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Abstract 
Background  
Research has for many years pointed out the inefficiency of rote-learning and 
the importance of regarding concepts and mathematical properties while 
struggling with mathematics tasks (e.g., Hiebert, 2003; Schoenfeld, 1985; 
Stein, Grover, & Henningsen, 1996). From a theoretical viewpoint, Brousseau 
(1997) suggested that students have to consider such important aspects while 
constructing solutions by themselves and that teachers have to develop 
situations where this is possible for the students. The added effort needed 
from the students could however be cognitively demanding to the point that it 
will be overwhelming, in particular for cognitively less proficient students. 
Therefore, students’ cognitive abilities are important to consider when 
constructing tasks or didactical situations. The aim of this thesis is therefore 
to examine how task design and students’ cognitive abilities will influence 
students’ mathematical reasoning, student outcome and students’ brain 
activity. 

Methods  
Three of the four included studies are done with a between-groups design 
where data is analyzed statistically to search for significant differences in test 
results between the different practice conditions. In these studies, practice 
tasks were designed by researchers to promote special types of reasoning 
(algorithmic reasoning (AR) and creative mathematically founded reasoning 
(CMR)) and in one study an explanation on why the solution method is 
working was also provided. The practice data from these three studies are also 
analyzed as an additional result, not part of the included studies. The last 
study was based on observations of students work on tasks designed by 
teachers to unravel how student reasoning evolves during the solution 
process. Here we transcribed audio recordings from four student-groups’ 
when they solved tasks constructed by their teacher. We then coded the 
solution process by utilizing the framework on mathematical reasoning 
suggested by Lithner (2008). 

Results  
The overall results suggest that creative tasks are more effective than 
algorithmic tasks when it comes to memory retrieval and reconstructing 
practiced solution methods. There are also clear indications that AR is more 
taxing on cognitive abilities during the test than creative tasks (where practice 
performance seems to be more important). During practice the dependence of 
cognitive abilities is however higher when working with creative tasks. 
Furthermore, task design is important for which type of reasoning that the 
student will use. However, student-group characteristics (i.e., motivation and 
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persistence) are also important both when choosing reasoning type and for 
task-progression.   

Conclusion 
Since mathematics students spend a lot of time doing tasks it is important to 
study these tasks from a learning perspective. The results in this thesis points 
to a few important issues regarding task design and the result of different 
types of reasoning. First, since creative reasoning seems to be more effective 
than algorithmic reasoning, it would be good for students to encounter more 
of this type of task in textbooks as well as in teacher presentations. Second, 
cognitive abilities are important for mathematics but there is a difference 
where the student’s cognitive abilities are taxed (i.e., algorithmic reasoning 
will put higher strain on cognition during the test while creative reasoning will 
be highly demanding during practice). This difference in cognitive strain 
seems to be related to a deeper encoding during creative practice than during 
algorithmic practice. CMR also seems to be more beneficial than AR for 
cognitively less proficient students. While the teacher can reduce students’ 
cognitive load by for instance directing focus to the important properties 
during practice, this may not be done during tests (at least not to the same 
extent). Third, even though algorithmic tasks do not prohibit the use of 
creative reasoning, it is much less likely to occur than algorithmic reasoning. 
To ensure that creative reasoning will take place, the task must be designed 
for this purpose.  

Since creative tasks can put focus on one or more important mathematical 
properties and provide deeper understanding than algorithmic tasks, 
implementation in school practice can be essential if we want students to 
become mathematically literate. 
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Sammanfattning 
Bakgrund 
Forskning har under många år pekat på ineffektiviteten av utantill-lärande 
och vikten av att dels reflektera över koncept och matematiska egenskaper och 
dels bli tvungen att kämpa med matematikuppgifter (se t.ex. Hiebert, 2003; 
Schoenfeld, 1985; Stein, Grover, & Henningsen, 1996). Brousseau (1997) 
föreslog från ett teoretiskt perspektiv att elever måste överväga sådana viktiga 
aspekter medan de konstruerar egna lösningar och att lärare bör utforma 
situationer där detta är möjligt för eleverna. Den extra ansträngning som 
eleverna måste lägga ner kan dock vara kognitivt belastande till den grad att 
det blir överväldigande, speciellt för elever med lägre kognitiv kapacitet. 
Därför är elevers kognitiva kapacitet viktigt att beakta när man konstruerar 
uppgifter eller didaktiska situationer. Syftet med denna avhandling är därför 
att undersöka hur uppgiftsdesign och kognitiva färdigheter kan inverka på 
elevers matematiska resonemang, testresultat och hjärnaktivitet. 

Metoder 
Tre av de fyra inkluderade studierna är genomförda med en mellangrupps-
design där datamaterialet analyserats statistiskt för att hitta signifikanta 
skillnader i testresultat mellan olika träningsgrupper. I dessa studier hade 
forskarna designat uppgifter som skulle främja olika typer av matematiska 
resonemang (algoritmiska resonemang (AR) och kreativa matematiskt 
grundade resonemang (CMR)). I en studie fanns även en förklaring tillgänglig 
som beskrev varför lösningsmetoden fungerade. Träningsdata från dessa tre 
studier har också analyserats som ett ytterligare resultat, utanför de 
inkluderade studierna. Den sista studien baseras på elevers arbete med 
uppgifter i klassrummet för att reda ut hur elevers resonemangssekvens 
utvecklas under lösningsprocessen. Vi transkriberade ljudinspelningar från 
fyra elevgrupper när de löste uppgifter som konstruerats av deras lärare. 
Sedan kodade vi lösningsprocessen genom att tillämpa Lithner’s (2008) 
ramverk om matematiska resonemang. 

