Trapping the ATP binding state leads to a detailed understanding of the F$_1$-ATPase mechanism

Kwangho Nama,b,1,2, Jingzhi Pua,c,1,2, and Martin Karplusa,d,2

aDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; bDepartment of Chemistry and Computational Life Science Cluster, Umeå University, 901 87, Umeå, Sweden; cDepartment of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202; and dLaboratoire de Chimie Biophysique, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg, 67000 Strasbourg, France

Contributed by Martin Karplus, October 10, 2014 (sent for review June 26, 2014)

The rotary motor enzyme F$_o$F$_1$-ATP synthase uses the proton-motive force across a membrane to synthesize ATP from ADP and P$_i$ (H$_2$PO$_4^-$) under cellular conditions that favor the hydrolysis reaction by a factor of 2×10^5. This remarkable ability to drive a reaction away from equilibrium by harnessing an external force differentiates it from an ordinary enzyme, which increases the rate of reaction without shifting the equilibrium. Hydrolysis takes place in the neighborhood of one conformation of the catalytic moiety F$_1$-ATPase, whose structure is known from crystallography. By use of molecular dynamics simulations we trap a second structure, which is rotated by 40° from the catalytic dwell conformation and represents the state associated with ATP binding, in accord with single-molecule experiments. Using the two structures, we show why P$_i$ is not released immediately after ATP hydrolysis, but only after a subsequent 120° rotation, in agreement with experiment. A concerted conformational change of the $\alpha_3\beta_3$ crown is shown to induce the 40° rotation of the γ-subunit only when the β_3 subunit is empty, whereas with P$_i$ bound, β_3 serves as a latch to prevent the rotation of γ. The present results provide a rationalization of how F$_1$-ATPase achieves the coupling between the small changes in the active site of β_3P and the 40° rotation of γ.

F$_1$-ATPase | chemomechanical coupling | ATP waiting state | molecular dynamics | P$_i$ release

The molecular motor F$_o$F$_1$-ATP synthase is composed of two domains: a transmembrane portion (F$_o$), the rotation of which is induced by a proton gradient, and a globular catalytic moiety (F$_1$) that synthesizes and hydrolyzes ATP. The primary function of the proton-motive force acting on F$_o$, F$_1$-ATP synthase is to provide the torque required to rotate the γ-subunit in the direction for ATP synthesis (1, 2). The catalytic moiety, F$_1$-ATPase, has an $\alpha_3\beta_3$ “crown” composed of three α- and three β-subunits arranged in alternation around the γ-subunit, which has a globular base and an extended coiled-coil portion (3) (Fig. 1A). F$_1$-ATPase by itself binds ATP and hydrolyzes it to induce rotation of the γ-subunit (in the opposite direction from that for synthesis) on the millisecond time scale under optimum conditions (4, 5). All of the α- and β-subunits bind nucleotides, but only the three β-subunits are catalytically active. The original crystal structure (3) of F$_1$-ATPase from bovine heart mitochondria (MF$_1$) led to the identification of three conformations of the β-subunit: β_3 (empty), β_{TP} (ATP analog bound), and β_{DP} (ADP bound); Fig. 1A. In the known structures of F$_1$-ATPase, which apparently are near the “catalytic dwell” state, the state in which catalysis occurs (6, 7), the β_3 subunit conformation is partly to fully open and is very different from those of the β_{TP} and β_{DP} subunits, which are closed and very similar to each other (SI Appendix, SII).

