This is the published version of a paper published in *Organic and biomolecular chemistry*.

Citation for the original published paper (version of record):

http://dx.doi.org/10.1039/c5ob00395d

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-106519
Hydroxyethylene isosteres introduced in type II collagen fragments substantially alter the structure and dynamics of class II MHC Aq/glycopeptide complexes†

Cecilia Lindgren,a Ida E. Andersson,a,b Lotta Berg,a Doreen Dobritzsch,c Changrong Ge,b Sabrina Haag,b Urszula Uciechowska,a Rikard Holmdahl,b Jan Kihlberg* and Anna Linusson*a

Class II major histocompatibility complex (MHC) proteins are involved in initiation of immune responses to foreign antigens via presentation of peptides to receptors of CD4+ T-cells. An analogous presentation of self-peptides may lead to autoimmune diseases, such as rheumatoid arthritis (RA). The glycopeptide fragment CII259–273, derived from type II collagen, is presented by Aα MHCII molecules in the mouse and has a key role in development of collagen induced arthritis (CIA), a validated model for RA. We have introduced hydroxyethylene amide bond isosteres at the Ala261–Glu262 position of CII259–273. Biological evaluation showed that Aα binding and T cell recognition were dramatically reduced for the modified glycopeptides, although static models predicted similar binding modes as the native type II collagen fragment. Molecular dynamics (MD) simulations demonstrated that introduction of the hydroxyethylene isosteres disturbed the entire hydrogen bond network between the glycopeptides and Aα. As a consequence the hydroxyethylene isosteric glycopeptides were prone to dissociation from Aα and unfolding of the β1-helix. Thus, the isostere induced adjustment of the hydrogen bond network altered the structure and dynamics of Aα/glycopeptide complexes leading to the loss of Aα affinity and subsequent T cell response.

Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that mainly affects peripheral joints by causing inflammation that destroys cartilage and bone. The cause of the disease is not yet known, but a genetic link has been found to the expression of class II major histocompatibility complex (MHC) proteins –

† Electronic supplementary information (ESI) available: 1H NMR and 13C NMR spectra of all new isolated compounds, RMSD for Aα vs. simulation time, RMSD for the peptide binding groove vs. simulation time, RMSD for glycopeptides 1–4 vs. simulation time, RMSD for lle260–Glu266 sequences vs. simulation time, RMSD for the α1-helix vs. simulation time, RMSD for the β1-helix vs. simulation time, numbers of frames occupying each cluster for the MD simulations, superposition of frames from the cluster analysis displaying the glycopeptide/Aα complex, superposition of frames from the cluster analysis displaying the glycopeptides 1–4, visualization of hydrogen bonds formed between Aα and glycopeptides 1–4. See DOI: 10.1039/c5ob00395d
through a hydrogen bond network and by anchoring of side-chains in pockets in the binding groove.8 Synthesis and biological evaluation of a comprehensive panel of synthetic analogues of 1 has revealed Ile260 and Phe263 to be crucial anchor residues that bind in hydrophobic pockets of Ab (Fig. 2).9,10 Moreover, the galactosylated hydroxylysine at position 264 protrudes out of the binding site and is recognized by the TCR with exquisite specificity.11

Modification of glycopeptides, through the incorporation of amide bond isosteres, has been used to probe molecular interactions in the MHC/glycopeptide/TCR system.12–17 For instance, aza-amino acids,15 (E)-alkene and ethylene isosteres13 and oxazole modifications12 have been employed. The Ile260 – Gal264 fragment of glycopeptide 1 has been the target for the majority of these modifications as it contains essential features, such as the two MHC anchor residues9 and the galactose moiety crucial for TCR recognition.1,11 Incorporation of isosteres into 1 revealed the importance of having an intact network of hydrogen bonds for the stability of the complex with Ab.11 Furthermore, the dynamics of the complex were found to govern the response from the TCR; complexes that were more rigid than those of Ab and 1 resulted in weaker T cell responses.10,11

In this study, we further explore the molecular interactions in the MHC/glycopeptide/TCR system that are crucial for the development of CIA, and most likely also for RA, by synthesis and evaluation of two additional amide bond isosteres incorporated into glycopeptide 1.

Results

Amide bond isosteres

Hydroxyethylene isosteres were selected for incorporation at the Ala261–Gly262 position into glycopeptide 1 (Fig. 1, compounds 2 and 3). The choice of isosteres and their location were based on previous investigations, where we explored replacement of this amide bond with ketomethylene, methyleneamine and (E)-alkene isosteres.14 Evaluation of these glycopeptides showed that only ketomethylene-isostere modified glycopeptide 4 displayed comparable affinity for Ab and T-cell responses to 1, whereas both binding and cellular responses were lost for the others. We thus concluded that a hydrogen bond acceptor was required to maintain binding to Ab and T-cell responses, whereas the hydrogen bond donor of the amide bond could be omitted. The hydroxymethylene isosteres utilized in this study introduce a chiral centre and a hydrogen bond donor capability at the Ala261–Gly262 position, while retaining the hydrogen bond acceptor capability.

Synthesis

The diastereomeric Ala261–Gly262 hydroxyethylene isosteres were synthesized as dipeptide building blocks suitably protected for use in Fmoc-based solid-phase peptide synthesis (SPPS).18 In short, ketomethylene derivative 514 was first diastereoselectively reduced to the respective alcohol, followed by protective group manipulations and separation of diastereomeric mixtures. Diastereoselective reduction of ketomethylene derivative 514 was performed using conditions guided by the work of Hoffman \textit{et al.}19 and Våbnes \textit{et al.}20 (Scheme 1). Treatment of 5 with LiAlH(O-tBu)\textsubscript{3} in EtOH19,20 gave alcohol 6 in 75\% yield and with an excellent diastereomeric ratio (dr) 4S : 4R of 1 : 99 according to 1H NMR analysis. When 6 was instead treated with (S)-alpine-hydride in THF,20 alcohol 7 was obtained in 84\% yield although with a disappointing 4S : 4R dr of 2 : 1. The diastereomeric mixture 7 was difficult to separate by column chromatography and therefore additional transformations were performed. Both 6 and 7 were deprotected using TFA to remove the Boc and tBu protecting groups followed by Fmoc protection, which produced the lactones 8 and 9 (4S : 4R of 2 : 1), respectively. The latter mixture of lactones was at this stage separated by chiral HPLC chromatography to afford 9 with a 4S : 4R dr of 99 : 1. In the final step, reaction with tBuSH-AlMe\textsubscript{3} converted the lactones into the corres-
SPPS18 under standard conditions. The isosteric glycopeptides were cleaved from the solid support, deacetylated, and purified by reversed-phase HPLC to give the trifluoroacetate salts of 8, 9, and 10 from 8, 9, and 12 from 9. (a) TFA, CH2Cl2, rt; (ii) LiOH, H2O2, THF, 0 °C. After separation of the diastereomers by chiral chromatography, the corresponding ketomethylene-isostere (CLIP) tracer. As the CLIP binds with high affinity to A8 higher concentrations of weaker inhibitors, such as native 1, had to be employed in the ELISA. Replacement of the Ala261-Gly262 amide bond with the two different hydroxyethylene isosteres thus had severe effects on the glycopeptide abilities to bind to A8. These results underscore our previous results that this particular amide bond is highly sensitive to modifications. At this position the corresponding ketomethylene-isostere 4 is the only modified glycopeptide so far that has been shown to bind equally well to A8 as 1.

