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Abstract

Virtualization is a key technology for cloud computing as it allows several operating
system instances to run on the same machine, enhances resource manageability and
enables flexible definition of billing units. Virtualization works by adding a software
layer, a hypervisor, on top of the hardware platform. Virtual Machines, VMs, are run
on top of the hypervisor, which provisions hardwares resources to the VM guests. In
addition to enabling higher utilization of hardware resources, the ability to move VMs
from one host to another is an important feature.

Live migration is the concept of migrating a VM while it is running and responding
to requests. Since VMs can be re-located while running, live migration allows for
better hardware utilization. This is because placement of services can be performed
dynamically and not only when the are started. Live migration is also a useful tool
for administrative purposes. If a server needs to be taken off-line for maintenance
reasons, it can be cleared of services by live migrating these to other hosts.

This thesis investigates the principles behind live migration. The common live mi-
gration approaches in use today are evaluated and common objectives are presented
as well as challenges that have to be overcome in order to implement an ideal live
migration algorithm. The performance of common live migration approaches is also
evaluated and it is found that even though live migration is supported by most hyper-
visors, it has drawbacks which makes the technique hard to use in certain situations.
Migrating CPU and/or memory intensive VMs or migrating VMs over low-bandwidth
links is a problem regardless of which approach that is used. To tackle this problem,
two improvements to live migration are proposed and evaluated, delta compression
and dynamic page transfer reordering. Both improvements demonstrate better per-
formance than the standard algorithm when migrating CPU and/or memory intensive
VMs and migrating over low bandwidth links. Finally, recommendations are made
on which live migration approach to use depending on the scenario and also what
improvements to the standard live migration algorithms should be used and when.
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Chapter 1

Introduction

The ability to move, or migrate, a Virtual Machine (VM) from one physical host
to another is an important aspect of virtualization. If the migration is done in
such a way that the connected clients do not perceive any service interruption,
this is known as live migration. Live migration is useful in many scenarios,
for example, server consolidation is made easier if VMs do not have to be shut
down before they are moved. The technique is also used for administrative
purposes, for example, live migrating VMs to other hosts if a server needs to
be taken off-line for some reason, and it can be utilized to transfer running
VMs between cloud sites over WAN networks.

The focus of this thesis is on principles and performance of live migration.
The underlying concepts of live migration are investigated and a number of
improvements are suggested. These improvements focus on reducing migration
downtime, during which service is interrupted, and also reducing the amount
of transmitted data as well as the total migration time. Finally, the thesis
discusses different approaches to live migration and the suitability of these in a
number of scenarios. Conclusions are drawn based on experimental evaluations.

The rest of this thesis is structured as follows. Section 2 provides an intro-
duction to virtualization and outlines a few of the requirements on virtualized
infrastructures and environments. Section 3 discusses common approaches to
live migration. Some applications of live migration are also discussed. Finally,
Section 4 summarizes the contributions of this thesis, and relates the thesis
papers to each other.






Chapter 2

Virtualization

Virtualization is the concept of hosting several operating systems on the same
physical hardware by running them on top of a software layer known as a
hypervisor [3] that simulates a hardware platform. The hypervisor handles
provisioning and sharing of the common hardware resources between the op-
erating system instances, which does not normally need to be virtualization
aware. The physical machine is referred to as the host and the virtualized op-
erating system instances running on top of the hypervisor are known as guests,
or more commonly, virtual machines.

Virtualization is a mature technology and has been around since the 1960s [6]
but its use was not widespread until the addition of virtualization extensions
to mainstream CPUs in 2005 [10]. This hardware-accelerated virtualization
allows for a dramatic increase in VM performance and since its introduction,
the use of virtualization has increased dramatically.

2.1 Types of Virtualization

Virtualization can be implemented in several ways. A common approach is
full virtualization where a complete hardware platform is simulated. The VMs
run on top of the virtualized hardware and need not be modified in any way,
in fact, they need not be aware that they are running in a virtualized envi-
ronment. Examples of hypervisors providing full virtualization are KVM [8],
VMWare [18] and Microsoft Virtual PC [1].

If the simulated platform is not identical to the underlying hardware this
is known as paravirtualization. Because the interface presented to the guest
operating system differs slightly from the hardware, the operating system needs
to be modified before it can run on the virtualized platform. An example of a
paravirtualization hypervisor is XEN [3].