Searching for the ATP Waiting State

Because no X-ray structure is available for the ATP waiting state, we searched for it by molecular dynamics (MD) simulations with an external torque applied to the γ-subunit in the hydrolysis direction while introducing different conformations of the β_{DP} subunit in the $\alpha_3\beta_3$ crown, in accord with suggestions from single-molecule experiments (8). The results are shown in Fig. 2 (see Methods and SI Appendix, SII for details of the simulations). In Fig. 2, we refer 200° for the γ-rotation angle of the catalytic dwell state and 240° for the ATP waiting dwell state, respectively, to stress that the hydrolysis of an ATP, denoted as ATP$,^*$, bound after the ATP waiting dwell at 0°, takes place at the 200° catalytic dwell state (see Fig. 1B for the rotation angle of γ relative to the $\alpha_3\beta_3$-complex). The initial simulation used the “Walker” crown structure [Protein Data Bank (PDB) ID code 1BMF] (3), in which the β_{DP} subunit is closed with the angle (B°C) formed by helices B and C equal to 21.6°, and the γ subunit structure of Gibbons et al. (PDB ID code 1ET9) (9) (Fig. 1); see Methods for system preparation. It was represented by an all-atom model based on the CHARMM program (10), combined with a coarse-grained plastic network model (PNM) (11, 12). Even for an applied torque of 2,500 pN-nm, much higher than is generated in the normal function (13), the γ-subunit, which has an initial rotation angle of 200°, stalled at an angle of about 220°. In the present work, we define the rotation angle of γ as the angle formed between an instantaneous vector and a reference vector, each defining the orientation of γ relative to the three β-subunits for the instantaneous configuration from MD or the reference Walker structure, respectively (see Methods and SI Appendix, SII for angle definition). Major clashes between residues γS12-I16 and β_{DP}-384-388, near the DELSEED motif, prevented further rotation (SI Appendix, SIII and Fig. S1). When the external torque was removed, the γ-subunit returned to within 2.5° of the crystal

Significance

F$_1$-ATPase is a motor protein that converts the free energy of binding of ATP and its hydrolysis products ADP and P$_i$ into a mechanical force for γ-subunit rotation. It is the catalytic moiety of F$_o$F$_1$-ATPase, which synthesizes ATP. There are two metastable states along each 120° rotation of the γ-subunit, one associated with ATP hydrolysis (the “catalytic dwell”) and the other with ATP binding (the “ATP waiting dwell”). We use molecular simulations to determine the ATP waiting dwell structure. With this structure and the catalytic dwell X-ray structure, we develop an atomic-level model of the coupling between ATP hydrolysis and γ-subunit rotation. The molecular-level understanding of this motor will aid in its use in nano-machines and cancer therapy.

Author contributions: K.N., J.P., and M.K. designed research; K.N. and J.P. performed research; K.N., J.P., and M.K. analyzed data; and K.N., J.P., and M.K. wrote the paper.

The authors declare no conflict of interest.

1K.N. and J.P. contributed equally to this work.

2To whom correspondence may be addressed. Email: kwangho.nam@chem.umu.se, jpu@iuipui.edu, or marci@tamy.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1419486111/-/DCSupplemental.
orientation in 200 ps, indicating that for the Walker crown structure, the γ-subunit orientation (200°) is a minimum.

To find the ATP waiting state, we started the external torque simulations with more open conformations for the βDP subunit, keeping the rest of the crown near its original structure with the PNM. Fig. 2 shows the ρ-rotation angle and the (B–C) angle of βDP along the simulated conformational transition of the βDP to the more open conformation in the presence of the external torque. For a slightly more open βDP subunit (B–C = 28°), similar to that of the half-open βHO conformation (B–C = 23°; PDB ID code 2HLD_I, where “I” denotes the first αβγT-complex among the three complexes in the crystallographic asymmetric unit of 2HLD) (14), the γ-subunit returned to fluctuate around 202°. With the βDP subunit having B–C equal to 31° and 35°, similar to that of the half-closed βHC conformation (B–C = 32°) (see also below) in the Menz et al. structure (PDB ID code 1H8E) (15), the γ-subunit rotated to 255° and 271°, respectively, before it stalled again. When the torque was removed, the γ-subunit relaxed rapidly in both cases to near 240° and remained there during the rest of the simulation. The results show that there exists a locally stable state with the γ-rotation angle near 240° and the αβγ complex crown with the catalytic subunits having conformations corresponding to βC-like, βHC-like (based on the B–C angle), and βTP-like. We note that the B–C angles are βE = 49°, βHC = 32°, βHO = 23°, βDP = 22°, and βTP = 19°.

