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Abstract
Cloud computing has become a powerful enabler for many IT services and new technolo-
gies. It provides access to an unprecedented amount of resources in a fine-grained and
on-demand manner. To deliver such a service, cloud providers should be able to efficiently
and reliably manage their available resources. This becomes a challenge for the manage-
ment system as it should handle a large number of heterogeneous resources under diverse
workloads with fluctuations. In addition, it should also satisfy multiple operational require-
ments and management objectives in large scale data centers.

Autonomic computing techniques can be used to tackle cloud resource management
problems. An autonomic system comprises of a number of autonomic elements, which are
capable of automatically organizing and managing themselves rather than being managed
by external controllers. Therefore, they are well suited for decentralized control, as they
do not rely on a centrally managed state. A decentralized autonomic system benefits from
parallelization of control, faster decisions and better scalability. They are also more reliable
as a failure of one will not affect the operation of the others, while there is also a lower risk
of having faulty behaviors on all the elements, all at once. All these features are essential
requirements of an effective cloud resource management.

This thesis investigates algorithms, models, and techniques to autonomously manage
jobs, services, and virtual resources in a cloud data center. We introduce a decentralized
resource management framework, that automates resource allocation optimization and ser-
vice consolidation, reliably schedules jobs considering probabilistic failures, and dynam-
icly scales and repacks services to achieve cost efficiency.

As part of the framework, we introduce a decentralized scheduler that provides and
maintains durable allocations with low maintenance costs for data centers with dynamic
workloads. The scheduler assigns resources in response to virtual machine requests and
maintains the packing efficiency while taking into account migration costs, topological
constraints, and the risk of resource contention, as well as fluctuations of the background
load.

We also introduce a scheduling algorithm that considers probabilistic failures as part of
the planning for scheduling. The aim of the algorithm is to achieve an overall job reliabil-
ity, in presence of correlated failures in a data center. To do so, we study the impacts of
stochastic and correlated failures on job reliability in a virtual data center. We specifically
focus on correlated failures caused by power outages or failure of network components on
jobs running large number of replicas of identical tasks.

Additionally, we investigate the trade-offs between vertical and horizontal scaling. The
result of the investigations is used to introduce a repacking technique to automatically man-
age the capacity required by an elastic service. The repacking technique combines the
benefits of both scaling strategies to improve its cost-efficiency.
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Sammanfattning på svenska
Datormoln har kommit att bli kraftfulla möjliggörare för många nya IT-tjänster. De ger
tillgång till mycket storskaliga datorresurser på ett finkornigt och omedelbart sätt. För
att tillhandahålla sådana resurser krävs att de underliggande datorcentren kan hantera sina
resurser på ett tillförlitligt och effektivt sätt. Frågan hur man ska designa deras resurs-
hanteringssystem är en stor utmaning då de ska kunna hantera mycket stora mängder het-
erogena resurser som i sin tur ska klara av vitt skilda typer av belastning, ofta med väldigt
stora variationer över tid. Därtill ska de typiskt kunna möta en mängd olika krav och
målsättningar för hur resurserna ska nyttjas.

Autonomiska system kan med fördel användas för att realisera sådana system. Ett au-
tonomt system innehåller ett antal autonoma element som automatiskt kan organisera och
hantera sig själva utan stöd av externa regulatorer. Förmågan att hantera sig själva gör
dem mycket lämpliga som komponenter i distribuerade system, vilka i sin tur kan bidra till
snabbare beslutsprocesser, bättre skalbarhet och högre feltolerans.

Denna avhandling fokuserar på algoritmer, modeller och tekniker för autonom hanter-
ing av jobb och virtuella resurser i datacenter. Vi introducerar ett decentraliserat resurs-
hanteringssystem som automatiserar resursallokering och konsolidering, schedulerar jobb
tillförlitligt med hänsyn till korrelerade fel, samt skalar resurser dynamiskt för att uppnå
kostnadseffektivitet.

Som en del av detta ramverk introducerar vi en decentraliserad schedulerare som al-
lokerar resurser med hänsyn till att tagna beslut ska vara bra för lång tid och ge låga
resurshanteringskostnader för datacenter med dynamisk belastning. Scheduleraren allok-
erar virtuella maskiner utifrån aktuell belastning och upprätthåller ett effektivt nyttjande av
underliggande servrar genom att ta hänsyn till migrationskostnader, topologiska bivillkor
och risk för överutnyttjande.

Vi introducerar också en resursallokeringsalgoritm som tar hänsyn till korrelerade fel
som ett led i planeringen. Avsikten är att kunna uppnå specificerade tillgänglighetskrav
för enskilda tjänster trots uppkomst av korrelerade fel. Vi fokuserar främst på korrelerade
fel som härrör från problem med elförsörjning och från felande nätverkskomponenter samt
deras påverkan på jobb bestående av många identiska del-jobb.

Slutligen studerar vi även hur man bäst ska kombinera horisontell och vertikal skalning
av resurser. Resultatet är en process som ökar kostnadseffektivitet genom att kombinera de
två metoderna och därtill emellanåt förändra fördelning av storlekar på virtuella maskiner.
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Chapter 1

Introduction

The prospect of obtaining on-demand unlimited access to a wide variety of services
and applications makes cloud computing an appealing paradigm for many users
and organizations. Cloud computing offers its users the possibility to rent and
customize their computing environments, immediately when they need them, to
obtain a desired experience. As cloud computing has evolved, it has become simpler
to plan, build and launch an IT platform targeting a large number of users. However,
this increase in users’ comfort has been accompanied by a steady increase in the
challenge and complexity facing cloud operators as they strive to offer services that
scale and satisfy expectations at several different levels.

Infrastructure is the main building block of cloud computing. Infrastructure
Providers (IP) offer a pool of different kinds of hardware resources, including pro-
cessing, storage, and network capacity, in a virtualized environment. These re-
sources are usually pulled from several servers that may be distributed across mul-
tiple data centers, spread over different continents, in a seamless and transparent
manner. Infrastructure providers also offer automated solutions for easy manage-
ment of these resources, such as dynamic scaling, security, maintenance, backup and
resiliency planning. These resources and services are available upon request and can
be accessed from any location provided that an internet connection is available.

The quality of these services is usually agreed between the provider and the user
via a Service Level Agreement (SLA). To guarantee a service level, the IP must de-
termine the necessary quantity and type of resources to allocate to each customer,
and how these resources should be placed. This is a critical and complex deci-
sion because the SLA should be maintained and guaranteed regardless of workload
fluctuations, power outages, hardware failures, and any of the other unpredictable
adverse events that may occur within the data center. Such decisions require rig-
orous monitoring, workload behavior prediction, smart strategies to achieve failure
tolerance, capacity planning, admission control, and careful mappings of the demand
to the available resources. The problem is made more complex by the fact that the
underlying infrastructure should support numerous applications with heterogeneous
workloads, from short-lived batch jobs to performance-sensitive web services, which
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are to run on an assembly of commodity hardware with heterogeneous resource
types [5].

The complexity of the problem and the dynamic nature of cloud workloads
oblige cloud providers to invest heavily in automating their processes and to adopt
smarter, more optimized solutions. This has led to the development of autonomic
solutions, which automatically monitor the system’s state, predict and identify nec-
essary changes in the system’s configuration, and adaptively react to these changes
by initiating appropriate reconfigurations [14]. The automation of this whole pro-
cess is commonly referred to as autonomic resource management, and is the main
focus of this thesis.
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Chapter 2

Resource Scheduling and
Management

Resource management is the process of efficiently planning and deploying resources
to meet users’ demands. Resource management middleware resides over the hard-
ware layer and provides an abstract pool of hardware resources, using virtualization
technology. A key function of a resource manager is to hide the complexities of
resource allocation and failure handling from its users, allowing them to focus on
application development [34]. Using virtualization, the resource manager partitions
the resources into sets of resource slots known as Virtual Machines (VM), which
can be assigned to different batch or service jobs. A job is a collection of one or
more tasks, running on the cloud resources and can either refer to a user interac-
tive service, known as service job, or a batch process, known as batch job [23]. A
data center’s operational costs, energy consumption and flexibility are all highly
dependent on how resources are partitioned and mapped to jobs’ demand.

To achieve effective resource management, there are a set of design goals that
should be met:

Cost efficiency: Large scale compute clusters are expensive in both financial and
environmental terms, and should therefore be utilized efficiently [23]. This
means that the resource manager should improve resource and power uti-
lization, and maintain acceptable levels of both quantities even in the face
of variable utilization rates and demand. The resource manager should also
avoid downtime and SLA penalties because they are both costly and harmful
to the reputation of the enterprise.

Energy efficiency: Energy efficiency and reducing negative environmental im-
pacts are also critical [15]. In a typical data center, about half of the power
is consumed by the hardware resources, with the rest going mostly to cooling
[2]. Effective resource management can dramatically reduce the data center’s
power consumption and environmental footprint. Importantly, increasing en-
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ergy efficiency reduces the data center’s electricity consumption and thus its
operational costs.

Reliability: Reliability is the ability to perform and operate as expected over a
period of time. It is a critical variable in a data center operation and must
be achieved even if it requires sacrificing efficiency. Hardware failures, service
interruptions, and downtimes are very expensive and should be avoided [35].
Therefore, the resource manager should able to pro-actively plan for failures
and minimize downtime.

Scalability: Steady and ongoing increases in the number of running applications,
the size of data centers, and workload diversity mean that resource managers
must scale to hundreds of thousands of machines and support millions of task
scheduling decisions per second.

2.1 Challenges

To meet the above-mentioned objectives, a set of challenges should be addressed:

2.1.1 Admission control

When a job arrives at the system, the first task is to decide whether to accept and
accommodate it or not. This is a critical decision, specially when the amount of
work exceeds the amount of available resources [23]. The job should be accepted if
the data center has sufficient resources and the job has sufficient quota to spend.
In this context, the quota is the maximum amount of resource that can be used by
the job.

Admission control would be simple if resource utilization was constant for all
jobs running in the system. However, capacity planning and decisions about job
admission are complicated by fluctuations in demand, uncertainties due to the un-
predictable arrival and termination of the jobs, and the risk of contentions on dif-
ferent resource levels [32]. Inefficient admission control can lead to underutilization
of resources and revenue loss, or to frequent resource contention and degradations
in the performance. It is therefore important to smartly plan the admission process
to achieve efficient utilization without sacrificing performance.

2.1.2 Resource scheduling

For efficient operation, virtualization is used to divide physical machines into mul-
tiple logical partitions. Each job is assigned to a partition of a resource to satisfy
its capacity demands. However, how resources are partitioned and how they are
assigned, highly impact the utilization efficiency. It is also important to be aware
that a resource is a multi-dimensional entity (for example, a single physical machine
has compute, memory, network, and IO capabilities), and statically partitioning it
over a single dimension (e.g. only compute) will lead to inefficient utilization with
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respect to other dimensions (e.g. memory or network). This forces us to formu-
late the scheduling problem as a multidimensional bin-packing problem, which is a
challenging combinatorial NP-hard problem.

The scheduling problem becomes more complicated still because different jobs
and workloads have different SLA requirements, and may require different ways of
bin-packing tasks together. For example, low priority batch jobs or housekeeping
tasks (such as file-system cleanups or logging services) can be packed/scheduled on
highly loaded machines to backfill the server and increase utilization. However, it
is not reasonable to pack a latency-sensitive web application or critical monitoring
jobs on such a server because the high load would cause resource contention and
affect the service’s performance.

Furthermore, different workloads have different tolerances for scheduling delays.
It does not make sense to wait for minutes for the scheduler’s decision on a task that
only runs for few seconds. Such workloads are exemplified by data analytic tasks,
which require quick scheduling and have low tolerance for throughput bottlenecks
[21]. However, it is worth spending time to carefully schedule a long running per-
formance sensitive web-service because scheduling is generally a one-time decision
and such services cannot be easily re-scheduled or migrated.

Changes in cluster dynamics are inevitable in cloud data centers. The scheduler
should be able to cope with these changes and perform corrective actions to fix
any sub-optimal allocations that arise [3]. Typical corrective actions include live
migrations, the implementation of backfilling strategies, and preemption. However,
to avoid incurring avoidable costs or degrading performance, all of these corrective
actions should be planned carefully.

Data locality is another key factor when scheduling resources. Forcing servers
to perform a costly fetch of required information across the network causes large
overheads and leads to straggler effects [38]. Therefore, it makes more sense to
schedule tasks close to the location of the data. In other words, the scheduler
should ensure data locality to minimize network load and task completion times,
both of which may be adversely effected by long data transfer times.

Finally, the scheduler should support placement constraints. As reported by
[30], approximately 50% of production jobs have constraints on machine properties.
These constraints can be soft constraints that describe the job’s preferences, hard
constraints that specify particular requirements (e.g. the server should have a GPU),
or complex affinity anti-affinity constraints [16] that are defined in relation to the
scheduling of other jobs (e.g. two database servers should not be located on the same
server). Having different types of constraints for large portion of jobs necessitates
the support for constraint satisfaction while scheduling.

2.1.3 Server consolidation

Server consolidation is a management strategy for increasing utilization and reduc-
ing the total number of active servers. The concept was originally developed to
reduce server sprawl situations in which multiple servers are under-utilized and the
total amount of work to be done could be performed with fewer resources. The
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under-utilization may be due to resource defragmentation or over-estimation of re-
quired resources by the service owners [31]. The resulting waste of power or cooling
within a cluster can be mitigated by running multiple jobs on a single machine,
reducing the number of servers required. This process is often referred to as server
consolidation.

While consolidation substantially increases utilization, it also complicates the
scheduling problem. The first problem arises when colocated jobs compete over
shared resources in highly loaded servers. This competition causes resource con-
tention and interference between jobs, and hence leads to performance degradation.
While virtualization offers some level of isolation for CPU and memory, interfer-
ences affecting cache, I/O channels, network links and power are unavoidable [17].
Therefore, it is important to consider the trade offs between increasing utilization
and minimizing resource contention when planning a consolidation.

Colocating different jobs on a single machine also complicates identifying the
causes of performance misbehavior [5]. It becomes more complicated to ensure
performance and reliability as there are more interacting threads and processes and
one misbehaving thread can disrupt the performance of other processes and jobs.

It is also common to over-commit resources when planning a consolidation.
Overcommitment enables higher consolidation ratios but also increases the risk of
resource contention and introduces hidden costs of corrective actions if the con-
solidation is not carefully planned. Live migration and job preemption are two
examples of corrective actions that are both complex and expensive. Live migration
reduces the service’s performance during the migration period, increasing its band-
width consumption and requiring costly reconfigurations. Job preemption increases
both completion times and the load on the scheduler, which is obliged to repeat
the scheduling process for the preempted job. Good consolidation planning must
therefore include an assessment of the risks of resource contention and interferences,
associated with varying workload behavior. In addition, the costs of re-configuration
and possible performance penalties should be considered in relation to the possible
benefits of consolidation. Finally, if an overload occurs despite this careful plan-
ning, the scheduler should carefully come up with an efficient corrective plan that
has minimal costs and performance impacts.

Another risk of consolidation is the potential for resource stranding. Resource
stranding is the problem of underutilization on one dimension of a multi-dimensional
resource while other dimensions are fully utilized. It can occur as a consequence
of co-locating jobs with similar resource requirements on the same machine (e.g.
multiple compute intensive or memory intensive jobs) such that the one resource is
saturated while other resource dimensions are unused and thus wasted. Resource
stranding reduces the overall utilization of resources over the data center and should
be carefully avoided when planning a consolidation.

2.1.4 Workload analysis and prioritization

The challenges of resource management and scheduling arise from the fact that het-
erogeneous workloads are now able to utilize shared resources in cloud data centers.
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Therefore, it has become essential for resource managers to understand and learn
different workload behaviors in order to correctly plan allocations. Understanding
workload patterns will help resource managers to become aware of potential inter-
ferences among workloads and to plan accordingly. The negative impacts of resource
stranding can also be mitigated if the resource access patterns are well understood.
Finally, workload prioritization can increase resource utilization, when services with
different availability requirements can share nodes without impacting each others
performance [5]. It is thus clear that intelligent resource management requires a
deep understanding of workloads and their behaviors.

2.1.5 Fault tolerance

Data centers are always vulnerable to different types of faults, including hardware,
network, and power failures. This vulnerability stems from the use of commodity
hardware and the complexity of the underlying infrastructure in the data center.
The failure-prone nature of data centers, together with users’ increasingly high
expectations of availability and reliability, mean that resource management solutions
must be highly fault-tolerant. Resource manager should be capable of planning
ahead for the failures and ensure that the system performs as expected, even in the
presence of unexpected failures [36].

It should be noted that it is impossible to entirely eliminate failures. However, it
is possible to mask them in various ways (for example by replication or fault-aware
placement) to deliver a given level of job reliability [9]. The delivery of job reliability
cannot be seen as something that is independent of the scheduling problem because a
job’s reliability is strongly dependent on the initial placement of tasks over different
fault domains. To achieve the reliability, each scheduling and allocation decision
should take into account both the probabilities of failure for different components,
and the impact of these failures on service reliability.

2.1.6 Capacity auto-scaling

Auto-scaling is a feature offered by cloud providers that allows users to add and re-
move resources on demand, depending on their actual usage. This makes it possible
to avoid over-provisioning and under-utilization by provisioning resources just as
required. Resources can be scaled either horizontally or vertically. Horizontal scal-
ing involves letting users increase or reduce the number of VMs allocated to their
services, while vertical scaling involves letting them change the configuration and
volume of the allocated resources (e.g. by adding a core or increasing the allocated
memory) as their demand changes.

However, automating the dynamic scaling of resources is complex because any
such solution should be scalable, robust, adaptive, and capable of making rapid
decisions [1]. Furthermore, the scaling decisions should improve overall availability
while reducing the data center’s operating costs. The two key questions that an
effective auto-scaler must answer are when should a given application’s resources be
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scaled, and by how much? A deep understanding of the application’s behavior and
workloads is very beneficial when attempting to answer these questions.

2.2 Centralization vs. Decentralization

Resource managers should simultaneously support multiple objectives, some of
which may conflict with each other. To achieve some objectives it is necessary
to make high quality, system-wide decisions. In these cases, the management layer
benefits from having comprehensive information on the state of all the resources
under its management (including their consumption) as this makes it possible to
evaluate all possible options [8]. To this end, the resource manager can be designed
as a single centralized controller that monitors the whole system and reacts to the
system state changes accordingly. Because a centralized design has only one de-
cision maker, the resulting decisions are more likely to be consistent, efficient and
aligned with high level objectives of the data center than would be the case for a
decentralized design.

However, modern workloads pose new challenges and requirements that make
centralization of control less efficient:

• The need for high throughput decision-making: Typical cloud work-
loads consist of a combination of many short batch jobs and a smaller number
of longer-running service jobs. Short batch jobs such as a Spark [37] queries
or Dremel [19] jobs are usually highly latency sensitive, as they only run for
hundreds of milliseconds [21]. It clearly does not make sense to spend a few
minutes to schedule such a job. Jobs of this class can represent up to 80% of
all arrivals at a data center [23, 22, 13, 4] and therefore require a resource man-
ager that scales to high arrival rates, supports high throughput, and makes
decisions with minimum latency. When seeking to support high throughput,
it is not sensible to make decisions in a serialized fashion as is typically done in
centralized controllers [8, 7]. It is instead preferable to parallelize the decision-
making process and divide the tasks over multiple decision makers such that
one has a group of decision makers working concurrently to provide a solution.
However, parallelization and faster decision-making are incompatible with a
comprehensive overview of the system, so the quality of individual decisions
will generally be reduced.

• Workload heterogeneity: The diversity of cloud workloads and applications
has led to the development of a multitude of cluster computing frameworks
[10], including Map-Reduce [6], Spark [37], Dryad [12], Pregel [18], and Pig
[20]. These frameworks do not necessarily share a single scheduling logic,
so a single resource manager cannot be optimal for all of them. Therefore,
the resource manager should be flexible to support different scheduling logics.
This can be done by dividing the functionalities among different independent
schedulers, each handling a specific computing framework or a scheduling
logic. In such scenarios, the resource manager shares the underlying resources
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among different schedulers, each of which performs its own scheduling. The
viability and attractiveness of this approach are demonstrated by the growing
number of decentralized schedulers, which include Omega [23], Mesos [11],
YARN [33], Apollo [3] and Hawk [7].

• Reliability and fault tolerance: Decentralization of the management layer
can also improve the system’s reliability and fault tolerance. In a decentralized
design, none of the controllers rely on a centralized state so the failure of one
will not affect the operation of the others [21]. This is obviously not the case
for a centralized scheduler because the single controller represents a single
point of failure for the whole system.

• Scalability: The extent to which increasing scalability can be seen as a major
motivation for decentralization is somewhat controversial. While some people
believe that centralized solutions are still capable of responding at the current
scale, others argue that centralized solutions are not sustainable given the
increasing demand for cloud services. In general, although scalability is not
necessarily the main motive for decentralization, it is effectively obtained as
a “bonus” of a decentralized design.
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Chapter 3

Contributions

Data center architecture and management have undergone a dramatic transition
over the years, from single-purpose traditional hosting infrastructures to the more
complex systems that are currently known as autonomic data centers. This evolu-
tion has been driven by a major increase in market demand with respect to both
volume and agility expectations. These increases in demand, complexity, and scale
have clearly revealed the need for abstraction and automation of the data center’s
processes.

To automate a complex system such as a cloud data center, it is helpful to
break it down into a number of subsystems and manage each of them individually.
This makes the individual subsystems more comprehensible and allows each one
to deal exclusively with a specific sub-problem, collection of servers, or objective.
However, the isolated management of individual subsystems is often less effective
than centralized management of the system as a whole, and the collective outcome
of individual managing units’ decisions will not necessarily be optimal with respect
to a data center’s high level management objectives.

This thesis investigates the problem of resource management and scheduling of
resources in a cloud data center. We also discuss modeling and coordinating the
autonomic elements to achieve a high level management objective. It begins by ex-
ploring ways of defining resource management in terms of a collection of autonomic
elements, and of integrating such elements into a single management framework that
works toward an overall management objective. This is followed by the introduction
of a decentralized resource management framework, which is a conceptual integra-
tion of independent autonomic elements in a way that enables them to collectively
satisfy the data center’s objectives. In the proposed framework, the high-level objec-
tives are achieved as a consequence of the emergent behavior of the elements. Each
element is responsible for different levels of decision making, control or actuation,
at either the resource- or job level. The autonomic elements use local monitoring
data to make local decisions, interact and cooperate with other agents to establish
a global view of the system, and ultimately induce system-wide responses. A ma-
jor difficulty in designing a decentralized system is the lack of a consistent global
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overview of the system, which contributes to the quality of decision-making. It is
also challenging to achieve a given global response on the basis of a collection of
local actions.

3.1 A decentralized resource management frame-
work

We introduce a conceptual decentralized resource management framework in which
the autonomic elements are structured as peers in a Peer to Peer (P2P) structure.
The framework is based on a two-level resource management mechanism. On the
first level, we propose a distributed scheduler and we study how such a scheduler
decides which resources to allocate to the jobs, how to co-locate jobs to avoid in-
terferences, and how to plan corrective actions. On the second level, we study the
functionalities of a job level scheduler. We introduce algorithms on how to deter-
mine the amount and the type of the resources required to meet the demand of each
job, how to schedule the job to guarantee a certain reliability, and how to scale it
cost-efficiently. The framework features two main classes of autonomic elements:

1. Node agents: Node agents are schedulers that are responsible for infrastruc-
ture level resource management, i.e. the allocation and consolidation of jobs
over the physical machines in the data center. Each node agent uses a sam-
pling service to dynamically define its neighborhood and interact with other
node agents within that neighborhood. The node agent collects information
about available resources within its neighborhood and uses this local view to
schedule a job locally or pass it on to another neighboring node agent for
more efficient scheduling. This design means the system benefits from a high
degree of concurrency and decentralization of control with no central bottle-
neck. Moreover, the node agent can adapt its behavior to satisfy different
scheduling preferences relating to, for example, speed vs quality. To this end,
the node agents adjust their sampling size and interactions based on the job’s
requirements and preferences.

In addition to control decisions, the node agents can initiate and plan correc-
tive actions if their associated servers are in a sub-optimal state (i.e. over-
or underloaded). The node agent takes different factors into account when
deciding on allocations and consolidations, and when drawing up a migration
plan. Among the factors considered are the utilization, the scheduling latency,
the risk of overload, and resource contentions. Factors considered when plan-
ning a migration or other corrective action to deal with over- or underload
include the costs of reconfiguration, the volume of data transfer required for
a given configuration, topological constraints, and the workload’s sensitivity
to migration. The node agent can account for placement constraints when
deciding on allocations despite having no centralized controller.

The node agent also acts as an admission controller if it cannot find sufficient
resources to accommodate the request. Figure 1 shows an overall view of a
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Figure 1: A node agent and its goals, domains of action, and controls

node agent’s objectives and actions. More details are presented in papers
[26, 28, 27].

2. Job agents: Job agents are simply job schedulers. Each job agent is respon-
sible for satisfying the expectations of a single application, such as scaling the
resources, repacking them to make them more cost-optimal [25], and ensuring
the job reliability [29]. They are also responsible for communicating the job’s
scheduling preferences such as its placement constraints, application type,
delay sensitivity, and resource requirements to the node agents. This two-
level architecture with independent job agents for each application increases
scheduling flexibility because each Job agent can have its own scheduling logic
and preferences. Figure 2 presents an overall view of a job agent’s objectives
and actions. More details are presented in papers [25, 29].

Fault-aware scheduling 

 replica placement ReplicationCapacity planning

Application owner Objectives

AvailabilityCost EfficiencyEfficient utilization

Repacking

Vertical scaling Horizontal scaling

Figure 2: A job agent and its goals, domains of action, and controls

3.2 Summary of Papers

3.2.1 Paper I

Paper I [24] provides a bird’s eye view of the resource management problem in a
cloud data center. It reviews the challenges of cloud data center automation and
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recent attempts to address these challenges, analyzing them in a top-down fashion.
As shown in Figure 3, from a top-down perspective the management process can be
divided into a number of low-level controllers with distinct responsibilities. Each
controller serves a specific purpose such as admission, auto-scaling, scheduling and
allocation, or fault management.

The paper also argues that there is an essential need for coordination between
these controllers. This claim is based on the fact that even though each controller
has a distinct set of responsibilities, they are still far from independent because
the decisions of one can have profound impacts on the behavior of others. Each
controller is complex enough to make the system’s implicit dependencies hard to
capture. For example, increasing the consolidation level may allow the admission
controller to accept more services. However, an aggressive admission policy that
does not adequately consider the constraints on consolidation may increase the
interference between the deployed jobs and thus reduce the benefits of consolidation.
Therefore, it is essential to understand the dependencies among the controllers to
ensure the optimality of the obtained solutions with respect to high level objectives.
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Figure 3: Resource Management (Holistic Approach)

Finally, the paper formulates the problem of controller coordination in a cloud
data center, lists the major challenges to be overcome in this area, and proposes a
business-oriented governance model to coordinate controllers’ behavior in the pres-
ence of conflicting goals and to tune the system so that its individual elements work
jointly toward a high level objective.

3.2.2 Paper II

Paper II [26] lays the foundations for the development of a P2P resource man-
agement framework for cloud data centers. The paper’s objective is to develop a
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resource manager that is scalable with respect to the number of servers and incom-
ing VM requests. The paper highlights the advantages of decentralized resource
management frameworks and the challenges encountered in this design. It argues
that the main motivations for creating such systems are scalability, flexibility and
parallelization of control, while the challenges that need to be addressed include
the lack of a global view and the consequent impact on the quality of the obtained
solutions.

The paper proposes a decentralized architecture for a resource management
framework with a P2P structure. Each peer in the framework is responsible for
making local decisions based on its local information. Global objectives are achieved
as an emergent outcome of these local interactions and optimizations.

The proposed framework has a 3 layer structure. The first layer is an overlay
network, which specifies the logical interconnections between peers. The structural
properties of the overlay affect the efficiency of information propagation within the
system, which is essential to compensate for the lack of a global view. The overlay
network is designed as a scale-free network.

The second layer consists of an agent community that interacts in a goal-oriented
P2P fashion. Each agent (peer) is an autonomous resource scheduler that acts on
behalf of a physical server. Finally, the third layer is a collection of agents that act
as job schedulers.

As part of the framework, the paper focuses on the problem of resource alloca-
tion and VM consolidation, which is discussed at length in the paper. The allocation
problem is modeled as an optimization problem, with the goal of maximizing re-
source utilization. A local search heuristic is proposed as a solution. The paper
argues that the efficiency of allocations in a fully distributed structure is highly
dependent on the efficiency of information propagation and the distribution effi-
ciency. Effective information propagation and discovery reduces the computational
time, while an efficient allocation distribution reduces defragmentation and thus
increases utilization.

The system’s performance is evaluated in terms of data center utilization, server
utilization, number of hops (used as a measure of computational time), rejection
ratios, and profit. The scalability of the system is also studied by evaluating its
performance in simulations with different numbers of servers. The results show
that the system can scale up to 5000 servers with 9000 placement requests arriving
during one hour of simulation. Finally, we present a re-consolidation process to
continuously optimize sub-optimal allocations, occurred as the result of workload
changes. In our experiments, reconsolidation increased node utilization by up to
10%.

3.2.3 Paper III

Paper III extends the framework proposed in Paper II, focusing on the placement
of 2-dimensional VMs and the re-consolidation of multi-dimensional resources. The
paper tackles the problem of resource stranding in data centers and introduces a
gossip protocol to mitigate its negative impact. Within the proposed protocol,
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placement decisions are made continuously between random pairs of cooperative
agents that are trying to improve a common value. The common value is defined
as the total imbalance in utilization of each pair at the time of decision making,
and the goal is to reduce this imbalance by redistributing the VMs between the
two agents. The cooperative approach prevents undesirable bounces of VMs and
ensures a stable state, which is essential to avoid redundant migrations.

Moreover, in the extended framework, the logical overlay is dynamically built
and maintained by a peer sampling service. This stands in contrast to the system
considered in paper II, in which the overlay is a static scale-free network.

The feasibility, scalability and performance of the proposed framework and its
consolidation algorithm were evaluated by simulating a data center that has 100,000
servers and receives 200,000 VM requests during the simulation time. The VMs
are assumed to be capable of running a combination of batch jobs and stateless
interactive services. The requests’ types are uniformly distributed among memory-
optimized, compute-optimized, and general purpose VM types. The results show
that the proposed decentralized approach is feasible and scalable over the stud-
ied range, and can produce placement decisions within a short computation time.
Specifically, the protocol converges in less than 7 cycles in all studied cases. The
observations also indicate that a balanced utilization of a two dimensional resource
in a mixed workload results in more efficient utilization of resources in both dimen-
sions. This reduces the incidence of rejection of future VM requests and accelerates
the resolution of overloaded servers. Overall, use of the framework reduced the
incidence of rejection by 28%, increased the rate of offload by 12.6% (for a greater
number of overloaded servers than was possible with the previous method), and
reduced power consumption by 3.2%, at the expense of a 25% increase in migration
incidence.

3.2.4 Paper IV

Paper IV [27] investigates the placement and re-consolidation problem, focusing
on the costs of different corrective actions such as backfilling and migration. The
aim is to identify a way of planning and maintaining durable allocations to reduce
the cost of corrective actions for data centers with dynamic and heterogeneous
workloads. The proposed scheduler assigns resources to VMs and maintains their
packing efficiency while taking into account migration costs, topological constraints,
and the risk of resource contention, as well as the variability of the background load.

