This is the published version of a paper published in *Journal of Environmental Health Perspectives*.

Citation for the original published paper (version of record):

Atmospheric Interactions and Cardiac Arrhythmias: Langrish et al. espond.
*Journal of Environmental Health Perspectives*, 123(6): A144-A145
http://dx.doi.org/10.1289/ehp.1409636R

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-107091
Atmospheric Interactions and Cardiac Arrhythmias

http://dx.doi.org/10.1289/ehp.1409636

Although plausible pathophysiological mechanisms link air pollution to arrhythmogenesis, among them altered autonomic tone, repolarization abnormalities, oxidative stress, myocardial ischemia, and increased intracardiac pressure (Link and Dockery 2010), definitive conclusions have not been reached as yet. Langrish et al. (2014) analyzed 13 double-blind randomized crossover studies and found no significant risk of arrhythmia attributable to acute controlled exposure to air pollutants. Three issues related to meteorological factors probably either confound or modify the short-term association between air pollution and cardiac arrhythmia.

First, several meteorological elements, including air temperature, atmospheric pressure, relative air moisture, and wind speed and direction, also are implicated in triggering ventricular (Čulić et al. 2004, 2005) and supraventricular (Čulić et al. 2012, 2013) arrhythmias independent of physical and emotional stress. In the short term, those meteorological factors may facilitate arrhythmias in susceptible patients by increasing circulatory load and thromboinflammatory processes (Čulić 2014).

Second, these same meteorological elements substantially influence concentrations of sulfur dioxide, carbon monoxide, nitrogen dioxide, ozone, and suspended particulate matter (Bertaccini et al. 2012; Iten and Selcić 2008; Ito et al. 2007). In addition, the greatest ozone production and pollution results from gaseous air pollutants was significantly modified by weather types and season. Alberdi et al. (1998) reported that both relative air moisture and air temperature are strongly related to daily mortality even after controlling for air pollution and influenza. Keatinge and Donaldson (2001) suggested that prolonged cold weather with less wind and rain may produce false associations between mortality and certain air pollutants. Finally, strong mutual interrelations exist among the above-mentioned meteorological elements. Alberdi et al. (1998) pointed out the strong inverse association they observed between relative air moisture and air temperature as an important problem for regression analysis.

Langrish et al. (2014) caution against definitive acceptance of air pollution as an independent trigger of cardiac arrhythmias. However, the studies included in their analysis had no data on meteorological factors. It is likely that interactive effects among air pollutants and meteorological elements bias each other’s association with arrhythmias and other acute cardiac events. Therefore, further research of the health effects of atmospheric factors should continue in order to identify potentially harmful influences for the population as a whole as well as for its vulnerable subgroups.

The author declares he has no actual or potential competing financial interests.

Viktor Čulić
Department of Cardiology, University Hospital Center Split, Split, Croatia
E-mail: viktor.culic@st.t-com.hr

REFERENCES

Correspondence

China (Langrish et al. 2014). Exposure to neither air pollutants in isolation nor ambient Beijing air pollution was associated with cardiac dysrhythmia in either patients with coronary heart disease or healthy volunteers. As such, our studies do not address the influence of meteorological conditions on an individual’s risk of cardiac arrhythmia; indeed, the meteorological conditions in Beijing were fairly constant throughout our studies (Langrish et al. 2009, 2012).

There is emerging evidence that cardiovascular morbidity and mortality is associated with meteorological and environmental conditions, and we agree with Čulić’s statement that further research on the health impacts of atmospheric factors is important both for public health and for better understanding the interaction between urban air pollution and external influences.

The authors declare they have no actual or potential competing financial interests.

Jeremy P. Langrish,1 Jenny A. Bosson,2 Thomas Sandström,2 Anders Blomberg,2 David E. Newby,1 and Nicholas L. Mills1

1University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom; 2Department of Public Health and Clinical Medicine, Division of Medicine/Respiratory Medicine, Umeå University, Umeå, Sweden

E-mail: d.e.newby@ed.ac.uk

REFERENCES