To check the trapping simulation, we used an alternative protocol (SI Appendix, SI2) and experimental data from Masaike et al. (8), who estimated that the helix-6 angle of βDP is rotated by 20° in the ATP waiting state. The βDP subunit and the γ-subunit were subjected to a biased simulation (16) and it was found that for the partly open structure of βDP (helix-6 angle equal 20°; B–C = 23°) the γ-subunit had rotated by 40° to reach the 240° state. A number of interactions stabilize the 240° state (see Fig. 3 and SI Appendix, SI4 for details and a comparison with the interactions in the trapped structure). The structure was then subjected to all-atom explicit water MD simulations with no PNM (see SI Appendix, SI5 for details). Throughout the simulation (20 ns), the γ-stalk stayed near 240°, supporting the fact that it is a (locally) stable state. In SI Appendix, Fig. S2 A and B, we show the structure from the simulation, and compare it with the structure at the catalytic dwell. The conformations of βDP for the two states differ as expected. Comparisons of βDP with various

Fig. 1. (A) Fγ-ATPase. The three β-subunits and the γ-subunit are shown (α-subunits are not shown for clarity): βE (yellow), βDP (orange), βTP (gold), and γ (purple). To define the βDP subunit conformation we use the angle between helix B (β163-A176) and helix C (β1190-G204). The two helices are highlighted: helix B (blue) and helix C (gray); the B–C angle is depicted as a red angle. The βPM helix, whose orientation was reported to undergo a 20° change during the 40° substep γ-rotation, is highlighted as red. During the forced rotation simulations with an external torque, the force acts on the Cγ atom of MFγM25 (shown as a red sphere). The direction of the force is determined as the cross-product of the radial vector of γM25.Cγ and the rotational axis (green). (B) Proposed 360° rotation cycle of Fγ-ATPase showing the subunit conformations, as well as the binding–release of ligands and the hydrolysis of ATP. Starting from the binding of an ATP* to the βE subunit in the ATP waiting state (0°), rotation of the γ-stalk by 200° (80°, 40°, 80°) leads to the transition of the βE (γ = 0°) via βTP (γ = 80°) to βDP (γ = 200°), the catalytic dwell state where hydrolysis of ATP* takes place. The hydrolysis product βE* in the βDP subunit is not released at this catalytic dwell (200°). Instead, the other hydrolysis product ADP* is released first after a 40° rotation [βDP (200°) → βDP (240°)]. Then, βDP is transformed to βE and P* is released after an additional 80° rotation to another catalytic dwell state (320°); the latter is shown in brackets outside the main cycle (see below). Finally, the release of P* from βE leads to a 40° rotation that completes the 360° cycle (21, 41). The other subunits are going through corresponding cycles offset by 120° (βTP and 240° (βTP), respectively. Here, the prime symbol when it appears on the subscripts (e.g., βE) indicates that the conformation of the βC subunit is similar to that of the half-open βHO-like. We note that the B–C angles are

Fig. 2. Rotational angle of the γ-subunit as a function of time during the relaxation simulations (see text) for different B–C angle values of the βDP subunit after the simulations with the applied torque. The values of the B–C angle in the βDP subunit are shown for each trajectory to indicate the stage of binding (left opening during the transition from the βPM (B–C = 21.6°) to the βE (B–C = 48.6°) conformation. The B–C angles were maintained at their initial values by the PNM restraining potentials during the simulations.
Timing of P$_i$ Release