Resultat 
Det övergripande resultatet visar att kreativa uppgifter är effektivare än 
algoritmiska vad gäller minne och rekonstruktion av tränade lösnings-
metoder. Det finns också klara indikationer på att AR ställer högre krav på 
kognitiva färdigheter under testen än vad CMR gör (där träningsresultatet är 
viktigare). Under träningen är däremot kravet på kognitiva färdigheter större 
när man arbetar med kreativa uppgifter. Vidare är uppgiftsdesignen viktig för 
vilken typ av resonemang studenterna kommer att använda. Studentgruppens 
egenskaper (d.v.s. motivation och envishet) är också viktigt, både för vilken 
resonemangstyp eleverna väljer samt för progressionen i uppgiften.  
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Slutsats 
Eftersom matematikelever använder mycket tid till att lösa uppgifter är det 
viktigt att studera dessa uppgifter från ett inlärningsperspektiv. Resultatet i 
denna avhandling pekar ut några viktiga saker vad gäller uppgiftsdesign och 
resultat av olika typer av resonemang: 1) Eftersom CMR verkar vara 
effektivare än AR så vore det bra om eleverna mötte mer kreativa uppgifter i 
såväl läroböcker som i lärares presentationer. 2) Kognitiva färdigheter är 
viktiga för matematik, men det är skillnad när elevernas kognitiva färdigheter 
belastas, d.v.s. AR är mer belastande under testen medan CMR ger högre 
belastning under träningen. Denna skillnad i kognitiv belastning verkar bero 
på en djupare inkodning under den kreativa träningen än under algoritmisk 
träning. Dessutom verkar de lågpresterande eleverna dra mer nytta av CMR 
(jämfört med AR) än de högpresterande eleverna. Även om läraren kan 
reducera den kognitiva belastningen genom att exempelvis rikta fokus mot de 
viktiga egenskaperna under träning så kan läraren inte göra detta under ett 
test (åtminstone inte i samma utsträckning). 3) Även om algoritmiska 
uppgifter inte förhindrar CMR är det mindre sannolikt att detta skulle 
förekomma än AR. För att säkerställa att CMR ska ske måste uppgiften vara 
designad för det.  

Eftersom kreativa uppgifter kan sätta fokus på en eller flera viktiga 
matematiska egenskaper, samt ge en djupare förståelse än algoritmiska 
uppgifter så är det nödvändigt att omsätta dem i skolpraktiken om vi vill att 
våra elever ska bli förtrogna med matematik. 
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1 Introduction 
Mathematics is one of the few school subjects that to its content does not differ 
that much across the world. The sum of two and three is always five1 and if you 
differentiate the function 𝑓 𝑥 = 𝑥$ · sin	(𝑥) you will end up with the 
derivative 𝑓, 𝑥 = 2𝑥 · sin 𝑥 + 𝑥$ · cos	(𝑥) regardless of which country you 
are educated in. There is however much difference regarding the way this 
uniform subject is taught. Teachers are more or less directed by syllabuses, 
textbooks are used to differing extent, and more or less responsibility is left to 
the student. What is common for all mathematics teaching is however the use 
of mathematics tasks to practice and hopefully learn the mathematics that will 
be used further on in both higher mathematics and everyday life. In this thesis 
the starting point will be the tasks and relating to them both design, learning 
outcome, and influence on student work and brain activity will be studied. As 
mathematics tasks are used to such a large extent, the impact and efficiency 
of these tasks are important to study and understand. 

In this thesis I will begin with a short description of school-mathematics by 
discussing the content of the syllabi and comparing this to teachers’ 
presentations and textbook content. This is done to set the stage for a 
discussion about task design and its influence on the mathematical reasoning 
that students choose or are directed to. Students use a lot of time practicing 
by doing tasks and their reasoning during this task solving process will affect 
their learning. Learning by rote is quite common in schools all over the world, 
and might, if dominating, be one problem when trying to learn mathematical 
theories or heuristics as it implies that things are learned without reflection. 
When discussing mathematics teaching and the classroom work, Brousseau’s 
(1997) Theory of Didactical Situations in Mathematics offers insight in which 
roles students and teachers could have in the classroom to increase problem 
solving activities and encourage students’ own knowledge construction. How 
this should be acted out in the classroom can of course be discussed 
extensively, but I will give an overview on some previous findings that will lead 
to the framework of mathematical reasoning by Lithner (2008), which is at 
the center of all the papers in the thesis.  

The framework defines two major types of reasoning, imitative and 
creative. Imitative reasoning is closely related to rote learning while creative 
reasoning is based on students’ own construction of solutions and therefore 
more connected to understanding relations and justifying choices on a more 
mathematically fundamental level. Both types will be discussed more 
extensively later on in this thesis. 

When introducing tasks that are more cognitively demanding, individual 
variation in cognitive abilities can be crucial. There are many cognitive 

                                                             
1 Provided that the calculations are made in a base ≥ 6 and modulo 5 or higher. 
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abilities that could influence mathematics learning but working memory and 
non-verbal problem solving ability are two that has been proven to be closely 
related to mathematical achievement (e.g., Primi, Ferrão, & Almeida, 2010; 
Swanson & Alloway, 2012). These two cognitive constructs are used to match 
participants into equally proficient groups before our experiments, and in the 
following analyses the cognitive measures will contribute to the results. The 
cognitive constructs will be discussed later on in the thesis and at this time 
functional magnetic resonance imaging (fMRI) will also be addressed. fMRI 
has been used to help make connections between active brain regions and 
cognitive processes and this is also what it is used for in one of the papers in 
this thesis. The connection between different cognitive processes and 
mathematical reasoning is important for the results of our experiments and 
the conclusions that can be drawn from them. 

1.1 Aim 
The overall aim for the thesis is to tie all these perspectives together and 

build on previous research to extend the knowledge on how task design, 
mathematical reasoning and cognitive abilities can affect the learning of 
mathematics. This will be done by comparing and combining the results from 
the four included papers to discuss the following questions.  
1) How will the task design influence students’ solution process, 

mathematical reasoning, and brain activity?  
2) How will students’ cognitive variation affect their solution rate and does 

the task design matter?  
3) How could these results influence teaching practice? 
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2 Mathematics in school 
Mathematics is a global school subject that has become one of the measures 
for school achievement, with tests like PISA and TIMSS. Newspapers have 
reported on decline or rise in results of these tests, both over time and between 
countries, and this has put some focus on mathematics education worldwide. 
In Sweden, decline in PISA results intensified the political debate on how 
education should be governed and executed. This debate included the syllabus 
for mathematics as well as for education in general both in primary and 
secondary school. 