We extend the sampling protocol used in Paper III to support topological aware-
ness when planning for migration. The new sampling protocol provides a neighbor
list that is based on nodes’ physical proximity in the data center architecture, in
addition to the each peer’s timestamp. A server has a higher probability of being
returned as a sample if it is in the same server group as the main peer. The P2P
overlay creates logical dynamic connectivity (dynamic partitioning) within a large
pool of resources and reduces the negative impacts of static partitioning, which can
cause low utilization. However, considering the physical proximity of the neighbors
when building the logical overlay reduces the costs of network transit and reconfig-
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urations.
To perform consolidation, node agents initiate a resource discovery process in

which they rank their neighbors on the basis of their proximity, the risks of re-
source contention and load variations, and efficiency of allocation both in terms of
utilization and proportionality of consumption over different resource dimensions.
The new migration planning heuristic also accounts for possible data transfer costs
when planning a migration. At the end, the node agent selects the best candidate
among the neighbors, found within the acceptable discovery time.

The proposed heuristic is evaluated by simulating a data center with over 65000
servers that are interconnected in a multi-rooted tree topology, for a simulation
period of 24 hours. The efficiency and durability of consolidation, data transfer effi-
ciency, number of migrations, and their localization were analyzed by measuring 20
different performance metrics. We compared our risk- and topology-aware heuris-
tic, which is referred to as the Reconsolidating PlaceMent scheduler (RPM ), to
the commonly used multi-dimensional First Fit Decreasing (FFD-sum) bin-packing
heuristic. The results show that RPM reduces the cost of maintaining the desired
packing efficiency. By accounting for the risks of variability and load contention,
RPM reduces the number of sub-optimal state triggers by up to 60% compared
to FFD-sum and thus reduces the number of migrations required to resolve sub-
optimal states. Finally, the paper discusses the impact of individual variables con-
sidered within the proposed heuristic function, and identifies its key performance
trade-offs.

3.2.5 Paper V

Paper V [25] addresses an application-level concern: how to cost-effectively scale
resources in a cloud data center. The paper introduces a repacking approach to
automatically manage the capacity acquired by an elastic application in a cost-
effective and on-demand manner.

The paper studies the trade-offs between two commonly used scaling approaches,
horizontal scaling and vertical scaling. Horizontal scaling can quickly adapt an ap-
plication’s resource set by adding extra capacity, without any need for re-configuration
of the currently deployed VM set. However, the resulting resource set can become
far from optimal for the aggregated capacity over time. Vertical scaling can main-
tain the optimality of the resource set, at the cost of expensive and time-consuming
re-configurations for each change in demand. The paper investigates how combining
the benefits of both scaling strategies can improve the cost-efficiency of an elastic
application.

A cost-benefit analysis is presented to determine the trade-off between horizontal
and vertical scaling. This analysis is used to support the design of a repacking
controller that evaluates the performance of the current configuration as well as the
cost and durability of proposed reconfigurations when deciding when and how a
repacking should be performed.

The proposed repacking controller is compared to different auto-scaling strate-
gies. A sensitivity analysis is carried out to study the impacts of different param-
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eters and configuration settings on repacking decisions. The analysis shows that
combining the benefits of horizontal and vertical scaling, and effectively replac-
ing the non-optimal resource set can reduce an application’s total cost of resource
utilization by up to 60% over its lifetime.

This functionality is studied as part of the job agent functionalities and can be
embedded in the resource management framework.

3.2.6 Paper VI

Paper VI [29] introduces a scheduling algorithm that considers probabilistic failures
when scheduling a job. The work presents a reliability model for a job running in
a virtual data center, with the possibility of stochastic and correlated failures and
different failure characteristics. Drawing on the model’s properties, a scheduling
algorithm is proposed to ensure job reliability in the presence of correlated failures.
The goal is to minimize the number of concurrent failures due to a single failure
event, and to maintain the desired reliability with the minimum number of extra
tasks.

The proposed the scheduling algorithm approximates a minimum number of
required tasks and a placement to guarantee a desired job reliability. We study
the efficiency of our algorithm using an analytical approach and by simulating a
cluster with different failure sources and reliabilities. The results show that the
algorithm can effectively approximate the minimum number of extra tasks required
to guarantee the job’s reliability. This functionality is also studied as part of the job
agent functionalities and can be embedded in the resource management framework.

3.3 Future outlook

Decentralized resource management is shown to be efficient, scalable, and able to
cope well with highly dynamic systems. Consequently, there is great scope for its
exploitation in a wide range of environments including geo-distributed data centers,
telecom clouds, and Internet of Things (IoT) environments.

This thesis presents a decentralized resource management framework and a set
of algorithms and controllers for managing resources within a cloud data center.
However, the ideas described herein are also applicable to environments where the
resources are actually distributed. In such environments, the cost of maintaining
a global overview of the system’s state is substantial because it would necessitate
sending large volumes of data over the network to a centralized controller. This
would also make the decision delay non-negligible, because the network transmission
delay would be added to the processing time. Local decision-making based on local
knowledge is very advantageous in such environments because of the potential to
minimize unnecessary communication and increase robustness.

Moreover, the number of resources in contexts such as an IoT environment or
a telecom cloud may be much greater than that in a single data center. This
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brings scalability concerns to the forefront and raises important questions about
the suitability of centralized controllers in such settings.

To effectively apply the techniques introduced in this thesis in such environ-
ments, we need to better understand their dynamics, investigate which global ob-
jectives can be achieved using only local interactions, and optimize the framework
and its interconnections on the basis of realistic assumptions and/or robust charac-
terization data concerning the environments of interest and their global objectives.
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Unifying Cloud Management:
Towards Overall Governance of Business

Level Objectives∗

Mina Sedaghat†, Francisco Hernandez-Rodriguez†, Erik Elmroth†

Abstract

We address the challenge of providing unified cloud resource management
towards an overall business level objective, given the multitude of managerial
tasks to be performed and the complexity of any architecture to support them.
Resource level management tasks include elasticity control, virtual machine
and data placement, autonomous fault management, etc, which are intrinsically
difficult problems since services normally have unknown lifetime and capacity
demands that varies largely over time. To unify the management of these
problems,(for optimization with respect to some higher level business level
objective, like optimizing revenue while breaking no more than a certain
percentage of service level agreements) becomes even more challenging as the
resource level managerial challenges are far from independent. After providing
the general problem formulation, we review recent approaches taken by the
research community, including mainly general autonomic computing technology
for large-scale environments and resource level management tools equipped
with some business oriented or otherwise qualitative features. We propose and
illustrate a policy-driven approach where a high-level management system
monitors overall system and services behaviors and adjusts lower level policies
(e.g., thresholds for admission control, elasticity control, server consolidation
level, etc) for optimization towards the measurable business level objectives.

Keywords: Cloud governance; Autonomic computing; Policy-driven man-
agement.
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1 Introduction

Cloud management for optimizing a cloud provider’s overall objectives is
becoming increasingly more difficult following the rapidly increasing scale of
resources and services to be managed and the intrinsic challenges of fundamental
cloud management. Already individual fundamental cloud management issues
such as admission and elasticity control, virtual machine (VM) and data
placement, autonomous fault management, etc. are difficult since services
normally have unknown lifetime and capacity demands that vary largely over
time.

The overarching management goal of cloud infrastructure providers (IPs)
is often referred to as the managerial Business Level Objective (BLO). For
a commercial IP this BLO may, for example, be to manage resources so as
to optimize revenue1 while keeping customers sufficiently happy2. For a non-
commercial IP, the BLO may, e.g., be expressed in terms of maximizing resource
utilization while maintaining a specified level of fairness between users [1].

The overall management problem becomes the complex challenge of managing
the individual tasks of admission and elasticity control, VM and data placement,
fault management, etc, and to optimize the overall system behavior with respect
to the BLO. An attractive way of dealing with the complexity is to separate
functionalities into individual and to some degree autonomous components
with clear separation of concerns, e.g., including separate components for
admission control, elasticity control, VM placement, data placement, fault
management, etc. However, these problems are not totally independent. For
example, increasing the server consolidation level (number of VMs per physical
host) or making the elasticity control more restrictive would allow for admission
control to be less restrictive in accepting services. Hence, there is a need for
some degree of coordination between such actions. In this work we call this
coordination governance. This problem is further examined in Section 2.

Recent studies on this type of management issues for clouds are mainly focus-
ing on either the general autonomic computing aspects supporting management
of truly large scale environments or on how to enhance cloud resource level
functionalities by adding business or qualitative features. Section 3 reviews
several existing solutions on management in clouds with respect to business
level concerns. The review is followed by a description of current challenges
in designing a business oriented governance model, presented in Section 4.

1Revenue calculation can be arbitrary complicated but should at least take into account
parameters such as income, operation and infrastructure costs and costs associated with
violated service level agreements (SLAs).

2For resource management, a criterion such as keeping customers sufficiently happy may,
e.g., be translated into constraints on maximum fractions of SLAs to violate.
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Section 5 proposes a governance model that aim to direct and control a set of
lower level management tools so that their concerted actions strive towards
the overall BLO. Finally, Section 6 concludes the paper and outlines possible
future research directions.

2 Cloud management

Current efforts in cloud resource and service management mainly focus on the
most technical and fundamental aspects of resource provisioning [2]. Managerial
expectations and business objectives, although important, are seldom consid-
ered. One such expectation is efficiency in resource utilization with respect to
SLA constraints and QoS requirements. Under normal circumstances services
are not using their maximum required capacity all at once. Hence, in order
to efficiently make use of available resources, infrastructure providers aim to
sell more capacity (with respect to services expected peak loads) than what is
physically available, i.e., controlled over-provisioning3. To complicate matters,
there are other challenges that need to be considered like the necessity to sup-
port elastic behaviors of services without breaking SLAs or SLA management
mechanisms that prioritize services when not all SLAs can be met. Furthermore,
mechanisms to avoid crashes and failures i.e., manage breakdowns and repair
actions, are also needed. Key to handle these types of cloud management
challenges is the ability to provide efficient and coordinated solutions to the
following problems:

Admission Control (AC): IPs should be able to decide whether a service
should be accepted or rejected, taking economic and other considerations
into account.

Elasticity: IPs should be able to predict and manage the elastic behavior
of services. Rapid changes in service demands should be handled by
appropriate capacity adjustments, so that services can scale up or scale
down easily.

Fault tolerance: IPs should be able to manage crashes and infrastructure
failures. Unexpected resource failures should be managed through repair
actions while prediction of possible upcoming crashes, in order to facilitate
preventive actions, should also be considered.

3The term typically used is over provisioning. However, due to the possible negative
connotation of the term, we prefer to explicitly state that the over provisioning is controlled,
i.e., it is in line with the business goals of cloud providers.
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Data placement: IPs should be able to place data at optimal resources taken
into account, e.g., a range of performance aspects and resource availability.

VM placement: IPs should be able to place VMs on physical machines based
on their SLAs and on an estimation of their future behaviors. Efficiency
in resource utilization should also be taken into account.

SLA management: IPs should be able to enforce SLAs and manage viola-
tions based on priorities.

All of these challenges indicate specific problems that can be formulated and
solved more or less independently. However, although each problem can be
solved autonomously to satisfy its specific goals it should be acknowledged
that the problems are intertwined. Table I, summarizes the aforementioned
problems and introduces sample software components (from here on called
low level managers) to address them. The table also shows the information
required to tackle the problem as well as the outcomes expected from each low
level manager. The outcomes can be a decision making or a specific action.

Ideally, all these problems should be solved in concert, striving towards a
high level managerial objective, i.e. the resource management BLO. BLOs
delineate a desired goal like maximizing profit without breaking more than a
certain fraction of SLAs or (for a non-profit organization) to maximize resource
utilization while maintaining fairness among users. Part of the challenge is that
an optimal solution to one of the specific management problems may be in
conflict with the concerted actions needed to optimize the BLO. For example,
an AC can accept services as long as there are available resources, selecting
between incoming services based on a first come first serve policy. An AC
can also overbook resources without considering elastic behaviors of services,
that are already running. In this case, even though the AC completely fulfills
its own responsibilities, the outcome of the applied policy may not result in
the revenue expected by the business manager. This may cause costly SLA
violation penalties and reputation damages, both aspects affecting the BLOs.
This is due to the AC’s lack of interaction with other components like the SLA
manager, or lack of information about economic factors like pricing.

Meanwhile, the elasticity controller can detect increases in service demand
and it can decide to allocate extra resources to services. However, if this is done
in isolation, there may not be enough resources available, if e.g., the placement
engine also deploys new services. Deciding whether to increase or decrease the
allocation of additional resources or to reject the deployment of the new service
involves an evaluation of the impact of either action on the BLOs. As this
overarching evaluation is in conflict with the goals of each manager, it requires
a higher coordination. To summarize, the variety in business level objectives
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Table 1: Important cloud management challenges: Logical view. Notice that a real
implementation may address several of these challenges in a single software component

Low level manager Required information Activities & Decisions

Admission Controller

1.The available Capacity
2.Expected load from all
services
2.SLA requirements per ser-
vice
3.Historic workload
4.Price tariffs

1.Accept or Reject
2.Select a service
from a queue

VM Placement Engine

1.The total amount of re-
sources
2.The allocated resources
3.SLA including placement
constraints
4.Data locality

1.Service placement
2.Service termination
or cancellation
3.Service migration

Data Placement Engine

1.Current and predicted
storage
2.End user locality including
trends,network performance
and characteristics

1.Data objects placement
2.Data objects migration

Elasticity Engine

1.Current load
2.Predicted future load
3.Historic load and trends
4.SLAs

1.Allocate additional re-
source
2.Release allocation

Fault Tolerance Controller

1.Resource status
(Up, Failed, Probate)
2.List of crashed resources
3.List of crashed services
4.Possible repair action

1.Restart the service
2.Terminate the service
3.Postpone the restart
4.Preventive service migra-
tion

SLA Management Engine

1.SLA
2.Service state
(e.g., the expected service
completion time,service
deadline)
3.Penalty per service

1.SLA prioritizing
2.SLA violation cost estima-
tion
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and strategies, and the need for scalable solutions to support diverse scenarios
in a cloud environment illustrate the necessity of an autonomic higher level
governance mechanism to handle these complexities.

The result of having a high level mechanism is an increase in the abstraction
level of cloud management in which all high level decision making and BLO
management is performed by a higher level governance manager [3–5]. This
manager may adjust the behavior of low level managers with respect to the
information collected from all resource level functionalities with the aim of
satisfying the high level BLOs.

Advances in the operation of the low level managers are also needed. In
the next section we present existent solutions on management approaches for
enhancing the normal operation of low level managers with business level con-
cerns, as well as other, more comprehensive, approaches for cloud management
that relate to our work.

3 Cloud management survey

Different aspects of cloud management are partially studied in a number
of research projects. In these projects, the problem is mainly addressed by
adopting business concerns by a specific low level manager like VM placement
engine or admission controller; formulating and solving optimization problems;
or autonomic management.

3.1 Adoption of business concerns by low level managers

The low level managers presented below may all be considered traditional low
level managers enhanced with features to optimize management with respect
to some higher level management objective. These enhanced managers are
designed to operate independently of other managers based on their own (self-
centered) objectives, but the overall coordination in the system remains an
unsolved issue.

Puschel et al. [6] focus on developing an admission control mechanism aimed
to increase the revenue for an IP. The decision to accept or reject a service is
made based on predefined policies for dynamic pricing and client classification.
They develop a policy-based decision model by defining policies as heuristics
when the environment is non-deterministic and there is not enough information
about upcoming services. The policies are defined in terms of SLA’s committed,
previous workloads, utilization trends, and BLO’s.

Perez et al. [7,8] address cloud scheduling and elasticity problems with respect
to end users’ satisfaction. Responsiveness and fair share are the adjustable
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high level objectives supported by the model. They propose a reinforcement
learning approach for a resource allocation mechanism, because of its flexibility
to adapt its decisions to the elastic behavior, QoS requirements and also the
minimal knowledge requirement about the environment. The adaptability and
optimal policy selection in this model has been achieved using an on-policy
learning algorithm, called SARSA.

Moon et al., in a paper on cloud resource scheduling [9], argue that the
success of clouds depends on QoS factors and cost management. Therefore,
they propose an SLA aware resource scheduler that minimizes SLA penalty
costs and optimizes profit based on a cost heuristic. The scheduler evaluates a
number of jobs in the queue individually and picks the jobs in order of priority.
The cost based scheduler uses a probability density function for computing the
expected cost.

Optimizing fault tolerance and repair mechanisms for cost optimization and
improvement of QoS and availability for an IP is addressed by Goldszmidt et
al. [10]. They propose a framework for evaluation and optimization of policies
governing automated repair services, adopting a two phase approach. The first
phase estimates the effectiveness of each repair action by assessing historic
data. The second phase uses the information processed in the first phase to
refine the policy using machine learning techniques.

There are also a number of projects addressing BLOs in general, not focusing
on a specific functionality but in supporting managerial objectives with respect
to lower level constraints. SORMA [11] strives to fulfill the provider’s ambitions
on maximizing revenue and other business type objectives. In SORMA, the
business management role is assigned to the EERM framework (Economically
Enhanced Resource Manager) [12]. The EERM is a resource manager enhanced
with business related features that addresses resource scheduling with respect
to SLA management and admission control. The EERM makes use of a rule
based policy manager to support adaptable policies that are formulated in
Semantic Web Rule Language (SWRL). The overall aim of the EERM is to
isolate SORMA’s economic layers from the technical ones and orchestrate both
economic and technical goals in order to achieve maximum economic profit (i.e.
revenue) and resource utilization [6].

The Grid-Econ project [13,14] takes a broader view on business level concerns.
Grid-Econ is essentially a resource broker built on a matching algorithm that
considers quantity of resource units, the period of time over which the resource
is required or available, the minimum selling price or the maximum buying
price, and the expiration date of the request to buy or sell a resource [15]. Dif-
ferent types of risks and trust issues in grid markets to support non-commercial
grid stakeholders such as insurance against resource failures, resource quality
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assurance, stable price offering and capacity planning are also addressed. How-
ever, all these qualitative objectives are defined as fixed goals in an auctioning
strategy and are not flexible or easily extendable.

3.2 Optimization problems

Of interest are also optimization methods or algorithms that satisfy a business
objective. Most of these algorithms work around optimization techniques and
utility functions. Salehi and Buyya, [16] use a time and cost optimization for
resource scheduling. They introduce two market oriented policies that consider
user constraints such as time and budget. The produced schedules support
the elastic behavior of services, load changes in services, and aim at satisfying
deadlines by extending the computational capacity of local resources via hiring
resources from cloud providers. Similarly, Silva et al. [17] propose a heuristic
algorithm for dynamic resource allocation, with the same constraints on time
and cost. The algorithm determines the optimal number of hosts for short lived
tasks.

Paton et al. [18] demonstrate the use of utility functions in utility driven
workload executions in clouds. Utility functions quantify and rank the relevance
and desirability of each system state, i.e., the functions offer a common and
consistent scale to compare the states and objectives. The states may represent
response time, number of QoS goals met or income. The utility metrics discussed
in this work are profit and response time. They also introduce an autonomic
workload mapper responsible to assign tasks to available execution sites and
to dynamically monitor and modify assignments during workload execution.
The assignments are based on feedback on the overall progress of submitted
requests.

3.3 Autonomic management

Autonomic management offers a more comprehensive approach to cloud manage-
ment. The goal is to offer functionalities for self-configuration, self-management
and self-healing. The idea is that by adding autonomic features to a system, the
system would be able to adapt itself to real time configuration and changes. The
general autonomic computing aspects support management of truly large-scale
environments.

Unity [19] is an agent based autonomic data center with improved behaviors
for a self-manageable computing system. It is structured as a set of autonomic
components that can manage themselves and also interact autonomously with
humans or other autonomic components. The addressed scenario is an elastic
resource allocation between different clusters in a grid. The adaptation of
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the system to the high level policies is derived by a decomposition of the
main policy represented as a utility function. An extension to the Unity
Project, IBM Tivoli Intelligent Orchestrator (TIO) [20, 21] is an automated
provisioning manager for Internet data centers. TIO is capable to automatically
deploy and dynamically optimize resources in response to business objectives
in heterogeneous environments [20], and it performs on-demand deployment
by proactively sensing and responding to peaks in demand and allocating
IT resources to the most important processes based on business policies [20].
Elasticity is supported with respect to load, bandwidth, CPU utilization, etc.
through the use of a policy manager.

CERAS laboratory [3, 4, 22, 23] works on different aspects of business driven
cloud architecture. They automate several activities like monitoring, analysis
and prediction, planning and execution through a feedback loop controller that
optimizes specific goals and constraints associated with the type of provider
or service models, i.e., IaaS, PaaS, SaaS. The main objective that is studied
is cost optimization which is a common interest between the three mentioned
service models. Notably, [23] goes deeper by considering response time and
mean throughput constraints, while taking into account resource contention.

FoSII (Foundation of Self-Governing ICT Infrastructure) [5] tries to develop
a self manageable cloud environment that is autonomously complying with user
requirements in terms of SLAs and also it achieves a level of flexibility. The
main goal is avoidance of SLA violations and, to this end, advanced monitoring
and knowledge management [24, 25] are required. FoSII uses a framework that
senses infrastructure resource metrics and predicts the risk of SLA violations
based on pre-defined thresholds and actual usage. In order to do this, the
SLA parameters are refined and mapped into resource level metrics. These
refinements are done based on pre-defined mapping rules defined through the
use of Domain Specific Languages (DSLs).

4 Challenges of cloud governance

As described above, we view the cloud management problem as a set of
management tasks that are addressed by independent managers. In this work,
we propose to use cloud governance for coordinating the independent managers
for overall optimization of the BLO. Developing the governance solution brings
about several challenges classified in 4 main categories: BLO formulation; BLO
interpretation to resource level objectives; policy enforcement on resource level
engines and monitoring and feedback control.
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4.1 BLO formulation

Current solutions in BLO formulation mostly express BLOs as fixed goals and
formulate the management problem as a set of utility functions with multiple
constraints. Cost, profit, and time optimizations are the most popular objectives
employed [6,9,16,18] but qualitative aspects such as fairness, responsiveness
and utilization have also been considered [7, 8, 10]. However, fixed goals are
unable to express the wide range of desired system behaviors that vary from
one business to another [19]. For example, commercial providers focus on
maximizing profit and reducing costs whereas fairness and utilization may be
the most important features for an academic resource provider. Thus, a cloud
management system should be adjustable and adaptable to a wide range of
economic strategies.

4.2 BLO interpretation to resource level objectives

Policies map BLOs to system actions [26]. They translate BLOs into desired
resource level behaviors. Several mechanisms have been employed to perform
such translations. Emeakaroha et al. [24] employ a mapping table to translate
SLAs into quantifiable resource level metrics, e.g. availability is mapped to
a function of the time it takes for a failure to be repaired and the time
system is available. Unity [19], Paton et al. [18] and Li et al. [27] make use of
utility-function based policies that allow the human administrator to guide the
operation of the system. The adaptation of the system to the high level policies
is made through a decomposition of the utility function into sub-problems,
and optimization of these sub-problems directs the resource level components
toward the main objectives. In EERM [12], policies are formulated in the
semantic web rule language (SWRL). All features of the EERM require the
components to be able to communicate with the policy manager and base their
decisions on the corresponding policies [12].

However, to define a relation between high level objectives and constraints
to the system level metrics is not always possible, e.g., the number of policies
may be unmanageable if the high level objectives vary frequently.

4.3 Policy enforcement on resource level engines

The overall goal of a governance engine is to direct and adjust the behavior
of resource level managers. The capability of the system to adopt the policies
is crucial for the operation of the governance manager since resource level
managers are the actual enactors of the policies. To this end the governance
manager must be able to exert action over the resource level managers. Further-
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more, the governance manager adjusts the operation of the system by selecting
appropriate policies to enforce, from the policy set of each of the resource level
actuators, according to the operation of the system at any given moment and
the expected BLOs.

4.4 Monitoring and feedback control

The impact of policy enforcement on the low level engines and on performance
of the system as a whole should be monitored and analyzed. The monitoring in-
formation enable the system to learn from past behavior, predict future actions,
and make appropriate trade offs when selecting policy actions [28]. Changes in
the environment, policy adherence and violations, and changes in the system
status after enforcing a policy may repeatedly trigger new policy settings. The
monitoring system gathers information about events and collects performance
metrics required for the governance process. The governance manager can ana-
lyze the monitored information,e.g., to find correlations between management
events, system status and the expected performance. These correlations identify
the actions that are most effective for specific situations.

5 Proposed governance model

In this section we introduce a business oriented governance model. This model
adopts ideas of policy-driven management and optimization to build an au-
tonomic cloud governance model. Although the approach is general enough
for both SP and IP use, we here for clarity restrict the presentation of the
governance model to an IP perspective.

Figure 1 shows the proposed business oriented governance model. The three
main elements in the model are:

1. BLO
The high level BLOs are the system inputs and they are expressed by
high level objective functions and a set of constraints. An objective
function is technically a utility function and it is defined in terms of
system parameters and it is subjected to constraints defined by system
administrators. In a sample scenario, constraints can be thresholds for
performance delivered or acceptable fractions (from an IP business point
of view) of SLA violations.

2. System parameters
Utility functions depend on a set of well-defined system parameters.
System parameters can be values provided by the monitoring system,
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Figure 1: Global view of business oriented governance model.

used for optimization towards the BLO or for assessing how well the
constraints are met. These parameters can vary from number of deployed
services, the available non-allocated resources, number of violated SLA’s
and etc.

3. Resource level policies {p1, . . . , pn}
Resource level policies are used to adjust the resource level managers’
behaviors. The policies are imposed as constraints or objectives on resource
level managers, derived from the optimization process in the governance
model. These policies carry the governance level decisions to the resource
level components. Resource level managers act not only based on their
local objectives but also consider new constraints enforced as governance
policies. In our model policies are adjustable values used in the resource
level decision making process of each manager, and they aid to meet the
high level objective. The policies are adjusted by the high-level manager
after monitoring the full system behavior. The idea of using adjustable
policies that change over time is motivated by the dynamic behavior of
individual services and the whole system performance.

The core of the governance model consists of components described below:

1. The Policy Decision Point (PDP) is responsible for identifying which
policy decisions need to be activated in order to achieve the high level
objectives as well as how these policies should be applied.

2. The Policy Optimization Point (POP) is responsible for setting the policy
values, and real time optimization and adaptation of policy values, based
on dynamic changes in service demands and system behavior.
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3. The Policy Enforcement Point (PEP) is responsible for selecting and
enforcing the right policy from the policy set to the associated resource
level managers.

4. The Policy repository stores policies that are used in the system.

5. The Estimator estimates the impact of changes in the system occurring
by policy setting.

The governance process is a MAPE loop [29] (Monitor, Analyze, Plan,
Execute) acting as an autonomic controller. Policy sets are defined by mapping
each policy in the set to a resource manager. Each policy set is evaluated by
the estimator that identifies the impact of possible changes. Resource level
managers which include the policies into their decision making process, e.g.,
as constraints or thresholds, directly adjust their actions as policy values are
modified. The first step is to evaluate the system state with respect to the
defined objective function. The initial policy set adopted is selected based
on previous data and system history. The optimization process is executed
continuously in order to improve values for the controlling parameters in the
policies as these values need to reflect changes in service and system behavior.

The result is adjusted behavior of the system through an implicit coordina-
tion between low level managers. This approach automatically shifts conflict
resolution between the resource managers to the governance layer. Furthermore,
conflict resolution is handled during policy setting avoiding conflicts during
runtime. All effects of policy enforcement: changes in system parameters, sys-
tem performance, and information about managed resources, are collected by
the monitoring system for further analysis. Bellow, the model is illustrated in
a sample scenario. For clarity, the scenario is kept significantly simpler than a
full scale real world use case.

In this scenario, an IP’s BLO is to maximize its revenue without losing
reputation with its customers (which is formulated as keeping the SLA violation
percentage less than 5%). The utility function is given by equations 1 and 2.

Max Profit = Max(Revenue− Expense) = Max U()

where

U() =

n∑

i=1

Ri(t)− ē(t)−
n∑

i=1

(êi(t) + ěi(t))

n∑

i=1

Ci(t) ≤ p1 × Ctotal ∀t ∈ T

v ≤ 5% ∀t ∈ T
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where i = {1 . . . n} is a service. The Ri(t) is the revenue from service i during
the time slot t when T is the set of time slots [18]. The ē(t) is the fixed cost
(e.g., including investment costs). The êi(t) and ěi(t) are running cost and the
SLA violation penalty cost in time t for service i. The Ci(t) is the maximum
capacity that can be requested for service i during time slot t. The Ctotal is the
total physical capacity available and p1 is a policy defining the provisioning
rate.The value v is the percentage of SLA violations, specified in the constraints
to be less than 5%.

As seen in (eq.1), maximizing profit is positively correlated with the number
of accepted services and negatively associated with SLA violation penalties.
Hence, the applied policies should be in line with deciding whether increasing
the number of accepted services or avoiding costly penalties. This relationship
is independent of the fact that (c.2) is a constraint on the fraction of SLA vio-
lations. The main relationships between policies and managers are summarized
in Table II.

Table 2: Relationships between sample policies and low level managers

Policy Behavior Associated with Policy Value

p1 Provisioning rate Admission Control 1.25 (25% more)

p2 Consolidation per host Placement 4 VM/host

In the sample scenario, the behavior of admission controller is adjusted
by tuning the policy p1 for ”provisioning rate”. The policy p1 is quantified
by a value (1.25) instructing the AC to accept services whose aggregated
maximum allowed capacity exceeds the local capacity by 25%. The policy p2
defines the maximum VM consolidation level per host. This is the maximum
number of VMs allowed to be deployed on a host in order to satisfy the BLO,
in this example maximizing the revenue. The consolidation level also affects
the elasticity controller (or vice versa), while changes in service demands
should be supported by considering reasonable extra space on each host (or
additional hosts available). SLA violations due to elasticity, result in paying
costly penalties, which is in conflict with our BLO. Without loss of generality,
we here assume only one type of VMs whereas a real use case would include a
number of VM types with varying memory and CPU characteristics.

By enforcing policies, the AC and Placement engine operations are aligned.
The result is that the entire system obtains the maximum revenue while avoids
SLA violations to exceed 5%. In a full-scale scenario, policies should also
be defined for other resource level managers, like elasticity controller, fault
tolerance engine, or data manager. Moreover some constant values in this
example, like ěi(t) can be a function in a full scale use case.
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6 Concluding remarks

This paper motivates the use of business oriented cloud governance to unify
cloud resource management, striving towards an overall business level objective.
The available solutions are reviewed with the main focus on perspectives
on problem definition and formulation while introducing features and their
significance. We also introduce a set of challenges for developing a business
oriented governance model. A preliminary sketch of our proposed governance
model is presented. Based on identified challenges, our future research will
mostly focus on improving the model and making more comprehensive studies
of BLO interpretation and policy mapping on low level managers.