The results from free-energy simulations and multiple MD simulations (SI Appendix, S6f and Fig. S3) indicate that any of ATP hydrolysis, ADP and/or P$_i$ release, can lead to the partly open $\beta$$_{\text{HO}}$-like conformation required to reach the ATP waiting state at 240° from the catalytic dwell (200°). All of these, as well as ADP and P$_i$ repulsion, have been suggested as triggers for the γ-rotation (19–21). To investigate possibilities for the actual mechanism, we calculated the probability of ligand release, particularly of P$_i$, from different conformations of the β-subunits with different ligand occupancies. Given the results shown in Fig. 4 and additional experimental data [particularly Watanabe et al. (21)], we summarize in Fig. 1B the rotation cycle of the subunit conformations and their occupations. For an ATP, denoted as ATP*, bound after the ATP waiting dwell at 0°, the release of P$_i^*$ generated from the ATP* is shown to occur after an additional 120° rotation of the γ-subunit to 320° from the catalytic dwell at 200° where the ATP* hydrolysis takes place. This contrasts with an earlier conclusion, also based on single-molecule experiments, that P$_i$ is released immediately after ATP* hydrolysis at 200° (20, 22, 23).

Because the P$_i$ and ADP release takes place on the millisecond time scale, too long to be sampled in accessible simulation times at 300 K (nanoseconds), we use the high-temperature multicyclone enhanced sampling (MCES) method (see Methods) to accelerate the events. This approach has been used previously to provide meaningful results on ligand release from proteins and its dependence on their conformation [e.g., CO from myoglobin by Elber and Karplus (24); P$_i$ from myosin by Cecchini et al. (25)]. MCES was used here to explore the ligand release probabilities of P$_i$ and ADP from subunits with the conformations $\beta$$_{\text{EO}}$, $\beta$$_{\text{DP}}$, and $\beta$$_{\text{HO}}$-like as part of the αβ$_2$γ$_2$-complex. For $\beta$$_{\text{EO}}$ and $\beta$$_{\text{DP}}$, we considered a structure at or near the catalytic dwell (200°), based on the X-ray structure of Braig et al. (PDB ID code 1E1R) (26); for $\beta$$_{\text{HO}}$, we considered the ATP waiting dwell (240°), based on the model structure reported here. Fig. 4 shows the probabilities of

![Figure 4](image-url)
release from β-subunits in different conformational states as a function of the temperature of the multiple copies of Pγ. In the Braig et al. structure used for the catalytic dwell state (200°), βE is occupied by Pγ; βDP by ADP, AlF3 (which was replaced with Pγ), and Mg2+; and βTP by ATP analog and Mg2+. The Pγ present in βE was produced during the catalytic dwell at 80° from an ATP bound at ~120°. Because Pγ has a high release probability from βE at a temperature as low as 250 K, it is very weakly bound. Interestingly, in one of the all-atom explicit water MD simulations (see below), we observed the spontaneous release and rebinding of Pγ from βE (Movie S1). The release and rebinding accompany a large fluctuation of the P-loop structure. This finding is consistent with the present Pγ release data. By contrast, a much higher temperature (1,500 K) is required for a significant release probability of Pγ from the closed βDP subunit in the catalytic dwell structure (200°). This result indicates that in the 200° structure, release of Pγ from βE is the dominant process and that release of Pγ* from βDP immediately after its cleavage from ATP* does not occur to a significant extent, in accord with Fig. 1B and the proposal of Watanabe et al. (21).