The T-cell response was investigated in a cell-based assay, where IL-2 secretion of A8 restricted T-cell hybridoma lines was measured after incubation with antigen-presenting spleen cells expressing A8 and increasing concentrations of the glycopeptides 1, 2, or 3 (Fig. 4). Four A8-restricted T-cell hybridomas that differed in their TCR specificity for the hydroxyl groups of the galactose moiety were investigated for their ability to recognize the glycopeptides. Despite the fact that no binding of 2 and 3 to A8 was detected by the competition assay, both were

Scheme 1 Reagents and conditions: (a) LiAlH(O-tBu)3, EtOH, –78 °C, 75%; (b) (5)-alpine-hydride, THF, –78 °C, 84%; (c) (i) TFA, CH2Cl2, rt; (ii) FMocOSu, Na2CO3, dioxane, H2O, 0 °C → rt, 86%; (iii) TFA, CH2Cl2, rt, 86% for 9 from 7; (i) TFA, CH2Cl2, rt, 86% for 9 from 7; (ii) TBDMSCl, imidazole, DMF, rt, 55% for 10 and 85% for 12 from 9; (e) LiOH, H2O2, THF, 0 °C → rt, 75% for 11 from 10 and 82% for 13 from 12.

Figure 3 shows the binding of native glycopeptide 1 and hydroxyethylene isosteres 2 and 3 to A8. In the competitive binding assay, increasing concentrations of 1, 2, or 3 were incubated with A8 protein and a fixed concentration of a biotinylated CLIP peptide. After the incubation, the A8-bound CLIP peptide was detected in a time-resolved fluoroimmunoassay using europium-labeled streptavidin. The points represent the average of duplicates and error bars are set to ± one standard deviation.
recognized and stimulated IL-2 secretion by HCQ.3 and HM1R.2, while the other two hybridomas HCQ.10 and 22a1-7e did not give any response (Fig. 4). The HCQ.3 and HM1R.2 responses of 2 and 3 were significantly weaker compared to the responses elicited by both the non-modified 1 and ketomethylene-isosteric glycopeptide 4; the latter of which elicited intermediate to strong responses from three of the four hybridomas. This suggests that 2 and 3 do in fact bind to Aq and were presented to the T-cell receptor in the functional assay, although too weakly to be detected in the binding assay.

That HCQ.10 and 22a1-7e were more sensitive towards the introduced modifications in the backbone compared to HCQ.3 and HMIR.2 has also been seen in previous studies. Analysis of glycopeptide/Aq-complexes by MD simulations Glycopeptides 1–4 were modelled into Aq to understand if the structures of the complexes correlated with the binding affinity for Aq and with the subsequent T cell responses. We found that the modified glycopeptides 2–4 displayed a binding mode almost identical to that of the native glycopeptide 1 in their respective complexes. Similar interactions were retained for all four glycopeptides although the position of the hydrogen bond acceptor had been altered for the hydroxylethylene-isosteric glycopeptides 2 and 3 compared to the carbonyl oxygen in 1 and 4. As the static structures were unable to explain the observed differences in Aq binding and T cell responses the dynamics of the isostere modified glycopeptide/Aq-complexes and the native system were studied over time using MD simulations. Repeated 60 ns MD simulations at different initial velocities were conducted for 1 (two times) and the modified glycopeptides 2–4 (three times) in a complex with Aq, using the static models as starting structures. The repeated runs will hereafter be referred to as (I), (II) and (III) and can be seen as samples from the complete conformational landscape of the systems. In general, the simulations reached equilibrium after 40 ns according to the root-mean-square deviation (RMSD) values (see the ESI† for RMSD plots). The analyses of the MD simulations were then focused on the binding mode and flexibility of the glycopeptides, and the hydrogen bonding network between the modified glycopeptides and Aq over the last 20 ns of the repeated runs. The system of 1/Aq served as a reference to which the modified glycopeptides 2–4 have been compared.

Flexibility of glycopeptide binding to Aq During the simulations, glycopeptide 1 was bound in the groove-shaped binding site of Aq (Fig. 5). The N-terminus remained firmly anchored in the binding groove, mediated by a network of intermolecular hydrogen bonds and by positioning of the anchor residues Ile260 and Phe263 in the P1 and P4 pockets, respectively. The C-terminus on the other hand
The results of the repeated MD simulations are different scenarios or time periods. While some of the MD simulations displayed a higher mobility than the native glycopeptide 1, the S- and R-hydroxyethylene-isosteric glycopeptides 2 and 3 displayed a behaviour indicative of a poor binder about to completely dissociate from Aβ and other simulations indicated a plausible binder instead. It should be noted that in previous MD simulations of the native glycopeptide 1, we have not observed a behaviour similar to 2 and 3, with the peptide dissociating from the binding groove, anchor residues leaving the P1 and P4 pockets, or unfolding of the β1-helix.

Hydrogen bond network

An extensive hydrogen bond network anchored glycopeptide 1 into Aβ during the molecular dynamics simulations. In total, 13 different hydrogen bonds were observed between the backbone of 1 and Aβ, and 7 of these had over 40% occupancy during the simulation (Tables 1 and 2). The majority of hydrogen bonds were formed between the N-terminal part of 1 (Gly259-Gly265) and Aβ, which was consistent with previous findings. In this sequence, 8 out of 13 intermolecular hydrogen bonds were present, of which 5 were considered strong bonds. In particular two hydrogen bonds showed a high presence during the MD simulations, Ala261(a)-Asn82(s) and Gln267(a)-Trp61(s) (Table 2).

