCR of *H. pylori*-infected mouse stomach tissues.

Acknowledgments

We thank Dr. Masaru Taniguchi for Jx18−−− mice, Drs. A. Godzik, R. M. N. Fukuda and T. Akama for useful discussion; N. Tamura, T. Shibata, M. Yamaguchi, M. Watanebe, T. Nishizawa, Y. Sato, A. Charbono, and J. Groos for technical assistance; E. Lamar for reading the manuscript; W. Lyon and M.S. Anezkoji for organizing the manuscript.

Author Contributions

Conceived and designed the experiments: YI MF. Performed the experiments: YI MLF FM HH AT HL EG DMZ RL M. Kobayashi JB YZ JN. Analyzed the data: YI AT M. Kobayashi TB RJ PHS JN M. Kronenberg MF. Contributed reagents/materials/analysis tools: FM HL XY. Wrote the paper: YI MF RJ MF.

References