In the ATP waiting state (240°), where βE is empty (Fig. 1B), βDP has opened more to become βHO, but Pγ* release is even more hindered than in the 200° structure as long as ADP* (and Mg2+) is present (Fig. 1B); i.e., release of Pγ* at 240° would be possible only after ADP* has been released (also see SI Appendix, SI7, SI8, and Fig. S4). To confirm this result, we performed a set of MCES simulations for βHO in the 240° structure, in which ADP and Pγ were both represented by multiple copies and thus competed for release. As expected, ADP* is released at a significantly lower temperature than Pγ* (Fig. 4). Once ADP* is no longer present, Pγ* is released easily (SI Appendix, Fig. S5). However, as shown by Adachi et al. (20) and Martin et al. (27), ADP* is released only during (or after) the rotation of the γ-subunit by another 80° to the catalytic dwell at 320° when βHO has opened further to βE (see Fig. 1B legend). Very recently, Czub and Grubmuller have shown by MD simulations that βE closes spontaneously to βHO during the 80° rotation in the synthesis direction in the absence of ligand (ADP or Pγ) in βE (28). However, because changes of the ligand occupation of each β-subunit during the rotation were not taken into account in the simulations, an understanding of the entire sequence of events that leads to the 80° rotation is not possible based on their results. Nevertheless, the results are consistent with the mechanism that the βHO → βE conformational transition and the rotation of γ to the catalytic dwell occur during or after the release of ADP*. Taken together, the Pγ release simulations show that Pγ* is released after the βHO → βE transition is completed as part of the rotation from 320° to 360°.

Coupling Between ATP Hydrolysis, Pγ Release, and γ-Rotation

An essential element for understanding Fγ-ATPase function is knowledge of the mechanism by which the torque for γ-rotation is generated. The dominant factor in the 80° rotation from the waiting dwell is known to be ATP binding to a βE subunit and its closure to form βTP (12, 29), in which repulsive van der Waals interactions contribute dominantly in the generation of torque. On the other hand, our understanding of the 40° rotation is much more limited (20, 30). To explore the mechanism, we carried out targeted molecular dynamics (TMD) (31) simulations with the model generated in this paper for the ATP waiting structure as the target (see Methods). As a reference, a TMD simulation was performed, starting with the catalytic dwell structure, and a perturbation was applied to the γ- and βDP subunits of the entire αβγγγ-complex to induce the 40° rotation of γ and the transition of βDP to βHO required to reach the model ATP waiting structure. The simulation produces a structure with the γ-subunit rotated by 40° and βDP partially open; the structure differs slightly from the model ATP waiting structure in the orientations of the C-terminal hth motifs of βE and all of the α-subunits (SI Appendix, Fig. S6). The change of the βE structure during or after the 40° rotation is in accord with the results of Watanabe et al. (30) that in the neighborhood of the ATP waiting state, the affinity for ATP changes with γ-rotation, implying a change in the βE structure, and the all-atom explicit water MD simulation (SI Appendix, Fig. S2A). Because the TMD perturbation was applied only to γ and βDP, the structural changes of the other parts of the αβγγγ-complex reflect their spontaneous response to the rotation of γ and the partial opening of βDP. The resulting structure was used as the target structure in subsequent TMD simulations, where the perturbation was applied only to various parts of the αβE crown, with or without βE in the βE subunit (Fig. 5; see legend for details). With βE empty, we obtained the striking result that transformations of all α- and β-subunits are required to induce the 40° rotation (Fig. 5). As shown in the figure, when fewer elements of the αβE crown are transformed (e.g., all β-subunits), only intermediate rotation of the γ-subunits is produced during the simulation. Moreover, with Pγ present in βE, the Pγ stays bound in the active site throughout the entire TMD simulation and only a 10° rotation of γ was achieved even with the full αβE transformation in the simulation (Fig. 5, orange; and see Movies S2 and S3). These results show that the presence of Pγ in the βE subunit blocks the γ-rotation.