2.1 Syllabi 
In Swedish syllabi, up until the early 90’s, the aim of school mathematics was 
to prepare students for the every-day life with a focus on ability to perform 
necessary calculations (e.g., Skolöverstyrelsen, 1970, 1980). The last three 
syllabi, from 1994, 2000 and 2011, have changed this focus from pure 
calculation to include other abilities as well (e.g., Skolverket, 2000; 
Skolverket, 2011a, 2011b; Utbildningsdepartementet, 1994). Since 2000, 
seven competencies (i.e., procedures, reasoning, problem solving, modelling, 
communication, conceptual understanding, and relating mathematics to the 
surrounding world) have been explicitly defined in the syllabus. This change 
towards mathematical competence has been seen in other countries as well. 
The international movement towards a more competence focused curricula 
was in large initiated by the National Council of Teachers of Mathematics 
(NCTM, 1989, 2011). The Danish KOM-project defined eight mathematical 
competencies that education in mathematics should enhance (Niss & Jensen, 
2002). The shift of focus from pure calculating skills to a broader 
mathematical competence could be important for mathematical proficiency in 
every-day life, as many occupations demand other competencies as well (e.g., 
problem-solving skills and modelling). However, these competencies are not 
mutually excluding. Calculating skills and rote learning of certain facts or rules 
are also important for an efficient problem solving process, since the focus can 
be put on the problem at large instead of each small item that need to be 
processed or calculated.  

2.2 Rote learning 
A lot of things in mathematics are memorized for quick and effortless retrieval 
and application when needed. For example, the multiplication table and the 
order of operations can be two important things to have quick access to. But 
this memorization can also become a hindrance if rote learning is dominating 
and if it occurs without understanding. Rote learning can be defined as a 
mechanical and habitual repetition of the learning object. If the student lacks 
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understanding of the memorized rules and methods (i.e., why and how the 
rule works and is valid) it can be difficult when trying to get a more conceptual 
view on mathematics. Also, when rules become too numerous to keep track of 
there can also be difficulties if no connection to mathematical properties is 
made (e.g., learning integration only by rules is hard as sometimes many basic 
techniques have to be used simultaneously). When rote learned rules or facts 
become the main knowledge, students will not be able to solve tasks with the 
slightest variation from the ordinary (Hiebert, 2003). Hiebert (2003) went so 
far as to compare students that had learned mathematics mainly by rote to 
robots with poor memory, expressing that one could predict their errors just 
by erroneously recall rules or algorithms. This view is shared with Schoenfeld 
(1985) that states that the earlier focus on mechanical skills produced dismal 
results when students were challenged by more complex problems. 
Schoenfeld (1985) found that students tend to use only a small proportion of 
their total solution time on analyzing the problem. Instead they rush into a 
solution process without good strategies and towards a certain failure. Experts 
are more flexible in their problem solving. They use more time for analyzing 
the problem and are more prone to revising their choice when they get stuck 
(Schoenfeld, 1985). Boaler (1998) demonstrated in a longitudinal study that 
students that were taught mathematics with more emphasis on rote learning 
did not view mathematics as important in their daily life. These students also 
expressed that mathematics was boring, complicated and useless. Boaler’s 
other group in this study, which were taught mathematics in a more project 
based way (i.e., with more emphasis on mathematical concepts and 
construction), expressed a more positive view on mathematics as a useful and 
important subject.  

Although syllabi have shifted towards a more competence oriented aim, 
mathematics textbooks, as we will see in the next section, often stress 
algorithmic skills.  

2.2.1 Textbooks 
Textbooks are used throughout the world to provide students of all ages with 
tasks to solve and often also instruction on how this should be done. The high 
proportion of classroom time spent reading or solving tasks from textbooks 
might vary to some degree, but in most mathematics classrooms, textbooks 
are used as a source of information and practice tasks (Mullis, Martin, Foy, & 
Arora, 2012; Wakefield, 2006). However, textbooks often tend to send an 
implicit message that the focus of mathematics is to swiftly perform 
mechanical computations of correct answers rather than to encourage a 
conceptual learning of mathematical structures (Lithner, 2004; Newton & 
Newton, 2007; Shield & Dole, 2013). Many textbooks also include more tasks 
then is reasonable for a student to complete within the frame of the course 
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(Jäder, Lithner, & Sidenvall, 2014). It is also apparent that many of the more 
demanding tasks are located at the end of each chapter (Jäder et al., 2014). 
This implies that a selection must be done and if students are supposed to 
make this selection of tasks they tend to choose the first task sets (Sidenvall, 
Lithner, & Jäder, 2015), which increases the proportion of routine tasks 
further. In a cross-national study of textbooks from twelve countries Jäder et 
al. (2014) concluded that 79% of the tasks could be solved completely by 
imitating or following given instructions while only 9% of the tasks required 
more extensive conceptual knowledge and justification. If the textbooks 
mainly promote algorithms and rote learning then the mathematical 
foundation and conceptual knowledge will, most probably, not be developed. 
Here the teacher has an important mission to fill the gap between mechanical 
calculations often presented in the textbooks and the conceptual 
understanding and competencies that the syllabi often calls for.  

2.2.2 Teaching 
In a study on 200 teachers’ implementation of reform-based syllabi, Boesen 
et al. (2013) found that there was an emphasis on procedural activities during 
mathematics lessons both in teacher presentations and during students 
individual (or small group) work. Focusing on the teacher presentations, 
Bergqvist and Lithner (2012) concluded that routine tasks and simplifying 
explanations were commonly used. Teachers often used quite thorough 
explanations when presenting new topics but often without verifications or 
connections to intrinsic mathematics (Bergqvist & Lithner, 2012). It seems 
logical, that if we want students to become skilled at solving novel tasks and 
at justifying their solution methods, teachers must demonstrate this during 
presentations. Studies have shown that students often motivate their choice 
of solution methods by looking at superficial properties and poorly memorized 
algorithms (Bergqvist, Lithner, & Sumpter, 2008; Hiebert, 2003; Lithner, 
2000, 2003). Stein et al. (1996) also saw this behavior among the students 
that they studied. Many students preferred to use known procedures even if 
the procedures did not fit the task at hand. Stein et al. (1996) also concluded 
that many tasks lost their challenging quality due to poor help from the 
teacher or a shifted focus towards the correctness of the answer.  