In the case of the modified glycopeptides 2 and 3, insertion of the hydroxyethylene isostere at the Ala261-Gln262 position disturbed the overall hydrogen bond pattern during the MD simulations (Tables 1 and 2). Although hydrogen bonds could...
Table 2 Hydrogen bond occupancy, reported in %, between Aq and 1–4 over the last 20 ns of the MD simulations

<table>
<thead>
<tr>
<th>Glycopeptide residue (backbone)a</th>
<th>Aq residueb</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly259 (a)</td>
<td>βHis41 (s)</td>
<td>22 df</td>
<td>46</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ile260 (a)</td>
<td>αAsp26 (m)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ile260 (d)</td>
<td>αThr26 (m)</td>
<td>—</td>
<td>—</td>
<td>13</td>
<td>—</td>
</tr>
<tr>
<td>Ile260 (d)</td>
<td>αLeu26 (m)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ile260 (d)</td>
<td>αSer26 (m)</td>
<td>16</td>
<td>16</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ala261 (d)</td>
<td>βHis82 (s)</td>
<td>67</td>
<td>70</td>
<td>—</td>
<td>66</td>
</tr>
<tr>
<td>Ala261 (OH)b (a)</td>
<td>βAsn82 (s)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ala261 (OH) (d)</td>
<td>βThr77 (m)</td>
<td>—</td>
<td>—</td>
<td>24</td>
<td>—</td>
</tr>
<tr>
<td>Ala261 (OH) (d)</td>
<td>βVal77 (m)</td>
<td>—</td>
<td>—</td>
<td>57</td>
<td>—</td>
</tr>
<tr>
<td>Ala261 (d)</td>
<td>βHis82 (s)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ala261 (d)</td>
<td>βAsn82 (s)</td>
<td>26</td>
<td>18</td>
<td>—</td>
<td>42</td>
</tr>
<tr>
<td>Ala261 (OH) (d)</td>
<td>βAsn82 (s)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phe265 (a)</td>
<td>αTyr9 (m)</td>
<td>70</td>
<td>19</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phe265 (a)</td>
<td>αAsn63 (s)</td>
<td>—</td>
<td>—</td>
<td>22</td>
<td>—</td>
</tr>
<tr>
<td>Phe265 (d)</td>
<td>αTyr26 (m)</td>
<td>42</td>
<td>39</td>
<td>40</td>
<td>—</td>
</tr>
<tr>
<td>Lys264 (d)</td>
<td>βGlu74 (s)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>36</td>
</tr>
<tr>
<td>Phe265 (a)</td>
<td>αThr26 (s)</td>
<td>—</td>
<td>—</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Gly265 (a)</td>
<td>αAsn63 (s)</td>
<td>25</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gly265 (a)</td>
<td>αArg10 (s)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gly265 (d)</td>
<td>αAsn63 (s)</td>
<td>26</td>
<td>46</td>
<td>33</td>
<td>—</td>
</tr>
<tr>
<td>Gly265 (d)</td>
<td>αThr26 (s)</td>
<td>—</td>
<td>—</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>Glu266 (a)</td>
<td>αAsn82 (s)</td>
<td>34</td>
<td>—</td>
<td>51</td>
<td>39</td>
</tr>
<tr>
<td>Glu266 (d)</td>
<td>βThr82 (s)</td>
<td>11</td>
<td>—</td>
<td>18</td>
<td>—</td>
</tr>
<tr>
<td>Gln267 (a)</td>
<td>βTyr77 (s)</td>
<td>61</td>
<td>60</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>Gly268 (a)</td>
<td>αHis33 (s)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>32</td>
</tr>
<tr>
<td>Gly268 (a)</td>
<td>αGln74 (m)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gly268 (d)</td>
<td>αHis10 (s)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gly268 (d)</td>
<td>αAsn63 (s)</td>
<td>49</td>
<td>—</td>
<td>—</td>
<td>36</td>
</tr>
<tr>
<td>Pro269 (a)</td>
<td>αHis82 (s)</td>
<td>23</td>
<td>13</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

a = hydrogen bond acceptor, d = hydrogen bond donor. b = sidechain in Aq, m = main chain in Aq. c, I, II and III represent the different MD simulations conducted for the same glycopeptide. d The hydrogen bond occupancy has been calculated with the aid of the hydrogen bond extension tool in VMD23 with a donor–acceptor length of less than 3.3 Å and a donor–H–acceptor angle of minimum 160°. e Weak hydrogen bonds have an occupancy above 10% and under 40%. f The two hydrogen bonds that showed a high presence during the MD simulations; Ala261(a)-Asn82(s) and Gln267(a)-Trp77(s), are marked in bold. g = not applicable. h [OH] represents the hydroxyl group in the hydroxyethylene-isosteric glycopeptides 2 and 3.
still be formed with the hydroxyl group of the isostere, these were weak, and the remaining hydrogen bond network between the two glycopeptides and Aβ was disrupted causing the number of strong hydrogen bonds to show a large variation over time between MD simulations. A weak hydrogen bond was formed with Asn82(s) only in one MD-run, and thus no strong hydrogen bond corresponding to the strong Ala261(a)–Asn82(s) hydrogen bond in the 1/Aβ complex was observed. The ketomethylene isostere introduced in 4, on the other hand, maintained the Ala261(a)–Asn82(s) hydrogen bond (Table 2). The pattern of strong hydrogen bonds observed for 4 was more consistent with the pattern seen in the complex of 1 and Aβ, despite the loss of hydrogen bond donation ability of Gly262(d); a finding that agrees well with the observation that no hydrogen bond was formed with this residue in the MD simulations of native 1.14

The disrupted hydrogen bond networks seen in the dynamics analyses of 2 and 3, as compared with 1 and 4, resulted in the larger flexibility seen for those glycopeptides and their dissociation from the binding groove of Aβ discussed in the previous section. It is also likely that the altered hydrogen bonding was connected to the unfolding of the β1-helix observed in the complexes of 2 and 3. Thus, the dynamics calculations point to the fact that loss of one important hydrogen bond has a tremendous effect on both the structure and the stability of the entire complex. This loss most likely explains the dramatic difference in binding to Aβ between isosteres 2 and 3 and native 1 as seen in the competitive binding assay. Retention of the hydrogen bond between Gln267(a)–Trp61(s), which has a high occupancy for all four glycopeptides (Table 2), may explain the weak binding of 2 and 3 to Aβ as revealed by the stimulation of two of the four T cell hybridomas.

In conclusion, the MD-simulations displayed a far more detailed picture than the static models, and emphasized the importance of studying the dynamics to understand the behaviour and evolution over time of the Aβ–glycopeptide complexes. While the binding mode for the native glycopeptide 1 and the ketomethylene-isosteric glycopeptide 4 was similar to the static model, the hydroxyethylene-isosteres 2 and 3 displayed a behaviour deviating from what could be seen in static models. Studies of the dynamics of Aβ–glycopeptide complexes, but not static models, were therefore crucial to explain the results from the in vitro studies of class II MHC binding and T cell recognition.