Dynamic Lock by Pγ

To determine the mechanism of the βE (Pγ) lock, the structure and dynamics of the αβγγγ-complex in the catalytic dwell state with different occupations of βDP and βE were studied by all-atom explicit water MD simulations (see SI Appendix, SI5 for details). In the simulations, the binding pockets of βTP and all α-subunit are occupied by ATP, whereas βDP and βE have different occupations: In the prehydrolysis state simulation, ATP occupies βDP and Pγ occupies βE; in the posthydrolysis state simulation, ADP and Pγ occupy βDP and Pγ occupies βE; and in Fig. 5. γ-Rotation angles from the TMD simulations (see text). The no-Pγ systems are with empty βE; γ+βDP simulation (black), βDP simulation (blue), βDP+Pγ simulation (green), all β simulation (purple), all β+α simulation (yellow). The time simulation is shown in nanoseconds, and the γ-rotation angle is defined as in Pu and Karplus (12). Except for the γ+βDP simulation, the TMD simulations continued for 1 ns and were followed by 1-ns unperturbed simulations to relax the system; during the latter all these systems reached a plateau for the rotation angle of γ. In the γ+βE TMD simulation, it took 2 ns before the rmsd distance to the 240° rotated structure fell below 0.75 Å; this was followed by a 1-ns relaxation simulation as in the other cases.
the postrelease state simulation, βDP is occupied by ADP and Pγ and Pα is empty. (See Fig. 1B and its legend for identification of the three states.) The structural comparisons reveal that during or after the hydrolysis of ATP in βDP and the release of Pγ from βE, small changes occur in the C-terminal hth motif and at the intersubunit interfaces of the subunits (SI Appendix, Figs. S2E and S7, and Movie S4). In addition, there are significant differences in the dynamics, as evidenced in the cross-correlation maps of the αβγ-complex; they are shown in SI Appendix, Fig. S8. Details of the structural and dynamic changes are given below.

SI Appendix, Fig. S8 shows the cross-correlation maps of the entire αβγ complex for the prehydrolysis state (SI Appendix, Fig. S8A), posthydrolysis state (SI Appendix, Fig. S8B), and the postrelease state (SI Appendix, Fig. S8C). In comparing the simulation of the posthydrolysis state to that of the prehydrolysis state, there is a rigid-body rotation of the C-terminal hth motif of αDP toward βDP in the former, relative to the latter. This rotation is caused by the cleavage of ATP into ADP and Pγ (SI Appendix, Fig. S7A). The rotation increases the contact between the two subunits and leads to a more closed αDP–βDP interface, as is evident from the increased buried surface area (SI Appendix, Fig. S9). It also leads to enhanced positive cross-correlation between the two subunits without a significant change of the intrasubunit cross-correlation of βDP (compare SI Appendix, Fig. S8 A and B). A similar closure of the αDP–βDP interface is observed experimentally. In SI Appendix, Fig. S7B, the X-ray structure with the transition-state analog (26) is superimposed on the structure with the ATP analog (14). The superposition shows that the C-terminal domain of αDP is rotated toward βDP for the transition-mimic state to make the interface tighter (SI Appendix, Fig. S7B, Left), in agreement with the simulations. The origin of this structural change appears to involve the displacement of αβDP373, which moves to interact with Pγ after it is cleaved from the ATP. SI Appendix, Fig. S7A shows the displacement of αβDP373 upon the cleavage of ATP in the simulations and a similar displacement in the transition-state mimic structure (SI Appendix, Fig. S7B; also see SI Appendix, Fig. S7C for the changes of interactions at the interface between the two subunits). In this interpretation, αβDP373 functions as a sensor that probes the progress of the hydrolysis reaction in βDP and dynamically links the two subunits (βDP and αDP). This is consistent with mutation experiments, which suggested that αβDP373 is involved in the rearrangement of the αDP–βDP interface upon ATP hydrolysis and the catalytic cooperativity of the enzyme (32).