We highlight that several challenges still need to be addressed in further
studies, including:

1. Supporting a wide range of BLOs requires a broad understanding about
various potential solutions to achieve each BLO. From a technical per-
spective, all the relationships between each possible actions of low level
managers, the system parameters, and possible goals need to be defined.
To define all these relationships is costly and difficult. Hence, adopting a
technique that can automatically derive management policies and their
relationships is of interest. Reinforcement learning and numerical or com-
binatorial optimization techniques are deemed suitable options, but a
further analysis of these techniques in view of the governance model is
still needed.

2. Exploring possible qualitative factors like trust, risk, and eco efficiency,
to support more complex managerial objectives in the governance model
is also under consideration. However, such factors increase the complexity
of the governance process, since quantifying qualitative features like trust
and risk is difficult. Thus, we first need to perform a cost/benefit analysis
to select the appropriate quality factors to consider.

3. Extending and generalizing the governance model to be applied on other
stakeholders like Service Providers(SPs) and brokers is also our future
intention.
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[12] T. Püschel, N. Borissov, M. MacÃas, D. Neumann, J. Guitart, and J. Tor-
res, “Economically Enhanced Resource Management for Internet Service
Utilities,” in Lecture Notes in Computer Science, (2007): The 8th Inter-
national Conference on Web Information Systems Engineering (20Accep-
tance rate), pp. 335–348, 2007.

[13] J. Altmann, C. Courcoubetis, G. Stamoulis, M. Dramitinos, T. Rayna,
M. Risch, and C. Bannink, “GridEcon: A market place for computing
resources,” Grid Economics and Business Models, pp. 185–196, 2008.

[14] J. Altmann, C. Courcoubetis, J. Darlington, and J. Cohen, “Gridecon
- the economic-enhanced next-generation internet,” in 4th International
Workshop, GECON 2007, Rennes, France, August 28, 2007, Proceedings,
GECON, vol. 4685 of Lecture Notes in Computer Science, pp. 188–193,
2007.

[15] “Gridecon.” http://www.gridecon.eu.

[16] M. Salehi and R. Buyya, “Adapting Market-Oriented Scheduling Poli-
cies for Cloud Computing,” in Algorithms and Architectures for Parallel
Processing (C.-H. Hsu, L. Yang, J. Park, and S.-S. Yeo, eds.), vol. 6081
of Lecture Notes in Computer Science, pp. 351–362, Springer Berlin /
Heidelberg, 2010.

[17] J. Silva, L. Veiga, and P. Ferreira, “Heuristic for resources allocation on
utility computing infrastructures,” in Proceedings of the 6th international
workshop on Middleware for grid computing, pp. 1–6, ACM, 2008.

[18] N. W. Paton, M. A. T. Aragão, K. Lee, A. A. A. Fernandes, and R. Sakellar-
iou, “Optimizing utility in cloud computing through autonomic workload
execution,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 51–58, 2009.

[19] D. M. Chess, A. Segal, and I. Whalley, “Unity: Experiences with a Pro-
totype Autonomic Computing System,” in ICAC ’04: Proceedings of
the First International Conference on Autonomic Computing (ICAC’04),
(Washington, DC, USA), pp. 140–147, IEEE Computer Society, 2004.

43



[20] E. Manoel, S. Brumfield, K. Converse, M. DuMont, L. Hand, G. Lilly,
M. Moeller, A. Nemati, and A. Waisanen, “Provisioning On Demand:
Introducing IBM Tivoli Intelligent Think Dynamic Orchestrator ,” 2003.

[21] R. Das, I. Whalley, and J. Kephart, “Utility-based collaboration among
autonomous agents for resource allocation in data centers,” in Proceed-
ings of the fifth international joint conference on Autonomous agents and
multiagent systems, pp. 1572–1579, ACM, 2006.

[22] J. Li, J. Chinneck, M. Woodside, M. Litoiu, and G. Iszlai, “Performance
model driven QoS guarantees and optimization in clouds,” in Proceedings
of the 2009 ICSE Workshop on Software Engineering Challenges of Cloud
Computing, pp. 15–22, IEEE Computer Society, 2009.

[23] J. Li, J. Chinneck, M. Woodside, and M. Litoiu, “Fast scalable optimization
to configure service systems having cost and quality of service constraints,”
in Proceedings of the 6th international conference on Autonomic comput-
ing, pp. 159–168, ACM, 2009.

[24] V. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low Level
Metrics to High Level SLAs-LoM2HiS framework: Bridging the gap be-
tween monitored metrics and SLA parameters in Cloud environments,”
in High Performance Computing and Simulation (HPCS), 2010 Interna-
tional Conference on, pp. 48–54, IEEE, 2010.

[25] M. Maurer, I. Brandic, V. Emeakaroha, and S. Dustdar, “Towards knowl-
edge management in self-adaptable clouds,” in 2010 6th World Congress
on Services, pp. 527–534, IEEE, 2010.

[26] G. Tesauro, N. Jong, R. Das, and M. Bennani, “On the use of hybrid rein-
forcement learning for autonomic resource allocation,” Cluster Computing,
vol. 10, no. 3, pp. 287–299, 2007.

[27] C. Li and L. Li, “A distributed decomposition policy for computational
grid resource allocation optimization based on utility functions,” Micro-
processors and Microsystems, vol. 29, no. 6, pp. 261–272, 2005.

[28] R. Bahati and M. Bauer, “Adapting to run-time changes in policies
driving autonomic management,” in Fourth International Conference on
Autonomic and Autonomous Systems, pp. 88–93, IEEE, 2008.

[29] IBM, “An architectural blueprint for autonomic computing,” white paper,
2004.

44



Paper II
Autonomic Resource Allocation for Cloud Data Centers:
A Peer to Peer Approach

M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth

In Proceedings of the International Conference on Cloud and Autonomic Computing (IC-
CAC), pp. 131-140, ACM, 2014.



46
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Data Centers: A Peer to Peer Approach∗

Mina Sedaghat†, Francisco Hernandez-Rodriguez†, Erik Elmroth†

Abstract

We address the problem of resource management for large scale cloud data
centers. We propose a Peer to Peer (P2P) resource management framework, com-
prised of a number of agents, overlayed as a scale-free network. The structural
properties of the overlay, along with dividing the management responsibilities
among the agents enables the management framework to be scalable in terms
of both the number of physical servers and incoming Virtual Machine (VM)
requests, while it is computationally feasible. While our framework is intended
for use in different cloud management functionalities, e.g. admission control or
fault tolerance, we focus on the problem of resource allocation in clouds. We
evaluate our approach by simulating a data center with 2500 servers, striving to
allocate resources to 20000 incoming VM placement requests. The simulation
results indicate that by maintaining an efficient request propagation, we can
achieve promising levels of performance and scalability when dealing with large
number of servers and placement requests.

Keywords: Cloud computing; Peer to Peer; Resource management.

1 Introduction

The explosive growth of data centers, in terms of both size and number of
servers, has greatly increased the complexity of managing data center resources.
The most recent type of large scale data centers are cloud data centers, which
are typically used for on-demand service provisioning. One key challenge

∗The paper has been re-typeset to match the thesis style.
†Dept. of Computing Science, Ume̊a University, SE-901 87 Ume̊a, Sweden, email:

{mina, francisco, elmroth}@cs.umu.se
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in cloud data centers is to develop resource management frameworks and
mechanisms to provide efficient resource utilization while they are also scalable
and computationally feasible, with respect to the size of the data centers, the
incoming load and their dynamic nature.

Most existing approaches to resource management [1–3] are highly centralized
and do not scale with the number of servers in the data center. Typically, a
centralized manager is required to execute the necessary complex algorithms
and must also be aware of the state of all servers, which can be challenging in
large and highly dynamic data centers [4].

In contrast, distributed approaches to resource management can cope with
large numbers of resources without requiring centralized control. Within such
approaches, the management responsibilities are divided among identical au-
tonomic elements (nodes), helping the management structure to scale as the
number of nodes increases. Global management is achieved through co-operative
interactions between autonomic elements [5].

Peer to Peer (P2P) systems have proven to be scalable and robust for
distributed resource management. In such systems, each peer performs a task
based on locally-available information, and goal-oriented coordination among
the tasks enables the system to achieve its global objective. The system thus
benefits from a high degree of concurrency and decentralization of control with
no central bottleneck.

However, P2P systems also face challenges due to the lack of global view of
the system and not having a centralized point of reference. To compensate for
this lack of global view, attempts have been made to extract and discover the
required information via discovery algorithms that allow individual elements
to obtain sufficient information when required.

In this paper, we address the issue of resource management in large cloud data
centers, approaching it as an information discovery problem in a P2P structure.
We propose a P2P resource management framework consisting of an agent
community that interacts in a goal-oriented fashion. The agent community is
structured as a scale-free network, enabling the agents to efficiently discover the
information required for their decisions, using a simple local search algorithm.
Our main objective is to identify a solution that is scalable both in terms of the
number of servers and incoming VM requests while still being computationally
feasible.

While our framework is intended to support different cloud management
functionalities, e.g. admission control or fault tolerance, our primary focus is on
the problem of resource allocation in clouds. As part of the work, we propose
a resource allocation mechanism that aims to maximize data center utilization
and profitability by ensuring high utilization of active nodes while minimizing
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overall power consumption by putting the remaining nodes into energy-saving
mode.

We evaluated our approach by simulating a data center that has 2500 servers
and must allocate resources to 20000 incoming VM placement requests. We
analyzed our approach with respect to diverse performance criteria including
data center utilization, profit, rejection ratio, request processing time (in terms
of the number of hops per request), and scalability. We also investigated various
factors that might affect performance. Our approach is shown to maintain good
performance with respect to the examined criteria.

The remainder of the paper is organized as follows: Section 2 introduces
the framework by describing the P2P overlay and the agent model. Section 3
presents the problem of resource allocation, the main objectives and presents
a local search algorithm to solve the resource allocation problem. Section 4
and Section 5 discuss our experimental setup and the results obtained in the
simulations conducted to evaluate the approach. Section 6 provides a brief
overview of related studies, and concluding remarks are presented in Section 7.

2 Resource Management Framework

Resource management problems are often formulated as optimization problems.
In order to solve them, we adopt a P2P approach, using a distributed local
search algorithm on a population of peers, where each peer considered as a
potential solution checking its neighbors in the hope of finding an improved
solution.

In our design, the physical servers are structured as peers, and peers that are
connected to one-another are considered neighbors. Each peer is associated with
an agent that is responsible for functional tasks and local managerial decisions.
Relevant information is exchanged among agents via a gossip protocol exploiting
the environment formed by the peers. Each agent makes local decisions with
respect to its local view and policies, and the system as a whole progresses
towards the global objective via the emergent outcome of these local decisions.

2.1 Overlay Construction

In P2P systems, the overlay specifies the logical interconnections between peers.
The structural properties of the overlay affect the efficiency of the discovery
and propagation of information within the system, so it must be designed
carefully. The problem of choosing an overlay can be formulated as a graph
theoretic problem, with the physical servers (nodes) being the vertices, logical
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links being the edges, and nodes that are connected to one-another via an edge
being neighbors that collectively form a neighborhood.

The goal is to find an overlay that is robust to failures and capable of
supporting fast discovery while having a low maintenance cost (i.e. the cost
of keeping nodes up-to-date about their neighbors). In graph theoretic terms,
such a graph is characterized as being highly connected, sparse, with a low
diameter.

Scale-free networks are a family of graphs that are widely used for structuring
P2P overlays because they satisfy the criteria listed above. Scale-free networks
are scalable and robust to random node failures. In addition to their robustness,
these graphs have short distances between any two randomly chosen vertices
and each vertex can be reached within a limited number of steps. This enables
fast resource discovery, which is essential for our purposes.

In our method, the servers in the data center are structured in the form of a
scale-free network that is constructed using the Barabsi Albert (BA) algorithm
with a preferential attachment mechanism [6].

Such a logical structure for the resource management framework can be
simply mapped into the future data center’s network architectures [7], and can
benefit from faster communications, resulted from the compatibility between
the logical structure and the physical network structure [7].

2.2 Agent Model

On top of the P2P overlay, we build an agent community that performs
functional tasks while enabling goal-oriented communication. Each agent is
an autonomous entity that acts on behalf of a physical server (peer) or an
application.

We associate each physical server and each application with an agent. These
agents interact with each other to perform their designated tasks.

1. Node agents process information received from their neighbors to ad-
vance their local goal, e.g. increasing their own resource utilization or
that of their neighborhood. They also direct relevant information to their
neighbors. Each agent tracks information on the state of its associated
physical server, including its utilization and available capacity, as well as
information on its neighbors such as their state (e.g. whether they are
idle, crashed or active), utilization, and free capacity.

2. Application agents are responsible for monitoring the application’s
resource demand, generating requests for more or fewer resources as the
demand changes, and interacting with nodeAgents to deploy the new
resources. The applicationAgent resides on one of the physical machines
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on which the application is deployed, and keeps track of the VMs allocated
to the application.

To solve a resource management problem, each nodeAgent solves a local
optimization problem by searching for a locally optimal solution within its
own local scope. The search proceeds iteratively from one potential solution
to an improved alternative until no better solution can be found among the
nodeAgents. Relevant information is either exchanged or distributed among
agents via gossiping. The nodeAgents use heuristics to identify the node that
offers the highest objective value.

3 Resource Allocation

We formulate the problem of placing VMs on a set of physical servers as an
optimization problem.

We model the data center as a set of n physical servers, structured as a
scale-free network, where each server has the capacity Cserver. Using existing
CPU/memory based capacity tools, the capacity of a server is defined in terms
of number of available slots that can accommodate VMs. For clarity we assume
that the servers are homogeneous, although the formulation can easily be
extended for heterogeneous servers.

The data center offers k VM types, where VM-typei (i = 1,.., k) has capacity
Ci compute units (Ci¡ Ci+1 and Ck ≤ Cserver) whose price is proportional to
its size.

Moreover, assume that there are m VM placement requests, where each
request j, j = 1,..,m demands capacity Demandj. The capacity that is actually
allocated to request j is denoted as Resj. The problem is to allocate resources
(slots) on the physical servers to the VMs in order to optimally fulfill a data
center management objective, e.g. to maximize resource utilization and overall
profit.

We define the data center utilization as the total resources allocated at time
t to all VM placement requests divided by the total available capacity of the
data center. The resulting optimization problem is formulated as:

Maximize Udc(t) =

∑m
j=1 Resj(t)

n× Cserver
(1)

subject to:

m∑

j=1

Resj(t) ≤ n× Cserver (2)
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Where m is the number of placement requests, Resj(t) is the allocated capacity
for requestj at time t, n is the total number of servers (considering both idle
and active servers), and Cserver is the capacity of each server.

We can also formulate the resource allocation problem to optimize profit.
As shown in Equation (3), we define the profit as the revenue earned from
allocating the VMs minus the associated operational cost, which is formulated
in terms of the cost of the servers’ power consumption. The power consumption
is modeled using a linear function that is shown in Equation(4), with a fixed
consumption for the idle state and additional power usage proportional to the
server’s utilization [8]. The profit optimization problem is thus formulated as
maximization of the following function:

Profit(t) =

m∑

j=1

Resj(t)× priceResj −
n∑

i=1

(Pi(t)/Pmax)× costi (3)

This objective is also subject to constraint (2). Pi(t) is the power consumption
of the server at time t, which is calculated as:

Pi(t) = (Pmax − Pidle)× Unodei(t) + Pidle (4)

Here, priceResj is the price of renting Resj(t) from the data center (i.e. the
data center’s income), costi is the power consumption cost for a fully utilized
server, Pi(t) is the power consumption of the server at time t when its processor
utilization is Unodei(t), Pmax is the power consumption at maximum utilization,
and Pidle is the server’s power consumption when idle.

The objective function is maximized when the aggregated power consumption
of all active servers is minimized. In a homogeneous datacenter, this happens
if the demand of the VMs is consolidated over the minimum servers [9].

3.1 Resource Allocation Algorithm

We propose a resource allocation algorithm, based on local search heuristics.
This algorithm is, intrinsically, a discovery algorithm that searches for nodes
according to a set of rules and specifications. A VM placement request traverses
the network looking for a set of nodes that satisfy its resource demands. We use
the term request as an abbreviation for VM placement request in the remainder
of the paper.

The nodeAgent receiving a request selects the best potential node with
sufficient capacity that can host the VM based on its locally stored information
about its neighborhood. If the selected node is one of the neighbors rather than
the node that received the request, the nodeAgent will forward the request
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to that neighbor so that the search for the desired resource can continue.
NodeAgents iteratively forward the request from one potential solution to a
better one until the visited nodeAgent is not able to find any better solution
than itself or the request is expired. There are multiple heuristics that could
potentially be used by the nodeAgents to select the best neighbor, including:

1. Most-Utilized: Selects the most-utilized node with sufficient capacity
from among its neighbors (including itself). The utilization of a node is
the ratio of its utilized resources to its total capacity.

2. Least-Utilized: Selects the least-utilized node with sufficient capacity
from among its neighbors (including itself).

3. First-Fit: Selects the first node with sufficient capacity from among its
neighbors (including itself).

Algorithm 1 Allocation

Input: Request [Demand, HTL, DecisionFlag]
Output: The location to place the request, DecisionFlag

On receiving a request :
if DecisionFlag = false then

if HTL > 0 then
t = identify the node w.r.t the heuristic policy and local view
if t != Me then

if t =-1 then
t = random neighbor from the neighborhood

end if
HTL = HTL - 1
forward the request to t

else
location = t
DecisionFlag = true (decision is made)

end if
else

location = -1 (Location not found)
DecisionFlag= true (Decision is made)

end if
end if
return location and DecisionFlag
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Figure 1: The selection of a node for further processing of a request based
on three different heuristics.

If the nodeAgent and one of its neighbors both offer equal objective values,
the algorithm chooses the neighbor over the processing nodeAgent, to increase
the chance of finding a better solution in the future visits and possibly skips
the local optima. If none of the neighbors or the nodeAgent itself have sufficient
capacity, the nodeAgent forwards the request to a random neighbor. Hence, if
a request is stocked in a neighborhood with no available resources, random
selection helps the request to bounce between the nodes and find a way out of
the saturated neighborhood so that the search can continue.

Whenever a request is forwarded to a next nodeAgent, it is considered to
have taken one hop. The total number of hops required to successfully locate a
node represents the time required to process the request. We limit the request
processing time using a maximum Hops To Live (HTL) threshold. The request
is rejected if the required number of hops exceeds the HTL. Limiting the
number of hops reduces the quality of the resulting solution and increases the
number of rejections. However, it also prevents the indefinite propagation of
requests.

We also assume that requests can either reach the system from a unique
entry point (which is referred to as ”central entry”) or from multiple entry
points (”distributed entry”). In both cases, they propagate from their entry
points according to the same rules.

There are thus six possible combinations of heuristics and entry policies, as
shown in Table 1.

3.2 Characterization of the Resource Allocation Protocol

The efficiency of the resource allocation protocol is defined with respect to our
two main objectives, i.e. the maximization of data center utilization and high

54



Table 1: Resource allocation policies based on different entry policies and heuristics

Policies Request entry Heuristics

Central-FF Central First-Fit
Central-Min Central Min Utilization
Central-Max Central Max Utilization

Dist-FF Distributed First-Fit
Dist-Min Distributed Min Utilization
Dist-Max Distributed Max Utilization

profit. It depends on the efficiency of request propagation and the distribution
of the allocated resources.

1. Request propagation: An efficient allocation algorithm should effi-
ciently propagate the VM placement requests within the environment in
a way that maximizes the likelihood of an effective visit. Effective visits
are those that increase the chance of finding a node that offers a higher
objective value within the HTL limit.

2. Allocation distribution: The second major factor that affects the effi-
ciency of a resource allocation protocol is the distribution of the allocated
resources. When allocated resources are sparsely distributed, it is probable
that a large number of servers will have low utilization. This leads to high
power consumption, increased operational costs and reduced profit. These
consequences can be mitigated by distributing the allocation of resources
such that a few servers are highly utilized and the rest can be put into
energy saving mode.

A sparse resource distribution also leads to fragmentation of the resources
over the data center’s resource pool such that the available resources on
each node may be too small to place a VM even though the aggregate
available capacity is still large. This can cause increased request rejection
and decreased utilization.

3.3 Optimal Re-consolidation

As discussed in Section 3.2, the distribution of the allocated resources directly
affects the performance of the allocation algorithm. The ultimate allocation is an
emergent consequence of the heuristic adopted by the nodeAgents. In addition
to the nodeAgent’s heuristic decisions, the frequent arrivals and terminations
of VMs can also lead to a highly sub-optimal distribution of allocated resources
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over time. Therefore, it can sometimes be advantageous to migrate a previously
allocated VM from one node to another, either to switch off a server or to
optimize the allocation distribution to open up space for larger VMs.

Algorithm 2 Re-consolidation

if MyLoad ¡ Re-consolidationThreshold then
for i:=1 to NumberVMsDeployedOnMe do

request = initiate a request for VMi [Demandi, HTL, false]
newHost = Allocation (request)
if newHost != - 1 then

Migrate VMi to newHost
end if

end for
end if
Recalculate MyLoad
if MyLoad = 0 then

Set Me into energy saving mode
end if

This process is also known as re-consolidation of currently deployed VMs
with the goal of increasing a node’s utilization and potentially reducing the inci-
dence of rejections due to resource fragmentation. To perform re-consolidation,
nodeAgents representing lightly loaded servers autonomously or regularly mi-
grate their loads to more heavily loaded nodes by initiating a request, similar
to the initial placement request, for each of their deployed VMs. This request
searches for the most highly utilized node with sufficient capacity to be the
new host for the VM. If all the node’s VMs are migrated successfully to other
nodes, the node can be switched into a power saving mode. Re-consolidation
also makes it easier to accommodate larger VMs and reduces the likelihood of
rejection.

During re-consolidation often a performance impact can be expected. This
impact can be modeled [10] and be taken into consideration before deciding on
the re-consolidation. However, it has been shown that advancements in virtu-
alization techniques [11] and technologies effectively reduce the performance
overheads and its associated impacts [12]. Modeling this impact is not the
main focus of this study, however we can simply extend our model to perform
a cost-benefit analysis before re-consolidation, considering the overhead costs.
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4 Experimental Setup

This section describes an evaluation of the performance of the proposed ap-
proach through a simulation of a data center with 2500 physical nodes. We
simulated our framework in the Netlogo environment and built our P2P overlay
using the scale-free network model as implemented by [13].

Each physical node was associated with a nodeAgent and assumed to be
capable of serving VMs of different types. The maximum capacity of each
physical node was set to 10 compute units and the provider was assumed to
offer 10 VM types with capacities ranging from 1 to 10 compute units. The
price of a VM providing 1 compute unit was 0.01$ per time unit, similar to
that for a Linux micro reserved-instance in Amazon’s EC2 system. The prices
of larger VMs were proportional to their capacity.

We assumed a total of around 20000 incoming VM placement requests,
arriving the system following a Poisson arrival rate. Each request had a capacity
demand (in compute units) that was selected at random from the set {1,...,10}
and was mapped to a VM type. The VMs were deployed and terminated over the
course of each simulation. Services running in clouds usually have an indefinite
lifetime, so we modeled VM lifetime using a normally distributed random
variable in order to eliminate the potential for systematic bias associated with
specific application types and to represent the diversity of applications that
may be deployed in a cloud data center.

In order to avoid infinite request forwarding in the environment, we con-
strained the number of hops per request to HTL = 20 hops.

The re-consolidation threshold, i.e. the load at which a node’s resources are
considered for re-consolidation, was set to 40% of the node’s total capacity.
Simulations were allowed to run for 20000 time units with each time unit
representing 0.1 sec of simulation time and one hour of resource usage.

4.1 Performance Parameters

We evaluated our approach with respect to the following performance parame-
ters:

1. Data center utilization (Udc(t)): This variable represents the utiliza-
tion of the data center. It is defined as the total capacity used by the
allocated VMs at time t relative to the total available capacity in the data
center. Data center utilization is calculated using Equation (1), which
was introduced in Section 3.
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2. Average node utilization (Unode(t)):

Unodes(t) =

∑m
j=1 Resj(t)

nactive × Cserver
(5)

where nactive is the number of active nodes in the environment. This metric
provides insight into the distribution of allocations and how efficiently
the currently active servers are being utilized. It is directly proportional
to the system’s power consumption and the associated costs.

3. Number of hops: This is the number of steps required to locate a node
that has the capacity required by the VM request. This metric measures
how quickly the algorithm can locate a suitable node and respond to a
request, and can be compared to the computation time in centralized
approaches.

4. Rejection ratio: This is the proportion of request demands that are not
satisfied.

RR(t) =

∑m
j=1 Demandj(t)−∑m

j=1 Resj(t)∑m
j=1 Demandj(t)

(6)

Rejections may occur for various reasons, including:

• A failure to locate a suitable resource within the HTL limit.

• A lack of sufficient resources to serve the request.

• Fragmentation of the resource pool.

5. Profit: This represents the revenue of the data center with respect to
the service provided and its operational costs. The profit is calculated
using Equation (3), introduced in Section 3.

5 Results and Discussion

This section describes how the performance is influenced by two key properties,
namely request propagation and allocation distribution, and their impact
on allocation policies. We evaluate performance in terms of the five metrics
introduced above, Data center utilization, Node utilization, Number of hops,
Rejection ratio and Profit. Finally, we study the scalability of the approach
when each of the 6 allocation policies is adopted.
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5.1 Impact of Request Propagation on Performance

In the first series of experiments, we studied the impact of request propagation
on the performance of the resource allocation mechanism. Request propagation
can be affected by the entry of requests to the system, the constraints imposed
by HTL threshold, and modifications of the overlay topology. Due to paper
limits, we only discuss the impact of requests’ entry on the performance.

To determine how entry policy affects system performance, we compared the
impact of adopting central and distributed entry policies (see Section 3.1) for
VM requests on system performance.

Figure 2 shows the number of hops, rejection ratio, data center utilization,
node utilization, and profit for each of the policies listed in Table 1. In general,
distributed entry provides better request propagation, requiring fewer hops
to place the VM. This is because distributed entry of requests automatically
increases the probability of request propagation to a ‘better’ node and thus
reduces the number of hops. The lower the number of hops, the lower the
likelihood of exceeding the HTL and thus the lower the likelihood of request
rejection. Reducing rejection ratios also increases data center utilization and
profits. However, distributed entry generally produces lower node utilization
(Unode(t)) than centralized entry because it results in a more sparse placement
of VMs.

Central entry requires more hops to place a VM, leading to a higher rejection
ratio and reduced data center utilization. That is to say, such policies suffer
from weak request propagation in comparison to distributed entry alternatives.
When requests are bound by a central entry policy, a small proportion of nodes
experience a large number of visits (especially those in the vicinity of the entry
node) while others are never visited. Consequently, the VMs tend to cluster in
the neighborhood of the entry node. After a while, these nodes become fully
loaded because they are so frequently visited, and become unable to accept
new VMs. Subsequent requests must therefore travel beyond the saturated
neighborhood, reducing the likelihood of successful allocation within the HTL.
This in turn increases the rejection ratio. Because some fraction of the nodes
can never be reached within the HTL, data center utilization is reduced and
profit decreases.

5.2 Impact of Allocation Distribution on Performance

The distribution of allocated resources over the data center resource pool is
the second major factor that affects the performance. It is determined by the
local heuristic decisions of each nodeAgent in conjunction with the system’s
request entry policy. To determine the impact of allocation distribution on
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Figure 2: The effects of different allocation policies in a data center with
2500 nodes.
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performance, we compared the 6 policies presented in Table 1 when used in
conjunction with 3 heuristics: Least Utilization, Most Utilization and First-Fit.

The average node utilization, Unode(t), is a useful metric for analyzing the
distribution of allocated resources. For a given amount of allocated capacity,
we can either distribute the allocations sparsely to provide a large number
of lightly-loaded nodes, or we can consolidate them across a small number of
nodes with high Unode(t) values.

Figures 2a and 2b show the number of hops and the rejection ratios for
each allocation policy. Of the six policies Central-FF requires the highest
average number of hops to find a resource and place the VM, and it also
has the highest rejection ratio. This can be explained by the fact that the
weak request propagation of the central entry policy along with the saturation
of the entry node’s neighborhood caused by the First-Fit heuristic forces
requests to make extra ineffective hops. This increases the required number
of hops needed to locate a resource, causing requests to exceed the HTL and
be rejected. The consequence of this is clearly shown in Figures 2b and 2c:
the rejection ratio increases and data center utilization decreases. However,
because allocated VMs are densely distributed over a small number of nodes
within the vicinity of the entry node, this policy achieves high utilization values
Unode(t) for the active nodes, although the number of active nodes is limited.
It is important to point out that data center utilization and node utilization
Unode(t) are not necessarily correlated. For example, as shown in Figure 2, while
the overall data center utilization rate when using the Central-FF algorithm is
only 20%, the 20% of active nodes have an average utilization level of 80% (i.e.
Udc(t1) = 20%, Unode(t1) = 80%). Due to the high rejection ratio, this policy
produces the lowest data center utilization and thus generates the lowest profit
of all the policies evaluated.

On the other hand, we can see that the Dist-FF policy requires the fewest
hops because it generates no saturation and the allocated VMs are distributed
across the entire data center. The number of hops in this case is low because
the First-fit heuristic merely selects the first node with available capacity and
does not search further. The low number of hops results in a low rejection ratio
and a fairly high data center utilization and profit.

Central-Min has the second highest number of hops and rejections. This is
because the Least-utilized heuristic generates a lot of lightly loaded nodes due
to its policy of placing VMs on loads with low utilization. In this situation, the
resources are fragmented over the data center’s resource pool and it becomes
harder to place large requests. Consequently, the number of rejections increases
because each available fraction is too small to place a large request, even though
the total available capacity remains high. The central-entry of the requests is
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also another reason for the high rejection ratio under the Central-Min policy
due to its weak request propagation. As shown in Figure 2d, this policy has a
low node utilization Unode(t) value because it frequently starts idle nodes and
generates a large number of lightly utilized active nodes. The low data center
utilization and high number of active nodes makes this policy one of the least
profitable options.

Dist-Min policy provides better request propagation due to the distributed
entry of requests, and thus increases the data center utilization relative to
its Central-Min counterpart. However, the Least-utilized heuristic, which is
common to both the Dist-Min and the Central-Min policies, causes resource
fragmentation and increases the number of rejections.

As shown in Figure 2, Dist-Max achieves the best performance of the tested
policies. The Most-utilized function selectively places VMs on nodes with suffi-
cient capacity and the highest overall utilization. This heuristic automatically
avoids the fragmentation of the resources by consolidating as many VMs as
possible onto each active node, and can therefore accommodate more demand
than the Least-utilized approach. It also avoids activating idle nodes because it
tries to place the VMs onto currently active nodes to increase their utilization.
This is why Dist-Max is the most profitable policy: it achieves the greatest pos-
sible data center utilization with the lowest possible number of active physical
servers.

In summary, policies based on the distributed entry of requests offer better
request propagation, yielding better performance and higher profits. The
heuristic that offers the best performance and profitability is Most-utilized,
followed by First-fit. Policies based on the Least-utilized heuristic has the lowest
performance when the main objective is profit and having high consolidation.
However, policies adopting the Least-utilized heuristics can be effective when
other objectives such as load balancing is the main concern.

5.3 The Impact of Re-consolidation on Performance

In the previous section we showed that Least-utilized heuristics generate lightly
loaded servers, causing fragmentation of the resource pool that leads to low
data center utilization and reduces profits. In addition, the frequent arrival and
termination of VMs can also lead to a far from optimal allocation distribution
that may affect the performance of the resource allocation mechanism over
time. In this section, we study how the re-consolidation of VMs can improve
performance in such situations.