An important factor for the the task to maintain its complexity and its 
conceptual challenge is the type of help the teacher provides the students with. 
Henningsen and Stein (1997) conclude that teachers that select appropriate 
and worthwhile tasks, press for justifications, and “support students’ cognitive 
activity without reducing the complexity” will help students to reach further. 
The teacher also has an important role in showing the class what high-level 
performance should look like and in giving appropriate time constraints to the 
tasks (Henningsen & Stein, 1997; Stein et al., 1996). 
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If teachers want students to become problem solvers and students expect 
to learn an algorithm or simple rules there is a problem. Add to this that 
algorithms, although effective and secure, according to Brousseau (1997) are 
designed to avoid meaning and there won’t be that much room left for the 
mathematical concepts and properties that teachers probably wish to 
communicate. 
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3 Theoretical frameworks 
This thesis has the aim to analyze how task design and mathematical 
reasoning can affect the learning of mathematics. To do this there is a need to 
frame it with theories and frameworks that are relevant for the coming 
analysis. I will do so by starting off with Brousseau’s (1997) theory of didactical 
situations, which lurks at the center of most of the included studies in this 
thesis. Brousseau’s thought that students need to take responsibility of the 
task solving process to learn the intended knowledge has also been discussed 
by others (e.g., Bjork & Bjork, 2011; Hiebert & Grouws, 2007; Jonsson, 
Kulaksiz, & Lithner, 2016) as the importance to struggle with central 
mathematical concepts. This struggle can of course be accomplished in 
different ways and engaging in problem solving is one of the ways that have 
been studied and discussed extensively ever since Pólya (1945) wrote his 
famous book ‘How to solve it’. However, OECD (2015) concluded that teachers 
in average have seven hours a week to spend on lesson preparation and as 
Blum and Niss (1991) infer, mathematics teachers are afraid that problem 
solving will take too much time. They also mention that problem solving can 
be viewed as a challenging and slightly overwhelming project to embark on for 
many teachers, since additional non-mathematical knowledge is necessary. A 
slightly more reasonable effort could instead be put into constructing or 
adjusting ordinary tasks so that they require more justification and conceptual 
understanding rather than procedural skills. One way of doing this is to apply 
Lithner’s (2008) framework on mathematical reasoning to task design. This 
framework will be described and the types of reasoning that Lithner suggests 
will be defined, together with a new type that is more connected to task design 
than to student reasoning. Later on Lithner’s framework will also be 
connected to student cognition, as tasks’ cognitive demand may differ as Stein 
et al. (1996) suggests. This will then lead us into chapter 7 that describes 
cognition and its influence on mathematics education. 

3.1 Theory of didactical situations in mathematics 
Learning mathematical concepts and strategies, to be able to construct or 
reconstruct solution methods if the old ones are insufficient or forgotten, is a 
major goal in mathematics learning, but as algorithms often are provided the 
aim instead becomes to memorize and make use of them (Hiebert, 2003) 

In Brousseau’s (1997) Theory of Didactical Situations (TDS) one of the 
central ideas is that if students are to learn mathematics they have to construct 
the key concepts by themselves. Brousseau (1997) argued for a task or problem 
design where the students have to construct at least some part of the solution 
by themselves as this is central for a learning that goes beyond mere 
memorization of a method.  
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However, Brousseau argues that much of the work in classrooms is done 
interacting with teaching materials, peers, and the teacher. The interaction 
with this milieu can, if done poorly, destroy the learning opportunity, for 
example by having the solution method given in the textbook or by having a 
peer telling the answer. Thus, Brousseau took into account that the milieu was 
important to relate to when discussing the learning of mathematics.  

For the student to be able to go beyond given algorithms the teacher must 
arrange the devolution of a good problem (Brousseau, 1997). This requires 
that the student gradually takes responsibility for the solution process which 
ends with the construction of a justified solution. If this devolution occurs the 
student will enter an a-didactical situation devoid of the teacher’s didactical 
intentions and where the teacher is separated from both the student’s progress 
and learning. Here the responsibility for solving the task falls completely on 
the student and the teacher has to release control of the solution and the 
learning to the student. For this devolution to take place a mutual relationship 
that states what responsibility the student will have during this process and 
what the teacher’s duty is will implicitly be agreed upon (e.g., what effort the 
student should give the problem before calling for help or what kind of support 
the teacher will give when called for). This informal and often non-spoken 
agreement is called a didactical contract (Brousseau, 1997). Brousseau 
underlines the shared responsibility of teacher and student if the contract is 
broken. The teacher has the responsibility for the results by designing solvable 
problems that give rise to a natural a-didactical situation. Simultaneously, the 
student has to accept a problem solving situation where the solution method 
has not yet been taught. This can be hard for some students to accept at first 
as many of them are used to apply given algorithms to solve tasks (Hiebert, 
2003), not having to struggle with mathematical properties or concepts. 

3.2 Productive struggle 
Imagine for a moment that you visit a friend in a city where you have not been 
before. She picks you up at the station and you walk together, first to her 
apartment and then to a restaurant to eat dinner. All the time, as you walk 
through the city, you talk and have a wonderful time. Suddenly you realize that 
you have no idea where you are, no idea of how you got there or how you would 
find your way back if your friend suddenly would leave. If you took this walk 
with your friend every day for a week you would probably learn the way even 
though you don’t know anything else about the city. Now, imagine that you 
come back a year later, the restaurant has moved and so has your friend. How 
will you find the way? Well with a map of course. This could be a little tricky 
and you’d have to notice more things (e.g., architectural markers and street 
names). It could be a bit of a struggle but eventually you’ll get to the right 
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place. After finding your way this time you would be more confident when 
visiting this particular city again. 

This every-day example illustrates the importance of the need to struggle 
with central objects or concepts. There is however an important difference 
between a struggle and a productive struggle. The former could be achieved 
by having students doing mathematics in a dark room or by giving the 
students extremely difficult tasks. This struggle would be considered un-
productive or undesirable. Tasks that impose a surmountable productive 
struggle with intrinsic mathematical ideas may give a more lasting impression 
or knowledge. This is exactly what happens when students are working with 
well-designed CMR-tasks (Jonsson et al., 2016). The student will have to 
struggle since there is no apparent way of solving the task and if the task 
design is good this struggle will not be overwhelming and negative but rather 
manageable and positive for learning.  