We also find a noticeable difference between the cross-correlation maps of the posthydrolysis and postrelease states, i.e., there is an increase of intrasubunit correlation of both αE and βE in the postrelease state (SI Appendix, Fig. S8C). The cross-correlation maps of αE and βE in the postrelease state show cross-correlations that extend over the C-terminal and nucleotide binding domains (SI Appendix, Fig. S8 C and D), suggesting that the two domains behave like a rigid body. This difference in the dynamics of βE is of interest because the differences between the βE structures with or without Pγ or a Pγ analog are found to be negligible (SI Appendix, SI9 and Fig. S10). The anticorrelation between αE and the C-terminal domain of βE has also increased significantly (compare SI Appendix, Fig. S8 B and D). This result indicates that the two subunits move concertedly but in opposite directions. In this case, αβDP373 could play an important role in controlling the dynamics of αE and βE, similar to the role of αβγDP373 in ATP hydrolysis. In this mechanism, the interaction between Pγ in βE and αβDP373 keeps αE close to βE and away from βDP, preventing αE from responding to the change of βDP, thus blocking the rotation of γ. Once Pγ leaves the binding pocket, the interaction is lost, so that αE and in particular its C-terminal domain are able to respond to the change occurring in βDP and the rotation of γ.

To test the proposed mechanism, we have performed an additional TMD simulation. The simulation was carried out with the TMD perturbation applied to all α- and β-subunits but without the interaction between Pγ and αβDP373. If these interactions were important in blocking the γ-rotation, it would be expected that γ would rotate further in their absence than when the interactions between Pγ in βE and αβDP373 were present. The simulation produced a γ-rotation that is larger (close to 20°) than the simulation with the Pγ–αβDP373 interaction present, but then it falls back to the lower rotation angle during the subsequent relaxation simulation (SI Appendix, Fig. S11). The result confirms the proposed role of the interaction between Pγ and αβDP373 in blocking γ-rotation. The result also suggests that interactions (within or between βE and αE), other than the interactions between Pγ in βE and αβDP373, are important in preventing the rotation—for example, reducing the increase of the intrasubunit cross-correlation in the βE and αE subunits and the increase of the anticorrelation between them, which occurs upon the release of Pγ. In this regard, we note that αE is the subunit forming the most extensive surface contacts with γ among the α-subunits and has an extensive surface contact with βDP (SI Appendix, Fig. S9). The surface contacts of αE with γ are as extensive as the contact between βDP and γ, which is the largest surface contact among all βs.

Taken together, the present analysis shows how the interactions between βE and αE, including the interaction between Pγ and αβDP373, act as a “dynamic lock” to keep the protein in the prerotated catalytic dwell state. Only after Pγ is released is αE freed from βE and able to fully engage with βDP to complete the concerted conformational transition of the αβγ complex by which the γ-subunit rotates to reach the ATP waiting dwell state. Such dynamic locks have been proposed for different systems by Laity et al. for zinc finger proteins (33) and by Young et al. for c-Src (34).

Concluding Remark

The present study provides a structural model for the ATP waiting state of F1-ATPase, in agreement with single-molecule experiments which have suggested that it does not coincide with any of the known crystal structures. Knowledge of this structure, combined with that of the state in which catalysis takes place, makes possible the development of a detailed atomic-level description of the coupling between the binding and hydrolysis of ATP and the γ-subunit rotation induced by the conformational changes of the α- and β-subunits. The suggested tests of the proposal structure and a possible method for trapping it in a crystallographically accessible conformation should stimulate experimental studies (see SI Appendix, SI10 and SI11 for details).

Methods

Forced Rotation Simulation for Finding the ATP Waiting State. The structure of the minimal rotary complex αβγ was prepared based on the αβγ subcomplex of the 1BMF structure (3) and the γ-subunit of the 1E79 structure (9) by a procedure similar to that of Ma et al. (35). The CHARMM19 all-atom force field (36) and the EEF1 implicit solvation model (37) were used to describe the protein system and water solvent, respectively. In addition, the coarse-grained PNM (11, 12), in which each PNM node was assigned to the corresponding Cα atom position of the protein, was used to stabilize the protein conformation in the presence of the high forces used in the simulation. The system was first heated from 0 K to 300 K in 60 ps and then equilibrated at 300 K for 300 ps (see details in SI Appendix, SI2). The MD simulations were carried out with a 2-fs integration time step and SHAKE (38) applied to the bonds involving hydrogen atoms. The temperature was controlled using the Langevin thermostat.