Table 2 shows the total number of servers put into power saving mode after
re-consolidation during the simulation time when the allocation algorithm used
in the simulation follows each of the six above-mentioned policies. The number
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of servers that undergo re-consolidation under central entry policies is low
relative to that for distributed entry policies. This is because in central entry
policies, most of the allocations are densely populated within the entry node’s
vicinity and resources are not sparsely allocated. Consequently, the number of
nodes that are lightly loaded enough to trigger the re-consolidation process is
much lower than under distributed entry policies.

Table 2: Number of nodes put into hibernation after re-consolidation

Policies # nodes hibernated due to re-consolidation
Central-FF 35
Central-Max 202
Central-Min 2693

Dist-Max 1030
Dist-FF 2147
Dist-Min 3679

Both Table 2 and Figure 3 show that Least-utilized policies benefit the most
from the re-consolidation process. It is also clear that the resource distributions
generated by Most-utilized policies are those that change the least following
re-consolidation. This is because these policies preferentially deploy VMs onto
highly loaded nodes in the first place.
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Figure 3: Impact of re-consolidation on node utilization.
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The most significant impact of re-consolidation is on the node utilization,
Unode(t), because it packs the allocations onto a smaller number of servers and
thus reduces the number of active servers while increasing their utilization.
We should however note that not all re-consolidations lead to servers being
powered down. The nodeAgent may look for potential hosts to migrate its
deployed VMs one by one, but this does not necessarily mean that appropriate
new locations will be found for all of them.

5.4 Scalability Analysis

To study the scalability of our approach, we performed simulations for data
centers with 500, 1000, 2500 and 5000 servers, with 800, 1750, 4500, and 9000
VM requests, respectively. In this experiment, VMs were not re-consolidated
and also not terminated so that we could study the scalability in an extreme
case where all of the resources in the data center are saturated.

Figure 4 shows the performance of each policy with respect to server count.
It is clear that the performance does not depend on system size provided that
the allocation policies maintain adequate request propagation. For allocation
policies based on distributed entry, performance metrics such as the number of
hops, rejection ratio and data center utilization remain constant as the number
of servers increases. This is because in systems with large numbers of servers,
the main concern is to ensure that all nodes can be reached efficiently within
an acceptable number of hops. This is straightforward when using distributed
entry policies due to their favorable request propagation properties. Because
requests are propagated efficiently, increasing the number of servers does not
increase the number of hops or the frequency of VM rejection. As discussed
above, data center utilization is highly dependent on the rejection ratio; because
the rejection ratio is independent of the server count in this case, the data
center utilization is as well.

However, this approach is not scalable when it is applied in conjunction with
an allocation policy that has weak request propagation such as Central-FF.
This is because such policies prevent requests from reaching most of the servers
in the system. Therefore, as the number of servers increases, more requests are
rejected and more servers remain un-utilized.

The Node utilization metric does not capture the dynamics of the system
when the size is increased because it just expresses the utilization of active
nodes.
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Figure 4: Scalability of the approach with respect to increasing numbers of
servers

6 Related Work

There are a number of researches that are related to our study.
The first group of studies focused on the problem of VM placement adopt-

ing a centralized approaches, tackling the problem by formulating it as a
knapsack or constraint satisfaction problem and generating solutions using
integer programming methods [2, 14,15]. These methods provide high quality
solutions for limited numbers of servers and applications but must compromise
on solution quality when applied to large scale data centers in order to achieve
computational tractability.

The second group of related research includes studies that examined P2P
approaches for resource management in cloud environments. Barabagallo et
al. [16] modeled a data center as a P2P network of self-organizing nodes that
collaborate with one-another using bio-inspired algorithms. This collaboration
allows the nodes to redistribute the load among servers in order to increase the
system’s energy efficiency. Their idea is to have a number of entities known as
scouts that investigate and gather information about virtual machines in the
data center. This information is then used by other virtual machines to initiate
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migrations in order to redistribute the overall load. Their approach is related
to our work on optimal re-consolidation. However, we have shown that a P2P
approach can be adopted for wider problems such as resource allocation, and
that re-consolidation is just one component of the broader resource allocation
problem. Our work also deals with business goals such as utilization and profit,
and yields improvements in energy efficiency as a consequence of achieving
these goals.

Wuhib et al. [17] used a gossip protocol for dynamic resource management
in clouds. In their protocol, the nodes interact with a subset of other nodes via
small messages. These messages allow nodes to exchange state information and
then compute a new configuration with the goal of maximizing cloud utility. If
the gain from a new configuration outweighs the cost of change, they adopt the
change and update their local state. This approach differs from ours in terms
of the type, the purpose of the interactions and gossip: the authors’ main focus
is on the fairness of their allocations whereas we focused primarily on data
center utilization and profit.

Marzolla et al. [18] also adopted gossiping for server consolidation in order to
decrease power consumption. Their main focus is on the migration of arbitrary
placed applications as a way of decreasing power consumption. As mentioned
above, we approach the migration (re-consolidation) process as part of a larger
solution to optimal resource allocation.

7 Conclusions

In this paper we discussed a novel approach to perform VM placements in
cloud data centers. Our approach benefits from high degree of concurrency and
decentralization of control with no central bottleneck. Our main contributions
are:

1. A new formulation of resource management problem through a P2P
framework.

2. Proposing a P2P overlay based on scale-free network for robust and
efficient discovery of the most suitable potential server for VM placement.

3. A resource allocation algorithm based on local search, designed to maxi-
mize data center utilization and profitability. The algorithm ensures high
utilization of active nodes while minimizing overall power consumption
by putting the remaining nodes into energy saving mode.

We investigated the impact of different heuristics on the quality of the
resulting allocations, with respect to the specified objectives of maximizing
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data center utilization and profitability. We also studied the scalability of our
approach by evaluating its performance with different numbers of servers. Our
approach was shown to be scalable up to at least systems of 5000 nodes with
9000 incoming placement requests arriving during the simulation time when
using policies that allow for efficient request propagation.

We also present a re-consolidation process as a component of the broader
resource allocation process. This enables the optimal re-allocation of currently
running VMs. The re-consolidation process is designed to redistribute alloca-
tions among the servers in a data center in order to utilize the active nodes
more efficiently in cases where the existing allocation has become sub-optimal.
Efficient utilization makes it possible to switch off lightly loaded servers and
reduce the center’s overall power consumption, thereby increasing profits.
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Cooperative VM Consolidation∗
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Abstract

Efficient resource utilization is one of the main concerns of cloud providers, as
it has a direct impact on energy costs and thus their revenue. Virtual machine
(VM) consolidation is one the common techniques, used by infrastructure
providers to efficiently utilize their resources. However, when it comes to large-
scale infrastructures, consolidation decisions become computationally complex,
since VMs are multi-dimensional entities with changing demand and unknown
lifetime, and users often overestimate their actual demand. These uncertainties
urges the system to take consolidation decisions continuously in a real time
manner.

In this work, we investigate a decentralized approach for VM consolidation
using Peer to Peer (P2P) principles. We investigate the opportunities offered
by P2P systems, as scalable and robust management structures, to address
VM consolidation concerns. We present a P2P consolidation protocol, con-
sidering the dimensionality of resources and dynamicity of the environment.
The protocol benefits from concurrency and decentralization of control and
it uses a dimension aware decision function for efficient consolidation. We
evaluate the protocol through simulation of 100,000 physical machines and
200,000 VM requests. Results demonstrate the potentials and advantages of
using a P2P structure to make resource management decisions in large scale
data centers. They show that the P2P approach is feasible and scalable and
produces resource utilization of 75% when the consolidation aim is 90%.

∗The paper has been re-typeset to match the thesis style.
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1 Introduction

Cloud providers are widely using the virtualization technologies for the efficient
utilization of their available resources. Virtual Machines (VMs) are treated as
blocks that can be put together on a Physical Machine (PM) or can be moved
from one PM to the other to maintain a high resource utilization in a data
center. Consolidation of multiple VMs on a single machine helps cloud providers
to increase their resource utilization and decrease their power consumption,
specially as users often overestimate their actual demand. It also helps opening
up capacity to run services with special constraints or the ones that are larger
to fit in a small fragmented resource.

However, the fact that VMs are serving a changing demand and they have
unknown arrivals and lifetimes forces the system to continuously make the
consolidation decisions and re-assign the resources in a real time manner. It
should be noted that both VMs and PMs are multi-dimensional entities, i.e.
they are defined in terms of CPU and memory capacity, and they have specific
shapes. Thus, maintaing the efficiency of utilization when the entities are
multi-dimensional and their shapes are changing over-time can be challenging.

Moreover, the applications and management decisions become more complex
and larger in scale, such that the traditional centralized or hierarchical ap-
proaches cannot scale with the number of PMs in the data center. To support
scalability, they either need to compromise the quality of the solution to the
resource management problem, to keep the response time within an acceptable
time frame or alternatively partition the infrastructure statically. The latter
restricts the system from using the resources efficiently due to the lack of coor-
dination between partitions. Centralized approaches also require a continuous
fine grained monitoring data which is often huge and expensive to collect and
process [1].

However, decentralized approaches allow the complex resource management
decisions to be taken in collaboration, by a number of autonomous entities
working toward a management objective. In such systems, the objective is
achieved as the emergent behavior of a number of autonomous entities, acting
as processing units, making management decisions within their own local scope.
Besides, such systems are more robust since each autonomous entity operates
independently from others’ failures or departures.

In this paper, we investigate how resource management problem in cloud
data centers can be formulated and addressed using a decentralized approach.
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We specifically tackle the VM consolidation problem, to achieve energy effi-
ciency and increase resource utilization. Extending our resource management
framework introduced in [2], we propose a P2P gossip-based protocol for VM
placement and consolidation, considering the multi-dimensionality of the PMs
and VMs. Each peer in the P2P framework, cooperates with its fellow peers,
to improve its status with a new state of a greater value, thus moving toward
a more efficient state. The peer uses a dimension aware decision function to
quantify its state and determine the right actions. Besides, each peer only
monitors its own resources and a small-sized metadata is exchanged only to the
peer’s immediate neighbors. We also perform an extensive study on feasibility
and performance of the proposed approach when scale matters.

We show that the P2P approach is feasible and scalable and it produces
an almost-optimal VM placement for the experimented scale of 100,000 PMs
and 200,000 VM requests when the load is dynamic. The system benefits from
a high degree of concurrency and decentralization of control with no central
bottleneck. This help the system to have a low computation time in making
placement decisions for the mentioned scale. This advantage is essential for real
time management of a dynamic environment such as cloud infrastructures. We
also believe that delegating the complex decisions to the autonomous entities
would eliminate cumbersome configuration settings that are required in the
centralized approaches. It is an important advantage, since these configuration
values, i.e, low utilization thresholds, offload trigger points or monitoring
intervals are usually hard to devise, not applicable for all the data center’s
entities and they are sensitive to the load changes.

2 Consolidation problem

Assume that a data center consists of n PMs. Each PM has a CPU and
memory capacity of CPM and MPM. The CPU and memory utilization of each
PM i at time t is denoted as ci(t) and ci(t), respectively. It is assumed that
all PMs are homogeneous, although the formulation can also be generalized
for heterogeneous machines. The data center offers l VM types, where each
VM has an expected computational and memory capacity of CPUl and Meml.
These VMs are categorized in 3 different types of compute optimized, memory
optimized and general purpose, due to their usability scenario. It is also assumed
that m VM placement request arrive to the system during the data center
operation time. Each request j demands a specific VM type l and consumes a
CPUDemandj(t), MemDemandj(t) at each timestep.

The goal is to achieve energy efficiency, E(t), in the data center by minimizing
the total power consumption, modeled as a function shown in Equation (1).
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Minimize E(t) =

nactive∑

i=1

Pi(t) (1)

subject to:

m∑

j=1

Resj(t) ≤ nactive × (α× CapacityPM) (2)

where Resj(t) is the utilized capacity by VM requestj at time t, nactive is the
number of non-idle PMs, α is a utilization factor, defined to avoid performance
degradations caused by interferences among the consolidated VMs, and finally,
CapacityPM is the capacity of the PM in terms of CPU and memory. For the sake
of brevity, we generalize the notations of Resj(t) and CapacityPM to address
the concept of resource. However, whenever these values are referred in the
paper, we calculate the value for each resource, CPU or memory, independently
with respect to their relevant values. Moreover, Pi(t) is the consumed power of
PMi, and it is a linear function of the fixed consumption for PM when it is in
idle state and additional power usage proportional to PM’s CPU utilization [3]
and it is calculated by Equation (3).

Pi(t) = (Pmax − Pidle)× ci(t) + Pidle (3)

where Pmax is the power consumption at maximum performance and Pidle is
the PM’s power consumption when idle.

One important point to be considered is that resources are multi-dimensional.
Hence, for a mixed workload, consisting of both compute and memory optimized
VMs, the placement algorithm should be dimension aware, meaning that the
proportionality of resource usage (CPU vs. memory) in each PM should be
considered while deciding on the placement [4, 5]. To best utilize the capacity
of a physical machine along two dimensions (CPU/Memory), it is desirable
that at each point of time, the resources being proportionally utilized in
both dimensions. The unbalanced utilization of the resources in each physical
machine will lead to wasting the space in one of the dimensions. Therefore, to
ensure the efficient utilization, we also strive to minimize an imbalance factor,
formulated as:

Minimize Imbdc(t) = (

n∑

i=1

|ci(t)−mi(t)|)/n (4)

where Imbdc(t) is the average of data center’s imbalance at time t, n is the
total number of PMs, both idle and non-idle, ci(t) and mi(t) are the relative
values for CPU and memory utilization of PMi at time t.
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3 VM placement through gossiping

We consider the VM placement problem as a distributed decision making
process. We introduce a decentralized gossip-based protocol, where decisions
are continuously being made between random pairs of cooperative agents,
trying to improve a common value. The common value is defined as the total
imbalance, Imb(t), of each pair at the time of decision making and the goal is to
reduce this imbalance by redistributing the VMs among them. The cooperative
approach among two agents prevents the undesirable bounces of VMs and
ensures a stable state, which is essential to avoid the redundant migrations.

3.1 General Architecture

A data center is a collection of PMs. In our design, each PM is considered as a
peer in a P2P network. Peers are logically connected by an overlay network.
The overlay is built and maintained by a peer sampling service, known as
newscast [6]. Peer sampling service periodically provides each peer with a list
of peers to be considered as neighbors. Each peer at each timestep only knows
about k random neighbors, shaping its local view.

Each peer locally runs a resource agent responsible for monitoring its associ-
ated PM’s state (CPU and memory consumption), communicating with the
neighbors and processing the information received from the neighbors. Peers
communicate in a gossip-based fashion via small messages that represent their
state. The details about the general architecture is discussed in [2].

3.2 Design concerns

To investigate the most suitable solution, we review the common questions and
enumerate some of the issues that should be addressed during the design.

1. When should a consolidation be performed?

In common practices, the re-consolidation process is triggered by an event,
i.e. when a PM detects a violation of an under or over-utilization threshold.
However, event based algorithms, require configuring thresholds which
is often tricky and complex and need a good understanding about the
system and the changes in load. In such algorithms, setting the threshold
too low, may lead to losing the chance of efficient consolidation of VMs,
while setting it too high, may end up moving VMs constantly from one
machine to the other.

Thresholds may also be susceptible to changes since the system dynamics
are changing over time. In addition to that, they are usually defined as
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absolute values, so a small deviation from the threshold would disqualify
the PM to be triggered for re-consolidation. Hence, there would be cases,
that the load of two machines can be accommodated in one, but since
the load in none of the PMs fall below the threshold, this consolidation
would never happen.

The autonomy of the peers in a P2P structure allows the system to
avoid the complexity of threshold setting. Using P2P structure, the peers
involved in the decision process use their real time state to decide if they
can benefit from a re-distribution of their VMs or not. If both peers realize
that their load can be accommodated in one, within a reasonable cost of
migration, then potentially a re-consolidation process can be triggered
when the P2P interactions are converged. This way re-consolidation is not
bound to the thresholds but it would be planned dynamically based on
the peers’ states. Hence, adopting P2P approach decreases the need for
threshold setting and also increases the chance of triggering more efficient
re-consolidations.

2. How to re-consolidate?

The second question is how the re-consolidation should be performed?
One strategy can be to incrementally migrate the VMs from a low-utilized
machine to a PM with available capacity, with the hope of future release.
The other option is to migrate VMs only when the complete release of
the PM is guaranteed. Each of these two approaches have their own
advantages and weaknesses that we will discuss in next sections.

3. Consolidation consequences:

Different works have studied the impacts of consolidating multiple VMs
on the same machine on the performance [4,7]. The impacts are usually
due to the interferences and contentions among VMs, such as cache
contentions, conflicts at functional units of CPU, disk write buffer or
disk scheduling conflicts [7]. However, consolidation of multiple VMs also
increases the probability of overloading the PMs when the load of the
VMs are changing overtime.

The PM overloads can be handled in different ways, such as service
differentiation [8,9] or application brownouts [10], but they are usually
handled through PM offloads via migration. Offload processes are often
costly. The cost is due to the performance impacts or possible SLA
violations and also the additional management process required to decide
which VMs to be migrated to where. Based on the above-mentioned
impacts, we can argue that the best strategy for VM placement and re-
consolidation is the one that accommodates the demand on the fewest PMs
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while minimizing the over-consolidation consequences. These consequences
can be listed as the longer overload time experienced by the system,
possible VM rejections caused by inefficient use of resources, or even
increase in power consumption.

3.3 Consolidation strategies

Common consolidation approaches can be enumerated as follows:

• Incremental release using thresholds: Using this strategy, the PM
decides to migrate its VMs incrementally over time with the hope of full
release after a while. The re-consolidation process is triggered when the
utilization of the PM fall below the threshold. Setting the threshold in
this approach is inevitable, since the number of migrations should be
limited in some way.

• One-shot merge: The PM decides to migrate its VMs when another
PM, with sufficient capacity can be found, to accommodate all its VMs.
Since the decisions are based on the state of the PMs involved, there is
no need for any configuration on thresholds.

• One-shot merge + dimension aware re-distribution: In both above-
mentioned scenarios, it is assumed that accommodating VMs in fewer
machines is the only factor affecting the efficient consolidation. The
intuition is that the resources should either be fully utilized or be in
the idle mode. However, they have ignored the fact that the requested
resources have shapes and the way these shapes are put together would
also affect the efficiency of utilization.

As it is depicted in Figure 1, efficient distribution of VMs over the PMs
can lead to the probability of better consolidation and thus lower power
consumption. We define the efficient distribution of VMs as the one
in which both CPU and memory in each PM are used in a balanced
proportion. We propose a P2P gossip-based protocol which takes into
account both, the possibility of releasing a PM and re-distributing the
VMs among the peers, to balance the consumption of both dimensions
on the each PM.

3.4 Dimension aware consolidation protocol:

In this section, we introduce a gossip protocol for VM placement and consolida-
tion. The protocol is an iterative algorithm, starting from an arbitrary initial
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Figure 1: Redistribution of VMs can increase the balance between memory
and CPU and improve the consolidation

VM placement. In this protocol, each pair of neighboring peers exchanges
gossip messages. This state exchange triggers a local decision function that
can possibly lead to a local state change in the associated peers. The decision
function evaluates the states of the pair with respect to a common local objec-
tive and it proposes a new distribution of VMs between the associated peers
that maximizes this objective considering the migration costs. In another word,
the protocol continuously moves toward the optimum by iteratively applying a
control operator to the peers’ states and substitutes their states if the new state
has a greater value. Each peer keeps track of the list of VMs assigned to them
by the decision function and considers the new list as their updated state for
future interactions. The protocol continues the process until it converges and no
more VM is re-distributed. When the protocol is converged, a reconfiguration
plan can be devised to migrate the VMs from their original location to their
assigned peer. The pseudo-code of gossip interactions is illustrated in Algorithm
1.

3.4.1 Decision function

The state exchange between the neighboring peers triggers a decision function.
Using this function, the peers involved in the interaction, assesses if the re-
distribution of their VMs can lead to a better consolidation. The function
evaluates the possibility of re-consolidation for either of the following cases:

1. If the aggregated load of the pair, involved in the negotiation, can be
accommodated in one peer, then the VMs would be deployed in one
peer and the released peer is either set into the power saving mode or
considered as free space to be used for other purposes in the future.

80



Algorithm 1 Gossip Protocol

1: procedure Active thread
2: loop
3: wait ∆
4: for Each neighbor k in the local view do
5: Send myState
6: Receive the state from neighbor k, Statek
7: newState=Decisionfunction()
8: myState=Update(newState)
9: end for

10: end loop
11: end procedure
12:

13: procedure Passive thread
14: loop
15: Receive Statei from i
16: Send myState to i
17: newState=Decisionfunction()
18: myState=Update(newState)
19: end loop
20: end procedure

2. If not, the function assesses whether re-distribution of the VMs can lead
to a more balance utilization of CPU and memory per PM, for both peers.

If any of the above-mentioned conditions are met, the function proposes a
new re-distributed set of VMs for each peer, based on the following steps:

• Step 1: Calculate the Imbalance factor

The algorithm calculates the imbalance ratio for the possible permutations
of VMs, using Equation (5). If re-distributing the VMs leads to the possible
future state of (S’1, S’2) for peer1 and peer2 and imposes a CPU and
memory consumption of (c1, m1) and (c2, m2) at time t’, respectively,
the imbalance ratio for this specific VM distribution is calculated as:

Imb(S′
1, S

′
2) = φ(S′

1, S
′
2)× (

2∑

i=1

|ci −mi|) (5)

Where φ(S′
1, S

′
2)=
{

0 if (c1 + c2 ≤ αCPM ) & (m1 +m2 ≤ αMPM )
1 if (c1 + c2 > αCPM ) & (m1 +m2 > αMPM )

(6)
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• Step 2: Calculate the migration costs
Since the migration of VMs is an expensive task, the algorithm considers
the cost of migration when deciding on re-distributing the VMs. The
cost of migration is defined as a function of migration time. The total
migration time of a VM is calculated as:

t = ti + tc + ts + tr (7)

where ti denotes the time for iteratively transferring the memory pages,
tc is the time for suspending the VM at source, ts is the time for CPU
transfer and tr is the time for resuming the VM destination. In the above
equation, tc, ts and tr are rather short, however the iterative memory
transfer is hard to predict and depends on the memory consumption of
the VM.

• Step 3: Select the VM sets that maximize the Gain
Finally, the algorithm selects a distribution set which leads to a better
consolidation among the peers with minimum cost of migration. In the
other word, the algorithm selects a distribution of VMs in which the peers
can gain the most from transitioning from their current states (S1, S2) to
a transferred state (S’1, S’2) with the minimum migration cost. The gain
is quantified via Equation (8).

Gain() =
Imb(S1, S2)− Imb(S′

1 − S′
2)

Migration cost
(8)

The general steps of the algorithm are illustrated in Algorithm 2. It should
be noted that finding a VM distribution, defined by CPU and memory, is a 2D
bin packing problem and the complexity of the search space grows with the
number of VMs deployed in each peer.

3.5 Reconfiguration Plan

In previous section, a mapping between the VMs and the PMs in the system is
devised, aiming for efficiency of resource utilization and low power consumption.
It has also taken into account the cost of migration in terms of the required
memory transfer. However, these VMs are usually serving real time requests
or in some cases they are associated with stateful data on the PMs. In these
cases, the cost of migration is not just the cost of memory transfer. Therefore,
a re-configuration plan should be devised to carefully consider the real time
factors such as VMs states, the available network bandwidth and the durability
of re-configurations.
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Algorithm 2 Decision Function

Require: MyState [cme(t), mme(t), list of VMme] , NeighborStates [ck(t), mk(t), list
of VMk]
if (cme > α× CPM)or(cme > α×MPM) then

Offload();
else if (cme(t) + ck(t) ≤ α× CPM) & (mme(t) + mk(t) ≤ α×MPM)) then

if (mme(t) ¡ mk(t)) then
Add the references of VMs on me to VMk.
Tag me as to-be-idled.

else
Add the references of VMs on k to VMme.
Tag k as to-be-idled.

end if
else if ((cme(t) + ck(t) ≥ CPM) & (mme(t) + mk(t) ≥ MPM)) then

Select a distribution of VMs that minimizes the total Imbalance for each PM in
both peers with minimum memory transfer.
end if

3.6 Offload

As mentioned earlier, in an environment with changing demand, having over-
loaded PMs is inevitable. In this situations, the system should decide on how
to offload the overloaded PM. When a PM becomes overloaded, it contacts its
neighbors to find a suitable PM with sufficient capacity to offload its load. On
the first round, the peer tries to select among the active neighbors and see if
they can accommodate the extra load. In each interaction, the algorithm exam-
ines a subset of VMs on the overloaded PM in which it can be accommodated
in the neighboring peer with minimum migration cost. The released capacity
after migrating this set should be sufficient enough to offload the peer to fall
below the overload bar. This subset is devised via an exhaustive search among
the VMs currently deployed on the PM.

If none of the active neighbors have sufficient capacity for the offload, the
peer activates one of its idle neighbors, if it has any, or it waits for the next
cycle to receive a new set of random neighbors via the peer sampling service
and repeats the above procedure.

4 Evaluation

We evaluate the performance of three consolidation strategies, discussed in
Section 3, and we compare their performance with a random VM placement as
the benchmark. The investigated strategies are:
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Algorithm 3 Offload

for Each neighbor k in the local view do
if (k is active) & ck(t) < Overload bar) & (mk(t) < Overload bar) then

List all the possible subsets of myVMs as the possible sets to be transferred
end if
for Each VM subset do

Calculate the total CPU and Memory demand of each VM subset as the
CPU and memory to be transferred

if ((Ck − ck(t)) ≥ transfer Cpu) & ((Mk −mk(t)) ≥ transfer Mem) &
(cme(t) − transfer CPU < Overload bar) & (mme(t) − transfer Mem <
Overload bar) & (transfer Mem is minimum) then

Select the subset
overload-Resolved=true;

end if
end for
if overload-Resolved==true then

Break
end if

end for
if subset!= null then

Transfer the subset to the neighbor
end if
if subset= null then

Activate one the idle PM
Transfer the extra load

end if

1. Random VM placement

2. Incremental consolidation using thresholds

3. One-Shot Merge

4. One-Shot Merge + re-distribution w.r.t Imbalance ratio

4.1 Performance metrics

The performance of each strategy is evaluated with respect to the following
metrics:

1. Data center power consumption

2. Number of active PMs
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3. Imbalance rate: It is calculated as:

Imbdc(t) = (

n∑

i=1

|ci(t)−mi(t)|)/n (9)

where Imbdc(t) is the average of data center’s imbalance at time t, n is
the total number of PMs, both idle and non-idle, ci(t) and mi(t) is the
CPU and memory utilization of PMi at time t.

4. Average resource utilization: Resource utilization has a direct impact on
power consumption. It is defined as the average utilization of non-idle
PMs over each dimension, i.e. CPU and Memory. Hence, for each type of
resource, the average resource utilization is calculated as:

Udc(t) =

∑m
j=1 Resj(t)

nactive × CapacityPM
(10)

Where m is the number of placement requests at time t, Resj(t) is the
utilized capacity, either CPU or memory, by VMj at time t, nactive is the
total number of non-idle PMs, CapacityPM is the capacity of each PM.

5. Computation time: The computation time is the time it takes for the
protocol to compute an efficient VM to PM mapping and it is measured
in terms of number of cycles it takes for the protocol to converge.

6. Number of migrations

7. Overload time: The aggregated timestep that the system faces overload.

8. Number of rejected VM requests

4.2 Simulation setup

The evaluation is performed through simulation of a data center in PeerSim [11].
Our data center consists of 100,000 PMs, each has the capacity of 58 vCPU and
64 GB of memory. Our data center offers 6 VM types each fit to a specific use
case, similar to Amazon EC2 use cases. The details on the VM characteristics
is illustrated in Table 1.

The data center receives 200,000 VM requests during the simulation time. The
requests types are uniformly distributed among memory optimized, compute
optimized and general purpose VM types. They also intend to run a combination
of batch jobs and stateless interactive applications. The interactive applications
have long lifetimes, whole simulation run, and their CPU and memory demand
is changing over time according to Equation (11), derived from an analysis
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Table 1: VM types and their capacity details

Category VM name vCPU Memory vCpu% Mem%

Compute c1.medium 15 7.44 13% 6%

Compute c3.xlarge 30 14.88 27% 12%

Memory m2.xlarge 6.5 17.1 6% 13%

Memory m2.2xlarge 13 34.2 12% 27%

General m3.medium 3.24 3.75 3% 3%

General m3.large 6.5 7.5 6% 6%

on google traces introduced in [12]. The number of interactive applications is
constant during the simulation run.

CPUDemandj(t) = (
CPUl

2
)(1 + umsin(

2πt

86400
− 2πsm) (11)

MemDemandj(t) = β × CPUDemandj(t) (12)

where CPUl is the expected maximum CPU demand of VM type l, um, sm ∈
[0,1] is selected uniformly at random. β is the CPU/memory capacity ratio of
the VM type l, e.g. β = 0.5 for a compute optimized VM.

The second group of VMs are a set of batch jobs with the constant CPU and
memory demand. The arrival rate of these requests follows a Poisson distribution
with λ = SimulationT ime

2 , and they have a lifetime follows a truncated power-law
distribution with exponent 2, truncated to the length of the simulation run.

We set the utilization factor α = 0.9, to ensures the tolerance of the system to
performance degradations caused by resource contentions between neighboring
VMs. We also assume a PM power consumption in the idle state is 175W
and 250W when fully utilized. Each peer maintains a local view of k=20
neighbors which is being updated by the peer sampling service in each cycle.
The simulation time is 1000 timesteps and the monitoring system samples the
VM demands each 20th timestep. During the two consecutive monitoring, the
system load is considered constant. All results presented are the average of 10
simulation runs with the same configuration.

5 Results and Discussions

5.1 Feasibility of P2P approach

In this section, we investigate the feasibility of having a P2P protocol to perform
VM consolidation. The main concern when designing a resource manager for a
large scale distributed system is the cost of the decision making, usually defined
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in terms of computation time and the bandwidth consumption. We investigate
the cost of our P2P process, in terms of convergence cycles representing the
computation time and network bandwidth consumed by gossip protocol during
the decision process.

5.1.1 Convergence cycle

In the first experiment, we investigate the time required for the algorithm
to reach a stable VM-PM mapping for a specific load. This time is defined
in terms of the number of cycles it takes for the protocol to converge. To do
this, we considered a time interval in the experiment in which the load is not
changing. Hence, the number of the VMs and the total CPU and memory
demand during this interval is completely constant.
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Figure 2: Computation time in terms of convergence cycles

Figure 2 shows the trend of the average CPU and memory utilization over the
time interval with the constant load for the proposed P2P protocols with Merge
and Merge+Imb strategies. The graph shows a fast convergence of the P2P
protocols as it reaches a high utilization within 2 to 3 cycles, and it completely
converges at 7th cycle, for the configuration specified for this experiment.