2.2 Applications of Virtualization

The ability to run several operating system instances on the same hardware is
important since it enables easier administration, better usage of resources and
reduced power consumption [17]. Virtualization is an enabling technology for
cloud environments [2] since it provides the ability to quickly provision pre-
configured VM instances. Virtualization technologies also enables scalability
and centralization of administrative functionality in cloud environments. Fig-
ure 1 shows an example of a virtualized infrastructure. Three servers running a
hypervisor platform are used as hosts for the VMs and a shared storage solution
is used to store the VMs disk images.
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Figure 1: Example of a virtualized infrastructure.



Chapter 3
Live Migration principles

One advantage of virtualization is that VMs can be migrated from one physical
host to another. In order to do this, the VM’s state, which consists of its RAM
contents and any disk images associated with it must be transferred. To migrate
a VM, it is first suspended, whereupon the VM’s memory contents are written
to a file. This file, the VM’s description file, and its disk images are then
transfered to the new host where the VM’s execution is resumed. The files
can be transferred either over the network or by using some kind of storage
medium. This form of VM migration is known as cold migration.

If instead the VM is kept running during the transfer of its state, the mi-
gration can be performed with no perceivable interruption in service for any
connected peers. Such forms of VM migration are known as live migration.
Live migration was first demonstrated by Clark et al. [5], and is supported by
most current hypervisors. Notably, even when using live migration the VM
has to be suspended for a short while, otherwise it would not be possible to
transfer all of the state since the VMs memory and disk are constantly written
to during execution.

Normally, live migration is performed within the same site and the disk
images are kept on a network storage device accessible to both the source and
the destination hosts, which means that the images need not be migrated.
While the VM is suspended, service is of course interrupted so to achieve the
goal of no perceivable service interruption, the migration downtime should be
minimal. Cross-site migration can also be performed, as seen in Figure 2, the
VM’s disk image must normally also be transferred in this case.

Most current hypervisors, such as Xen [3], KVM [8], and VMWare [18]
support live migration with downtimes ranging from tens of milliseconds to a
second when migrating normal workloads over LANs.



Figure 2: In-site and cross-site migration.

3.1 Approaches to Live Migration

There are two main approaches to live migration in use today. Although both
approaches are designed for service migration with continuous operation and
minimal disruption, they differ in implementation. The conceptual difference
between them is at what point during the live migration process the execution
switches from the source to the destination VM.

3.1.1 Pre-copy migration

With pre-copy migration the state is transferred in the background in a series
of iterations while the source VM is running and responding to requests. When
enough of the state has been transferred, the source VM is suspended to stop
memory writes. When to switch is typically decided based on the amount of
memory remaining to transfer, or after a maximum amount of iterations is
reached. After the VM has been suspended, the remaining state is transferred
and the VM is finally resumed on the destination host. As seen in Figure 3,
the time it takes to complete the whole migration process is known as the total
magration time.
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Figure 3: Pre-copy (left) and post-copy (right) migration.

3.1.2 Post-copy migration

Using post-copy migration, the execution is switched to the destination almost
immediately after the start of live migration, as can be seen in Figure 3. Only
the CPU state is transferred before the switch. The remaining state is then
pulled from the source over the network, either on demand, pre-emptively or a
combination of the two.

3.2 WAN migration

Live migrating a VM over Wide Area Network, WAN, poses a number of prob-
lems. Firstly, since WAN migration is performed between different sites it is
not feasible to use a network storage device for the disk images. This means
that a storage migration [20] must also be performed. Storage migration works
in a similar way to RAM migration, the storage blocks are transferred over
the network from the source to the destination while the VM is running. Re-
transfer is performed for any block modified by the VM during this process.
Also, since the VM is migrated to another site, IP address information differs
so network address translation has to be performed to route client requests to
the VM correctly. In the LAN case, an Address Resolution Protocol, ARP [11]
message is used to notify peers of the hosts new location. However, in WAN
migration scenarios, the VM might be migrated to another IP address space
and this solution is not applicable. Finally, the usability of the post-copy ap-
proach over WAN is limited due to the long delays in transferring state over
low bandwidth links.

Usually, hypervisors assume that migration is performed over a Local Area
Network (LAN), however live WAN migration has been demonstrated in several
contributions [4, 7, 12, 16, 19]. In these cases, WAN migration is achieved
by use of techniques based on, e.g., IP tunneling, Mobile IP, and light path
reservation.

3.3 Live Migration performance

Regardless of which approach to live migration that is used, the main objec-
tive is no service interruption perceived by users of the migrated VM. Apart



from this continuous operation objective, live migration performance can be
measured in a number of ways. Obvious metrics are the total migration time
and the migration downtime, shorter times implying a more efficient algorithm.
However, the resource consumption of an algorithm is also important since live
migration aims to be transparent. An algorithm that consumes excessive re-
sources risks affecting the performance of the migrating VM as well as any
co-located VM in a negative manner. Also, network bandwidth is valuable and
should not be wasted if it can be avoided. In this section, we discuss a couple
of ways to tackle the challenges of resource consumption, extended migration
downtime and performance degradation and thus improve live migration per-
formance.