After equilibration at 300 K for 300 ps, a large external torque was applied to drive the rotation of the γ-subunit in the hydrolysis direction (counter-clockwise as seen from the membrane). Using the PULL command of the CHARMM program (10), an external force of 2,500 pN was applied to the Cγ.
atom of residue γ-M25. Residue γ-M25 was identified by Pu and Karplus to provide a key contact point for the torque generation (12). In the forced rotation simulation, the external torque was applied only when backward rotation is detected. In that way, the simulation was biased toward the hydrolysis direction only when γ rotates backward but not when the forward rotation occurs spontaneously; the γ-rotation angle was checked at each update step (at every 1 ps). The γ-rotation angle is defined as in Pu and Karplus (12) using the αβ3(18MF)-(γi79) Walker structure as the reference structure for the catalytic dwell state, and a similar definition was used in subsequent steps. The direction of the force was determined as the instantaneous cross-product between the radial vector of the residue γ-M25 (perpendicular to the rotational axis) and the rotational axis itself (Fig. 1A). See SI Appendix, SI2 for details of forced rotation simulations and definition of the γ-rotation angle.

P Release Simulations. The 200° rotated system was prepared using the αβ3 subcomplex of the 1E18 structure (26) and the γ-subunit from the 1E79 structure (9). For the 240° state, the starting structure was the present ATP waiting state model structure. For the P, release MCES simulation (25), the P molecule was replicated 30 times by using the BLOCK module of the CHARMM program. In all simulations, P was treated as doubly protonated (H3PO42+), which was found to be favored in the active site of β-subunit (40). The interaction between the multiply copied P, and both the protein and the solvent was scaled by a factor that is inversely proportional to the number of P, copies, whereas each P, has no interaction with other P molecules. The remaining interactions were not scaled. The temperature of P, was controlled by attaching each P, to a separate Langevin thermostat, while the remainder of the system was maintained at 300 K. At each P, temperature, the MCES simulation was repeated 40 times (SI Appendix, SI7). Each simulation was started with different initial velocities and ran for 2 ns with a 1-fs integration time step. SHAKE was applied to constrain bonds involving hydrogen atoms.

Targeted MD Simulations of the Coordinated Conformational Transition of the αβγ Complex. The 40° substep rotation was simulated by applying the TMD simulation method (31). The TMD simulation was first carried out with the 200° rotated catalytic dwell structure, which was prepared for the MCES P, release simulations. The TMD perturbation was applied to the nonhydrogen atoms of the γ and β-subunits of the entire αβγ Complex for the βDPR → βDO transition and the 40° γ rotation; the ATP waiting model structure was the target structure. Subsequently, using this TMD-produced structure as the target structure for the αβγ complex, a set of TMD simulations was carried out with the TMD perturbation applied to various parts of the αβγ complex with or without P, in βD and without any perturbation to γ (see Fig. 5 legend for the notation of each TMD simulation). In the simulations the rmsd distance to the target structure was decreased by 0.2 × 10^−6 Å at each MD step until the rmsd reached a value lower than 0.75 Å.

ACKNOWLEDGMENTS. We are grateful to members of the M.K. group for helpful discussions and Dr. Gerhard Hummer for providing the coordinates of their modeled F1-ATPase structure. The work was supported in part by a grant from the National Institutes of Health (M.K.) and by a start-up grant from Indiana University-Purdue University Indianapolis (J.P.) and from Umeå University (K.N.). The computational resources were provided by the National Energy Research Scientific Computing Center, Faculty of Arts and Science Division Research Computing Group at Harvard University, and the Swedish National Infrastructure for Computing at High Performance Computing Center North (HPC2N).
