Live VM Migration

Principles and Performance

Petter Svird

LICENTIATE THESIS, MAY 2012
DEPARTMENT OF COMPUTING SCIENCE
UMEA UNIVERSITY
SWEDEN

Department of Computing Science
Umea University
SE-901 87 Umead, Sweden

petters @cs.umu.se

Copyright (©) 2012
Paper I, © ACM, 2011
Paper 11, © IEEE, 2011
Paper 111, © P. Svird, J. Tordsson, E. Elmroth, 2012

ISBN 978-91-7459-452-2
ISSN 0348-0542
UMINF 12.12

Printed by Print & Media, Umea University, 2012

Abstract

Virtualization is a key technology for cloud computing as it allows several operating
system instances to run on the same machine, enhances resource manageability and
enables flexible definition of billing units. Virtualization works by adding a software
layer, a hypervisor, on top of the hardware platform. Virtual Machines, VMs, are run
on top of the hypervisor, which provisions hardwares resources to the VM guests. In
addition to enabling higher utilization of hardware resources, the ability to move VMs
from one host to another is an important feature.

Live migration is the concept of migrating a VM while it is running and responding
to requests. Since VMs can be re-located while running, live migration allows for
better hardware utilization. This is because placement of services can be performed
dynamically and not only when the are started. Live migration is also a useful tool
for administrative purposes. If a server needs to be taken off-line for maintenance
reasons, it can be cleared of services by live migrating these to other hosts.

This thesis investigates the principles behind live migration. The common live mi-
gration approaches in use today are evaluated and common objectives are presented
as well as challenges that have to be overcome in order to implement an ideal live
migration algorithm. The performance of common live migration approaches is also
evaluated and it is found that even though live migration is supported by most hyper-
visors, it has drawbacks which makes the technique hard to use in certain situations.
Migrating CPU and/or memory intensive VMs or migrating VMs over low-bandwidth
links is a problem regardless of which approach that is used. To tackle this problem,
two improvements to live migration are proposed and evaluated, delta compression
and dynamic page transfer reordering. Both improvements demonstrate better per-
formance than the standard algorithm when migrating CPU and/or memory intensive
VMs and migrating over low bandwidth links. Finally, recommendations are made
on which live migration approach to use depending on the scenario and also what
improvements to the standard live migration algorithms should be used and when.

iii

iv

Preface

This thesis consists of a brief introduction to the field, a short discussion of the main
problems studied, and the following papers.

Paper | P. Svird, B. Hudzia, J. Tordsson and E. Elmroth
Evaluation of Delta Compression techniques for Efficient Live Migration
of large Virtual Machines, In The 2011 ACM SIGPLAN/SIGOPS Inter-

national Conference on Virtual Execution Environments, pages 111-120.
ACM 2011

Paper 11 P. Svird, J. Tordsson, B. Hudzia, and E. Elmroth
High Performance Live Migration through Dynamic Page Transfer Re-
ordering and Compression, In Third IEEE International Conference on
Cloud Computing Technology and Science 2011, pages 542-548. 1EEE
2011

Paper Il P. Svird, J. Tordsson and E. Elmroth
The Noble art of Live Migration, Technical Report, UMINF-12.11, May
2012 (Submitted), 2012.

Financial support has been provided by the European Commission’s Seventh Frame-
work Programme ([FP7/2001-2013]) under grant agreements no. 215605 (RESER-
VOIR) and 257115 (OPTIMIS) as well as by UMIT research lab and the Swedish
Government’s strategic research project eSSSENCE.

vi

Acknowledgments

First things first, I thank my supervisor Erik Elmroth for his support and help, espe-
cially in arranging the collaboration with SAP Research that has been very valuable
for this work. T also thank my co-supervisor Johan Tordsson for valuable support
and interesting discussions concerning live migration, snowboarding and other mat-
ters of importance. At SAP Research, the help and support of Benoit Hudzia, Aidan
Shribman and Stuart Hacking has been invaluable concerning design, implementation
and debugging issues with the software prototypes developed within the scope of this
thesis.

Regarding my colleagues in the Cloud and Grid computing group I wish to thank
all of you but there are a few that I want to give a special mention. I thank Tomas Ogren
for help with various computer-related issues, Daniel Espling for good discussions and
for supporting the one true ice hockey team, Luled Hockey, P-O Ostberg for helping
me get settled as a fresh PhD student and last but not least, Wubin ’Viali’ Li for
managing my aversion against svn and eclipse, for his support and for putting up with
my snoring during our frequent travels.