When migrating VMs running CPU and/or memory intensive workloads,
the migration downtime can easily reach several seconds or more [9, 13, 15]. In
such cases, there is a high risk of service interruption due to missed database
timers, dropped network connections or other issues. To reduce the migration
downtime, the memory pages can be compressed before transfer. Because less
data is transferred in each iteration, the live migration process has a higher
probability of keeping up with the VM writing to its memory. This means that
the amount of data remaining to transfer when the source VM is suspended
can be reduced, thereby shortening the migration downtime. In Paper I, a
delta compression algorithm that is aimed at shortening migration downtime
is proposed and evaluated. The algorithm works by reducing the amount of
transferred data during the iterative phase of pre-copy live migration. Using
compression to improve live migration performance has also been proposed by
Wood et al. [19]. Their strategy to increase live migration performance between
cloud sites involves data deduplication techniques in addition to compression.

During live migration, the complete contents of the VMs RAM is trans-
ferred from the source to the destination host. Since RAM sizes of several
gigabytes are not uncommon and pre-copy live migration re-sends many RAM
pages several times, live migration often involves transferring large data vol-
umes. This leads to long total migration times. Even though compression
techniques reduce the amount of transferred data, they do not necessarily re-
duce the number of page re-sends. To tackle this problem, Paper II proposes
and evaluates a page reordering technique that reduces the amount of trans-
mitted data by sending the memory pages in reverse order of usage frequency
to avoid re-transfers. In a related contribution, Zheng et al. [20] leverage block
update frequency when performing storage migration. Their idea is similar
to the dynamic page transfer reordering scheme [15] but for storage migration
instead of memory migration.

Since post-copy migration only transfer pages once, algorithms based on
this approach do not have the same issue with excessive resource usage as pre-
copy approaches. However, as they pull missing pages from the source over the
network, performance can suffer after the execution has moved from the source
to the destination. Paper III [14] investigates this problem and evaluates a
hybrid live migration algorithm that addresses this issue.



Chapter 4

Thesis Contributions

This section summarizes the contributions of the papers that make up this
thesis.

4.1 Paper 1

Paper I [13] investigates the use of delta compression techniques to tackle the
problem of memory pages being dirtied faster than they can be transferred over
the network. By compressing the data stream during the transfer, migration
throughput is increased, reducing the risk of the dirtying rate being higher than
migration throughput. This means that migration downtime can be reduced.
The delta compression extension studied in the paper is a implemented as a
modification to the standard KVM pre-copy algorithm. The algorithm’s perfor-
mance is evaluated by migrating VMs running both real-world and benchmark
applications and the evaluation demonstrates a significant decrease in migra-
tion downtime in all of the test cases. Paper I also discusses some general
effects of delta compression on live migration and contains an analysis of when
it is beneficial to use the delta compression technique.

4.2 Paper 11

Paper II [15] introduces a live migration algorithm where the pages are trans-
ferred in an non-sequential order based on the page dirtying frequency. The
algorithm, called Dynamic Page Transfer Reordering, is designed to reduce the
number of page re-sends during migration thereby reducing the total amount
of data being sent which in turn leads to a shorter migration time. The page
dirtying frequency is kept track of by adding a priority bitmap on top of the
standard KVM dirty page bitmap. As pages are being dirtied, they move down
in priority. Since the algorithm transfers pages are by order of priority the fre-
quently dirtied pages will not be transferred until the end of the migration



10

process, reducing the risk of having to re-send them. The algorithm also in-
cludes the delta compression techniques from Paper I [13]. To evaluate the
performance of the algorithm a streaming video server as well as a benchmark
application is live migrated. In the evaluation, both migration downtime and
total migration time was reduced.

4.3 Paper III

Paper III [14] is a broad study of live migration. The paper defines objectives
for live migration and discusses common challenges in meeting these. Three
approaches to live migration, pre-copy, post-copy and hybrid live migration are
investigated and evaluated by a set of experiments to highlight their character-
istics. The paper contains a discussion on the pros and cons of the approaches
in different scenarios and give pointers to which approach is best suited in dif-
ferent cases. Common improvements to live migration are also discussed and
a flowchart provides help in selecting the appropriate live migration improve-
ment for a given scenario. Finally, the future research landscape in the area is
outlined.
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