5.1.2 Bandwidth consumption

For each consolidation decision, the maximum bandwidth consumed by the
gossip protocol, to reach a VM-PM mapping, is calculated by the following
equation:

(13)
Bandwidth consumption = Number of PMs× convergence cycle

×Number of exchanged messages
×message size (Byte)
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The maximum bandwidth consumption required for a consolidation decision
in a data center with 100,000 PMs is 160MB = 100, 000× 7× 2× 120 byte.
However, it should be emphasized that this is the maximum bandwidth con-
sumption since in each cycle, a number of peers are excluded from the peers
who exchange messages. Messages contain metadata about the type, CPU and
memory consumption of each VM, resides on each peer.

5.2 Decision strategy

Figure 4 shows a comparison on different performance metrics when each of
the strategies are adopted. As it can be seen in Figures 3a, 3b and 3c, after the
random placement, Incremental strategy on average has the lowest resource
utilization, and the highest number of active PMs. It is because, by setting a
threshold for triggering the re-consolidation process, some of the possible load
consolidations are automatically ignored. Hence, it results in higher number of
active PMs and higher power consumption.

The comparison between Merge and Merge+Imb, shown in Figures 3a, 3b, 3c
and 3d, shows higher CPU and memory utilization and lower number of active
PMs and lower power consumption for the latter. However, as it can be seen
in Figure 3e, this result comes with the price of higher number of migrations.
These extra migrations are performed to reduce the imbalance between CPU
and memory utilization in each PM.

The better performance in Merge+Imb strategy is because of accounting the
dimensionality of the resources while re-distributing the VMs. The Merge+Imb
strategy tries to reduce the imbalance between the CPU and memory utilization,
depicted in Figure 4a. A balanced utilization of a two dimensional resource
results in more efficient utilization of resources in both dimensions, thus lower
rejections of VM requests, as shown in Figure 4b, and faster resolution of
overloaded PMs, as shown in Figure 4c. By re-distributing the VMs to achieve
a lower imbalance, we can have 28% lower rejections, 12.6 % faster offload, for
a higher number of overloaded PMs and also 3.2 % lower power consumption
for the cost of 25% more migration.

5.3 Impact of local view size (number of neighbors)

We investigate impact of the local view size on the protocols performance. In
this experiment, we consider the data center with 50,000 PMs and 100,000 VM
requests and a static load. We vary size of the local view to K=10, 20, 30, 50.
Results, shown in Figure 5, indicate that the larger the size of the local view,
the faster the protocol can converge. However, this impact become less and
less significant for the sufficiently large local views.
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6 Related work

The problem of VM consolidation is discussed in different studies. The following
is a brief outline:

Beloglazov and his colleagues in [13] used a best-fit heuristic for initial VM
placements and further on, they migrate the VMs if a violation on one of the
upper or lower utilization thresholds is occurred. However, they based their
placement decisions on only one dimension, CPU consumption, and they also
ignored the cases that changing the arrangements of VMs the PMs can lead to
a more optimal utilization of resources. The algorithm is centralized and it is
examined for a data center with 100 PMs.

Svärd et al. [14] studied a set of heuristics to maintain the optimality of
allocations via a set of actions, such as VM and PM suspend and resume, and
also VM migration. These actions are triggered when either a PM crashes, or
a VM arrives or exits. Their approach has a centralized design and supports
up to 48 PMs. We, on the other hand, are interested in solving the problem
for larger scale.

Marzolla et al. [15] presented V-Man, a decentralized algorithm, using gossip
protocol, for VM consolidation. They modeled the PMs and VM requests as one
dimensional entities, and they assumed that applications have constant load.
Their algorithm is robust to PM and service failures. However, the model is a bit
simplistic and does not cover the complexities of a multi-dimensional placement
problem and the dynamic load. They also didn’t consider the migration costs
while deciding on which VM to migrate.

Wuhib in [16] proposed a resource allocation architecture and a gossip protocol
to address a set of well known management objectives, such as fairness, balanced
load, energy efficiency and service differentiation. In their model, machines are
associated with CPU, memory, and network interface capacity. Their protocol
attempts to either minimize the overload if the PM is overloaded, or to minimize
the objective function under the constraint of live migration. The results shows
that the protocol is effective and scales well, despite the fact that they did not
consider the proportionality of resource usage per PM.

Mastroianni and his colleagues [17] proposed a probabilistic consolidation of
VMs in a data center. The main idea is that a single PM is the one to decide
whether they should accept or reject a VM. When a VM request arrives, the
request is broadcasted by a coordinator to all the PMs and they respond the
coordinator if they can accept the request. This decision is based on a Bernoulli
trial, which ensures that the PMs tend to respond positively when they have
intermediate utilization values for both CPU and memory. When the local
decisions are made, a data center manager coordinates the decisions. Finally,
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the coordinator selects one of the respondents randomly. A PM also decides to
migrate its VMs if it is too low utilized or high utilized, in the similar fashion.

A consolidation algorithm is proposed in [7], focusing on the trade-offs be-
tween energy consumption, performance and resource utilization. They argued
that consolidation leads to performance degradations and longer execution
times, therefore, to save the energy an optimal consolidation rate should be
carefully determined. The intuition is similar to our approach on measuring im-
balance rate for allocation and it is to ensure that both dimensions are equally
used. However, they also discussed the problem for the one time consolidation
without considering that the load of the environment is changing and the initial
consolidation and also the optimal point is susceptible to change.

7 Conclusion

In this paper, we investigated the potentials and advantages of P2P systems
for making complex resource management decisions. We discussed the common
design concerns regarding VM consolidation and gave a brief comparison
among them. We formulated the consolidation problem in a P2P fashion, to
achieve scalability and support complex decisions in a short computational
time. We also presented a P2P gossip-based protocol for multi-dimensional VM
placement and consolidation, considering the changes in both VMs demand
and infrastructure load.

Through extensive experiments, the results show that the P2P approach
is feasible and scalable up to 100,000 PMs and 200,000 VM requests. It
also produces, resource utilization of 75%, on both dimensions, CPU and
memory, when the consolidation aim is 90%. This result is produced within a
short computation time, less than 7 cycles, for the examined scale, which is
essential to be responsive in a dynamic environment. Based on these results,
we can argue that dividing management responsibilities to a set of identical
autonomic elements allows the system to scale without compromising the
complexity of the problem or quality of the solution, that is required to keep
the response time within an acceptable time frame. Adopting a P2P approach,
also eliminates cumbersome configuration settings that are required in the
centralized approaches.

The observations also indicate that a balanced utilization of a two dimensional
resource, in a mixed workload, results in more efficient utilization of resources
in both dimensions. This leads to a lower rejections of future VM requests and
faster resolution of overloaded PMs. The results shows 28% lower rejections,
12.6% faster offload, for a higher number of overloaded PMs and also 3.2%
lower power consumption for the cost of 25% more migrations.
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Abstract

Consolidation of multiple applications on a single Physical Machine (PM) within
a cloud data center can increase utilization, minimize energy consumption,
and reduce operational costs. However, these benefits comes at the cost of
increasing the complexity of the scheduling problem.

In this paper, we present a topology-aware resource management framework.
As part of this framework, we introduce a Reconsolidating PlaceMent scheduler
(RPM) that provides and maintains durable allocations with low maintenance
costs for data centers with dynamic workloads. We focus on workloads featuring
both short-lived batch jobs and latency-sensitive services such as interactive
web applications. The scheduler assigns resources to Virtual Machines (VMs)
and maintains packing efficiency while taking into account migration costs,
topological constraints, and the risk of resource contention, as well as the
variability of the background load and its complementarity to the new VM.

We evaluate the model by simulating a data center with over 65000 PMs,
structured as a three-level multi-rooted tree topology. We investigate trade-offs
between factors that affect the durability and operational cost of maintaining a
near-optimal packing. The results show that the proposed scheduler can scale
to the number of PMs in the simulation and maintain efficient utilization with
low migration costs.
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management.
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1 Introduction

Cloud providers offer an infrastructure to be shared by multiple applications,
which is usually expensive and needs to be wisely utilized. Utilization can be
improved by running an appropriate mix of application workloads on each
individual machine, which is known as consolidation. While consolidation can
be used to increase utilization, it also increases the complexity of the scheduling
problem [1]. Complexity comes from the fact that application workloads are
often heterogeneous with respect to their size, lifetime, performance sensitivity,
and the type of resources they use, i.e. whether they are CPU- or memory-
intensive. A degree of sub-optimal application placement is inevitable due to
load changes and the fact that it would be impractically expensive to completely
re-map every component of every running application across all of the available
servers each time a load change occurred. Consequently, there is a need for a
scheduler that can respond rapidly to changes in demand, producing efficient
and durable packing in a way that accounts for the heterogeneity of the cloud’s
workloads, imposes low costs of maintaining the packing efficiency, and can
scale up to tens of thousands of servers per data center. We consider a packing
to be durable if it does not necessitate frequent migrations in order to maintain
the usage efficiency of allocations.

Consolidation is intrinsically a computationally hard problem. Several groups
have formulated consolidation as an Integer Linear Programming (ILP) problem,
which can be solved relatively quickly [2–5]. However, the ILP approach does not
scale well and becomes unfeasible when dealing with larger data centers and/or
more severe packing constraints. To achieve scalability, an ILP formulation
must either compromise on the quality of the solution in order to maintain a
response time that is within acceptable limits or alternatively impose a static
partitioning scheme on the infrastructure, which limits the efficiency of resource
utilization because one fixed partition may be underutilized while another is
over-utilized [1].

Here, we propose a new P2P consolidation framework. Some of this frame-
work’s basic functionality has previously been verified in prototype form [6].
The proposed framework is a general computational model for cooperatively op-
timizing a global system objective through local interactions and computations
in a multi-agent system over a semi-random connectivity. We also introduce a
scheduling heuristic designed to provide and maintain durable packing with
low maintenance costs for a data center with a dynamic workload. A scheduler
based on this heuristic is shown to achieve such durable packing in a way that
avoids costly reconfigurations, and to offer cheap migration plans (i.e. schemes
that specify which workloads should be migrated to which resources) to main-
tain packing efficiency. The framework’s P2P structure provides parallelization
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with a high degree of concurrency, and also helps to minimize the time required
for computations while improving scalability. The random overlay used in
the proposed P2P structure allows the system to create a logical dynamic
connectivity among a large pool of resources, dynamic cells, and reduces the
negative impacts of static partitioning (which can lead to low utilization).
Formulating the consolidation as a distributed optimization problem allows
the system to factor in more sophisticated trade-offs than are possible with
the ILP approach because it avoids the need for a highly loaded centralized
scheduler. For example, the scheduler can determine whether to migrate a VM
to a remote Physical Machine (PM) on another cluster or deploy it on a PM
that is more nearby but subject to a higher risk of resource contention. The
local decision making employed within the P2P framework also reduces the
amount of monitoring data that must be collected and transferred over the
network.

The main contributions of this paper are:

• A formulation of the VM consolidation problem as a distributed optimiza-
tion problem.

• A topology-aware resource management framework for VM consolidation.

• A heuristic algorithm for VM consolidation that factors in the risks of
resource contention, packing efficiency, migration costs, and migration
locality to produce durable consolidations and offer cheap migration plans
to maintain packing efficiency and reduce resource stranding.

• An in-depth simulation-based evaluation of the system behavior under
different settings and configurations. The results obtained in this evalua-
tion show that the proposed scheduling framework can produce durable
consolidations for large numbers of VM requests with varying demands,
arriving over a simulation time of 24 hours at a data center with over
65000 PMs. The framework scales to the tested number of PMs and
maintains efficient resource utilization with low migration costs.

The remainder of the paper is organized as follows. In Section 2, we discuss
the requirements and challenges of scheduling a mixed workload. Section 3
presents problem statements. In Section 4, we present the full P2P framework
and the proposed heuristic algorithm. Section 5 describes the experimental
setup, and Section 6 reports the evaluation and analysis of the results. Finally,
we discuss related works and offer some concluding remarks in Sections 7 and
8, respectively.
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2 Challenges and Requirements

When scheduling VMs to run different services or batch jobs, the scheduler
must meet several requirements and it faces a number of challenges in meeting
them. A summary of these challenges are:

1. Resource contention caused by consolidation: Co-locating differ-
ent applications can cause performance variability or degradation due
to resource contention when resources are being shared [7]. The sched-
uler should therefore identify complementary workloads and place them
together to improve packing efficiency and minimize resource contention.

2. Job heterogeneity: A data center will be required to run different
types of applications. In broad terms, two classes of application can be
distinguished: long-running interactive services and batch jobs, which
perform a specific computation and then finish. Batch jobs that are
run in cloud data centers are usually shorter and less latency-sensitive
than interactive services, involve constant resource utilization, and do
not usually require careful scheduling [1, 8]. It would thus be best to
devote most of the scheduler’s available time and resources to the placing
of interactive services and to spend relatively little time on scheduling
batch jobs [1]. In addition, some tactics that can be applied to batch
jobs in order to reduce the burden on an overloaded server could not
acceptably be applied to interactive jobs. For example, a batch job could
be stopped and restarted later, or the VM on which it is running could
be transferred to another server via a cold migration. Neither approach
would be possible for a VM running a latency-sensitive interactive service.
Jobs can be further distinguished on the basis of other characteristics
such as their lifetime, size, and performance sensitivity in order to develop
effective strategies for fixing sub-optimal allocations that lead to the over-
or under-loading of individual servers.

3. Migration cost: VM migration is a widely used technique for achieving
consolidation once the decision on which jobs to consolidate has been
made [9]. However, migrations are often costly. Particularly important
costs to consider include the cost of double resource utilization during the
migration, the costs of SLA violations caused by migration downtime, the
cost of network traffic, and the potential network contention issues that
may arise during the migration. The scheduler should produce a cheap
migration plan with a minimal impact on the performance of the running
applications. A migration plan may specify which type of migration is
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to be performed (cold or live), a candidate destination PM, and a list of
VMs (selected based on their migration costs) to be migrated.

4. Topological constraints: The scheduler should consider the network
topology to avoid high migration costs due to network traffic, contentions,
or redundant configurations. Most existing works on scheduling treat the
data center as an unstructured pool of resources, but real data centers
Virtual LANs (VLANs), Access Control Lists (ACLs), broadcast domains,
and load balancers that impose constraints and create barriers that reduce
the scope for agility in migration [10].

5. Risk of load change and contention: The scheduler should factor the
risk of change and contention into its decision function so as to avoid
frequent migrations and produce durable decisions.

6. Computation time: The scheduler should produce a solution within an
acceptable time-frame, and before the solution becomes disparaged due
to load changes.

3 System model

We define the problem of VM consolidation as an optimization problem. In
our model, the data center has n PMs. Each PM has a CPU, memory and
bandwidth capacity, CPM, MPM and BPM, respectively. The CPU, memory and
bandwidth utilization of PM i at time t are denoted as ci(t), mi(t) and bi(t),
respectively. For clarity, it is assumed that all PMs are homogeneous, although
the formulation can also be generalized to heterogeneous machines.

PMs in the data center are organized in a three-level multi-rooted tree
structure, as shown in Figure 1. PMs are the leaves of the network tree and
they are linked to edge switches, which are further connected to aggregation
switches and finally to the core switches. The data center consists of a core
level with 1 core router, an aggregator level with 2 clusters, a group level with
32 groups, and the physical machine level with 1024 physical machines.

The data center offers l VM types, each of which has an expected compute,
memory and bandwidth capacity of CPUl, Meml and Bwdthl. These VM
types are grouped into three different categories - compute optimized, memory
optimized, and general purpose - on the basis of their dominant characteristics.

It is assumed that m VM placement requests reach the system during the
data center’s operating time. Each request j demands a specific VM type l and
consumes a given CPUDemandj(t), MemDemandj(t) and BwdthDemandj(t) at
each timestep, t. Depending on the type of the application, each VM has a
page dirty rate of Rj (kb/s).

101



Cluster 1 Cluster 2

Group 1 Group 2 Group 32 Group 1 Group 2 Group 32

Aggregation

Edge

Core 

Figure 1: Data center topology

The data center uses the pre-copy approach for live VM migration, and
migrations are assumed to be performed in-band, i.e. the same bandwidth
is used by the migration process and the service running in the VM such
that Bwdthmig = φ ∗ Bwdthl, where φ < 1. There is no shared storage for
VM migration and the VMs’ data is migrated fully from the source to the
destination PM.

The overall optimization problem for the data center’s scheduling is formu-
lated in terms of maximizing the data center utility Udc(t):

Maximizing Udc(t) =

∑m
j=1 Resj(t)

nactive × CapacityPM
, (1)

Where m is the number of placement requests at time t, Resj(t) is the capacity
utilized by VM requestj at time t, and nactive is the number of non-idle PMs.
α is a utilization factor, defined to avoid performance degradation caused by
interference among the consolidated VMs, and CapacityPM is the capacity of
the PM in terms of CPU and memory. If the system features heterogeneous
PMs, the constant CapacityPM should be replaced by the capacity for each
individual type of PM.
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m∑

j=1

Resj(t) ≤ nactive × (α× CapacityPM). (2)

Achieving efficient utilization is important, but it should not be the sole
objective as it does not reflect the operational costs of maintaining the desired
packing efficiency, such as migration or network costs, in a dynamic environ-
ment over time. Moreover, aggregate utilization hides the negative effects of
fragmentation and stranding since CPU and memory utilization are computed
independently [8]. High fragmentation and stranding lead to low utilization and
rejection of VM requests, even when the total aggregate capacity is sufficient. In
addition to issues of resource fragmentation and stranding, placement becomes
sub-optimal because of load changes and the frequent arrival and termination
of VMs. However, make-overs to fix sub-optimal placement are very expensive
and should either be avoided or planned carefully.

4 Proposed method

We propose a P2P framework, some of whose basic functionality has previously
been verified in [6]. Within the framework, PMs are structured as peers,
which are connected to form neighborhoods. Each peer is associated with an
autonomous node agent that monitors the PM’s state and makes local decisions
based on its local view and policies. Each node agent uses a risk-aware, topology-
aware heuristic function to discover resources for new VM requests or to improve
a sufficiently sub-optimal state, such as an overload or an underload. The node
agents constantly apply a relatively simple and restricted set of rules in order
to improve the packing efficiency in their own neighborhoods, and the overall
state of the system is improved by their combined action.

4.1 Logical overlay

Peers are logically connected by an overlay network. The overlay is built and
maintained by a peer sampling service known as newscast [11]. The peer
sampling service periodically maintains a communication graph by providing
each peer with a list of peers to be considered as neighbors. Each peer at
each timestep only knows about k random neighbors, shaping its local view.
We developed and extended the classical newscast to introduce topological
awareness and provide a neighbor list that is based not only on each peer’s
timestamp, but also on its physical proximity in the data center architecture.
A PM has a higher probability of being returned as a sample if it is in the
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same server group as the main peer. Having a P2P overlay allows us to create
logical dynamic connectivity (dynamic partitioning) within a large pool of
resources and reduce the negative impacts of static partitioning, which can
cause low utilization. However, we consider the physical proximity of the
neighbors when building the logical overlay to reduce the costs of network
transit and reconfigurations.

4.2 Node agents

Each peer is associated with a node agent, which is responsible for functional
tasks such as monitoring and resource assignment, and for making consolidation
decisions such as placing a new VM request or fixing sub-optimal states (e.g.
overloads or underloads). An action event is triggered on the arrival of a new
request or when the PM is confronted with a sub-optimal state. The node
agent selects the best candidate, i.e. that with the lowest score calculated
using a heuristic function. The score function is defined in terms of the risk of
resource contention, packing efficiency, migration costs, physical proximity and
an imbalance value (See Section 4.3.1).

The effectiveness of the scheduling method can be illustrated by the idea
of ’Power of 2 random choices’ [12]. For each placement request, triggered
by an event, the peer sampling service feeds the algorithm with a number
of random peers. From these random peers, the algorithm selects the PM
that minimizes the score function. This process will then continue evaluating
placement options, using new sets of random neighbors in each round, until the
predefined time limit for VM requests of the relevant class has been reached;
this time limit will be comparatively short for batch VMs and longer for those
running services. The placement candidate with the lowest score value will
then be selected as the final PM for VM deployment or the destination for VM
migration.

The node agent consists of the following modules:

• Monitoring system: Monitors the resource consumption of the PM and
each of the VMs deployed on the PM.

• PM state profiler: Uses historical monitoring data to profile the PM’s
state over a compact sliding time window and creates an action trigger
if the PM enters a state in which it is overloaded or underloaded for a
sustained period. A PM is considered to be overloaded if its resource
(either CPU or memory) utilization exceeds a predefined threshold. A PM
is considered underloaded if its resource utilization on both dimensions
drops below a predefined threshold. For brevity, we henceforth refer to
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both of these states as sub-optimal states. These events are queued, sorted
and processed based on their priorities by the node agent.

• VM state profiler: Uses historical monitoring data on the VM workload
to specify the VM state as either memory intensive or compute intensive.
This state information is then used by the decision module to co-locate
VMs with complementary workloads.

• Decision module: Uses a heuristic function to rank neighboring PMs
and select the best candidate to resolve the action trigger. It uses the
following sub-modules to account for various factors in its decision-making
process:

– Risk calculator: Calculates the risk of placing VMi on PMj, taking into
account the risk of overloading PMj and causing resource contention,
as well as the risk of demand variability.

– Distance calculator: Calculates the physical proximity between the
associated PM and PMj based on the data center’s topology. The
greater the distance, the greater the probability and cost of network
contention, and the greater the need for appropriate configuration
settings.

– Data transfer calculator: Predicts the amount of data to be transferred
if VMi is migrated from PM to PMj. The prediction is based on the
migration policy (cold or live), memory utilization, page dirty rate,
and the bandwidth available for the migration of VMi.

– Efficiency calculator: Calculates the packing efficiency of placement
on PMj with respect to the desired resource utilization level. It should
be noted that efficiency can be defined in different ways to support
alternative objectives such as load balancing.

– Imbalance measure: Quantifies the expected relationship between
CPU and memory utilization for PMj if VMi is placed on it. This is
done to avoid the risk of a scenario in which the applications running
on a PM fail to fully utilize one or more of its resource types [10]. The
objective is to minimize the negative impacts of resource stranding
and the risk of inefficient resource usage with respect to any given
resource dimension.

• Migration planner: Selects a VM set to migrate from a given PM
to a selected destination PMj. The selection is based on the estimated
migration cost for each VM and the impact of the migration on resolving
the overload.
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Figure 2: A node agent’s internal architecture

Each Node agent is a light weight component that can be plugged into a
resource management framework and deployed on each PM (or the scheduling
unit).

4.3 Consolidation through resource discovery

The node agent initiates a discovery process within its neighborhood that
iteratively ranks its neighbors using a score function. Depending on the type
of event (new placement request, overload, or underload) and the type of VM
request (batch job or service), a computation time (number of iterations) is
assigned to produce a placement result.

This time will typically be short for resolving overloads and placement of
batch jobs due to their urgency and the fact that they do not require costly
planning. Longer times are needed for placing service applications or resolving
underload events, which require more careful planning. In each iteration, the
peer sampling service feeds the node agent with a number of new random
neighbors and the discovery process continues the search until the allocated
time for the request is exhausted. At this time, the PM with the lowest score
is selected for placing the VM. We assigned a higher priority to placement of
the new VMs than to server underload in order to avoid costly migrations by
allowing fragmentation problems to be resolved through the deployment of new
VM placements.

As shown in Table 1, the events are prioritized based on their urgency and
are then processed based on their priorities.
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Event Priority

Server overload 1

Arrival of new request 2

Server underload 3

Table 1: Events are prioritized based on their urgency and then processed based on
their priorities

Algorithm 1 Discovery algorithm
Input: eventList
Output: Best deployment candidate, (bestPeer)

1: Sort eventList based on events’ priorities
2: while eventList != empty do
3: Update the list of neighbors
4: Rank neighbors with available capacity based on their scores.
5: Select the PM with minimum score, as the best candidate (bestPeer).
6: if bestPeer!=null and (event.lifeT ime < MaxTTL) and (eventType =

newServiceRequest or eventType = underload) then
7: Add bestPeer to the candidateList
8: event.lifeTime ++;
9: Continue;

10: else if bestPeer != null and (event.lifeT ime ≥MaxTTL) or ( eventType =
overload or eventType = newBatchRequest ) then

11: Remove event from peer’s eventList;
12: Perform Placement(bestPeer);
13: Continue;
14: else if (event.lifeT ime ≥MaxTTL) and bestPeer=null then
15: Remove event from peer’s eventList;
16: Mark the request as pending;
17: Continue;
18: else if bestPeer=null then
19: event.lifeTime ++;
20: Continue;
21: end if
22: end while
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4.3.1 Score function

The node agent uses a score function to rank the candidates for VM placement
or migration. The score function is a weighted sum of the risk (Risk), efficiency
(E), migration locality (Dist), data transfer cost (DT) and imbalance (Imb)
values, normalized against their respective upper bounds. This formulation
accommodates a flexible trade-off between the above-mentioned factors through
the choice of the λi, i = 1, . . . , 5 values in the following score function:

(3)Score = (λ1×Risk) + (λ2×Dist) + (λ3×E) + (λ4×DT ) + (λ5× Imb),

where
λ1 + λ2 + λ3 + λ4 + λ5 = 1. (4)

• Risk: We define the risk, Riskj, of selecting PMj as the product of the risk
of resource contention and overbooking, Ro, and the risk of load variation,
Rv. The higher the risk value, the less desirable the PM as a deployment
candidate.

Riskj = Ro ∗Rv (5)

– Risk of overbooking and contentions: The Ro value for PMj

when VMi is going to be deployed is calculated as :

Ro = Max(Ro(CPU), Ro(Memory)) (6)

where Ro(CPU) is the risk of overbooking CPU and Ro(Memory)
is the risk of overbooking memory when VMi is deployed. Each of
these values [13] is calculated as:

Ro =





0 if Req < Unreq)
Reqi−Unreqi
Free−Unreqi

if Unreq ≤ Req ≤ free)
1 if Req < Free

(7)

where Req is the CPU or memory capacity required by the VMi,
UnReq is the difference between the total PM capacity and the
capacity requested by the deployed VMs, and Free is the difference
between total PM capacity and the capacity used by all the deployed
VMs.

– Risk of load variation: We define the risk of load variation for
PMj as the Coefficient of Variation (CoV) of the PMj over the last 10
monitoring steps. CoV captures the relative variation in the workload
from its average intensity. PMs with a high CoV are identified as
more risky for consolidation [14].
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• Migration distance and locality (Dist): The hierarchical nature of
the network results in limited bandwidth availability between the PMs in
different clusters because some of the ports (mainly those of layer 3) are
usually oversubscribed. The limited bandwidth between PMs of different
clusters and the limited agility imposed by network constraints [10] (e.g
VLANs, ACLs, broadcast domains, load balancers) makes it desirable to
migrate VMs to PMs that are in close physical proximity to the source
PM, i.e. belonging to the same server group or cluster. To account for
this, we define the distance between two PMs as the number of hops a
communication message should travel up in the hierarchy to access a PM
in another server group or cluster. The cost of migrating a VM between
two PMs is lowest when both PMs are in the same server group, and
higher if they are members of different clusters. By this definition, the
distance between two PMs in a 3 level multi-rooted tree topology will be
1 ≤ Dist ≤ 3.

• Data transfer cost (DT): The data transfer cost is defined in terms
of the total traffic generated by the migration; it depends on the migra-
tion strategy that is adopted and the amount of data to be transferred.
Depending on the type of application running on the VM, we adopt
different migration strategies. The first category of applications are batch
jobs, which are usually less latency-sensitive than interactive services.
Therefore, they can simply be stopped and restarted on another machine,
or they can be cold migrated (migrated while they are powered-off). The
decision of whether to adopt a stop-restart approach or perform a cold
migration depends on the length of the batch job and the state of job
completion. In this paper, we assume that all batch jobs are cold-migrated
to test the system in an extreme case. However, adopting a stop-restart
policy would further reduce the amount of data transfer. The volume of
data transfer during a cold migration of a batch job is typically equal to
the amount of memory that must be transferred.

The second category of applications are interactive services, which are
latency sensitive and require live migration when being re-located. The
data transfer volume for live migrating an interactive service is calculated
[15,16] as:

DT = M +M × (
1− (R/L)n+1

1−R/L ), (8)

where M is the memory size of the VM, R is the VM’s page dirtying rate,
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L is the bandwidth of the link used for migration and n is the number of
pre-cycles, calculated as:

n = min(log(R
L
)

T × L)

M
), (log(R

L
)

(X ×R)

M × (L−R)
), (9)

where T is the switch over time setting and X is the sufficient progress
threshold, both of which are user settings used in vMotion [17]. They
define the time (in milliseconds) required to start the stop-copy process
and the point at which sufficient data transfer has been achieved (in
MB), respectively. Interactive services are generally poor and unlikely
candidates for migration due to their latency sensitivity and the extra data
transfer required for the migration of dirty pages during live migration.

• Efficiency (E): The efficiency of deploying VMj (CPUj, memj) on PMi)
is defined as the maximum difference between the PM’s utilization after
deploying VMj and the desired utilization, over the dimensions of both
CPU and memory.

e = Max((MaxCPU − (ci + CPUj)), (10)

(MaxMem − (mi +memj))), (11)

where MaxCPU and MaxMem are the desired utilization of a PM, and ci
and mi are the CPU and memory utilization of PMi).

• Imbalance (Imb): Resource stranding or uneven utilization of resources
over different dimensions leads to wastage of resources in one dimension
[18–20]. We estimate the imbalance rate as:

Imb = |(SourceCPU − CPUi)− (SourceMem −Memi)|+ (12)

|(DestCPU + CPUi)− (DestMem +Memi)|, (13)

where, SourceCPU and SourceMem are the CPU and memory utilization of the
source PM. CPUi and Memi are the aggregated CPU and memory of the VM or
the VM set that need to be migrated, and DestCPU and DestMem are the CPU
and memory utilization of the destination PM. When considering deployment
of a new request, the imbalance value of the source PM is assumed to be zero.
In another words, the imbalance value imposed by a new request is the possible
future imbalance if VMi is deployed on destination PMj.
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5 Experimental Setup

The evaluation of the proposed P2P management framework and the associated
heuristics was performed by simulating a large-scale data center using PeerSim
[21]. A variable load was applied to the data center due to VM churn and
changing VM demand. The simulated data center consists of 65536 PMs
interconnected in a multi-rooted tree topology, with 1 core router at the core
level, 2 clusters at the aggregator level, 32 groups at the third level, and 1024
physical machines in each group (see Figure 2).

Each PM has a capacity of 16 EC2 Compute Units (ECUs) (8 core×2 ECU)
and 64 GB of memory. The data center offers 6 VM types, similar to Amazon
EC2 instances [22,23]. More detailed specifications of the VMs are presented
in Table 2.

We ran the simulation for 1440 cycles of one minute each, giving a total
simulation time of 24 hours. Each node agent monitored the state of its
associated PM every minute and the PM state profiler processed the historical
monitoring data every 10 minutes to detect potential state triggers. To assess
repeatability, we repeated each experiment 10 times, and present calculated
Standard Error (SE) values for each metric considered in the analysis.