Finally, I thank my family and friends. Without you, this thesis would not have
been possible.

vii

viii

Contents

Introduction

2 Virtualization
2.1 Types of Virtualization
2.2 Applications of Virtualization

3 Live Migration principles
3.1 Approaches to Live Migration
3.1.1 Pre-copy migration
3.1.2 Post-copy migration
3.2 WAN migration
3.3 Live Migration performance

4 Thesis Contributions
4.1 Paperl
4.2 Paper 11
4.3 Paper III

Paper I
Paper 11

Paper II1

SO VO I I bW =

[y

17

33

45

Chapter 1

Introduction

The ability to move, or migrate, a Virtual Machine (VM) from one physical host
to another is an important aspect of virtualization. If the migration is done in
such a way that the connected clients do not perceive any service interruption,
this is known as live migration. Live migration is useful in many scenarios,
for example, server consolidation is made easier if VMs do not have to be shut
down before they are moved. The technique is also used for administrative
purposes, for example, live migrating VMs to other hosts if a server needs to
be taken off-line for some reason, and it can be utilized to transfer running
VMs between cloud sites over WAN networks.

The focus of this thesis is on principles and performance of live migration.
The underlying concepts of live migration are investigated and a number of
improvements are suggested. These improvements focus on reducing migration
downtime, during which service is interrupted, and also reducing the amount
of transmitted data as well as the total migration time. Finally, the thesis
discusses different approaches to live migration and the suitability of these in a
number of scenarios. Conclusions are drawn based on experimental evaluations.

The rest of this thesis is structured as follows. Section 2 provides an intro-
duction to virtualization and outlines a few of the requirements on virtualized
infrastructures and environments. Section 3 discusses common approaches to
live migration. Some applications of live migration are also discussed. Finally,
Section 4 summarizes the contributions of this thesis, and relates the thesis
papers to each other.

Chapter 2

Virtualization

Virtualization is the concept of hosting several operating systems on the same
physical hardware by running them on top of a software layer known as a
hypervisor [3] that simulates a hardware platform. The hypervisor handles
provisioning and sharing of the common hardware resources between the op-
erating system instances, which does not normally need to be virtualization
aware. The physical machine is referred to as the host and the virtualized op-
erating system instances running on top of the hypervisor are known as guests,
or more commonly, virtual machines.

Virtualization is a mature technology and has been around since the 1960s [6]
but its use was not widespread until the addition of virtualization extensions
to mainstream CPUs in 2005 [10]. This hardware-accelerated virtualization
allows for a dramatic increase in VM performance and since its introduction,
the use of virtualization has increased dramatically.

2.1 Types of Virtualization

Virtualization can be implemented in several ways. A common approach is
full virtualization where a complete hardware platform is simulated. The VMs
run on top of the virtualized hardware and need not be modified in any way,
in fact, they need not be aware that they are running in a virtualized envi-
ronment. Examples of hypervisors providing full virtualization are KVM [8],
VMWare [18] and Microsoft Virtual PC [1].

If the simulated platform is not identical to the underlying hardware this
is known as paravirtualization. Because the interface presented to the guest
operating system differs slightly from the hardware, the operating system needs
to be modified before it can run on the virtualized platform. An example of a
paravirtualization hypervisor is XEN [3].

2.2 Applications of Virtualization

The ability to run several operating system instances on the same hardware is
important since it enables easier administration, better usage of resources and
reduced power consumption [17]. Virtualization is an enabling technology for
cloud environments [2] since it provides the ability to quickly provision pre-
configured VM instances. Virtualization technologies also enables scalability
and centralization of administrative functionality in cloud environments. Fig-
ure 1 shows an example of a virtualized infrastructure. Three servers running a
hypervisor platform are used as hosts for the VMs and a shared storage solution
is used to store the VMs disk images.

4 4 N
‘—‘ VM || VM | [VM \ VM [| VM || VM \ VM | | VM a
_
4 4 N

| Hypervisor I Hypervisor l Hypervisor
ﬁ

Server Server Server

_—

P—

Shared storage

Figure 1: Example of a virtualized infrastructure.