The importance of struggle for learning has been noted by researchers in 
both educational science (e.g., Hiebert & Grouws, 2007; Jonsson, Norqvist, 
Liljekvist, & Lithner, 2014; Niss, 2007) and cognitive psychology (e.g., Bjork 
& Bjork, 2011; Pyc & Rawson, 2009; Wiklund-Hornqvist, Jonsson, & Nyberg, 
2014). Within the realm of educational science, the importance of productive 
struggle for learning of mathematical concepts are discussed. Hiebert and 
Grouws (2007) give an overview of the significance of having to put some 
effort into learning something. They argue that the effort that is directed to 
the task at hand will be beneficial for learning. In a study where students 
practiced solution methods by either given algorithms or by constructing 
algorithms Jonsson et al. (2014) saw that the more effortful construction 
process was more beneficial for learning than using a given method. They 
discussed if this had to do with the struggle itself or if the design of the practice 
and test tasks could influence this (i.e., that the constructive practice tasks 
were similar to the test tasks while the imitative practice tasks were not). 
Jonsson et al. (2016) took this discussion further and examined if an effortful 
struggle was more influential for learning than practicing in the same way as 
being tested (i.e., transfer appropriate processing). The conclusion was that 
an effortful struggle that focused construction of the solution method was 
more beneficial. This resounds well with findings in cognitive psychology 
where there is much evidence for the benefits of struggling with important 
concepts and structures. Pyc and Rawson (2009) concluded that effortful 
retrieval from memory will be more beneficial for learning than easy retrieval. 
While practicing, this effortful retrieval can be achieved by repeated testing. 
Wiklund-Hornqvist et al. (2014) showed that repeated testing was more 
efficient for later retrieval than re-reading information. The repeated testing 
invokes more afterthought than just re-studying a concept and this is also 
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considered as an effortful and productive struggle2. Bjork and Bjork (2011) 
summarizes the importance of what they chose to call desirable difficulties in 
the following statement: “Conditions of learning that make performance 
improve rapidly often fail to support long-term retention and transfer, 
whereas conditions that create challenges and slow the rate of apparent 
learning often optimize long-term retention and transfer”. To create some 
challenge or productive struggle, novel tasks (e.g., problem solving tasks) can 
be utilized. 

3.3 Problem solving 
One of the competencies that are stressed as important in many mathematics 
syllabi (NCTM, 2011; Skolverket, 2011b) is to become a proficient problem 
solver. In the Swedish syllabus this competence is formulated as the ability to 
“formulate, analyze, and solve mathematical problems and also evaluate 
strategies, methods, and results”.  

A student always brings prior knowledge into every task-solving situation. 
It could for example be that the student has seen similar tasks before and 
therefore know how to embark on solving the task. Schoenfeld (1985) 
describes four different categories of knowledge that contribute to problem 
solving. The first is resources, the content knowledge that the student has 
acquired during previous schooling and that could be of importance for the 
particular task at hand. This could for example be knowledge about how to 
subtract 9 from 4 or how to differentiate the function f(x) = 1/x. If a student 
experience gaps in her resources, let’s say that she does not know how to add 
fractions, the learning of algebra could be impaired.  

Schoenfeld’s second category is heuristics, the strategies and techniques 
needed to solve the problem. Here we talk about methods of solving tasks and 
in what order procedures should be done. The idea of heuristics in problem 
solving was first formulated by George Pólya in 1945. Pólya (1945) formulated 
four heuristic principles that could be applied to all problem solving: 
understand the problem, devise a plan, carry out the plan, and revise your 
work. More specific heuristics has of course also been formulated (e.g., ‘draw 
a figure’ or ‘try to solve a simpler task’). 

Schoenfeld’s third category is control (or as he later renamed it meta-
cognition), in this case control over which strategies and resources to select 
and use. This includes reflecting on your own thoughts and on your available 
knowledge to choose wisely. All teachers have seen examples of lacking 
control. It might be that students use the addition strategy of common 
denominators when multiplying fractions or that students solve non-existing 
equations while simplifying algebraic expressions. A student with good 

                                                             
2  For a review on the testing effect, see Dunlosky, Rawson, Marsh, Nathan, and Willingham (2013). 
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control will make the most of her resources so that she will be able to solve 
novel tasks in a more efficient way.  

Lastly the student’s belief systems, his or her personal view on 
mathematics, is important for how the student will tackle novel tasks 
(Schoenfeld, 1985). This would include the thoughts you have about 
mathematics as a subject and your mathematical abilities. A student whose 
mathematical beliefs are poor will probably be more prone to give up on novel 
tasks and will have a harder time to control his or her resources and heuristics. 

Additionally, Jackson, Garrison, Wilson, Gibbons, and Shahan (2013) 
argued that contextual aspects also can be important to consider during task 
setup, to bridge the eventual gap of information if there are contextual 
features that are unfamiliar to the student. They argue that key contextual 
features should be explicitly addressed to make task solving more effective. 

Schoenfeld elaborated on Pólya’s four steps by describing the problem 
solving procedure as containing six possible stages: reading the task, 
analyzing the task, exploring methods, making a plan, implementing the plan, 
and verifying the result. Not all of these stages have to be present during the 
solving of a problem. For example, the analysis of the task could be enough to 
generate a plan on how to proceed and then the exploration phase would be 
un-necessary (Schoenfeld, 1985). Schoenfeld also discovered that there was a 
significant difference between novice problem solvers and experts in how 
much time they put into analyzing a problem. Novice problem solvers typically 
decided quickly on an approach and pursued it even if there was clear evidence 
that the strategy was not bringing them closer to a solution. Experts put more 
time in analyzing the task, formulate and implement a plan, and verifying it to 
be able to go back and re-think the strategy if needed (Schoenfeld, 1992). 

However, Blum and Niss (1991) indicates that teachers seems to think that 
even though problem solving is important it will i) need additional knowledge 
about other subjects and ii) take much time to implement. Time is also 
expressed as an issue by Boris (2003) when comparing teachers’ 
mathematical beliefs and their practice. Another, and maybe more time 
efficient, way to focus the important mathematics during task solving could be 
to engage in tasks that promote creative mathematically founded reasoning. 
Creative tasks do not have to be as challenging as problem solving and can 
include elementary reasoning as well as more elaborated reasoning. This will 
however require that the task-design put emphasis on a particular 
mathematical hurdle that the students need to learn, and that the task does 
not reveal the solution method for the student. This is basically what creative 
mathematically founded reasoning tasks does as we will see in the following 
section. 
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3.4 A framework for mathematical reasoning  
As much of this research is based on the research framework for mathematical 
reasoning that Lithner (2008) suggested, it seems appropriate to give a short 
summary of the different aspects of it. The framework provides a basis to 
analyze student’s reasoning, primarily with respect to the distinction between 
using available (memorized or given) solution methods and constructing the 
solution. It can also be used to classify mathematical tasks with respect to the 
mathematical reasoning they promote and/or assess. The reasoning promoted 
by the task is depending on the individual’s prior knowledge and the text, 
guidance, or examples that are available at the time of task solving. The 
reasoning sequence starts with the given task and continues to an answer and 
the reasoning that is carried out is the product of the task, the individual’s 
thoughts, and the milieu. 