Category VM name ECU Memory(GB) Bandwidth

Compute c3.xlarge 4 7.5 62.5

Compute c3.2xlarge 8 15 125

Memory r3.large 2 15.25 62.5

Memory r3.xlarge 4 30.5 125

General m3.large 2 7.5 62.5

General m3.Xlarge 4 15 125

Table 2: VM types and details of their capacities

5.1 Workload demand

The data center receives 230,000 VM requests during the simulation run,
imposing a maximum approximate utilization of 90% if all VMs are accepted
and fully utilize their reserved capacity. However, the shapes of the VMs,
changes in their demands, and resource fragmentation in data center mean that
at any given moment there will be a number of pending requests and so the
actual utilization will be below this maximum level. In addition, the reserved
capacity for each VM is normally not fully utilized during its life time.

The VMs run two types of applications. The first are interactive applications
that continue running throughout the entire simulation and whose CPU and
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memory requirements over time are determined by equations (14) and (15)
according to a previously established demand distribution [24].

CPUDemandj(t) = (
CPUl

2
)(1 + umsin(

2πt

86400
− 2πsm) (14)

MemDemandj(t) = β × CPUDemandj(t) (15)

Applications of the second type are short-lived batch jobs whose CPU and
memory usage are constant and equal to their maximum reserved capacity
over their life time. Their lifetimes are determined by a truncated power law
distribution with an exponent of 2, incremented by 10 minutes to account for
VM boot time and capped at 24 hours (i.e. the length of a single simulation
run). The rate at which batch requests arrive at the simulated data center is
determined by a Poisson process with λ = 0.016.

We evaluated the system under different synthetic workloads with differ-
ent Service-to-Batch (SB) ratios. The SB ratio defines the ratio of service
applications to batch jobs. Workloads with SB ratios of 0.1, 0.4 and 0.6 were
considered.

5.2 Logical Overlay

The PMs are logically connected by an overlay network, maintained by newscast.
Each PM at each timestep only knows about k = 20 random neighbors, shaping
its local view. We modified the newscast to provide a neighbor list, where the
probability of having neighbors within the same server group is 0.6, compared
to 0.3 for neighbors within the same cluster and 0.1 for random neighbors.

5.3 Control triggers

To avoid potential negative impacts of over-consolidation such as interferences
and resource contentions, we aim for 75% resource utilization. To avoid stressing
the system by triggering frequent overload triggers, we only trigger an overload
event when a PM’s CPU or memory utilization exceeds 90% for 10 consecutive
cycles. We also assume that a PM is underloaded if its utilization in both
dimensions drops below 30% for 10 consecutive cycles. To prioritize the control
triggers, we set a 10 minute waiting time for underload triggers before they
are processed. This allows the scheduler to delay the scheduling with the hope
of placing newly arrived batch jobs to increase the load of underloaded servers
instead of migrating VMs out from them.
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5.4 Score function weight values

Unless stated otherwise, equal weight values of 0.2 were assigned to all five of
the factors used to rank candidate VMs for consolidation (efficiency, risk, data
transfer costs, imbalance and migration locality).

5.5 Performance parameters

The aim of the evaluation was to answer the following questions: How well
are the applications packed? How does each of the score function variables
(risk, efficiency, migration locality, migration cost, and imbalance) affect the
stability and reliability of consolidation? And how effectively does the scheduler
minimize the migration costs? To answer these questions, we measured the
following performance parameters:

1. Average resource utilization:

Udc(t) =

∑m
j=1 Resj(t)

nactive × CapacityPM
, (16)

where m is the number of placement requests at time t, Resj(t) is the
CPU or memory usage of VMj at time t, nactive is the total number of
non-idle PMs, CapacityPM is the capacity of each PM.

2. Number of active servers at time t .

3. Average number of active servers:

average active servers(t) =

∑t
j=1 nactive(t)

t
(17)

4. Number of pending requests: The number of VM requests that are not
scheduled within the assigned time frame.

5. Average imbalance rate: This parameter is a representation of resource
stranding in the data center.

imbdc(t) =

n∑

i=1

|CPUi(t)−Memoryi(t)| (18)

6. Total amount of data transfer (GB)

7. Batch job data transfer (GB): The volume of data transfered due to the
cold migration of the batch jobs.
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8. Service data transfer (GB): The volume of data transfered due to the live
migration of the services.

9. Underload data transfer (GB): The volume of data transfered to free up
the resources in an underloaded PM, either to open up space for larger
jobs or to be put into a power saving mode.

10. Overload data transfer (GB): The volume of data transfered to resolve
an overload event.

11. Total number of migrations

12. Number of batch job migrations

13. Number of service migrations

14. Number of undesirable state triggers: This parameter represents the
durability and stability of the placement decisions and the number of
underload or overload occurs as the result. The higher the number of
triggers, the higher the need for reconfiguration and thus higher probability
of increase in migrations.

15. Overload triggers: The number of triggered overload events.

16. Underload triggers: The number of triggered underload events.

17. Unresolved triggers: This parameter shows the number of underloads or
overloads that has not been resolved.

18. Total migrations with distance=1: The number of migrations to a server
within the same server group.

19. Total migrations with distance=2: The number of migrations to a server
within the same cluster.

20. Total migrations with distance=3: The number of migrations to a server
in another cluster.

6 Evaluation

We evaluated the proposed framework, which is henceforth referred to as RPM
(Reconsolidating PlaceMent scheduler), through a series of experiments. We
first compared the scheduling of resources by RPM to that achieved using
a variation of the First-Fit Decreasing (FFD) [18, 25] bin packing heuristic,
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Table 3: A summary of the performance aspects and associated parameters measured
to evaluate the packing of the applications and the scheduler’s performance

Performance aspect Performance parameter

Consolidation efficiency
Average resource utilization
Average number of active servers
Average imbalance rate
Number of pending requests

Durability of consolidation
Number of undesirable state triggers
Overload state triggers
Underload state triggers
Unresolved triggers

Data transfer efficiency

Total amount of data transfer
Batch job data transfer
Service data transfer
Underload data transfer
Overload data transfer

Migration count
Total number of migrations
Number of batch migrations
Number of service migrations

Migration locality
Total migrations within the same group (dist=1)
Total migrations within the same cluster (dist=2)
Total migrations to the other cluster (dist=3)

known as FFD-sum. We also investigated the impact of each of the variables
used in the heuristic function of RPM on the performance parameters listed in
Table 3.

6.1 Comparison with multi-dimensional FFD

In the first experiment, we compared the performance of RPM to that of
FFD-sum, an extension of FFD, one of the most common VM consolidation
heuristics. The comparison was made with respect to the criteria presented
in Table 3. FFD orders the PMs and the VM requests in a decreasing order
of size and places each VM on the first PM with sufficient capacity in the
list. Ordering jobs by their CPU or memory requirements causes resource
stranding, and the scheduler favors packing on one dimension over the other [8].
To support multiple resource dimensions, we used an extension of FFD known
as FFD-sum [18].

As shown in Equation 19, FFD-sum maps the vector of capacities into a
single scalar, using a weighted sum of the values on each dimension of CPU
and memory:
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V olume(V ) =
∑

ri∈Resources
wi × ri, (19)

where wi is the weight assigned to each resource and reflects the scarcity of
the resource. The weight is defined as the ratio of the total demand ri to the
available capacity hi,

wi =
∑

ri/hi. (20)

Figure 3 and Table 4 compare the performance of FFD-sum and RPM with
respect to selected metrics. Figure 3a shows the average CPU and memory
utilization of the data center over time for each scheduler. The RPM scheduler
improved the average CPU and memory utilization by reducing the number
of active PMs required to serve the workload. However, its main beneficial
effect was that it reduced the cost of maintaining a high packing efficiency. As
shown in Table 4, RPM reduced the number of sub-optimal state triggers by
up to 60% by accounting for the risks of variability and resource contention.
Figure 3b shows how the number of migrations varied over time. The durable
scheduling decisions made by RPM reduced the number of migrations required
to resolve the sub-optimal states.

Moreover, RPM accounts for the difference in latency sensitivity between
batch jobs and interactive services by selecting a suitable migration policy
(i.e. cold or live migration) for jobs of each type. While live migration is
necessary for interactive services to guarantee their responsiveness during
migration, it imposes additional costs caused by re-transfer of dirtied pages.
This assumes that live migration is performed using the pre-copy approach
implemented in contemporary hypervisors. If post-copy live migration is used
instead, other considerations should be taken into account [26]. The latency
sensitivity of interactive services and their extra data transfer costs makes them
less appealing options for migration. RPM accounts for this by calculating the
amount of data to be transferred for a given job based on the migration policy
for jobs of the relevant class and the transfers of dirty pages required for live
migrations.

Figure 3c shows the volume of transferred data associated with services
and batch jobs under RPM and FFD-sum during the simulation time. It is
clear that choosing a migration strategy based on the application’s latency
sensitivity and carefully estimating the associated migration costs reduced the
number of service migrations and the volume of service data transferred over
the course of the simulation.

The bulk of the data transfer observed when using the RPM scheduler stems
from the transfer of batch jobs. The volume of data transferred in such cases
could be reduced further by adopting a stop-and-restart policy for batch jobs
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Figure 3: Comparison of FFD-sum and RPM

whereby they would be rescheduled onto another machine without actually
performing a migration. In contrast, the disregard of job type by FFD-sum
requires the transfer of more latency- and SLA-sensitive interactive services
than is the case under RPM.

It is also clear that RPM was more successful than FFD-sum at resolving sub-
optimal states. This is mainly because RPM accounts for the proportionality
of resource usage when making placement decisions and thus avoids resource
stranding and fragmentation. Finally, the number of overload triggers generated
under RPM was greater than under FFD-sum due to the higher utilization
achieved under RPM. However, all of the overload triggers were resolved and
no actual overload occurred. RPM also reported lower numbers of pending
requests than FFD-sum. We define pending requests as VM placement requests
that could not be scheduled within the defined computation time.

We also evaluated the system’s performance in cases featuring different ratios
of batch jobs to services. The greater the proportion of batch jobs, the greater
the volatility of the workload and thus the greater the need for frequent schedul-
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Table 4: A performance comparison of the FFD-sum and RPM schedulers

Parameter FFD-sum SE RPM SE

# of active servers 40504 22.94 29859.6 12.0

Total amount of data transfer 351962.2 1138.69 141554 902.03

Total # of migrations 33187 48.30 11092 63.24

Total # of batch migrations 11756 53.22 9797 61.49

Total # of service migrations 21431 31.55 1295 14.18

Total # of rejected requests 10657 24.21 6254.8 48.85

Batch data transfer (GB) 169781.24 961.39 129834.11 886.24

Service data transfer (GB) 182186.15 493.89 11722.67 157.21

Sub-optimal state triggers 26574 36.21 10873.8 48.84

Overload triggers 29 1.35 73.8 4.30

Unresolved triggers 278 9.09 18.8 1.56

ing. This is because batch jobs usually have short lifetimes and impose a higher
job turn-over due to their frequent arrivals and terminations. Consequently,
more batch jobs means greater probabilities of resource fragmentation and
sub-optimal resource distribution. A sub-optimal resource distribution forces
the scheduler to respond by moving VMs more frequently. As seen in Table 5
the amount of data transfer per trigger for different SB ratios is comparable
in all scenarios.

Table 5: Data transfer per trigger for different workloads with different SB-ratios

SB ratio Sub-optimal state triggers Data-Transfer per trigger

0.1 20152 12.42 GB

0.4 10873 12.73 GB

0.6 7051 12.98 GB

6.2 Impact of score function variables

To understand the impact of each of the five variables of the score function
used for placement decisions, we investigated each variable individually by
adjusting the weighting applied to them when computing the score function.
Weights in the range λ = {0.0 , 0.8} were investigated for each variable in
Equation 3.

6.2.1 Efficiency

Table 6 shows the performance metrics impacted by changing the weighting
of the efficiency factor in Equation 3. Considering efficiency of placement
while selecting servers increased the average utilization and reduced the active
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number of servers required to serve a specific load. Interestingly, the main
impact of introducing efficiency was not due to improvements in utilization but
to a reduction in the number of underload triggers, which reduced the volume
of data transfer required to resolve the underload state. Efficient packing also
reduced the number of unresolved triggers by up to 70%. However, this greater
consolidation came at the cost of increasing the number of overload triggers.

Table 6: Impact of the efficiency factor on packing efficiency

Efficiency weight 0.0 SE 0.8 SE

Average CPU 68% 71%

Active servers 57659 7.67 54263 19.80

Underloads triggers 50159 151.66 10941 32.61

Unresolved triggers 158.75 2.28 35 2.60

Overload triggers 50 3.01 147 6.89

Underload data-transfers 480948 900.14 135081 426.44

Data Transfer 481364 893.83 136248 433.95

6.2.2 Risk

We evaluated the impact of considering the risk of load variability and resource
contention on possible future overloads, migrations and data transfer. Table 7
shows the numbers of overload triggers and overload data transfers as well as
the average number of active servers during the simulation runtime for different
risk weightings. Accounting for risk in the score function reduced the number of
overload triggers by up to 35% and the volume of data transfer due to offload
by up to 33%. However, this came at the cost of a 2% increase in the average
number of active servers.

Table 7: Impact of the risk factor on packing efficiency

Risk weight 0.0 SE 0.8 SE

Overload triggers 81 4.6 52 3.8

Overload data-transfers 652.0 30.51 434.20 32.09

Active servers 54099 14.9 55063 5.7

6.3 Imbalance

We examined the consequences of resource stranding and the impact of ac-
counting for the imbalance factor as a way of mitigating the negative effects
of stranding. As shown in Table 8, taking the imbalance factor into account
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improved resource utilization and reduced the number of pending requests.
Moreover, placing complementary workloads together reduced the probability
of overload and thus the number of overload triggers.

Table 8: Impact of the imbalance factor on packing efficiency

Imbalance weight 0.0 SE 0.8 SE

Average CPU 68% 70%

Average memory 68% 70%

Pending requests 10115.8 45.75 6208.6 36.83

Average imbalance 8.15 0.01 6.17 0.01

Dist2 496 10.58 2140 26.86

Overload triggers 151 9.57 69 4.61

Underload triggers 13408.6 11.61 11637 44.37

Data Transfer 173561 321.90 140486 709.02

6.3.1 Migration cost

To evaluate the impact of the migration cost factor, we measured the total
data transfer volume and the data transfer volume caused by offloading the
overloaded PMs using different migration cost weightings. Interestingly, ac-
counting for individual migration costs in this way during the decision-making
process had no appreciable impact on the overall migration cost. Within our
experimental setting, the total volume of data transferred declined by only 1%
when weighting migration cost heavily. Moreover, this small improvement was
mainly due to a reduction in the volume of data transferred during offloads,
which was achieved by distinguishing between VMs of different sizes, types
and dirty rates.

The low impact of the migration cost variable is due to the fact that the
overall migration cost is mainly dependent on the number of migrations that
are performed rather than the volume of data transferred during a single
migration. Moreover, the need to select a VM for migration only occurs during
overload situations, which are much less frequent than underload situations.
During an underload situation, the scheduler’s objective is to evacuate the
underloaded PM by migrating every VM running on it, irrespective of type and
size. Because there is no VM selection process in such situations, the migration
cost factor has no opportunity to have any effect.

An interesting observation follows from comparing the impacts of the effi-
ciency, imbalance, and migration cost factors on the data transfer volume are
shown in Tables 6, 8, and 9 respectively. Somewhat counter-intuitively, we
observe that the most significant migration cost reductions are achieved by
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Figure 4: Numbers of migrations performed within groups, between groups,
and between clusters with different distance factor weightings

preventing the occurrence of undesirable states rather than careful VM selection
once a migration becomes necessary. Undesirable states are prevented from
developing by striving for an efficient initial deployment and avoiding resource
stranding rather than careful VM selection, when a migration is needed. This
finding confirms the advantages of careful semi-static consolidation [27] relative
to dynamic consolidation, or in other words, the advantage of prevention over
treatment.

Table 9: Impact of the migration cost factor on packing efficiency

Migration cost weight 0.0 SE 0.8 SE

Data transfer 142356.6 425.21 139718.2 663.13

Overload data transfer 748.36 46.2 389.13 52.2

6.3.2 Migration Locality

We compared the number of migrations performed within groups, (dist = 1),
between groups, (dist = 2) and between clusters, (dist = 3) under different
weightings of the migration locality factor.

The results shown in Figure 4 and Table 10 demonstrate increasing the
weighting of the migration locality factor increases the proportion of local
migrations within a server group relative to those of migrations between groups
or clusters. However, it slightly increases the migration cost in terms of data
transfer and also the number of sub-optimal state triggers due to the associated
trade-off with risk and migration cost.
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Table 10: Impact of the locality factor on packing efficiency

Locality weight 0.0 SE 0.8 SE

Dist1 3879 8.28 10470.6 45.10

Dist2 6779.25 30.10 195.6 3.45

Dist3 10.25 0.8 0 0

Data Transfer (GB) 127698.7 337.60 156863.2 778

Undesirable state triggers 9944 21.91 12267.4 54.37

7 Related work

Several previous studies have explored different aspects of the consolidation
problem, providing different formulations based on centralized and distributed
approaches, emphasizing different objectives, and factoring different aspects of
consolidation into their models. We classify these works primarily in terms of
their centralization or decentralization. However, we also briefly discuss the
formulation, objectives, and migration awareness of each approach.

7.1 Centralized approaches

The first group of centralized approaches are those that use linear programming
models to solve the scheduling problem. These models produce exact solutions
but the polynomial-time complexity of the solution hinders their applicability
to real size problems. Speitkamp and Bichler [5] formulated consolidation as an
optimization problem in an attempt to minimize server costs while respecting
capacity constraints. They approached consolidation as a one-time decision-
making process, ignoring practical issues such as variable load demands and
migration costs including network contention due to migrations.

Ghribi et al. [4] also used an integer linear programming model to produce
two exact algorithms for consolidation. Their objective was to achieve energy
efficiency in cloud data centers while limiting the number of migrations. They
used semantic rules such as “avoid migrations of VMs that have almost finished
running their jobs” or “avoid redundant VM migrations” in order to limit the
number of migrations. The convergence time of the algorithms used in this
approach grows exponentially as the number of VM requests or number of
servers increases, making it impractical for large data centers. In addition,
these authors modeled the migration cost as the cost of power consumption
imposed during migration. Thus, while the cost of migration is accounted for
after a fashion, the cost model is blind to the application type, amount of data
transferred, and possible bandwidth contentions.
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Similarly, Ferreto et al. [28] provided a LP formulation for consolidation with
the aim of controlling VM migration. Their approach prioritizes VMs with
steady capacity over those with variable capacity, and avoids migrations of
steady capacity VMs. Aside from the high computational complexity of this
approach, we feel that it is sub-optimal because accounting for load variability
is necessary but not sufficient when planning VM migrations.

The second group of studies examined different heuristics for VM consolida-
tion. Beloglazov et al, [29] modified the Best Fit Decreasing (MBFD) heuristic
to achieve energy efficiency in cloud data centers. Their algorithm schedules
resources based only on their CPU utilization (disregarding memory utiliza-
tion) and thus makes the scheduling problem one-dimensional. They also tried
to minimize the number of VM migrations by selecting the largest VMs to
resolve overload situations. The proposed VM selection algorithm is application-
agnostic and does not account for the difference in latency sensitivity between
VMs running service and batch jobs.

Mistral [30] is a holistic optimization framework for VM consolidation that is
designed to strike a balance between power usage and application performance.
It can implement a range of adaptive measures such as vertical scaling of a VM’s
CPU as well as adding or removing VMs, shutting them down or restarting
them, and performing live migrations. The adaptation cost is defined in terms of
power and performance overheads, which are quantified by measuring changes
in response times and power usage when two workloads are co-located across
different physical hosts. The A* algorithm is used to search the configuration
space and find a sequence of adaptation measures that transform the current
configuration into the newly identified optimal configuration. Unfortunately,
this framework does not scale well with increasing numbers of VMs and servers
when the configuration space for VM placement is very large.

Svärd et al. [31] also discussed a set of heuristics designed to maintain the
optimality of allocations using a similar set of actions to those available under
Mistral. These actions are triggered when a PM crashes or a VM arrives or
exits. This approach has a centralized design and supports at most 48 PMs.
Its heuristics are not topology- or risk-aware.

Sandpiper [32] offers black box and grey box approaches for hotspot detection,
the identification of new mappings between VMs and resources, and the
initiation of necessary migrations. It profiles VMs and servers using OS- and
application-level statistics, and defines the migration overhead as the amount
of data transferred. While it represents an interesting model, Sandpiper’s main
purpose is to resolve hotspots rather than to achieve consolidation per se.

pMapper [33] introduced an application placement controller to minimize
power consumption in a heterogeneous virtualized server cluster. It defines
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migration cost as the decrease in throughput due to live migration and the
estimated revenue loss due to the associated decline in performance. The
heuristic used in pMapper is FFD and resources are modeled as one-dimensional
compute resources. In contrast to our approach, the heuristic is neither topology-
nor risk-aware.

Sheikhalishahi et al [34] introduced a heuristic function to schedule multidi-
mensional resources. Their main aim is to increase resource efficiency and to
reduce the waiting and slowdown time by improving resource stranding and
re-ordering the jobs in the queue. The proposed heuristic is not topology and
migration aware.

Finally, in the course of our work, we found it useful to study previous
attempts to develop optimized migration policies as well as reports focused
on consolidation. Jain et al [35] address the problem of topology-aware VM
migration in a multi-rooted tree data center, and use VM migration to minimize
the the number of hot servers in the data center. They formulated the problem
as one of constrained migration and tried to compute the maximal set of
hot servers that can be relieved by migrating a subset of their VMs. They
showed that it is possible to alleviate the server hotspots via short migration
paths. Remedy [15] is a network aware VM management system whose primary
purpose is to minimize the cost of migration. A detailed migration cost model
is discussed that takes a range of factors into account, including the VM’s
image size, page dirty rate, available bandwidth, and migration completion
deadline. It should again be noted that the primary focus of these two works
was on migration efficiency rather than packing efficiency.

7.2 Distributed approaches

The other group of studies focused on addressing the scalability problem while
still meeting performance goals. This is generally achieved by adopting a
formulation in which the task is treated as a distributed resource management
problem where each manager solves the problem with respect to its incomplete
view of the system.

Sparrow [36] is a stateless decentralized scheduler whose purpose is to improve
the throughput and availability of highly parallel jobs with low latency. It uses
random sampling to discover available resources within a cluster. Although
its conceptual foundations are somewhat similar to those of RPM, Sparrow’s
main objective is to maximize availability rather than resource utilization and
consolidation. In addition, it is oriented towards short tasks and therefore
does not address the complexities of migration because it assumes that all
jobs can simply be re-scheduled. In contrast, RPM is also capable of handling
long-running services with variable demand. Moreover, Sparrow is designed to
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operate within a statically partitioned cluster and thus does not deal with the
fragmentation problem on the cluster level, whereas RPM uses topology-aware
sampling to reduce the negative impacts of static partitioning and cluster-level
fragmentation.

Wuhib [37] proposed a resource management architecture for optimal resource
allocation. The architecture is composed of a set of cooperative controllers
interacting via a gossip protocol. The P2P nature of the architecture is similar
to our approach. However, they did not consider migration costs, topological
constraints, or the risk of variability in their model

Snooze [38] introduced a self-organizing static hierarchical architecture for
distributed VM management. The static hierarchical design of the architecture
limits the packing efficiency because it lacks inter-group coordination. The
authors extended their work to overcome the problem of static partitioning
by adopting an unstructured P2P overlay. However, they did not enforce
any topological constraints on their overlay so large numbers of costly inter-
cluster migrations may occur and the probability of network contention on
oversubscribed links can increase substantially.

V-Man [39] is a fully decentralized algorithm for VM consolidation that uses
a gossip protocol to achieve efficiency and scalability. V-Man consolidates VMs
solely on the basis of their CPU utilization and thus favors packing along one
dimension, leading to resource stranding. Like the model proposed by Wuhib
et al. [37], V-Man does not account for migration costs, topology constraints,
or the risk of resource contention.

8 Conclusion

The paper presents and evaluates a decentralized resource management frame-
work for large-scale cloud infrastructures. The P2P structure of the framework
provides parallelization, a high degree of concurrency and provides reasonable
scalability as the number of PMs and VMs increases. Moreover, the P2P
architecture’s random overlay allows the system to create a logical dynamic
connectivity among a large pool of resources and reduce the negative impacts
of static partitioning, which lead to low utilization. It also accounts for the
physical proximity of the neighbors when building the logical overlay, thereby
reducing the costs of network transit and reconfiguration.

As part of the framework, we have introduced a scheduling heuristic that
takes into account relevant decision factors to produce efficient and durable
packing. The heuristic function estimates the efficiency of packing for different
candidates, factoring in their physical proximity based on the data center’s
topology as well as their risks of resource contention and load variability.
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It also estimates the migration costs for individual VMs based on the type
of application running within the VM, its dirtying rate, and the preferred
migration strategies for jobs of specific types. Using these estimates, the
heuristic function proposes a candidate destination PM, generates a migration
plan, and determines the necessary migration actions, the destination PM, and
the set of VMs to be migrated.

We have evaluated the framework by simulating a data center using PeerSim
[21]. The data center is structured as a three-level multi-rooted tree comprised
of 65536 PMs serving 230000 VMs over a simulation time of 24 hours and facing
a changing load caused by VM churn and changes in the VMs’ demand. We
compared our risk-aware, topology aware heuristic (RPM) to the state of the
art FFD-sum algorithm. RPM achieved a slightly higher resource utilization
than FFD-sum, but its main advantage was its ability to reduce the cost
of maintaining the desired packing efficiency. By accounting for the risks of
variability and load contention, RPM reduces the number of sub-optimal state
triggers by up to 60% compared to FFD-sum and thus reduces the number of
migrations required to resolve the sub-optimal state. RPM reduces migration
costs by distinguishing between different job types (batch jobs and interactive
services) on the basis of their latency sensitivity, and by selecting a suitable
migration policy (cold vs. live migration) for jobs of different types. It also
reduces the number of service migrations and the volume of service data
transfers. In addition, we showed that RPM reduces the negative impacts of
resource stranding by accounting for the proportionality of resource usage when
selecting a PM candidate.

Finally, we studied the impact of the individual variables considered within
RPM’s heuristic function, identifying key performance trade-offs. For example,
increasing the weighting of the efficiency factor improves the utilization but
also increases the probability of triggering overloads. Similarly, increasing the
weighting of the risk factor reduces the number of overload triggers at the cost
of increasing the number of active PMs. However, increasing the weighting
of the migration cost variable when selecting a VM set for migration had
no appreciable impact on the ultimate migration cost. Our results show that
greatest reductions in migration cost are achieved by preventing undesirable
states from developing in the first place rather than from carefully selecting the
optimal VMs to migrate once the system has entered an undesired state. This
can be accomplished by striving for an efficient initial deployment and avoid-
ing resource stranding. This demonstrates the benefits of careful semi-static
consolidation over dynamic consolidation or, in other words, the advantage of
prevention over treatment.
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A Virtual Machine Re-packing Approach
to the Horizontal vs. Vertical Elasticity

Trade-off for Cloud Autoscaling∗

Mina Sedaghat†, Francisco Hernandez-Rodriguez†, Erik Elmroth†

Abstract

An automated solution to horizontal vs. vertical elasticity problem is central
to make cloud autoscalers truly autonomous. Today’s cloud autoscalers are
typically varying the capacity allocated by increasing and decreasing the
number of virtual machines (VMs) of a predefined size (horizontal elasticity),
not taking into account that as load varies it may be advantageous not only to
vary the number but also the size of VMs (vertical elasticity). We analyze the
price/performance effects achieved by different strategies for selecting VM-sizes
for handling increasing load and we propose a cost-benefit based approach to
determine when to (partly) replace a current set of VMs with a different set.
We evaluate our repacking approach in combination with different auto-scaling
strategies. Our results show a range of 7% up to 60% cost saving in total
resource utilization cost of our sample applications and workloads.

Keywords: Cloud computing; Autoscaling; Autonomous computing; Vertical
elasticity; Horizontal elasticity.

1 Introduction

Autonomous management systems are key to the realization of future elastic
cloud infrastructures, both due to the scale and complexity of the infrastructures
and due to the fact that management actions often may need to be performed
with only seconds or minutes notice. Key to such an autonomous management
∗The paper has been re-typeset to match the thesis style.
†Dept. of Computing Science, Ume̊a University, SE-901 87 Ume̊a, Sweden, email:

{mina, francisco, elmroth}@cs.umu.se
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system is the ability to automatically scale the amount of resources allocated
to an application, depending on its load, in order to appropriately handle a
hosted application’s load peaks without over-provisioning when load is low.
The scaling can be done either by changing the number of VMs, horizontal
elasticity, or by changing the size of VMs, vertical elasticity. Recently, most
attention has been given to horizontal elasticity management, partly due to
the fact that vertical elasticity is much more limited as it cannot scale outside
single physical machines.

However, as the horizontal elasticity decisions also have to consider what
size VMs to initiate or terminate, the problems are not fully detached. For
a certain amount of capacity there is some set of VMs (of possibly varying
but normally predefined sizes) that most cost-efficiently provides that capacity.
Even if during a sequence of scale-up operations the autoscaler determines the
most cost-efficient way to provide the extra capacity needed at each step, the
sequence of such operations may result in a far from optimal VM set for the
aggregate capacity. Hence, at some point in time the set of VMs allocated would
benefit from being replaced by a new, more optimized set of VMs providing the
same capacity, here called repacking of VMs. Alternatively, each autoscaling
decision could take into account not only adding VMs but also replacing some
VMs with VMs of other sizes. As frequent turning on and off VMs is costly, this
latter approach is not suitable in scenarios where frequent scaling operations
are performed.

In this contribution, we as part of a holistic cloud management system [1],
investigate the problem of when and how a set of allocated VMs should be
repacked to a new optimal set of VMs and propose a model to provide the
required capacity more cost-efficiently. The solution takes into account the price
and capacity of a number of predefined VMs, where capacity most commonly
is based on the specific application’s performance on a VM of that type. Of
course, price-changes may occur over time and that by itself is a reason for
re-allocation. Moreover, we analyze the different parameters that affect the
repacking decisions, including price/performance ratio of an application, cost of
reconfigurations, behavior of different autoscalers, and the relation of repacking
with expected life-span of the reconfigured VM set before scaling down or
before the next reconfiguration.

2 Background and motivation

Applications with capacity demands with significant variations over time benefit
the most when deployed in cloud environments, since they can benefit from
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the elasticity provided by clouds. In this contribution we assume that elasticity
is handled through autoscaling.

Public cloud providers offer a variety of instance types, each characterized
by different sizes and different prices. For example, Amazon EC2 [2] currently
offers 17 instance types that range from standard instances to application
specific instances offering high I/O, high CPU, or high memory. For private
clouds we also assume that VMs of different sizes, prices, and price/performance
ratios can be provisioned.

Different autoscaling mechanisms use different techniques to estimate and
predict the capacity required to serve an application with a changing demand
[3–7]. However, current autoscalers decide on when and how to change the
capacity for a changing demand, but normally not evaluate which instance-
type to choose. For example, autoscalers like those offered by Amazon or
Rightscale [8] only consider the number of VMs to provision. In these cases, the
user has to specify what VM-type to add or remove when a condition given by
a threshold is met [6]. Thresholds and rules that act upon them must be defined
by a user with a good understanding of both workload and application. With
more information available, more advanced autoscalers can make improved
decisions such as finding a cost efficient resource set [9, 10]. However, even
for advanced autoscalers, when demand changes prior optimal combination of
VMs becomes sub-optimal.