Alteration of the epitope presented to the T cell

As described above, the T-cell response patterns elicited by the modified glycopeptides 2 and 3 differed from that of 1, being reduced for two hybridomas and not detectable for the other two. A reduced or eliminated T-cell response may be due to either a weaker binding to Aβ, and/or that the epitope presented to the TCR has been changed. We conclude that the finding that two of the hybridomas respond weakly to 2 and 3, while the other two do not respond at all, suggests that both effects are in operation. This conclusion is further supported by the MD simulations that showed increased flexibility of 2 and 3, relative to 1, in their complexes with Aβ and dissociation from the MHC binding groove indicating a reduced affinity. The increased flexibility, and the predicted unfolding of the β1-helix of Aβ, also suggests that the epitope presented to the T-cell has been altered, including the position of the GalHyl264, an important TCR contact point.4,11 Thus, even a small modification at the Ala261–Gly262 amide bond, not itself directly in contact with the TCR, had a major impact on the T-cell response pattern.

Conclusions

Different amide bond isosteres display different properties and are valuable tools to probe interactions in complexes between peptides and proteins. With this in mind, we have further explored the effect of replacing the Ala261–Gly262 amide bond in the glycopeptide CII259–273 (1) with isosteres upon binding to the Aβ class II MHC molecule and subsequent T cell recognition of the complex. The results revealed an unexpected fine specificity as hydroxyethylene-isosteric glycopeptides 2 and 3 displayed a substantial loss of Aβ binding and T-cell response compared with 1. In contrast, the previous introduction of a ketomethylene-isostere at the same position, to give glycopeptide 4, resulted in maintained affinity for Aβ and T-cell responses was maintained.14 Static models of the complexes of 1 and isosteric glycopeptides 2–4 with Aβ displayed comparable binding modes and thus did not provide any insight into the observed effects on isostere introduction. MD simulations, however, demonstrated that hydroxyethylene isosteric glycopeptides 2 and 3, in contrast to 1 and 4, were more flexible in their complexes with Aβ and also prone to dissociation from the binding groove. In addition, glycopeptides 2 and 3 led to unfolding of the β1-helix of Aβ. Analysis of the Aβ/glycopeptide complexes revealed that replacement of the Ala261–Gly262 amide bond with hydroxyethylene-isosteres disrupted the hydrogen bond network in the complexes. This, in turn, led to the altered structure and dynamics and explains the dramatic effects on the Aβ binding and the T cell recognition.

Experimental section

Chemistry

General. All reactions were performed under an inert atmosphere with dry solvents under anhydrous conditions, unless otherwise stated. TLC was performed on Silica Gel 60 F254 (Merck) with detection by using UV light and staining with alkaline aqueous KMnO4 followed by heating. After workup, organic solutions were dried over Na2SO4 and filtered before being concentrated under reduced pressure. Flash column chromatography was performed on silica gel (60 Å, 230–400 mesh, Merck grade, 9385). Optical rotations were measured with a Perking-Elmer 343 polarimeter at 20 °C. 1H and 13C NMR spectra of the isostere dipeptide derivatives were
recorded at 298 K on a Bruker DRX-400 spectrometer at 400 MHz and 100 MHz, respectively. Calibration was done using the residual peak of the solvent as an internal standard [CDCl3 (CHCl3 δ 7.26 ppm, CDCl3 δ 7.70 ppm) or CD2OD (CD2OD δ 3.31 ppm, CD2OD δ 4.90 ppm)]. Spectra of glycopeptides 2 and 3 were recorded at 298 K on a Bruker Avance spectrometer at 500 MHz in H2O/D2O (9:1) with H2O (δ 4.76 ppm) as an internal standard. HRMS data were recorded with fast atom bombardment (FAB+ ionization). Analytical reversed-phase HPLC was performed on a Beckman System Gold HPLC equipped with a Supelco Discovery® Bio Wide Pore C18 column (250 × 21.2 mm, 5 μm) using a flow-rate of 1.5 mL min⁻¹ and detection at 214 nm. Preparative reversed-phase HPLC was performed by using a Supelco Discovery® Bio Wide Pore C18 column (250 × 21.2 mm, 5 μm) using the same eluent as for the analytical HPLC, a flow rate of 11 mL min⁻¹, and detection at 214 nm. Compound 5 was synthesized as described in the cited references.

(4R,5S)-5-tert-Butyloxycarbonylamino-4-hydroxy-hexanoic acid tert-buty1 ester (6). Ketone 5 (160 mg, 0.531 mmol) dissolved in EtOH (8.0 mL) was added dropwise to a solution of LiAlH(O-tBu)3 (278 mg, 1.06 mmol) in EtOH (5.5 mL) at −78 °C. After stirring for 150 min at −78 °C, a second portion of LiAlH(O-tBu)3 (28 mg, 0.107 mmol) was added. After stirring for additional 60 min, citric acid (10%, aq.) was added and the mixture was warmed to rt followed by addition of EtOAc and H2O. The aqueous phase was extracted with EtOAc and the combined organic layers were washed with H2O and brine, dried and concentrated under reduced pressure. The crude was purified by flash chromatography (n-heptane/EtOAc 3:1) to afford 6 (4S:4R 1:99, 122 mg, 75%) as a white solid. [α]D20 = −19.5 (c = 1.0, CHCl3); 1H NMR (CDCl3) δ 4.77 (br s, 1H, NH), 3.76–3.63 (m, 1H, NCH), 3.63–3.56 (m, 1H, HOCH2), 2.48–2.32 (m, 2H, CH2CO2), 1.73–1.57 (m, 2H, CH2CH2CO2), 1.43 (s, 9H, C(CH3)3), 1.42 (s, 9H, C(CH3)3), 1.10 (d, J = 6.8 Hz, 3H, CH3); 13C NMR (CDCl3) δ 173.8 (CO2), 156.0 (NCO), 80.6 (C(CH3)3), 79.5 (C(CH3)3), 74.3 (HOCH2), 51.0 (NCH), 32.4 (CH2CO2), 28.4 (CH2CH2CO2), 28.1 (C(CH3)3), 14.9 (CH3).