Chapter 3
Live Migration principles

One advantage of virtualization is that VMs can be migrated from one physical
host to another. In order to do this, the VM’s state, which consists of its RAM
contents and any disk images associated with it must be transferred. To migrate
a VM, it is first suspended, whereupon the VM’s memory contents are written
to a file. This file, the VM’s description file, and its disk images are then
transfered to the new host where the VM’s execution is resumed. The files
can be transferred either over the network or by using some kind of storage
medium. This form of VM migration is known as cold migration.

If instead the VM is kept running during the transfer of its state, the mi-
gration can be performed with no perceivable interruption in service for any
connected peers. Such forms of VM migration are known as live migration.
Live migration was first demonstrated by Clark et al. [5], and is supported by
most current hypervisors. Notably, even when using live migration the VM
has to be suspended for a short while, otherwise it would not be possible to
transfer all of the state since the VMs memory and disk are constantly written
to during execution.

Normally, live migration is performed within the same site and the disk
images are kept on a network storage device accessible to both the source and
the destination hosts, which means that the images need not be migrated.
While the VM is suspended, service is of course interrupted so to achieve the
goal of no perceivable service interruption, the migration downtime should be
minimal. Cross-site migration can also be performed, as seen in Figure 2, the
VM’s disk image must normally also be transferred in this case.

Most current hypervisors, such as Xen [3], KVM [8], and VMWare [18]
support live migration with downtimes ranging from tens of milliseconds to a
second when migrating normal workloads over LANs.

Figure 2: In-site and cross-site migration.

3.1 Approaches to Live Migration

There are two main approaches to live migration in use today. Although both
approaches are designed for service migration with continuous operation and
minimal disruption, they differ in implementation. The conceptual difference
between them is at what point during the live migration process the execution
switches from the source to the destination VM.

3.1.1 Pre-copy migration

With pre-copy migration the state is transferred in the background in a series
of iterations while the source VM is running and responding to requests. When
enough of the state has been transferred, the source VM is suspended to stop
memory writes. When to switch is typically decided based on the amount of
memory remaining to transfer, or after a maximum amount of iterations is
reached. After the VM has been suspended, the remaining state is transferred
and the VM is finally resumed on the destination host. As seen in Figure 3,
the time it takes to complete the whole migration process is known as the total
magration time.

Transfer dirty ~ Suspend Transfer last Resume at Suspend Transfer Resume at Pull missing

t pages Iat source, pages +CPU Stafel destination | atsource, CPUstate , destination | pages
S
I

ICII —> — T 1

F———~Migration downtime

Migration downtime———
Total migration ime————— ——Total migration lime4‘

Figure 3: Pre-copy (left) and post-copy (right) migration.

3.1.2 Post-copy migration

Using post-copy migration, the execution is switched to the destination almost
immediately after the start of live migration, as can be seen in Figure 3. Only
the CPU state is transferred before the switch. The remaining state is then
pulled from the source over the network, either on demand, pre-emptively or a
combination of the two.

3.2 WAN migration

Live migrating a VM over Wide Area Network, WAN, poses a number of prob-
lems. Firstly, since WAN migration is performed between different sites it is
not feasible to use a network storage device for the disk images. This means
that a storage migration [20] must also be performed. Storage migration works
in a similar way to RAM migration, the storage blocks are transferred over
the network from the source to the destination while the VM is running. Re-
transfer is performed for any block modified by the VM during this process.
Also, since the VM is migrated to another site, IP address information differs
so network address translation has to be performed to route client requests to
the VM correctly. In the LAN case, an Address Resolution Protocol, ARP [11]
message is used to notify peers of the hosts new location. However, in WAN
migration scenarios, the VM might be migrated to another IP address space
and this solution is not applicable. Finally, the usability of the post-copy ap-
proach over WAN is limited due to the long delays in transferring state over
low bandwidth links.

Usually, hypervisors assume that migration is performed over a Local Area
Network (LAN), however live WAN migration has been demonstrated in several
contributions [4, 7, 12, 16, 19]. In these cases, WAN migration is achieved
by use of techniques based on, e.g., IP tunneling, Mobile IP, and light path
reservation.

3.3 Live Migration performance

Regardless of which approach to live migration that is used, the main objec-
tive is no service interruption perceived by users of the migrated VM. Apart

from this continuous operation objective, live migration performance can be
measured in a number of ways. Obvious metrics are the total migration time
and the migration downtime, shorter times implying a more efficient algorithm.
However, the resource consumption of an algorithm is also important since live
migration aims to be transparent. An algorithm that consumes excessive re-
sources risks affecting the performance of the migrating VM as well as any
co-located VM in a negative manner. Also, network bandwidth is valuable and
should not be wasted if it can be avoided. In this section, we discuss a couple
of ways to tackle the challenges of resource consumption, extended migration
downtime and performance degradation and thus improve live migration per-
formance.