Notably, the cost-efficiency for different VM-types depends on pricing and
application performance. In case there are preferences, e.g., on keeping the
total number of VMs low, we can assume, without loss of generality, that
this is included in an application’s price/performance ratio. In case the best
price/performance ratio is provided by the smallest VM-type, taking into
account that this also leads to the large number of VMs, the VM-type selection
problem can in practice be avoided by always selecting the smallest VM type
and never make any re-configurations. Of more interest, from a re-configuration
point of view, is when the price/performance ratio is more advantageous for
large VM-types. In particular, this effect can be large when there is a penalty
associated with having large number of VMs. For such scenarios, there is an
inherent conflict in avoiding costly over-provisioning by allocating too much
capacity and by allocating more costly small VMs.

In this contribution we consider different strategies for balancing this trade-
off through selection of VM-type to add when more capacity is needed and with
reconfiguration of the total VM-set as it has become less cost-efficient after a
series of small capacity increases. It should be remarked that this contribution
makes no assumptions on whether the autoscaler used is reactive [2, 8] or pro-
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active [5,9]. It only considers how to most cost-efficiently provide the requested
capacity, regardless of how that request has been determined.

3 Repacking approach

We formulate the problem of determining how to reconfigure the VM set as
follows:
There is always a cost per time-unit associated with resource usage, regardless
if the hosting is done on external resources and the cost is simply the explicit
given price or if the price is a combination of investment and running cost
on local machines in a private cloud. For a given VM-type, there is also an
associated capacity, which may, preferably, be expressed in application specific
terms. We assume, without loss of generality, that there are n VM-types VMi,
i = 1, . . . , n with an associated price pi per time unit, during which they
are able to perform work represented by the capacity ci and the application
requires at least the capacity CReq. Assume that there is currently a set S
of n VMs that provides the aggregated capacity C ≥ CReq at the total price

P =
n∑

i=1
pi. We are interested to find a new set Ŝ with n̂ VMs, that provides a

capacity Ĉ ≥ CReq at a minimum price P̂ , and P̂ < P , while considering an
overhead cost of reconfiguration R. The reconfiguration cost is to compensate
the impact of reconfiguration on the application performance and may, if so
required, include other costs than only the pure resource cost. Finally, given
an expected stability duration d before the capacity requires another change,
we want to determine if P̂ is sufficiently much smaller than P to motivate the
cost for the reconfiguration. Hence, the problem in its most basic form is:

1− [(P̂ × d + R)/(P × d)] > K (1)

where K is gain factor that defines the minimum benefit that a human
manager defines as the threshold to perform reconfiguration. The intention of
considering K is to avoid unnecessary costly changes for a marginal gain.

In this section we introduce a model for determining when to perform
Repacking (or re-configuration) of the VM-set used to provide a certain capacity.
Repacking of an application with a changing workload is a process that should
be performed repeatedly and it is not a one time decision, so the following
steps are executed repeatedly.
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3.1 Finding the optimal Set

The goal of repacking is to find a configuration of resources that minimizes
the resource utilization cost, given current configuration, a number of different
VM-types with different price/performance characteristics, a cost-function
for performing repacking, and an expected time (duration) for which a new
configuration is expected to be used.

The first step is to find an optimal configuration defined in terms of number
of VMs of each type that are required to serve the application with the desired
QoS and with the minimum cost. In other words, we need to find how many
instances are required and of what type they should be to serve the load
with a minimal resource provisioning cost. The problem is formulated as a
combinatorial optimization problem:

Minimize Price =

n∑

i=1

ni × pi

Subject to:
n∑

i=1

ni × ci ≥ CReq

ni ∈ N

where pi and ci are respectively the price and the capacity of VM type i;
n is the number of VM types; CReq is the capacity required to provide the
desired performance, and ni is the number allocated instances of VM type
i. The capacity of a VM, ci, is presented as the average capacity that each
VM can serve for the particular hosted application and it is calculated as the
amount of work that saturates the instance. We assume that each instance
type can serve a portion of load defined in terms of number of requests and
proportional to its capacity (i.e., memory and CPU capacity). In case there is
a cost associated with running many small VM-types, that is assumed to be
included in the capacity figure. The price of a VM, pi, is defined as all possible
costs of maintaining a VM from a customer perspective, regardless if this is
specified costs from a public provider or costs somehow determined for using
a private infrastructure. In order to find the optimal set, we formulate the
problem as an integer programming problem.

3.2 Deciding on transitioning policy

The knowledge about an optimal set of VMs for a certain capacity only gives
a set of VMs that minimizes the cost, without acknowledging the overhead

137



costs of altering the configuration. Therefore, we need to calculate the costs of
performing this reconfiguration, in order to decide whether or not it is beneficial
to enforce the reconfiguration despite the overhead costs. To calculate the
reconfiguration costs, we first specify how to move from the current set to the
optimized set. The transition policy defines a plan for changing the resource
set from its current setup S to its new target configuration Ŝ. Depending on
application type and cloud platform, the transition can be done in several
ways, e.g., by shutting down the VM, copying the state to the new VM, and
starting the new VM; or by keeping both VMs running while new VMs boot
and become ready to serve; or a combination of both by shutting down some
VMs and keeping some other running. Transitions also can be carried out as
a single action or they can be done through a series of consecutive actions,
e.g., first start a VM and then shut down extra VMs one by one. For either
alternative, there is an associated cost, called reconfiguration cost.

In our experiments, the transition policy is based on the notion of always
maintaining the required capacity by keeping all instances running, to restrict
the performance loss during transition. In order to do that, we start all new
instances while maintaining the previous configuration running. Only after
the new instances are launched and ready to serve, we shut down the extra
instances from the previous configuration.

3.3 Calculating the reconfiguration costs

Reconfigurations, no matter the transition policy chosen, require changes in
the resource set and a number of VM startups and shutdowns. Although cloud
VM instances are expected to be very rapidly provisioned, the total time before
they are ready to serve the application may be substantial. In our case, this
time is the reconfiguration time. The minimum reconfiguration time is the
time it takes for booting the VM and registering it to the load balancer until
it becomes available. This time can be much longer when we add the time
for application specific configurations, copying the data files and startups.
For longer reconfigurations, the cost of preserving the performance increases,
e.g., if a reconfiguration action requires copying a large database to a new
VM, both VMs need to be up while the database is being copied, leading to
extra payments for having two VMs in use. During the reconfiguration time a
performance impact can be expected and this impact is associated with a cost.
This cost can be defined in terms of performance degradations, SLA violations
or simply the additional costs required to preserve the QoS during transition
time. We calculate these reconfiguration costs as follows:

R = Cextra × repacking time
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where Cextra is the overhead cost associated with the extra allocation needed
to preserve the performance during the repacking time.

3.4 Decision making

Deciding when to reconfigure is based on a cost-benefit analysis that depends
on the following factors:

1. The difference between the current configuration’s cost and the optimal
configuration’s cost.

2. The cost of reconfiguration.

3. The time period that we expect the new configuration to last.

Each of these factors is part of a decision function that weights the potential
benefits of reconfiguration against the reconfiguration cost and the decision
evaluates to true if the condition in Equation (1) is met.

Here P̂ and P are respectively the runtime costs of the new and current
configuration, d is the expected duration, or stability interval, which is the
time we expect the new configuration be durable. If this duration is long,
even expensive reconfigurations are worth performing. R is the reconfiguration
cost and K is the gain factor which defines the minimum benefit expected
for performing the reconfiguration. K represents hidden costs different from
explicit reconfiguration costs, e.g., additional cost due to software licenses,
or additional human resources for maintenance. These costs are not easily
measured, but still need to be considered. We address these costs by assuming
that a human manager configures the controller based on knowledge about
such costs, gained from experience.
As it can be seen in (1), for large values of d, P̂ × d becomes large enough,
that R can be neglected. This means that if we expect the new optimized
configuration to last long enough, the reconfiguration costs can be neglected
and the repacking controller can proceed with reconfiguration of the resource
set. Although for large values of d, the maximum cost saved is bounded by
1− (P̂ /P ).

4 Autoscaling strategies

Autoscalers adapt the resource set to fast and transient changes in load.
Different autoscalers have different VM selection policies and decide based
on different inputs. Hence they propose different resource sets, which affect
the decisions and costs of repacking. The autoscaler calculates the required
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Algorithm 1 Repacking Algorithm

Input: Required Capacity C at time t; Current Resource Set (S), with associ-
ated cost P.
Output: Decision on Repacking

1: Find new optimal Resource Set, Ŝ.
2: Calculate cost (P̂ )

3: if P̂ < P then
4: Select a Transition Policy
5: Calculate Reconfiguration Cost:

R = Cextra × repacking time.
6: end if
7: if 1− [(P̂ × d + R)/(P × d)] > k then

8: Reconfigure to Ŝ
9: return;

10: else
11: Repacking is not feasible
12: return;
13: end if

capacity either by taking total load or ∆load = total load− current capacity
as input.

Additionally, the policy for selecting VM types to provide the capacity can
also be done at least in two sensible ways. It can either select the optimal set
of VMs, or select a specific VM type preferred by the application or specific to
a workload behavior, we call this prefered VM a base instance.

Repacking can be applied on autoscalers using ∆load as input. So using
a repacking approach, two new strategies are introduced, Sdelta Repacked and
Sbase Repacked. This results in 5 different autoscaling strategies in total, that
are presented as follows:

1. Sdelta:
Sdelta calculates an optimal resource set for providing capacity corresponding
to ∆load. Some applications are performance sensitive and may require quick
adaptations to changes and their priority is to maintain performance even by
paying higher rental costs. Sdelta is an autoscaling strategy suitable for this
kind of applications. It does not perform reconfigurations, since it only adds
(or removes) the VMs to the previous allocation. However, if the workload
increases in small steps, Sdelta allocates one more small VM for each time the
load changes. The output of Sdelta over time is therefore typically a resource
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set comprises of a set of small instances. Although each addition is optimal
with respect to ∆load, it is still a sub-optimal set with respect to the total
load.

2. Sbase:
The Sbase strategy similarly takes ∆load as input for scaling the capacity.
However, contrary to the first strategy, Sbase does not adjust to the exact
optimal extra capacity, i.e., a small VM for a small change, but it adds a VM of
a predefined size, base instance, that a priori, has been judged to be a good size
for that specific workload characteristics, such as volume and its oscillations
in a specific time span. The base instance does not necessarily fit the capacity
perfectly, as it may overprovision a little to avoid the frequent additions and
removals that lead to a set of small expensive VMs in Sdelta. So base instance
can be selected by considering a tradeoff between overprovisioning cost and the
cost due to cost inefficiency of smaller VMs. Another reason for using Sbase is
that a VM type may be more suitable for a certain application, e.g., a compute
intensive application benefits from a high CPU VM type. The resource set
shaped by this strategy is homogeneous consisting of a set of base instances for
the duration that workload volume and its changes are within a specific range.

3. SFull:
The previous two strategies take ∆load as input and find the appropriate extra
VMs to satisfy ∆load. In both cases the previous resource set remains unchanged
and the new VMs are added to keep up with the changes in load. SFull, on the
contrary, uses total load to find the optimal set to serve the application demand.
By considering total load, SFull not only adds extra capacity but it may also
replace VMs with more cost efficient ones, during any scaling decision. In
this way, SFull maintains the resource set optimal during application runtime.
However, replacements may require frequent shutdowns and start ups that are
costly and failure prone. The cost of running the application with this strategy
is the sum of the resource set cost plus the cost of reconfigurations at each
timestep.

The drawback of SFull is that it blindly performs the reconfiguration as long
as the new resource set is not optimal, without taking reconfiguration cost into
account. We include SFull as a comparison to show how doing a cost benefit
analysis optimizes the number of reconfigurations as they are considered to be
costly. We investigate the impact of smarter reconfigurations on the total cost
against blind reconfigurations by comparing our result against SFull.
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4. Sbase Repacked and Sdelta Repacked:
Repacking is applicable on autoscalers with ∆load as input. Hence, we applied
our repacking model on the resource sets suggested by Sdelta and Sbase that leads
to two new scaling strategies called Sdelta Repacked and Sbase Repacked repacking.
The repacking model uses each of the resource sets proposed by Sdelta and
Sbase to investigate which reconfigurations are required to reshape the set to
optimal and to discover the cost of these reconfigurations. This information
is used to perform a cost benefit analysis to evaluate the worthiness of the
repacking. If the evaluation is positive, the previous resource set is replaced
by the new optimal one. The reconfiguration actions for Sdelta are mostly
exchanging smaller instances with larger ones, whereas for Sbase the actions
involve replacing the set with an optimal one formed of different types of
instances, instead of the original set of a single VM type.

Table 1 summarizes the autoscaling strategies employed, their inputs and
specifications.

Table 1: Autoscaling strategies

Scaling strategy Input VM selection policy Repacking

Sdelta ∆load optimal set never

Sbase ∆load base instance never

SFull total load optimal set always

Sdelta Repacked total load optimal set when beneficial

Sbase Repacked total load optimal set when beneficial

5 Repacking and workloads

The need and effects of repacking of VMs are different for different workload
patterns. Mao and Humphrey [7] characterize four types of workloads for cloud
environments as Stable, Increasing (Growing), Seasonal (Cycle/Bursting) and
On-and-Off. Each of these patterns represents a specific application or a sce-
nario.
Stable and On-and-Off workloads: The behavior of these workloads are
similar to batch workloads. They have a definite lifetime and resource re-
quirements, e.g., many repetitive transactions to a database, with some heavy
computational work for each. They are also active for a short period, on-and-of,
or a long period of time, Stable, but their load is constant and not changing
overtime.
Increasing workloads: Workloads of this category are often seen in compa-
nies that have high growth trends. Social networking services such as Facebook,
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Twitter, or file sharing applications such as Dropbox are good samples of
increasing workloads. The growth trend for these websites shows a common
pattern, as they all start with slow growth followed by small oscillations that
become larger as service become popular.

Seasonal (Cycle/Bursting) workloads: The increase in load in seasonal
workloads occurs in patterns that are repeating themselves, e.g., daily, weekly
or monthly periods. These increases can be based on predictable events (in
time and possibly in magnitude).

Neither of the Stable and On-and-Off workloads is of particular relevance to
repacking of VM sets as the optimal set can be chosen from start and remain
optimal since there are no load variations during the execution. Therefore, we
focus on the increasing and seasonal workloads as they have load variations
where series of autoscaling actions over time may lead to suboptimal VM set.

6 Performance evaluation

6.1 Experiment setup

We evaluate our repacking approach by simulating a cloud with 6 types of
VMs. In order to study the effect of repacking for different price/performance
ratios between VM-types we consider two application types, A and B. Each
application benefit differently from the different types of VMs, e.g., by replacing
2 small VMs with a medium VM, application A can serve 1.2 times more request
for the same price, while this number for application B is 1.4 times more request
for the same reconfiguration.

For clarity, we have assumed that allocated resources can be used and paid
for any period of time and not on, e.g., a per-hour basis. This scenario is most
relevant to a private cloud but the approach can equally well be applied to
infrastructures with hourly payment schemes, although the time for repacking
should then be aligned with payment periods to make full use of resources
already paid for.

Table 2 shows the resource utilization for each application on each VM type.
In our evaluations we consider seasonal and increasing workload patterns. We
perform the evaluation by generating two synthetic workloads of each type,
as shown in Figure 1. Our 4 workloads were different in volume and duration
with 168, 182, 215 and 338 hours length.
Since the time required for actuating a reconfiguration contributes with over-
head costs that impacts the decision of when it is beneficial to perform recon-
figuration, we include two different reconfiguration durations, 4 minutes and 20
minutes. We also set the gain factor K = 1 % which implies that the expected
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Table 2: Server configurations and their prices

Application VM Type Price($/min) Capacity(req/min)

Application A

small1 0.003 500
small2 0.006 1197
med1 0.012 2867
med2 0.024 6868
large1 0.048 16449
large2 0.090 39396

Application B

small1 0.003 500
small2 0.006 1310
med1 0.012 3434
med2 0.024 9000
large1 0.048 23588
large2 0.090 61819

benefit should be higher than 1% in order for repacking to be performed.
Notably, 1% may seem like a small number but it should be remarked that it
is with respect to total infrastructure cost.
For each application runtime, we measure the following parameters:

1. Total cost of running the application. The total cost is the aggregated
resource utilization cost, from start to the end. We compare the total cost of
an application when using different scaling strategies. This helps us to reason
about the cost efficiency of each of them.

2. Number of reconfigurations performed. The number of reconfigura-
tions during the application lifetime provides insight into the effects of recon-
figuration cost and stability interval of the reconfiguration. It also shows how
the cost benefit analysis filters the unnecessary reconfigurations and result a
reduction in total cost.

VM types are each associated with a price pi for resources consumed during a
time unit. Each VM type serves a maximum capacity CA

i and CB
i for application

A and B respectively. Total load is measured as the aggregated load at time t
where ∆load = total loadt − capacityt−1.
We evaluate five strategies, Sdelta, Sdelta Repacked, Sbase, Sbase Repacked and SFull.
We compare the total cost of running an application for each of these five
strategies. For the scaling strategies that are selecting optimal set of VMs, i.e,
Sdelta Repacked, Sbase Repacked and SFull, we formulate the problem of finding the
optimal set as an Integer Linear Programming (ILP) model and used Gurobi
solver to solve this problem. The result is an instance set, that represents the
VMs with a sufficient capacity and minimum cost.
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Figure 1: The workloads used in experiments

6.2 Repacking and scaling algorithms

To demonstrate the effect of repacking, we compare the autoscaling strategies
presented in Section 4 when using our proposed repacking method Sdelta Repacked

and Sbase Repacked against the same strategies but without repacking (Sdelta,
Sbase, SFull).

Table 3 and Figure 2 show the total cost of running applications A and B for
four workloads. In Figure 2 each set of bars compares the total cost of running
each application, on Y axis, for five autoscaling strategies and two different
reconfiguration costs (Cheap R and Expensive R). The first and third set of
bars show the result of repacking when the reconfiguration cost is cheap whereas
the second and fourth set present the result for expensive reconfigurations. The
following are observations after analyzing these 5 autoscaling strategies:

1. Comparison of non-repacked scaling mechanisms against their repacked
counterparts (Sdelta with Sdelta Repacked and Sbase with Sbase Repacked) shows
that the total cost is reduced when repacking is applied.

2. Comparison of repacking strategies (Sdelta Repacked and Sbase Repacked) against
SFull shows that the total cost obtained when applying the repacking strategy
is lower than the cost of SFull. Lower cost is a result of performing reconfigu-
rations at the appropriate time avoiding unnecessary costly reconfigurations
thus reducing the total cost of running the application.
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Figure 2: Comparison between total costs of running applications resulted
by different scaling algorithms and different workloads when d = 1000.

3. Sdelta Repacked (green bars) outperforms all other scaling strategies, producing
the lowest total cost for running the applications. Sdelta by itself is not an
efficient autoscaler but it generates a resource set comprised of various VM
types that increases the possibility of reducing reconfiguration costs. Repacking
tries to keep common VMs in the VM set, adding extra VMs of other types only
when they are not available. When repacking Sdelta, reconfiguration costs are
low because it is very probable to reuse an already started VM. This reduces
the total cost after repacking.

4. Sbase Repacked (red bars) shows the second best result among the scaling
strategies tested. Sbase produces a VM set of mostly the same type of VMs, so
transitioning to an optimal set requires starting several VMs of other types.
This leads to higher reconfiguration costs making this strategy less efficient
than Sdelta Repacked.

5. Sdelta (yellow bars) is the most expensive and least cost efficient strategy
among all. The reason is that Sdelta produces a resource set that mostly consists
of a large number of small instances with high price/performance ratios.
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6. Sbase is a more efficient strategy than Sdelta since it is less sensitive to small
spikes in load, making it a more stable strategy. Sbase can handle those spikes
by previously over-provisioned resource sets. However, for this to happen, base
instance must be correctly determined with respect to workload volume and
oscillations, which by itself is a non-trivial problem.

Table 3: Total cost ($) of running the servers with different scaling models and different
workloads when d = 1000

Workload type
Reconfig cost Cheap Expensive Cheap Expensive
Scaling strategy App A App B

Increase1

Sbase 1797.62 1797.62 1598.3 1598.3
Sbase Repacked 1428.86 1518.42 1218.03 1296.65
Sdelta 1989.62 1989.62 1630.12 1630.12
Sdelta Repacked 1283.17 1475.6 1020.55 1189.86
SFull 1488.69 1819.13 1224.64 1472.33

Increase2

Sbase 576.27 576.27 544.86 544.86
Sbase Repacked 456.84 495.73 443.18 490.94
Sdelta 838.31 838.31 838.29 838.29
Sdelta Repacked 407.32 455.56 373.43 433.09
SFull 488.79 545.9 454.06 542.85

Seasonal1

Sbase 21393.74 21393.74 16961.23 16961.23
Sbase Repacked 20732.84 20969.79 16502.5 16517.3
Sdelta 22801.98 22801.98 19152.16 19152.16
Sdelta Repacked 20579.89 21193.29 16476.5 17003.44
SFull 24740.29 25936.8 19839.8 20857.36

Seasonal2

Sbase 993.19 993.19 894.91 894.91
Sbase Repacked 743.83 820.75 730.58 791.78
Sdelta 1745.86 1745.86 1744.65 1744.65
Sdelta Repacked 681.06 824.12 645.35 769.06
SFull 835.6 1043.87 784.48 970.67

We also studied the case when an application owner wants to use only one
instance type. In this case a new base instance is used for repacking instead of
repacking to optimal. This strategy results in expensive reconfiguration costs,
as the entire resource set should be replaced with the new resource set that
only uses the new base instance. However, repacking still produces a benefit
since it performs a cost-benefit analysis before doing the reconfigurations. In
this case the number of reconfigurations performed is low due to the high
reconfiguration costs. However, from a pure cost-perspective this approach is
not competitive.
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6.3 Reconfiguration cost and stability intervals

Repacking decisions are closely dependent on the reconfiguration cost. This
extra cost needs to be carefully considered before deciding to repack to eval-
uate if repacking is actually beneficial. We defined this cost as a function of
reconfiguration time and it is the time required for the new servers to become
available, or the time that both old and new resource sets are concurrently alive
in order to preserve performance. We studied the behavior of the repacking
model when the reconfiguration cost is cheap and expensive.

Before repacking we need to estimate the expected stability interval, d, of
the new configuration. In order to show the effects of stability intervals on
reconfiguration numbers, we assumed that there is uncertainty in predicting
stability intervals. In this experiment we have assumed a rough prediction
of d = 180 minutes for Increase1, Seasonal1, and Seasonal2 workloads, and
d = 100 minutes for Increase2 workload. The d = 100 minutes and d = 180
minutes in Table 4 highlight the effects of short stability intervals on repacking
decisions with expensive reconfigurations by showing a decrease in number
of reconfigurations. We also have a more accurate estimation of d = 1000
minutes for our workloads, which shows the behavior of the repacking model
for long stability intervals. In our case, we set the values of d by observing
the workload pattern beforehand, although this value can be forecasted using
statistical models such as ARIMA [11]. With this setup we make the following
observations.

1. Increasing the reconfiguration cost increases the total cost of running the
application in SFull, Sbase Repacked and Sdelta Repacked.

2. Doing expensive reconfigurations for a short stability interval (d) is not
reasonable since the next reconfiguration takes place before the overhead cost of
a previous one can be amortized. As presented in Table 4, when reconfiguration
cost is expensive the repacking algorithm decides to perform 13 reconfigurations
less compared to when reconfigurations are cheap in Increase1 workload with
d = 180. This argument is also valid for Seasonal1, Seasonal2, and Increase2
workloads, with 20, 12, and 10 less reconfigurations respectively.

3. If a reconfiguration lasts long enough even costly reconfigurations can be
beneficial. In this case the number of reconfigurations are almost equal for both
cheap and expensive scenarios.

Our experiments show that for cheaper reconfigurations more reconfiguration
actions are triggered and the resource set is more frequently repacked to the
optimal with a low reconfiguration cost. In contrast, for high reconfiguration
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Table 4: Number of reconfigurations with respect to different stability intervals (d)

Workload d=180 min d=1000 min

Reconfig cost Cheap Expensive Cheap Expensive

Increase1 46 33 46 46

Seasonal1 87 67 89 89

Seasonal2 50 38 52 49

Workload d=100 min d=1000 min

Reconfig cost Cheap Expensive Cheap Expensive

Increase2 22 12 23 23

Table 5: Total cost of running the application for different Stability interval, d values

Workload
Cheap Expensive

Stability interval d=180 d=1000 d=180 d=1000

Increase1
Number of reconfigs 46 46 33 46
Total cost 1020.55 1020.55 1209.32 1189.86

Seasonal1
Number of reconfigs 87 89 67 89
Total cost 16490.54 16476.5 17017.66 17003.44

Seasonal2
Number of reconfigs 50 52 38 49
Total cost 646.38 645.35 857.48 824.12

Workload
Cheap Expensive

Stability interval d=100 d=1000 d=100 d=1000

Increase2
Number of reconfigs 22 23 12 23
Total cost 374.01 373.43 468.79 433.09

costs some reconfigurations are avoided since the cost benefit analysis does not
show any benefit for doing costly reconfigurations.

Table 5 shows the effect of the number of beneficial reconfigurations on the
total cost of running the application. A reduced number of beneficial reconfigu-
rations is either due to a short stability interval or to a high reconfiguration cost
and it leads to an overall higher resource cost, the more reconfigurations, the
more opportunities for tuning the resource set to optimal. However, the number
of reconfigurations is not the only factor for reaching an optimal allocation.
A more important factor for total cost reduction is the difference between
the optimal cost and the cost for the old VM set for each reconfiguration
opportunity.
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6.4 Price/performance ratio

When running our two applications, App A and App B, we can choose from
6 VM types. Each VMi can serve application A with performance CA

i and
application B with performance CB

i at a cost pi. A larger i represents a larger
VM so that Ci+1 > Ci. We use the price/performance ratio (pi/Ci) as metric
for cost efficiency of VMi for the specific application. The repacking assumption
is that the price/performance ratio of larger VMs is lower than for smaller
ones, so repacking smaller instances becomes reasonable.

To understand which price/performance ratios make repacking of interest,
in our experiments, we assume that our applications are different in relative
performance ratio according to VM sizes. So, for the same pi+1/pi, C

A
i+1/C

A
i <

CB
i+1/C

B
i , i.e., for the same price, larger VMs are capable of serving more

requests for application B in comparison to application A. Table 2 shows the
price and capacity of different VMs of each application used in our experiments.

With these parameters, repacking is more beneficial for applications with a
larger difference between pi+1/Ci+1 and pi/Ci, in our case application B. As
seen in Table 6, the total cost of running application A with Increase1 workload
when the reconfiguration costs are cheap is reduced by 35.51%, while this
number is 37.39% for application B that has a lower price/performance ratio.
This reduction is 25.84% for application A, while it is 27.01% for application
B that has high reconfiguration costs. The same pattern can be seen when the
applications encounter other workload types or have high reconfiguration costs.
The reason is that for applications with low price/performance ratios, larger
instances are capable of serving more requests for a lower cost, which is a good
motivation for repacking the instances to larger VMs in order to reduce the
total cost of running the application.

Table 6: Improvement percentage achieved by using repacking for applications A and B

Workload
Cheap R Expensive R

App A App B App A App B

Increase1 35.51 % 37.39 % 25.84% 27.01%

Increase2 51.41% 55.45% 45.66% 48.34%

Seasonal1 9.74% 13.97% 7.06% 11.22%

Seasonal2 60.99% 63.04% 52.8% 55.92%
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7 Related work

There are several contributions that relate to our work. The first group of related
studies focus on capacity autoscaling in clouds [5,6,8,10,12,13]. Their objective
is typically to adjust the allocated capacity to demand so that the required
performance is provided, and their main concern is to predict the capacity
as accurate as possible to ensure that the capacity is available when needed.
Methods such as, static threshold based controllers [8,13], control theory [14,15],
queuing theory [5, 12], and time series analysis of workloads [9, 16] are used to
handle autscaling problem in clouds.

Another group of related studies focuses on cost efficient resource provision-
ing in cloud environments. Cost efficiency in clouds can be discussed from
an infrastructure provider or from an application owner point of view. The
difference is that infrastructure providers are more concerned with high resource
utilization and energy efficiency of their infrastructure, so they try to avoid
overprovisioning as much as possible by efficient consolidation strategies [17,18]
or overbooking policies [19, 20]. On the other hand, application owners are
concerned with the performance of their applications and budget constraints, so
their focus is on cost aware scheduling strategies [4, 21, 22] and smart resource
acquisition [7] to handle the job with the minimum budget. However, in all the
aforementioned works, planning the capacity is normally performed solely based
on load, regardless of considering an optimal combination of VM types. To the
best of our knowledge, only few studies taking VM sizes and their performances
into account but then mostly for the optimal placement of VMs [23–25] rather
than autoscaling.

Runtime reconfiguration techniques and measuring their associated costs is
also a topic of interest when studying repacking. Jung et al., [26], proposes
an adaptation engine for runtime reconfiguration in multi tier applications.
They evaluate the impact of 5 reconfiguration actions on application response
time and developed a middleware to generate cost-aware adaptation actions.
However, they approached the problem of on-demand reconfiguration from an
infrastructure provider perspective. Although the overall idea of reconfiguration
is similar for both infrastructure providers and application owners, the target
problem is different. Infrastructure providers often perform reconfigurations
to ensure availability and isolation of demand fluctuations in co-located VMs,
whereas application owners employ reconfigurations to reduce cost and increase
performance.

Sharma et al, [3], introduce a cost aware provisioning system that takes into
account price differentials of server types in order to minimize the rental cost
of the application. They considered cost aware reconfiguration of resources as
part of the autoscaling mechanism. While this is the closest study to our work,
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a main difference is that we decouple reconfiguration from autoscaling so that
more freedom is given to the application owner when choosing autoscaler. The
result is that application owners can choose the autoscaler that better fits the
application’s needs while at the same time benefiting from the advantages of
repacking.

8 Conclusion

In this paper we have shown that combining the benefits of vertical and
horizontal elasticity to scale in terms of both the number and the size of VMs
increases the cost efficiency of the resource set used to serve an application.
We propose a cost-benefit based approach called repacking, which takes cost
and stability of a reconfiguration into account to determine the appropriate
trade-off between horizontal and vertical scaling and acts accordingly. The goal
of the repacking method is to find a configuration of resources that minimizes
the resource utilization cost, given a current configuration, a number of different
VM-types with different price/performance characteristics, a cost-function for
performing repacking, and an expected time (duration) for which the new
configuration is expected to be used.

Through experimental evaluations we have shown that by performing a
cost-benefit analysis we can decide when and how to replace a non-optimal set
by a new optimal set, and that decision can reduce the total cost of resource
utilization during the application’s lifetime. Our results show a range of 7% up
to 60% cost saving in total resource utilization cost of our sample applications
and workloads.

We also show that different applications benefit differently from the repack-
ing approach. Applications with larger differences in price/performance ratio
among their VM types are the ones that benefit most. Moreover, we studied
the effects of cheap and costly reconfigurations on repacking behavior. Our
results show that costly reconfigurations become reasonable to perform when
the expected stability of the reconfiguration is long enough to amortize the
overhead cost of reconfiguration. Hence, our approach automatically avoids
unnecessary reconfigurations if a short stability interval for that reconfiguration
is expected.
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Abstract
In large scale data centers, a single fault can lead to correlated failures of several
physical machines and the tasks running on them, all at once. Such correlated failures
can severely damage the reliability of a service or a job running on the failed hardware.
To mitigate the impacts of correlated failures, data centers must identify failure
domains that are exposed to common failure sources and determine how to replicate
and schedule extra tasks to guarantee the desired reliability.