(4S/R,5S)-5-tert-Butyloxycarbonylamino-4-hydroxy-hexanoic acid tert-butyl ester (7). Ketone 5 (269 mg, 0.892 mmol) was dissolved in dry THF (22 mL) and cooled to −78 °C followed by dropwise addition of (S)-alpine-hydrind (0.5 M in THF, 1.96 mL, 0.980 mmol). After stirring for 80 min at −78 °C, citric acid (10%, aq.) was added and the mixture was allowed to reach rt followed by the addition of EtOAc and brine. The aqueous phase was extracted with EtOAc and the combined organic layers were dried and concentrated under reduced pressure. The crude was purified by flash chromatography (n-heptane/EtOAc 5:1 → 2:1) to afford 7 (4S:4R 2:1, 227 mg, 84%) as a colorless oil. (4S)-7 (major isomer): [α]D20 = 47.4 (br s, 1H, NH), 3.66–3.57 (m, 1H, NCH), 3.53–3.47 (m, 1H, HOCH2), 2.47–2.33 (m, 2H, CH2CO2), 1.81–1.60 (m, 2H, CH2CH2CO2), 1.43 (s, 18H, C(CH3)3), 1.17 (d, J = 6.8 Hz, 3H, CH3); 13C NMR (CDCl3) δ 173.9 (CO2), 156.2 (NCO), 80.7 (C(CH3)3), 79.4 (C(CH3)3), 74.6 (HOCH2), 50.7 (NCH), 32.3 (CH2CO2), 29.3 (CH2CH2CO2), 28.4 (C(CH3)3), 28.1 (C(CH3)3), 18.3 (CH3). (4R)-7 (minor isomer): [α]D20 = 47.4 (br s, 1H, NH), 3.75–3.66 (m, 1H, NCH), 3.66–3.57 (m, 1H, HOCH2), 2.47–2.40 (m, 2H, CH2CO2), 1.81–1.60 (m, 2H, CH2CH2CO2), 1.14 (s, 18H, C(CH3)3), 1.10 (d, J = 6.8 Hz, 3H, CH3); 13C NMR (CDCl3) δ 173.8 (CO2), 156.2 (NCO), 80.7 (C(CH3)3), 79.5 (C(CH3)3), 74.4 (HOCH2), 51.0 (NCH), 32.5 (CH2CO2), 29.3 (CH3CH2CO2), 28.4 (C(CH3)3), 28.1 (C(CH3)3), 18.3 (CH3).
δ 7.79 (d, J = 7.6 Hz, 2H, Fmoc-arom), 7.65 (d, J = 7.5 Hz, 2H, Fmoc-arom), 7.41–7.36 (m, 2H, Fmoc-arom), 7.34–7.27 (m, 2H, Fmoc-arom), 4.52–4.45 (m, 2H, Fmoc-CH₂, OCH₃), 4.39–4.32 (m, 1H, Fmoc-CH₂), 4.25–4.18 (m, 1H, Fmoc-CH), 3.87–3.79 (m, 1H, NCH), 2.61–2.47 (m, 1H, CH₂CO₂), 2.46–2.35 (m, 1H, CH₂CO₂), 2.26–2.15 (m, 1H, CH₂CH₂CO₂), 1.99–1.85 (m, 1H, CH₂CH₂CO₂), 1.19 (d, J = 6.9 Hz, 3H, CH₃). A 13C NMR spectrum could not be obtained due to degradation during NMR analysis.

(4R,SS)-4-(tert-Butyl-dimethyl-silylaxyloxy)-5-(9H-fluoren-9-ylmethoxy-carbonylamino)-hexanethioic acid tert-butyl ester (10). AlMe₃ (1 M in heptane, 2.50 mL, 2.50 mmol) was added dropwise to a solution of t-BuSH (0.28 mL, 2.53 mmol) in CH₂Cl₂ (3.6 mL) at 0 °C. The mixture was stirred for 10 min at 0 °C, 10 min at rt followed by 10 min at 0 °C. Lactone 8 (106 mg, 0.301 mmol) dissolved in CH₂Cl₂ (1.9 mL) was added dropwise followed by stirring for 3 h and 30 min at 0 °C. The reaction was cooled to –78 °C and Et₂O (11 mL) was added followed by dropwise addition of HCl (1 M, 3 mL). The resulting mixture was then stirred for 10 min before it was allowed to reach 0 °C. The workup was performed under ice-cold solvent and aqueous solutions to prevent relactonization using ice-cold solvent and aqueous solutions. After addition of Et₂O and HCl (1 M), the phases were separated, and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with HCl (1 M, satd.aq.) and NaHCO₃ (satd.aq.) and brine, dried and concentrated under reduced pressure. Purification by flash chromatography (n-heptane/EtOAc 1:0 → 8:1) gave 12 (102 mg, 85%) as a colorless oil. [α]₂⁰D = +8.9 (c = 1.0, CHCl₃). ¹H NMR (CDCl₃) δ 7.77 (d, J = 7.5 Hz, 2H, Fmoc-arom), 7.60 (d, J = 7.5 Hz, 2H, Fmoc-arom), 7.43–7.37 (m, 2H, Fmoc-arom), 7.34–7.29 (m, 2H, Fmoc-arom), 4.87 (d, J = 8.9 Hz, 1H, NH), 4.46–4.39 (m, 1H, Fmoc-CH₂), 4.39–4.31 (m, 1H, Fmoc-CH₂), 4.25 (t, J = 7.0 Hz, 1H, Fmoc-CH₂), 3.83–3.73 (m, 1H, NCH), 3.68–3.61 (m, 1H, OCH₂), 2.50 (t, J = 7.5 Hz, 2H, CH₂CO₂), 1.82–1.67 (m, 2H, CH₂CH₂CO₂), 1.45 (s, 9H, SC(CH₃)₂), 1.15 (d, J = 6.7 Hz, 3H, CH₃), 0.93 (s, 9H, Si(CH₃)₃), 0.11 (s, 3H, SiCH₂), 0.10 (s, 3H, SiCH₃). ¹³C NMR (CDCl₃) δ 199.9 (COS), 155.9 (NCO), 144.0, 141.3, 127.0, 127.0, 125.1 (splitted), 119.9, 73.4 (CHO), 66.6 (Fmoc-CH₂), 49.1 (NCH), 47.9 (SC(CH₃)₂), 47.3 (Fmoc-CH), 40.5 (CH₂CO₂), 29.8 (SC(CH₃)₂), 29.2 (CH₂CH₂CO₂), 25.9 (Si(CH₃)₃), 18.1 (Si(CH₃)₃), 17.9 (CH₃), –4.3 (SiCH₃), –4.6 (SiCH₂).