3.4.1 Reasoning sequences  
When solving a mathematical (or maybe any other) task you have to decide 
where to start. Schoenfeld (1985) observed that novice problem solvers often 
put less time into preparation and choosing than experts. While the experts 
put a lot of thought into preparation the novices were quicker to dive into an 
unprepared and often unsuitable problem solving process. The solving 
process could, as Lithner (2008) suggests, be seen as a directed graph where 
implementation of a solution strategy (edges) are connected by instances 
(vertices) which indicate both a momentary state of knowledge and of the 
subtask (see Figure 1). These subtasks comprise both explicitly written 
subtasks and implicit subtasks that the reasoner formulate during the solution 
process. The edges consist of solution processes that are more or less 
outspoken, where the reasoner is implementing the strategy of choice for the 
specific subtask. This implies that the task at hand can be solved or answered 
along different paths through the graph. 

 

 
Figure 1: Reasoning sequence as retrieved from Lithner (2008).  

Let me give you a simple example of this with the following task: Jane has a 
salary of €1800 per month. How much will her salary be if she will get a 15% 
raise? Depending on the prior knowledge of percent this task could be solved 
by at least three paths.  
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Path 1: 
Find what 1% of €1800 is. 

a. 1%: €1800/100 = €18 
Find what 15% of €1800 is. 

b. 15%:  15 · €18 = €270 
Add €270 to €1800. 

c. €1800 + €270 = €2070 
Answer: Jane’s salary will be €2070. 

Path 2: 
Find what 15% of €1800 is. 

d. 0,15 · €1800 = €270 
Add €270 to €1800. 

c. €1800 + €270 = €2070 
 Answer: Jane’s salary will be €2070. 

Path 3: 
Calculate the new salary by finding 115% of the old salary. 

e. 1,15 · €1800 = €2070 
Answer: Jane’s salary will be €2070. 

 
If we should try to draw this simple example (provided that the task solver 
does not make any other assumptions or calculations than what is given here) 
the graph would look like Figure 2. 
 

 
 
Figure 2: Reasoning graph of the task-solving example above. 

3.4.2 Creative Mathematically Founded Reasoning 

Lithner (2008) identifies two major reasoning types, imitative and creative 
reasoning, and then proceeds to divide these into sub-categories. When there 
is not enough information at hand to solve the task with a known solution 
method (i.e., by an algorithm or by recalling memorized answers) it can still 
be solved but another type of reasoning must be used. At least some parts of 
the reasoning sequence must then be constructed by the task solver and 
argued for by connecting it to the intrinsic mathematical properties 
important for the task. Reasoning that involves both novelty and 
mathematically founded arguments is called Creative Mathematically 
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founded Reasoning (CMR). CMR is defined by Lithner (2008) as follows: 

Creative mathematically founded reasoning (CMR) fulfils all of the 
following criteria.  
1. Novelty. A new (to the reasoner) reasoning sequence is created, or a 

forgotten one is re-created.   
2. Plausibility. There are arguments supporting the strategy choice and/or 

strategy implementation motivating why the conclusions are true or 
plausible.   

3. Mathematical foundation. The arguments are anchored in intrinsic 
mathematical properties of the components involved in the reasoning. 

 
The creativity here should not necessarily be seen as something 

extraordinary or ingenious but rather as the construction of a, for the task 
solver, new reasoning sequence (Lithner, 2008). As an example, a task that 
asks for the area of a triangle with a given height and base could be considered 
a creative task (denoted CMR-task) if there is no provided formula or if the 
students have not done this previously. The students would have to base their 
reasoning on what they already know (e.g., the area of a parallelogram) and 
then consider the triangle to be half a parallelogram. After this we could also 
ask the students to formulate the rule or formula by themselves. Since 
mathematics is an ingredient in other school subjects, CMR could also be 
applied in them. For example, Johansson (2015) showed that CMR can be an 
important element when learning physics. 

3.4.3 Algorithmic Reasoning 
As a contrast to CMR, reasoning that is connected to performing a recalled 
procedure without connecting it to mathematical properties is called 
Algorithmic Reasoning (AR). Lithner (2008) defines AR as follows:  
 

Algorithmic reasoning (AR) fulfils the following two conditions.  
1. The strategy choice is to recall a solution algorithm. The predictive 

argumentation may be of different kinds (see below for examples), but 
there is no need to create a new solution.    

2. The remaining reasoning parts of the strategy implementation are trivial 
for the reasoner, only a careless mistake can prevent an answer from 
being reached. 

 
A task would be categorized as promoting algorithmic reasoning (denoted 

AR-task) if it is reasonable to think that the solution method could be retrieved 
from memory by the solver, or if the solution method is available in the 
instructions or a worked example (Lithner, 2008). AR-tasks seems to be quite 
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common in textbooks across the world and at all levels of mathematics 
education, from compulsory school to university (e.g., Jäder et al., 2014; 
Lithner, 2004; Newton & Newton, 2007). An example of an AR-task could be 
when students are asked to calculate the area of a triangle where the height 
and base are provided and the formula, 𝐴 = (𝑏 · ℎ)/2, is written at the top of 
the page. The focus will be to apply the formula correctly and will likely not 
include considerations of mathematical properties like that the triangle is half 
of a parallelogram (hence, the division by 2). 

Lithner (2008) differentiates between different types of algorithmic 
reasoning, depending on what type of AR-information the task solver make 
use of. Commonly, the supplied AR-information will put focus on how to solve 
the task and not why the task can be solved in the given way. In study 2, I 
discuss and test another type of AR, eXplained Algorithmic Reasoning (XAR), 
which concerns the reasoning that occurs when a student has access to both a 
solution method and an explanation on why the solution method is valid. It is 
important to distinguish between a description that tells how a solution 
method should be applied and an explanation on why the solution method is 
valid. The former would be categorized as AR-information since it gives 
explicit instruction on how to perform the calculations, without explicit 
connection to the mathematical properties. The latter would be more than AR 
information since it not only describes but also justifies the solution method. 
The justification included in XAR could be similar to the justification that is 
constructed during CMR with the difference that in XAR the justification is 
available from the start and in CMR it is constructed as a part of the reasoning 
sequence. 