This paper models the impact of stochastic and correlated failures on job reliability
in a data center. We specifically focus on correlated failures caused by power outages
or failures of network components, on jobs running multiple replicas of identical
tasks. We present a statistical reliability model and an approximation technique for
computing a job’s reliability in the presence of correlated failures.

In addition, we address the problem of scheduling a job with reliability constraints.
We formulate the scheduling problem as an optimization problem, with the aim
being to minimize the number of concurrent task failures due to a single fault and to
maintain the desired reliability with the minimum number of extra tasks. We present
a scheduling algorithm that approximates a minimum number of required tasks and
a placement to guarantee a desired job reliability. We study the efficiency of our
algorithm using an analytical approach and by simulating a cluster with different
failure sources and reliabilities. The results show that the algorithm can effectively
approximate the minimum number of extra tasks required to guarantee the job’s
reliability.
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1 Introduction

Data centers achieve high reliability through the use of failure tolerant hardware,
network equipment, and architectures or via adopting sophisticated management
solutions such as replication and recovery techniques. Many of these techniques try
to achieve reliability for a single individual component such as a server or a software
component, rather than providing overall reliability for jobs or services. However, it is
not generally valid to assume that servers fail independently and component failures
are uncorrelated. Correlated failures such as failures due to power outages or network
component failure are rare [1] but have significant effects on system reliability [2–6].
Ignoring the impact of correlated failures can cause reliability to be overestimated by
at least two orders of magnitude [2].

In this work we present a statistical model for job reliability in a cloud data center,
in the presence of stochastic and correlated failures. The model quantifies the impacts
of correlated failures on the overall reliability of a job comprising multiple identical
tasks. The job reliability is defined as the probability that at least a minimum number
of tasks will continue running throughout the job’s runtime. We specifically focus
on correlated failures caused by power outages and failures of network components.
In our model, power nodes and network components have different failure rates and
their failures affect different sets of servers, known as failure domains. The problem
becomes complicated because different failure events may be associated with different
failure domains. For example, the servers that are affected by a power outage will not
necessarily be the ones that are affected by a network component failure [7].

Delivering job reliability cannot be considered independently from job scheduling
because job reliability is highly dependent on the placement of the tasks over different
failure domains (e.g. different racks or power failure domains). To achieve job relia-
bility, scheduling and allocation decisions should take into account the probabilities
of failure for different servers, racks, and other potential failure domains, along with
the impact of failures in these domains on the job’s reliability.

Using the proposed reliability model, we introduce a scheduling algorithm to
guarantee a given level of reliability for a particular job. The objective of the algorithm
is to guarantee an overall reliability for a job while using the minimum necessary
number of extra tasks (replicas), and to schedule the job across multiple different
failure domains. Scheduling tasks over different failure domains makes jobs robust
against the negative impact of a single failure, while running extra tasks enables the
job to compensate for losses and deliver the targeted minimum reliability during
recovery.
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The scheduling algorithm approximates a minimum number of required replicas
and selects a subset of machines in the cluster to run replicas of the tasks. Note
that replicating a task within a failure domain cannot prevent it from being affected
by correlated failures, no matter how much redundancy is introduced. Similarly,
spreading allocations over different failure domains alone is not sufficient to guarantee
that the targeted minimum reliability will be achieved. Therefore, a combination of
good placement and replication is required to ensure high overall reliability.

The contributions of this paper are:

1. A statistical reliability model for a job running multiple identical tasks, de-
ployed in a cloud data center. The model captures the impacts of stochastic and
correlated failures due to power or network node failure on job reliability. We
also propose an approximation technique for estimating a given job’s reliability.

2. A scheduling algorithm to approximate the number of tasks required to guar-
antee that a job will achieve the desired reliability, and to select a subset of
machines to run those tasks.

3. Analytical proofs of the algorithm’s validity and a simulation-based illustration
and evaluation of the algorithm for a cluster with different failure sources and
jobs with different target reliabilities. The evaluation shows that the algorithm
can effectively approximate the minimum number of extra tasks required to
guarantee a job’s reliability.

2 Problem formulation

A job J arrives at a data center and executes a group of identical tasks [8]. This is a
common application model for datacenters, where large numbers of data analytics
jobs (e.g. MapReduce [9] or Spark [10] jobs) perform parallel computations on
large datasets. Each task has an expected compute and memory demand of C and M,
respectively. The job starts at time t1 and runs for time T . A job is successful if the
probability that at least K tasks will be running at all times during the [t1, t1 +T ] time
interval is greater than or equal to Smin. In addition to the required K tasks, a number
of extra tasks can be created to increase the expected probability of success. A set of
tasks may fail (and stop running) simultaneously if they share a common source of
potential failure such as a common power node or a common network component.

The tasks should be deployed in a cluster of physical machine. Each machine p
has an available CPU and memory capacity of cp and mp, respectively. Machines are
connected by a set of network nodes R̄ and the electrical power is supplied by a set of
power nodes W̄ . Failure of a power node causes failure on all the associated machines
and the tasks deployed on those machines.
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Given a fixed power and network topology, for each job J with desired number of
running tasks K, we want to determine n, the required number of extra tasks, and x,
a placement of N = K +n tasks on the machines, so at least K tasks are running at
all times during the job runtime, with a certain probability Smin. The job reliability is
defined as the probability of the job operating for a certain amount of time, with at
least K running tasks, at all times. In our model, each machine only runs one task.
Task cannot be restarted and their failures are terminal. The jobs cannot produce an
output in the event of a partial failure.

Given a placement vector x representing the distribution of tasks over different
failure domains, and S(x) as the reliability of the job, the goal is to find n∗ = min {n |
S(x)≥ Smin} during the job’s runtime T , subject to the relevant capacity constraints.

2.1 Network and power topology

We model the dependencies among system components as a 2-level multi-rooted tree,
where the leaves are the machines and the parents are power and network nodes. We
assume that the power and network topology may contain redundancy, where each
machine can be connected to an extra network node or be supported by an extra power
node. In such cases, a machine is functional as long as at least one power node and
one network node are available.

We also define a network failure domain R as the set of machines that share the
same network components and are thus at risk of concurrent failure. Similarly, we
define a power domain W as the set of machines that share the same power nodes.

We define ri as a random binary variable, where ri = 1 if the network failure
domain i is available and running, and ri = 0 otherwise. The network failure domain
is available as long as one network component is functional. Similarly, we define the
random binary variable w j, where w j = 1 if the power failure domain j is available
and w j = 0 otherwise. The power failure domain is available as long as one power
node is functional.

In addition, we define the failure domain Fl , as the set of tasks deployed in a power
failure domain that are also connected via a single network failure domain. The binary
random variable fl = 1 if at least one network node and one power node in Fl are
operational. Figure 1 show a data center topology with respect to network and power
failure domains, showing the redundancies in the system.

The network and power nodes break independently and are not repairable. The time
to failure of each network node during a job runtime T is exponentially distributed
with a random failure rate of 0.00022≤ λ ≤ 0.00032 per hour. Similarly, the time to
failure of the power nodes (i.e. the PDUs) during a job with runtime T is assumed
to be exponentially distributed over time with a failure rate of λ = 0.4× 10−6 per
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Network domain

Power 
domain

Figure 1: Data center topology with respect to different failure domains.

hour [11]. We also assume that all machines have an identical probability of hardware
failure.

2.2 The reliability model
To model the impact of correlated failures on reliability, we specify the probability of
each subset of tasks being unavailable. Let us assume that xl is the number of tasks
running in a failure domain Fl, x = [x1,x2, . . . ,xL] is the placement vector of the tasks
over the failure domains. The quantity xl also happens to be the number of tasks that
fail when failure domain Fl is not working. Moreover, f = [ f1, f2, . . . , fL] is a failure
state vector showing the availability or failure of the failure domains and L is number
of failure domains. The number of running tasks can then be calculated as:

N(f,x) =
L

∑
l=1

flxl (1)

Let

PR(r) = ∏
{i|ri=1}

AR
i (T ) ∏

{i|ri=0}
(1−AR

i (T )) (2)

PW (w) = ∏
{ j|w j=1}

AW
j (T ) ∏

{ j|w j=0}
(1−AW

j (T )) (3)

where PR(r) and PW (w) are the probabilities of network failure domains and power
failure domains for failure state vectors r = [r1,r2, . . . ,rR] and w = [w1,w2, . . . ,wW ],
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respectively. In addition, AR
i (T ) and AW

j (T ) are the reliabilities of network failure
domain i and power failure domain j for a job with T runtime, respectively. The
reliability of the job, S(x) ≥ P(N(f,x) ≥ K), can be calculated as the sum of the
probabilities of all possible combinations of failure events when the number of
running tasks N(f,x)≥ K. This can be written as:

S(x) = ∑
{(r,w)|N(f,x)≥K}

PR(r)PW (w) (4)

In this formulation, the component failures are independent of each other. However,
each component failure can terminate all tasks in one or more failure domains.

2.3 Approximating the reliability value
In practice, computing the exact reliability value is complex and computationally
expensive. Therefore, we propose a method for approximating the reliability value.

The reliability function S(x) is a step function; it is assumed that a job’s reliability
increases in discrete steps as the number of extra tasks is increased. However, different
types and combinations of failures do not necessarily reduces the reliability value
to the same extent. A network node has a much greater failure probability than a
power node, but fewer extra tasks are required to mitigate the impact of a network
node failure: network component failures disconnect 60 to 120 machines (one or two
racks) whereas a Power Distribution Unit (PDU) failure leads to the outage of 20 to
60 racks [12].

We reformulate equation (4) as a sum over the total number of failures in the system.
To do this, for i = 0,1, . . . ,R and j = 0,1, . . . ,W , we define:

Si, j(x) = ∑


(r,w)|

‖r‖1= R− i
‖w‖1=W − j
N(f,x)≥ K





PR(r)PW (w) (5)

In this equation, S0,0(x) is the reliability of the job if none of the network or power
failure domains fail, and Si, j(x), 1≤ i≤ R and 1≤ j ≤W is the probability that the
job has N(f,x)≥K tasks, given i network failures and j power failures. By combining
definitions (4) and (5), we get the following expression for the reliability

S(x) =
R

∑
i=0

W

∑
j=0

Si, j(x) (6)

The probability of failure of multiple components, Si, j(x), depends on the failure
probabilities of the individual components, each of which is small. Considering the
probability of failures of the components in our model, we can argue:
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S0,0(x)� S1,0(x)� S2,0(x)� . . .S0,1(x) . . .� SR,W (x) (7)

Therefore, as i and j increase, the improvement in system reliability, Si, j(x), becomes
progressively smaller. There is thus an optimal number of extra tasks; adding further
tasks above this threshold would not contribute substantially to the system’s reliability.
In other words, as the probability of a high number of failures during a job’s lifetime
decreases, so too does the need to plan and assign extra tasks to achieve reliability.

The fact that the reliability function increases in discrete steps is useful when
approximating the reliability value and estimating the number of extra tasks required
to achieve a given reliability. Each step in the reliability function corresponds to a
failure arrangement, (r,w), which specifies the type and number of failures that the
existing arrangement is sufficient to cover. A desired reliability can then be achieved
by providing the minimum redundancy required to cover the corresponding failure
arrangement.

The approximation becomes essential, as the computational expense of calculating
S(x), which necessitates calculation of every possible combination of failures that
satisfy N(f,x)≥K. To reduce the computational complexity, we approximate the sum
on the right hand side of equation (6) by discarding the terms Si, j(x) that correspond
to failures of components (i, j) whose probability of failure is negligible with respect
to Smin. This enables us to obtain approximate reliability values without performing
expensive computations, and also helps us estimate the number of extra tasks required
to prevent failure events that have non-negligible effects on reliability relative to Smin.

3 Fault-aware Scheduling
To schedule a job in a way that achieves a given reliability, we must approximate
the minimum necessary number of extra tasks and identify a placement that satisfies
the reliability constraint S(x)≥ Smin. Our approximation algorithm is based on the
discussion in the previous section. We aim to determine which failures of (i, j) must
be compensated for to guarantee the target reliability Smin. Having identified this
set of essential failures, we must then provide the minimum level of redundancy
necessary to cover them.

To identify the failures for which it is necessary to provide redundancy, we have
implemented a decision tree. Each node in the tree corresponds to a failure of (i, j)
components, i.e. a specific number of failures of given types. For each node of the tree,
we estimate the number of extra tasks required to compensate for the corresponding
failures, n, and approximate the job reliability for the current arrangement. The
algorithm starts at the root of the tree, (0,0), and initially expands along the power
branch,(0,1). This is done because providing redundancy for power outages with
appropriate task placement also automatically protects against the negative impacts of
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certain multiple network failures. If the target reliability, Smin, cannot be achieved by
covering for one power failure, no amount of additional redundancy with respect to
network failure would be sufficient to compensate for this deficiency, so it is necessary
to expand further along the power branch. However, if providing redundancy for one
power domain failure results in S(x)> Smin, there is a chance of obtaining the desired
reliability with fewer extra tasks by covering for some network domain failures. If this
is the case, we expand along the network branch and iteratively increase the number
of possible component failures, (i, j), adding the necessary redundancy to cover these
failures at each step. In each expansion, we re-compute the new x for new N = K +n
and its associated S(x). We stop at the node that satisfies the target reliability Smin.
Note that, x is the placement vector representing the distribution of tasks over the
type of failure that we try to cover. If the required redundancy is to support network
failures, then x is the distribution of tasks over the network failure domains. However,
if the required redundancy is to support power failures, then x is the distribution of
tasks over the power failure domains.

The n values of the last two traversed nodes are the lower and upper bound estimates
of the approximate minimum number of extra tasks required to achieve S(x) ≥
Smin. Having determined this interval, we can easily approximate the minimum by
performing a bisection search over the n values that satisfy S(x)≥ Smin. The number
of iterations is limited and small because the intervals are usually limited and small.
This algorithm is outlined graphically in Figure 2 and more precisely in Algorithm 1.
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Figure 2: Decision tree for identifying the required redundancy level.
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Algorithm 1 Fault-aware scheduling algorithm
1: procedure SCHEDULING
2: Calculate S0,1(x) assuming n = K

W−1 , i.e. the reliability of a job in the event of one
power failure

3: if (S > Smin) then
4: Branching(S1,0(x)); Expand along the network branch
5: else S < Smin
6: Branching(S0,2(x)); Expand along the power branch
7: end if
8: end procedure
9:

10: procedure BRANCHING(SLevelNetwork,LevelPower(x))
11: if S > Smin then return x
12: end if
13: if LevelNetwork > 0 then
14: calculate n = K×LevelNetwork

R−LevelNetwork
15: x := Schedule Rn tasks equally on R network failure domains, considering the

capacity constraints
16: Sort network failure domains according to their reliability
17: Update x after removing N∗−N tasks from the least reliable domains
18: calculate job reliability S
19: else
20: if LevelPower > 0 then
21: calc n = K×LevelPower

W−LevelPower
22: Schedule Wn tasks on W power failure domains
23: Sort power failure domains according to their reliability
24: remove N∗−N from the least reliable domains
25: calculate job reliability S
26: end if
27: end if
28: if SLevelNetwork, LevelPower(x)< Smin and (LevelNetwork > 0) then
29: Branching(SLevelNetwork++, LevelPower(x))
30: else
31: if S(LevelNetwork, LevelPower)(x)< Smin and (LevelPower > 0) then
32: Branching(SLevelNetwork, LevelPower++(x))
33: end if
34: end if
35: end procedure
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3.1 Estimating the number of extra tasks
To estimate the number of extra tasks n, let us first assume that the desired reliability
Smin can be guaranteed by covering a single network failure domain:

Lemma 1. To provide full redundancy for one network domain failure, the required
number of extra tasks is n =

⌈ K
R−1

⌉
.

Proof. Let N be the total number of deployed tasks for the job. To ensure that at
least K tasks are running if any single network failure domain fails, at least K tasks
must run on each collection of R−1 network failure domains. By the pigeon hole
principle [13], at least one of these R− 1 network failure domains has n =

⌈ K
R−1

⌉

tasks. To ensure redundancy, the remaining R−1 network failure domains must have
at least K tasks, so we need K +n tasks to ensure redundancy.

Furthermore, we need to prove that this setting is realizable. In other words, we
should be able to place K +n tasks over the R network failure domains such that no
domain has more than n tasks. One straightforward way of doing this is to put n tasks
on each network failure domain, resulting in R

⌈ K
R−1

⌉
≥ K +n tasks in total, and then

remove any (Rn)−K−n tasks.

Lemma 2. To provide full redundancy for i > 0 network domain failures, the number
of required extra tasks is nr =

⌈ Ki
R−i

⌉
.

Proof. Lemma 2 is an extension of the statement in Lemma 1. For a job to survive
i > 0 network domain failures, we need at least K tasks running on R− i network
failure domains. Assuming that each i network failure domain forms a larger network
failure domain, we can argue that at least one of these larger domains has n =

⌈ Ki
R−i

⌉

tasks. In other words, there is a set of i domains that has at least
⌈ Ki

R−i

⌉
tasks running

on them.

Using a similar argument, we can conclude that the number of extra tasks required
to provide full redundancy in the event of j > 0 power failures is nw =

⌈
K j

W− j

⌉
. The

only difference is that deploying nw� nr tasks automatically covers for the failure
of R∗ network failure domains due to the deployment of a greater number of spare
tasks. Using the equation in Lemma 2, we can find R∗, the number of network domain
failures covered by deploying nw extra tasks:

nw =

⌈
KR∗

R−R∗

⌉
→ R∗ =

⌈
nw

K +nw
×R
⌉

(8)

Therefore, when estimating the increase in reliability it is necessary to consider the
coverage of both the power failures and R∗ network failure domain failures.
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3.2 Die-Hard Placement

To identify a suitable placement given the failure of (i, j) components, we must ensure
that at least K jobs are running on each combination of failure domains. One intuitive
approach is to evenly assign n tasks to each domain. Assuming that placement is done
over network failure domains, this results in at most Rn≥ K +n tasks in total given
the capacity constraints. Next, we can remove (Rn)−K−n tasks from the assigned
tasks. Since n is derived independently from the failure probabilities of each failure
domain, a lower n can be obtained by removing the tasks from the failure domains
with highest probability of failure. We continue reducing the number of tasks from the
least reliable failure domains as long as the reliability condition S(x)≥ Smin holds.

If the placement is to be done over power failure domains, we similarly assigns
tasks to each power failure domain. However, we further distribute the tasks to the
network failure domains within the power failure domain to cover the

4 Experimental Setup

We simulated a cluster with 3 power nodes and 9600 machines connected through
120 Top of Rack (ToR) switches. Each machines has 4 CPU cores and 16 GB of
memory, and a background load that is a random value uniformly chosen within the
available capacity range. Details of the power and network topology are presented
in Section (2.1). On the basis of the described topology, the cluster’s machines are
organized into 61 network failure domains and 4 power failure domains.

A job arrives at the system and runs for T hours. The value for the T is introduced
in the experiments. All tasks have identical CPU and memory demands, uniformly
chosen from 1 to 4 cores for the CPU and 1 to 16 GB for memory. The target reliability
for the job was set to 0.999 or 0.9999, depending on the experiment.

The time to failure of each network node during a job runtime T is exponentially
distributed with a random failure rate of 0.00022≤ λ ≤ 0.00032 per hour. Similarly,
the time to failure of the power nodes (i.e. the PDUs) during a job with runtime T is
assumed to be exponentially distributed over time with a failure rate of λ = 0.4×10−6

[11] per hour. The results presented below are average values obtained from 10
separate runs of each experiment.

5 Illustration and evaluation

We have already presented an analytical proof of the validity of our approach for
computing the number of required extra tasks. This section therefore illustrates the
impact of replica count on job reliability, for a typical use case. We also study the
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impact of different placement strategies on job reliability and the required number of
extra tasks.

5.1 Impact of the number of replicas on reliability
As shown in Equation (7), it is not necessary to provide full redundancy for a job
to meet the required reliability level. By exploiting this property of the reliability
model, it is possible to reduce the complexity of the computations and facilitate the
estimation of the required number of extra tasks. To illustrate this point, we studied
the impact of increasing the number of extra tasks on reliability. As shown in Table 1,
as n increases the improvement in job reliability becomes progressively smaller
and ultimately negligible. The results also show that there is an optimal number of
replicas and further increasing the number of replicas does not significantly increase
job reliability. The optimal number increases in a stepwise fashion and is related to
the number of failures that can be tolerated.

Table 1: Impact of number of extra tasks on job reliability, K=1000

No. of replicas (n) Reliability Average improvement/replica

0 0.9619771697
16 0.9884874963 1.66×10−3

33 0.9997473744 6.62×10−4

51 0.9999373772 1.05×10−5

70 0.9999376013 1.17×10−8

89 0.9999376019 3.15×10−11

5.2 Impact of the scheduling strategy
Given a total number of tasks N = K +n, there are a number of distributions that can
satisfy the reliability constraint S(x)≥ Smin. Any distribution is acceptable as long as it
guarantees a total of K tasks running on all possible combinations of available failure
domains. To find a suitable distribution we have introduced a placement algorithm,
Die-hard (DH), which is described in Section 3.2. We compare DH algorithm to two
other intuitive placement strategies. We observe that, for high reliability targets, some
quite intuitive placement strategies do not necessarily satisfy the reliability constraints
with the approximated number of replicas.

The three placement strategies are:

• DH: The algorithm initially assigns an equal number of tasks over different
failure domains. It then iteratively removes tasks from the domains with the
highest probabilities of failure provided that the reliability constraints hold.
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• Proportional placement: The algorithm distributes the tasks among failure
domains in proportion to their probabilities of failure.

• Highest reliability first (HRF): the HRF algorithm ranks the domains based
on their failure probability. It then places the tasks on the domains with the
greatest reliability provided that they have available capacity.

To compare the three algorithms, we use the affinity score [2], as a metric to
measure the likelihood of correlated failures. Let x = [x1, ...,xl] be the distribution
of tasks over different failure domains, where x1 ≤ x2 ≤ ... ≤ xl . Let the impact of
the correlated failure be the number of tasks sharing a common failure source. The
affinity score is:

l

∑
i=1

xi(xi−1)
2

(9)

The affinity score is maximized when all the tasks (task failures) are in the same
domain, and minimized when tasks are spread over different domains. A low affinity
score represents a low concentration and a low risk of correlated failure.

Table 2 compares the required numbers of extra tasks, reliabilities, and affinity
scores of the three placement algorithms. For high reliability targets, the DH algorithm
clearly requires the least extra replicas to guarantee reliability. The DH algorithm
gives the lowest affinity score, showing that it reduces the risk of correlated failures by
having the lowest task concentration. Reducing task concentration increases reliability
with respect to correlated failures while minimizing the number of extra tasks required
to guarantee the desired reliability.

It can also be seen that, for the same reliability target (0.9999), the HRF algorithm
has the lowest reliability and the highest affinity score. Although it may seem intuitive
to place as many tasks as possible on the domain with the highest reliability, this
placement strategy leads to the highest affinity score and the lowest reliability value
when there is a risk of correlated failure. It can also be seen that, for high reliability
targets, the HRF algorithm cannot even satisfy the reliability constraint with the same
upper bound value n as the other two placement strategies. Thus, placing tasks using
the HRF algorithm would substantially increase the number of extra tasks required for
each job to achieve a given level of reliability. This is because the HRF placements
yield a high level of correlation among potential failures, reducing the benefits of
increasing redundancy. Replication alone is thus not sufficient to protect against
correlated failures. In other words, the risk of correlated failure is not mitigated and
reliability is not improved by increasing the redundancy within the failure domain.

However, as shown in Table 3, if job’s desired reliability is lower than the reliability
of a failure domain, (in this case 0.999), deploying all the tasks on any failure
domain with higher reliability that the job’s target reliability satisfies the S(x)≥ Smin
constraint with no extra tasks. It should also be noted that the probability of failure
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of a component during a job runtime is a function of the job’s duration. In other
words, the longer the job, the more probable to have more failures during its runtime.
Therefore, for long running jobs with high reliability targets, distributing the tasks
over different failure domains, (using DH or proportional placement), is necessary to
satisfy the job’s reliability. However, this may not be the case for a short-running job,
as it is more probable to satisfy the reliability constraint by deploying the tasks using
HRF. The impact of job duration on required number of extra tasks and job reliability
is shown in Table 4.

Table 2: Impact of placement on required number of extra tasks, reliability and affinity score,
Smin = 0.9999, job duration = 80 hours.

K Algorithm Extra tasks (n) Affinity score Reliability

500
DH 18 2089 0.9999
Proportional 23 2274 0.9999
HRF 25 137026 0.9995

700
DH 32 4015 0.9999
Proportional 33 4476 0.9999
HRF 36 269745 0.9996

1000
DH 36 8280 0.9999
Proportional 45 9228.6 0.9999
HRF 51 550725 0.9996

Table 3: Impact of placement on required number of extra tasks, reliability and affinity score,
Smin = 0.999, K = 500, job duration = 80 hours.

Algorithm Extra tasks (n) Affinity score Reliability
DH 9 2022 0.9995
Proportional 12 2170 0.9995
HRF 0 124251 0.9995

It can also be seen that the proportional placement algorithm requires more extra
tasks than the DH algorithm. This is because although it distributes tasks proportion-
ally over different domains, the distribution is still biased by the domains’ reliability.
This bias in distribution increases the concentration of the placement scheme and
thus the affinity score, thereby reducing reliability. The decrease in reliability forces
the system to deploy more tasks to achieve the target reliability. In other words, a
minimum level of distribution is required to achieve a high reliability.

6 Related work

Below, we review two categories of related work:
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Table 4: Impact of job duration and placement on required number of extra tasks, reliability
and affinity score, Smin = 0.999, K = 500.

Duration Algorithm Extra tasks (n) Affinity score Reliability

80 h
DH 9 2022 0.9995
Proportional 12 2170.6 0.9995
HRF 0 124251 0.9995

168 h
DH 18 2058 0.9995
Proportional 21 2247 0.9992
HRF 25 137026 0.998

6.1 Failure analyses in data centers
Several studies [2], [14], [5] have focused on characterizing failure sources and ana-
lyzing their impact on system availability and reliability in cloud data centers. Ford et
al. [2] studied the impact of correlated failures on availability for Google’s cloud stor-
age system. They argued that scheduling strategies should be aware of failure bursts
caused by correlated failures. Assuming that machines fail independently results in
over-estimation of the system’s availability at least by two orders of magnitude. They
also developed an availability model using Markov chains and introduced multi-cell
replication schemes to cope with correlated failures.

Similarly, Gill et al. [14] presented an analysis of possible failures in a Microsoft
cloud data center. They also studied the effectiveness of redundancy at maintaining
reliability. Their observations indicated that the effectiveness of network redundancy
at masking network failure is only 40%. This was attributed to the propagation of
configuration errors, which can lead to concurrent failures of many tasks. Their results
highlight the necessity of spreading tasks over different domains of control to achieve
high reliability.

6.2 Failure-aware scheduling and allocation
Cirne et al. [15] discussed a task backup strategy to provide reliability guarantees for a
job. The goal is to determine the probability of losing a certain number of backups and
use this probability for the admission control decisions. They took into account the
possibility of correlated failures of tasks caused by rack and machine faults. However,
they supported the correlated failures caused by the rack failures as long as the failure
domains nicely nest into a tree. They also did not fully investigate the possibility of
multiple rack failures during the job runtime and its impact on job reliability.

Bakkaloglu et al. [16] studied correlated failures in storage systems. They modeled
availability using a beta-binomial distribution, which was computed by randomizing
the failure probabilities according to a binomial distribution, and used a correlation
factor to quantify the intensity of correlations. However, different studies [2, 4] have
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shown that beta-binomial distributions do not provide a good fit to real-world data
from data centers. Moreover, it is still challenging to accurately estimate correlation
coefficients.

Tang et al. [3] analyzed the impact of correlated failures on reliability for DEC
VAX clusters, and found that such failures can reduce reliability by several orders
of magnitude. They proposed a correlation coefficient-based model to quantify the
relationship between failures and reliability. However, the proposed model is only
applicable to two-way correlations and is not straightforwardly generalized to higher
levels of correlation.

Bodik et al. [7] presented an optimization framework for achieving high fault
tolerance while reducing the bandwidth consumption in the network. They improved
fault tolerance by spreading applications across different failure domains. However,
their framework is not designed to cope with the problem of correlated failures and
does not take probabilities of failure into account during scheduling.

Rabbani et al. [17] proposed a management framework for maintaining high relia-
bility. Their method considers the heterogeneity of components’ failure rates when
planning the number and allocation of redundant virtual nodes in a virtual infras-
tructure. However, their main focus is on independent failures and they have not
considered the impact of correlated failures on reliability. Moreover, their main ob-
jective is to minimize the number of machines required to deploy the service, at the
expense of increasing the number of backups. Their procedure iteratively increases
the number of required backups, which is assumed to be the minimum number of
vitual machines deployed in machines in each round, until the reliability constraint is
satisfied. We believe that estimating the number of extra backups without considering
allocations and the probability of machine failures leads to over provisioning and is
not a reasonable way to maintain reliability.

Venice [18] is a framework for achieving high reliability for a 3-tier application
with VM dependencies. It has a reliability-aware scheduler that deploys VMs on
the machines with the lowest reliability capable of meeting the service reliability
requirement. Then, over a number of trials, it removes the machines with the lowest
reliability and deploys the VMs on the remaining set of machines. Finally, the
scheduler selects the allocation scheme with the lowest cost as its final solution.
Sampaio [19] also considered the Mean Time Between Failures (MTBF) of the nodes
when planning allocations. Both of these works ignored the impact of correlated
failures on service reliability and also did not consider the benefits of using redundant
replicas to attain the required service reliability.

Mills et al. [20] addressed the replica scheduling problem using a greedy heuristic
in a tree structure. The tree structure represents the dependencies among system
components. The aim is to minimize the number of concurrent component failures
due to a single failure event. However, structuring the component dependencies as
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a tree represents a considerable simplification because it assumes that either there
is a single source of failure or that the power and network topologies map onto
one another. In other words, the tree structure ignores the probability of nested and
overlapping failure domains.

7 Conclusion

In this paper we address the problem of efficiently scheduling resources in a cloud
data center to achieve reliability guarantees even in the face of correlated failures.
The goal is to guarantee each job’s reliability while minimizing the number of extra
tasks required during the job’s runtime. The reliability guarantee is achieved through
task replication and diversified job placement over different failure domains.

We present a reliability model that accounts for failure probabilities and the topolo-
gies of power and network components in the data center. We also provide a method
for obtaining approximate reliability estimates that does not require expensive com-
putations.

We use our model to approximate the minimum number of extra tasks required
to guarantee a desired reliability. This is done by using a decision tree to map the
target reliability to a specific redundancy level. Moreover, we introduce a scheduling
algorithm to schedule tasks on resources in a way that accounts for their capacity
constraints. Using analytical proofs and simulations, we show that the algorithm can
effectively approximate the minimum number of extra tasks required to guarantee job
reliability.
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