(4R,SS)-4-(tert-Butyl-dimethyl-silylaxyloxy)-5-(9H-fluoren-9-ylmethoxy-carbonylamino)-hexanethioic acid (11). A premixed solution of H₂O₂ (30% aq. solution, 2.70 mL) and LiOH (0.2 M, 1.38 mL, 0.276 mmol) was added dropwise to 10 (81 mg, 0.145 mmol) dissolved in THF (10 mL) at 0 °C. The mixture was allowed to reach rt followed by stirring for 3.5 h and then it was cooled to 0 °C. Na₂SO₄ (2 M, 5 mL) was added dropwise followed by stirring for 40 min at 0 °C. The mixture was acidified by the addition of HCl (10%, satd. aq.), Et₂O was added, the phases were separated and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with HCl (1 M, satd. aq.), NaHCO₃ (satd. aq.), and brine, dried and concentrated under reduced pressure. Purification by flash chromatography (n-heptane/EtOAc/NaClO₄ 1:0:0 → 10:9:1) gave 13 (53 mg, 75%) as a white solid. HRMS (FAB⁺) caleed for C₃₈H₃₆NNa₂O₅Si (M – H + 2Na⁺) 528.2153, found 528.2178. [α]₂⁰D = –7.7 (c = 0.5, CHCl₃). ¹H NMR (CDOD) δ 7.78 (d, J = 7.4 Hz, 2H, Fmoc-arom), 7.65 (d, J = 7.4 Hz, 2H, Fmoc-arom), 7.41–7.35 (m, 2H, Fmoc-arom), 7.33–7.27 (m, 2H, Fmoc-arom), 6.73 (d, J = 8.0 Hz, 1H, NH), 4.43–4.28 (m, 2H, Fmoc-CH₂), 4.19 (t, J = 6.6 Hz, 1H, Fmoc-CH₂), 3.79–3.70 (m, 1H, OCT), 3.66–3.55 (m, 1H, NCH), 2.43–2.30 (m, 2H, CH₂CO₂), 1.80–1.72 (m, 2H, CH₂CH₂CO₂), 1.10 (d, J = 6.6 Hz, 3H, CH₃), 0.90 (s, 9H, C(CH₃)₃), 0.07 (s, 3H, SiCH₂), 0.05 (s, ...
3H, SiCH$_3$); 13C NMR (MeOD) δ 177.5 (CO$_2$H), 158.2 (split, NCO), 145.4, 142.6, 128.7, 128.1, 126.2, 120.9, 74.8 (OCH), 67.5 (Fmoc-CH$_2$), 51.5 (split, NCH), 48.5 (Fmoc-CH), 30.3 (CH$_2$C=O), 29.7 (CH$_2$CH$_2$C=O), 26.4 (C(CH$_3$)$_3$), 18.9 (C(CH$_3$)$_3$), 16.1 (CH$_3$), −4.2 (SiCH$_3$), −4.3 (SiCH$_3$).

General procedure for solid-phase peptide synthesis. Glycopeptides 2 and 3 were synthesized in mechanically agitated reactors on a TentaGel-S-PHB-Thr(tBu)-Fmoc resin (40 μmol) using standard solid-phase methodology essentially as described elsewhere.25 All couplings were performed in DMF. N$^\delta$-Fmoc amino acids with standard side-chain protecting groups (4 equiv.) were activated with 1-hydrobenzotriazole (HOBt, 6 equiv.) and 1,3-diisopropylcarbodiimide (DIC, 3.9 equiv.) and the couplings were monitored using bromophenol blue as the indicator. (5R)-N$^\delta$-[Fluoren-9-ylmethoxycarbonyl]-N$^\beta$-benzoyloxycarbonyl-3-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-5-hydroxy-L-lysine14,26 (1.5 equiv.) and the isostere building blocks 11 and 13 (1.5 equiv.) were activated with 7-aza-1-hydrobenzotriazole (HOAt, 3 equiv.) and DIC (1 equiv.) and coupled for 24 h. Fmoc deprotection after each coupling cycle was accomplished by treatment with 20% piperidine in DMF for 10 min. The glycopeptides were cleaved from the resin with trifluoroacetic acid/H$_2$O/thioanisole/ethanedithiol (35:2:2:1, 40 mL) for 3 h at 40 °C with workup performed essentially as described elsewhere.25 Purification by reversed-phase HPLC was followed by deacetylation with NaOMe in MeOH (20 mM, 1 mL per mg peptide) for 2–3 h at rt (monitored by analytical reversed-phase HPLC). The mixture was neutralized by addition of AcOH and concentrated under reduced pressure, and the residue was finally purified using reversed-phase HPLC followed by lyophilization.

Glyglycyl-L-isoleucyl-L-alanyl-L-prolyl-L-lysylglycyl-L-glutam-1-yl-L-threonine (2).

Synthesis was performed with building block 13 according to the general procedure described above. This afforded the trifluoroacetate salt of 2 (12.4 mg, 18% yield based on the amount of resin used) as a white amorphous solid after lyophilization. MS (MALDI-TOF) calculated 1654.82 for [M + H]$^+$, found 1654.82. 1H NMR data are given in Table 3.

Glyglycyl-L-isoleucyl-L-alanyl-(4S)-CHOHCH$_2$]-glycyl-L-phenylalaninyl-(5R)-5-O-(β-D-galactopyranosyl)-5-hydroxy-L-lysylglycyl-L-glutam-1-yl-L-glutaminylglycyl-L-prolyl-L-hyslyglycyl-L-glutam-1-yl-L-threonine (3).

<table>
<thead>
<tr>
<th>Residue</th>
<th>NH</th>
<th>Hα</th>
<th>Hβα</th>
<th>Hγ</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly359</td>
<td>8.39</td>
<td>3.88b</td>
<td>1.81</td>
<td>1.41, 1.14, 0.88 (CH$_3$)</td>
<td>0.84 (H$_6$)</td>
</tr>
<tr>
<td>Ile260</td>
<td>7.92</td>
<td>3.86</td>
<td>1.10</td>
<td>3.41 [CHOHCH$_2$], 1.55b [CHOHCH$_3$]</td>
<td></td>
</tr>
<tr>
<td>Ala261[CHOHCH$_2$]</td>
<td>8.20</td>
<td>4.62</td>
<td>3.10, 2.98</td>
<td>7.25 (H$_6$), 7.35 (H$_β$), 7.31 (H$_γ$)</td>
<td></td>
</tr>
<tr>
<td>Gly262</td>
<td>8.40</td>
<td>4.29</td>
<td>2.00, 1.75</td>
<td>4.02 (H$_6$), 3.18 and 2.98 (H$_β$), 7.62 (εNH$_2$)</td>
<td></td>
</tr>
<tr>
<td>Phe263</td>
<td>8.00</td>
<td>3.92b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly264</td>
<td>8.23</td>
<td>4.37</td>
<td>2.10, 1.94</td>
<td>2.43b</td>
<td></td>
</tr>
<tr>
<td>Gly266</td>
<td>8.49</td>
<td>4.37</td>
<td>2.10, 1.96</td>
<td>2.35b</td>
<td></td>
</tr>
<tr>
<td>Pro269</td>
<td>8.27</td>
<td>4.11, 3.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys270</td>
<td>8.45</td>
<td>4.40</td>
<td>2.26, 1.90</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>Gly271</td>
<td>8.35</td>
<td>3.94b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glu272</td>
<td>8.21</td>
<td>4.47</td>
<td>2.14, 1.96</td>
<td>2.45b</td>
<td></td>
</tr>
<tr>
<td>Thr273</td>
<td>8.09</td>
<td>4.33</td>
<td>4.33</td>
<td>1.16</td>
<td></td>
</tr>
</tbody>
</table>