When migrating VMs running CPU and/or memory intensive workloads,
the migration downtime can easily reach several seconds or more [9, 13, 15]. In
such cases, there is a high risk of service interruption due to missed database
timers, dropped network connections or other issues. To reduce the migration
downtime, the memory pages can be compressed before transfer. Because less
data is transferred in each iteration, the live migration process has a higher
probability of keeping up with the VM writing to its memory. This means that
the amount of data remaining to transfer when the source VM is suspended
can be reduced, thereby shortening the migration downtime. In Paper I, a
delta compression algorithm that is aimed at shortening migration downtime
is proposed and evaluated. The algorithm works by reducing the amount of
transferred data during the iterative phase of pre-copy live migration. Using
compression to improve live migration performance has also been proposed by
Wood et al. [19]. Their strategy to increase live migration performance between
cloud sites involves data deduplication techniques in addition to compression.

During live migration, the complete contents of the VMs RAM is trans-
ferred from the source to the destination host. Since RAM sizes of several
gigabytes are not uncommon and pre-copy live migration re-sends many RAM
pages several times, live migration often involves transferring large data vol-
umes. This leads to long total migration times. Even though compression
techniques reduce the amount of transferred data, they do not necessarily re-
duce the number of page re-sends. To tackle this problem, Paper II proposes
and evaluates a page reordering technique that reduces the amount of trans-
mitted data by sending the memory pages in reverse order of usage frequency
to avoid re-transfers. In a related contribution, Zheng et al. [20] leverage block
update frequency when performing storage migration. Their idea is similar
to the dynamic page transfer reordering scheme [15] but for storage migration
instead of memory migration.

Since post-copy migration only transfer pages once, algorithms based on
this approach do not have the same issue with excessive resource usage as pre-
copy approaches. However, as they pull missing pages from the source over the
network, performance can suffer after the execution has moved from the source
to the destination. Paper III [14] investigates this problem and evaluates a
hybrid live migration algorithm that addresses this issue.

Chapter 4

Thesis Contributions

This section summarizes the contributions of the papers that make up this
thesis.

4.1 Paper 1

Paper I [13] investigates the use of delta compression techniques to tackle the
problem of memory pages being dirtied faster than they can be transferred over
the network. By compressing the data stream during the transfer, migration
throughput is increased, reducing the risk of the dirtying rate being higher than
migration throughput. This means that migration downtime can be reduced.
The delta compression extension studied in the paper is a implemented as a
modification to the standard KVM pre-copy algorithm. The algorithm’s perfor-
mance is evaluated by migrating VMs running both real-world and benchmark
applications and the evaluation demonstrates a significant decrease in migra-
tion downtime in all of the test cases. Paper I also discusses some general
effects of delta compression on live migration and contains an analysis of when
it is beneficial to use the delta compression technique.

4.2 Paper 11

Paper II [15] introduces a live migration algorithm where the pages are trans-
ferred in an non-sequential order based on the page dirtying frequency. The
algorithm, called Dynamic Page Transfer Reordering, is designed to reduce the
number of page re-sends during migration thereby reducing the total amount
of data being sent which in turn leads to a shorter migration time. The page
dirtying frequency is kept track of by adding a priority bitmap on top of the
standard KVM dirty page bitmap. As pages are being dirtied, they move down
in priority. Since the algorithm transfers pages are by order of priority the fre-
quently dirtied pages will not be transferred until the end of the migration

10

process, reducing the risk of having to re-send them. The algorithm also in-
cludes the delta compression techniques from Paper I [13]. To evaluate the
performance of the algorithm a streaming video server as well as a benchmark
application is live migrated. In the evaluation, both migration downtime and
total migration time was reduced.

4.3 Paper III

Paper III [14] is a broad study of live migration. The paper defines objectives
for live migration and discusses common challenges in meeting these. Three
approaches to live migration, pre-copy, post-copy and hybrid live migration are
investigated and evaluated by a set of experiments to highlight their character-
istics. The paper contains a discussion on the pros and cons of the approaches
in different scenarios and give pointers to which approach is best suited in dif-
ferent cases. Common improvements to live migration are also discussed and
a flowchart provides help in selecting the appropriate live migration improve-
ment for a given scenario. Finally, the future research landscape in the area is
outlined.