For example, the area of a triangle could be introduced by giving the 
formula (i.e., 𝐴 = (𝑏 · ℎ)/2) and showing how to apply it. This would be 
considered AR-information since there is no connection to intrinsic 
mathematical properties. The introduction could also explain why the formula 
is valid by describing and showing that a triangle is half of a parallelogram, 
ending with the solution method that the students could apply. This 
introduction would be classified as XAR information since it starts off from 
the mathematics behind the formula and explains the validity of it from this 
point of view. In this way the formula can be logically founded in mathematics 
and not only something that you just may have to accept and believe in. 

Most textbook information seems to concern the description of solution 
methods rather than presenting the reasons for why these solution methods 
work (Shield & Dole, 2013; Stacey & Vincent, 2009). However, even though 
XAR can be found in textbooks it is always accompanied with solution 
methods and/or examples that are highlighted and therefore gives the 
impression that they are the most important pieces of information. 

Thus, task design can influence which reasoning the student will use. It is 
also plausible that a creative task will be more cognitively demanding than an 
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algorithmic task since the student has to construct new solution methods and 
not only apply provided algorithms. If cognition is crucial for creative 
reasoning to occur, then cognitively less proficient students will have 
problems even if the tasks are well designed.  

3.5 Cognitive demand 
Another way to characterize mathematics tasks is to sort them regarding to 
the cognitive demand they impose on the task solver. Stein et al. (1996) made 
such a distinction between tasks when trying to find factors that contribute to 
the preservation of cognitive demand throughout the solution process. They 
defined five categories of tasks based on what was demanded from the 
students to be able to solve them (non-mathematical, memorization, 
procedure without connection to concepts, procedure with connection to 
concepts, and doing mathematics). In their study it became clear that the tasks 
with higher cognitive demand (procedure with connection to concepts and 
doing mathematics) often lost much of this demand during the teaching and 
solution process. Most of this happened when the teacher (or sometimes a 
peer) provides help by removing the challenging aspects of the task or when 
the focus shifts from the concepts to finding the correct answer. This reduces 
a cognitively demanding task to a task where the only aim is to apply the 
correct procedure. 

There are some connections between the way Stein et al. (1996) categorized 
tasks by cognitive demand and the way Lithner (2008) has categorized tasks 
by looking at the reasoning they will promote. Tasks that according to Stein et 
al. (1996) requires memorization or procedure without connection to concepts 
are similar to the tasks that Lithner categorizes as imitative- or algorithmic 
reasoning tasks (Lithner, 2008). Here the student can rely on either a 
memorized solution method or a method given by the textbook or by a person 
close by (i.e., the teacher or a peer). The tasks that require procedures with 
connection to concepts or that students engage in doing mathematics are 
comparable to Lithner’s creative reasoning tasks. Here the students need to 
consider the mathematical properties to solve the task, either by reflecting on 
why a known procedure would be appropriate to use or by constructing a new 
mathematically founded (and justified) solution method. 

Hence, there are implications that cognitive variation is a part of the puzzle, 
and if an individual’s cognitive abilities are important for task solving and if 
CMR requires a capability to handle higher cognitive demand, cognition could 
be decisive in how students learn from solving tasks. If students’ individual 
cognitive variation matters it is important to examine this as well as deciding 
which measures to use when doing so. This will be addressed in the next 
chapter. 
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4 Memory and cognition 
4.1 Individual variation in cognition 
How a student will handle the requirements of doing mathematics could vary 
a lot depending on individual prerequisites. This could for example be how 
well a student will be able to concentrate in a noisy classroom or if the student 
feels motivated to engage in the sometimes stressful conditions of a test 
situation. Doing mathematics sometimes taxes the individual’s cognitive 
abilities quite extensively. There are lots of abstract information that need to 
be processed and even though most of us use pen and paper to ease the 
cognitive strain, high processing power could be important for mathematics 
achievement (e.g., Floyd, Evans, & McGrew, 2003; Freund, Holling, & Preckel, 
2007). Hence, individual variation of cognitive ability could be an important 
factor to consider when studying mathematical tasks and reasoning. In the 
project we have therefore chosen to include and control for some measures of 
cognitive capacity in our experimental studies.  

4.1.1 Working memory 
One cognitive construct that is often connected to mathematical thinking is 
working memory (WM). This is the ability to simultaneously store and process 
information. The multi-component model of WM was first suggested by 
Baddeley and Hitch in 1974. Baddeley has made some additions to this model 
and it now contains four parts. There is a Central Executive that coordinates 
incoming information to the three slave systems, 1) the Phonological Loop 
that process auditory information, 2) the Visuo-Spatial Sketchpad that 
process visual and spatial information, and 3) the Episodic Buffer that handles 
the temporal part of the acquired information so the stories we remember are 
episodically coherent (Baddeley, 2000). 

The connection between WM and mathematics achievement has been 
extensively studied and, in the chapter on working memory in the first volume 
of Educational Psychology Handbook, Swanson and Alloway (2012) conclude 
that there is much scientific proof of a link between mathematics achievement 
and WM. For example, Bull, Espy, and Wiebe (2008) let primary school 
children do both tests of mathematics skills and of WM. The tests showed a 
high correlation between visuo-spatial WM and math skills in primary school 
children. Passolunghi, Vercelloni, and Schadee (2007) also conducted a study 
on primary school children with the similar results, that WM is important for 
mathematics achievement. However, Swanson and Alloway (2012) also note 
that WM is not the only important factor in mathematics learning. 
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4.1.2 Fluid intelligence 
WM is also closely connected to a construct that cognitive psychologists refer 
to as General fluid intelligence or fluid reasoning (Gf). This is the part of the 
human cognition that is devoted to problem solving. It is not unexpected that 
these two are interconnected. While solving any problem we need to activate 
WM as we need to store and process information at the same time, so the fact 
that Gf and WM account for some of the same processes is not strange. 
However, WM and Gf are not the same construct. In a study on how time 
constraints influence the correlation between WM and Gf, Chuderski (2015) 
showed that stricter time constraints on Gf tests produce a higher correlation 
between Gf and WM. When time constraints are removed the correlation 
between the two decrease. This indicates that there are processes involved in 
Gf that are not directly linked to WM.  