a Measured at 500 MHz and 298 K in water containing 10% D$_2$O with H$_2$O (δ$_{H2}$ 4.76 ppm) as an internal standard. b Degeneracy has been assumed. c Chemical shifts for the galactose moiety: δ 4.43 (H$_1$), 3.91 (H$_4$), 3.76 (H$_6$), 3.68 (H$_5$), 3.64 (H$_3$), and 3.52 (H$_2$).
Synthesis was performed with building block 11 according to the general procedure described above. This afforded the trifluoroacetate salt of 3 (22.5 mg, 28% yield based on the amount of resin used) as a white amorphous solid after lyophilization. MS (MALDI-TOF) calc 1654.82 for [M + H]+, found 1654.81. 1H NMR data are given in Table 4.

Aβ binding assay

The abilities of the backbone-modified glycopeptides 2 and 3 and non-modified CI259–273 to bind to Aβ were determined relative to a biotinylated CLIP peptide with a competitive inhibition assay performed using 96-well microtiter assay plates essentially as described elsewhere. Briefly, purified soluble recombinant Aβ proteins (1 μg L−1) were transferred to a V-bottom microtiter plate, and spun down to avoid transfer of Aβ hybridomas to the ELISA plate. The contents of IL-2 in the culture supernatant (100 μL) were measured by sandwich ELISA (capturing mAb: purified rat anti-mouse IL-2, JES6-IA 12; detecting mAb, biotinylated anti-Mouse Interleukin-2 mAb 5H4, Mabtech AB) using the DELFIA® system (Wallac, Turku, Finland), according to the manufacturer’s instructions. The culture supernatant from ConA activated splenocytes served as a positive control.

T-cell activation assays

Responses of the Aβ-restricted T-cell hybridoma lines (i.e., the amount of IL-2 secreted following incubation of the hybridoma with antigen-presenting spleen cells expressing Aβ and increasing concentrations of the glycopeptides) were determined essentially as described elsewhere, with slight modifications. Glycopeptides 1–3 were evaluated with the Aβ-restricted T-cell hybridomas and prepared using the Protein Preparation Wizard™, Boehringer, Mannheim). During this incubation, new 96-well microtiter assay plates were precoated with Y3P monoclonal antibodies (mAb) (10 μg mL−1) by incubation overnight at 4 °C followed by blocking with PBS containing 2% low fat milk and washing with PBS containing 0.1% Tween 20. The incubated mixtures containing Aβ proteins, CLIP-bio, and test peptides (90 μL) were transferred to the plates precoated with mAb followed by incubation overnight at 4 °C. After washing with PBS (0.1% Tween 20) the amount of CLIP-bio bound to the Aβ proteins captured by the mAb in the wells was quantified using the dissociation-enhanced lanthanide fluorimunoassay (DELFIAtm) system based on the time-resolved fluorimunoassay technique with europium labeled streptavidin (Wallac, Turku), according to the manufacturer’s instructions. The experiments were performed in duplicates.

Molecular modelling

Preparation of the complexes. The initial coordinates for Aβ in a complex with 1 were obtained from an X-ray crystal structure and prepared using the Protein Preparation Wizard in Maestro. Bond orders were assigned, hydrogens added, disulfide bonds created, termini were capped, and no water molecules were included. The hydrogen bond assignment was optimized and the hydrogen atoms were energy minimized with the OPLS 2005 force field to converge to RMSD 0.30 Å. Due to low electron density, Glu108 and Leu110 were added using the building module in Maestro. Arg106–His112 were

Table 4 1H NMR chemical shifts for CI259–273 with Ala126,15ψ(4R)-CHOHCH2)Gly126 3

<table>
<thead>
<tr>
<th>Residue</th>
<th>NH</th>
<th>Ha</th>
<th>Hβ</th>
<th>Hγ</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly259</td>
<td>3.84<sup>a</sup></td>
<td>1.81</td>
<td>1.43, 1.16, 0.88 (CH3)</td>
<td>0.84 [H6]</td>
<td></td>
</tr>
<tr>
<td>Ile260</td>
<td>8.41</td>
<td>4.13</td>
<td>2.33, 2.24</td>
<td>3.49 ψ[CHOHCH2], 1.67 and 1.47 ψ[CHOHCH2]</td>
<td></td>
</tr>
<tr>
<td>Ala261ψ[CHOHCH2]</td>
<td>8.11</td>
<td>3.82</td>
<td>2.00, 1.75</td>
<td>7.25 [H6], 7.34 [H4], 7.30 [H3]</td>
<td></td>
</tr>
<tr>
<td>Gly262</td>
<td>2.33</td>
<td>2.24</td>
<td>4.02 [H6], 3.16 and 2.98 [H4], 7.62 (εNH2)<sup>c</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phe263</td>
<td>8.19</td>
<td>4.60</td>
<td>3.06, 2.98</td>
<td>3.58<sup>c</sup> [H6]</td>
<td></td>
</tr>
<tr>
<td>His264</td>
<td>8.39</td>
<td>4.29</td>
<td>2.10, 1.94</td>
<td>1.63<sup>c</sup> [H6], 2.98<sup>c</sup> [H4], 7.50 (εNH2)</td>
<td></td>
</tr>
<tr>
<td>Gly265</td>
<td>7.94</td>
<td>3.85<sup>b</sup></td>
<td>2.10, 1.96</td>
<td>2.35<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Glu266</td>
<td>8.22</td>
<td>4.37</td>
<td>2.10, 1.96</td>
<td>7.50 and 6.83 (δNH2)</td>
<td></td>
</tr>
<tr>
<td>Gly267</td>
<td>8.49</td>
<td>4.37</td>
<td>2.10, 1.96</td>
<td>2.35<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Gly268</td>
<td>8.27</td>
<td>4.13</td>
<td>1.98</td>
<td>3.58<sup>c</sup> [H6]</td>
<td></td>
</tr>
<tr>
<td>Pro269</td>
<td>4.40</td>
<td>2.26, 1.90</td>
<td>1.98<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys270</td>
<td>8.45</td>
<td>4.29</td>
<td>1.84, 1.75</td>
<td>1.43<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Gly271</td>
<td>8.35</td>
<td>3.94<sup>b</sup></td>
<td>1.84, 1.75</td>
<td>1.43<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Glu272</td>
<td>8.20</td>
<td>4.47</td>
<td>1.84, 1.75</td>
<td>1.43<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Thr273</td>
<td>8.10</td>
<td>4.33</td>
<td>1.98</td>
<td>1.43</td>
<td></td>
</tr>
</tbody>
</table>