Bibliography

1]

[2]

Microsoft ~ Virtual PC. http://www.microsoft.com/windows/
virtual-pc/default.aspx, visited on 2012-05-23.

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, and Matei Zaharia. A view of cloud computing. Commun.
ACM, 53(4):50-58, 2010.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the
art of virtualization. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 164-177. ACM, 2003.

Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald
Schioberg. Live wide-area migration of virtual machines including lo-
cal persistent state. In VEE ’07: Third International ACM SIG-
PLAN/SIGOPS Conference on Virtual Ezecution Environments, pages
169-179. ACM, 2007.

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. Live migration
of virtual machines. In NSDI ’05: 2nd Symposium on Networked Systems
Design and Implementation, pages 273-286. ACM, 2005.

Robert Jay Creasy. The origin of the VM /370 time-sharing system. IBM
Journal of Research & Development, 25:483-490, 1981.

Eric Harney, Sebastien Goasguen, Jim Martin, Mike Murphy, and Mike
Westall. The efficacy of live virtual machine migrations over the internet.
In VIDC °07: 2nd International Workshop on Virtualization Technologies
in Distributed Computing, pages 1-7. ACM, 2007.

Kernel Based Virtual Machine. KVM - kernel-based virtualization machine
white paper. http://kvm.qumranet.com/kvmwiki, visited on 2012-05-23.

Pengcheng Liu, Ziye Yang, Xiang Song, Yixun Zhou, Haibo Chen, and
Binyu Zang. Heterogeneous live migration of virtual machines. Technical
report, Parallel Processing Institute, Fudan University, 2009.

11

12

[10]

[11]

[12]

[13]

[16]

[17]

18]

[19]

Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.
Intel virtualization technology: Hardware support for efficient processor
virtualization. Intel Technology Journal, 10:167-178, 2006.

David C Plummer. Rfc 826: An ethernet address resolution protocol —
or — converting network protocol addresses to 48.bit ethernet address for
transmission on ethernet hardware. 1982.

K. K. Ramakrishnan, Prashant Shenoy, and Jacobus Van der Merwe. Live
data center migration across WANSs: a robust cooperative context aware
approach. In INM ’07: The ACM SIGCOMM Workshop on Internet Net-
work Management 2007, pages 262—267. ACM.

Petter Svérd, Benoit Hudzia, Johan Tordsson, and Erik Elmroth. Evalu-
ation of delta compression techniques for efficient live migration of large
virtual machines. In VEE ’11: The 2011 ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments, pages 111-120.
ACM, 2011.

Petter Svard, Johan Tordsson, and Erik Elmroth. The Noble Art of Live
VM Migration. Technical report, 2012. Tech Report UMINF 12.11. Sub-
mitted.

Petter Svard, Johan Tordsson, Benoit Hudzia, and Erik Elmroth. High
performance live migration through dynamic page transfer reordering and
compression. In CloudCom ’11: 8rd IEEFE International Conference on
Cloud Computing Technology and Science, pages 542-548. IEEE, 2011.

Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog, Cees
de Laat, Joe Mambretti, Inder Monga, Bas van Oudenaarde, Satish
Raghunatha, and Phil Yonghui Wang. Seamless live migration of virtual
machines over the MAN/WAN. In SC ’06: The international Conference
on for High Performance Computing, Networking, Storage and Analysis,
page 290. ACM, 2006.

Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and
Ravi Kothari. Server workload analysis for power minimization using con-
solidation. In USENIX ’09: The 2009 USENIX Annual Technical Confer-
ence ‘09, pages 28-28. USENIX, 2009.

VMWARE. VMware VMotion: Live migration of virtual machines with-
out service interruption datasheet. http://www.vmware.com/files/pdf/
VMware-VMotion-DS-EN.pdf, visited on 2012-05-23.

Timothy Wood, K. K. Ramakrishnan, Prashant Shenoy, and Jacobus
van der Merwe. CloudNet: dynamic pooling of cloud resources by live
WAN migration of virtual machines. In VEE ’11: The 2011 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environ-
ments, pages 121-132. ACM, 2011.

[20] Jie Zheng, Tze Sing Eugene Ng, and Kunwadee Sripanidkulchai.
Workload-aware live storage migration for clouds. In VEE ’11: The 2011
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, pages 133-144. ACM, 2011.

13