^a Measured at 500 MHz and 298 K in water containing 10% D2O with H2O (δH 4.76 ppm) as an internal standard. ^b Degeneracy has been assumed. ^c Chemical shifts for the galactose moiety: δ 4.43 (H1), 3.92 (H4), 3.76 (H6), 3.68 (H5), 3.64 (H3), and 3.52 (H2).
thereafter energy minimized using the OPLS 2005 force field and a dielectric constant of 80 as implemented in the Macro model within Maestro, while the rest of the complex was frozen. Manual hydroxylation and glycosylation of Lys were also performed with the building module in Maestro. A conformational search was performed for the carbohydrate moiety (while the rest of the complex was frozen). The generated conformations were thereafter energy minimized using the OPLS 2005 force field and a dielectric constant of 80 as implemented in the Macro model within Maestro while the rest of the protein was constrained with a force constant of 100 kJ mol⁻¹ Å². The conformation with the lowest energy was thereafter selected. The native glycopeptide was manually mutated into the amide bond isostere modified glycopeptides and thereafter energy minimized in the binding groove with the Macro model and a flat bottom constraint on the entire complex, with a force constant of 100 kJ mol⁻¹ Å² and a width of 0.2 Å.

Parameter preparation GalHyl. Partial charges for the non-standard residue GalHyl were computed using the R.E.D. Server/R.E.D IV. Seven conformations of the ACE–GalHyl–NME capped amino acid were used, extracted from a conformational search using the OPLS 2005 force field and a dielectric constant of 80 as implemented in the Macro model within Maestro. The partial charges were thereafter fitted to reproduce molecular electrostatic potential (MEP). The intra-molecular charge constraints for ACE and NME were set to zero during the charge fitting step and are thereafter removed from the molecule to give a force field library for the central fragment only. Using Ante_R.E.D. 2.0, P2N files were generated, thereafter manually modified to correct the atom order and connectivity, and finally joined together into one single file. The R.E.D IV server with the RESP-A1 (HF/6-31G*) charge model was thereafter applied.

The GLYCAM force field atom types were assigned for the carbohydrate part and AMBER force field atom types for the amino acid part.

Amide bond isosteres. The coordinates for the three amide bond isosteres were taken from the prepared complexes as described above. The partial charges for the amide bond isosteres were thereafter derived following a similar procedure as described above for GalHyl using the R.E.D server and the RESP-A1 (HF/6-31G*) charge model. The central fragment procedure was applied using the capped amide bond isostere fragment with an acetylated N-terminus (ACE) and a methylated C-terminus (NME) using one conformation for each amide bond isostere.

Molecular dynamic simulations. The AMBER12 simulation package was used for the MD simulations with the ff99SB force field together with GLYCAM_06h for the carbohydrate moiety. Hydrogen atoms were deleted from the complex before preparation with the xleap module. Hydrogen atoms were added, disulphide bridges were specified, and Na⁺ counter ions were added to neutralize the system. Thereafter the system was solvated with the TIP3P water model with a 12 Å octahedral box, using periodic boundary conditions. Langevin dynamics was used to control the temperature during the MD simulations, the SHAKE algorithm constrain bonds involving hydrogens, and a time step of 2 fs was used. The Particle Mesh Ewald method was applied to treat long range electrostatic interactions and an 8 Å cut off was used for the short range non-bonded interactions. A first minimization was performed where the protein was constrained with a force constant of 500 kJ mol⁻¹ Å², followed by another minimization without constraints. Thereafter the system was heated from 0 to 300 K with a 20 ps simulation, with constraints added to the complex with a force constant of 10 kJ mol⁻¹ Å². This was followed by a 100 ps simulation to equilibrate the system at 300 K. Constraints with a force constant of 100 kJ mol⁻¹ Å² were added to the backbone of the end terminus residues of the αβ₂ domains, since these residues are membrane bound. Constant pressure periodic boundaries with an average pressure of 1 atm were used with isotropic position scaling to maintain the pressure. The production runs, for in total 60 ns, were performed at 298.15 K with constraints on the end terminal residues. All the MD simulations were executed on the High Performance Computing Centre North (HPC2N).

Analysis was performed with the aid of the Visual Molecular Dynamics (VMD) software. Frames were extracted and visualized with a time step of 2 ps. RMSD values were calculated with the RMSD trajectory tool to confirm stability of the complexes. The hydrogen bond occupancy was calculated with the hydrogen bond extension tool, with a donor–acceptor length of less than 3.3 Å and a donor–H–acceptor angle of minimum 160°. Only hydrogen bonds with an occupancy >10% are reported, and hydrogen bonds with an occupancy >40% are considered strong. Cluster analysis was performed with the clustering plugin over the last 20 ns. Clustering was based on the minimal epitope (Ile–Gln) after superposing the complex against the binding groove, defined as Ala–Asn, βGlu–Gln. An RMSD cut-off of 0.8 Å was used and a maximum number of 20 clusters were extracted. Representative snapshots were thereafter randomly selected from each cluster. Figures have been prepared with MOE.

Acknowledgements

This study was supported by the Swedish Research Council, Swedish Foundation for Strategic Research, Knut and Alice Wallenberg Foundation, and the EU IMI Project BeTheCure. The access to synchrotron radiation and data collection support by the beamline staff at the European Synchrotron Radiation Facility (Grenoble, France) are gratefully acknowledged. We also thank HPC2N (High Performance Computing Center North) for HPC resources and technical support.

Notes and references

22 D. Dobritzsch, H. Uysal, C. Ge and R. Holm达尔, unpublished results.

39 High Performance Computer Center North (HPC2N); HPC2N: Umeå, Sweden; http://www.hpc2n.umu.se/.

40 L. Gracia, Weill Cornell Medical College, 1300 York Ave, New York, 10065 NY.

41 Molecular Operating Environment (MOE), 2012.10; Chemical Computing Group Inc., 1010 Sherbrooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2012.