There are studies that link Gf to mathematics achievement. For example, 
Primi et al. (2010) argue that a higher Gf, or at least higher results on Gf-tests 
(e.g., Raven’s Progressive Matrices), implicate a steeper mathematical 
learning curve (i.e., faster learning). Taub, Keith, Floyd, and McGrew (2008) 
conducted a study on children and youths, 5-19 year olds, where they conclude 
that Gf is an important factor for mathematics achievement in all age groups. 
However, they also mention that other factors play in when it comes to how 
well students perform in mathematics. As CMR contains elements of problem 
solving, Gf could be influential for their reasoning and in turn affect the 
students’ results. 

4.1.3 Cognitive tests 
Most cognitive functions are studied by using different behavioral tests 
designed to test the sought after ability. In the case of WM there are a number 
of tests available. Typical for all these is that you are supposed to process some 
information whilst remembering other information. For example, reading and 
judging the validity of a few sentences whilst remembering the last word of 
each sentence (i.e., reading span) or performing simple arithmetic whilst 
memorizing letters (i.e., operation span) (Unsworth & Engle, 2005). Gf is 
most often evaluated by applying a Raven’s progressive matrices test which 
comes in a few different levels of difficulty: colored, standard, and advanced. 
This test is a non-verbal problem solving test where the participant has to 
choose the correct tile that will complete a three-by-three matrix (see Figure 
3). Raven’s progressive matrices are supposed to be independent of the 
participant’s language and culture but an increase in scores has been observed 
over time (e.g., Brouwers, Van de Vijver, & Van Hemert, 2009; Raven, 2000; 
Wongupparaj, Kumari, & Morris, 2015). 
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Figure 3: Example of a task similar to those used in Raven’s 
Progressive Matrices. 

4.2 Observing brain activity 
Like all other organs in our bodies, the brain will develop during childhood 
and adolescence. Therefore, some cognitive processes that are trivial to an 
adult might be impossible to perform for a child. For example, the concept of 
time is very hard to grasp for a child while an adult finds it mostly 
unproblematic.   

Brain imaging techniques can provide support for hypotheses about 
educational issues (De Smedt et al., 2010). For instance, in study 3 (in the 
present thesis) we showed that different mathematical practice provided, not 
only behavioral difference, but also long lasting neural differences in the brain 
(Wirebring et al., 2015a). These results supplied evidence that the hypotheses 
of which brain regions that became more or less active correspond to the 
previous behavioral data and thus strengthen the conclusion drawn about the 
behavioral results. By using brain-imaging techniques, it is also possible to 
detect cognitive processes that are not manifested in observable behavior. It 
has even been shown that the brain activity can be prognostic of future 
behavior. Wirebring et al. (2015b) showed that word pairs that were retrieved 
but subsequently forgotten were characterized by lower brain activity than 
word pairs that were retrieved and remembered. Hence, brain-imaging 
studies can provide information on how the brain process information that is 
impossible to obtain in behavioral studies. By combining brain-imaging and 



 

20 

behavioral studies, we can more effectively evaluate different methods of 
learning.  

Techniques have been developed to study brain activation and in later years 
this has been important for cognitive psychologists since the complex nature 
of the brain earlier only could be studied in special cases where injuries or 
illness did disrupt the normal brain function. Electro-encephalogram (EEG), 
a non-invasive technique that measures electric brain activity via electrodes 
attached to the scalp, has been available since the mid 20th century but this 
technique has a disadvantage, its lack of spatial resolution. Signals are quickly 
detected but it is much harder to locate their origin within the brain. To study 
neurological processes that correlates to cognitive activities like language or 
mathematics there is a need to increase this spatial resolution. Functional 
Magnetic Resonance Imaging (fMRI) is a comparatively new technique of 
registering brain activation. In contrast to classic EEG, fMRI has a high spatial 
resolution but a somewhat lower temporal resolution. This is due to the 
biological and physical processes that constitute the signal source during 
fMRI. This is quite complex, but in the following section I will try to explain it 
without going into the deeper physics of it. 

4.2.1 The technique behind an fMRI image 
Every voxel3 in a typical fMRI-image is about 3x3x3 mm (i.e., about 1/500 of 
a teaspoon). fMRI depicts the brain (or any part of the body) in several “slices” 
(usually 27). The scanner makes a pass over the brain in about 2 second and 
this is then repeated several times with several stimuli to get a reliable picture 
(movie). fMRI utilizes magnetic properties of hemoglobin molecules in the 
blood to measure blood flow as this indicates that there is activity.  

In the strong magnetic field (1,5-7T, an ordinary refrigerator magnet 
produces about 0,005T) within the scanner the hydrogen (nuclei) in the body 
will be positioned in line with the magnetic field. In the scanner there are 
emitters that send out radio waves in specific frequencies that will excite 
hydrogen atoms within water molecules. The hydrogen absorbs the radio wave 
energy and this will change its orientation to one angled to the magnetic field. 
When the radio pulse subsides the excited hydrogen return to the original 
orientation and release the excess energy as an energy pulse back to the 
detectors.  

To be able to discern between the different parts of the “brain slice” the 
scanner is equipped with gradient coils that induce gradient magnetic fields 
that utilizes this sensitivity of inhomogeneous magnetic fields. This has the 
effect that the hydrogen atoms will orient differently depending on where in 
the slice they are located. This will give rise to a slightly diverse timing in the 

                                                             
3 A voxel is the smallest visible element in a depicted volume. Comparable to pixels when dealing with digital 
photography. 
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return signal that is correlated to the gradient fields. And by this it is possible 
to determine a three-dimensional coordinate of the return signal, i.e., in which 
voxel the activation took place. 

As the brain activates a certain area the consumption of oxygen will increase 
and the blood flow will need to increase accordingly. The body does this by 
enlarging the capillary vessels in the active area so that they will let more 
oxygenated blood through. The ratio of oxygenated hemoglobin will actually 
rise to a higher level than normal and this provides us with an opportunity to 
distinguish the active areas from the surrounding, non-active, tissue. As the 
de-oxygenated hemoglobin molecule is paramagnetic it distorts the return 
signal from the tissue but when the concentration of deoxyhemoglobin 
decreases, as the concentration of oxyhemoglobin is rising, the signal will 
become stronger. This contrast between in deoxy- and oxyhemoglobin gives 
us the possibility to detect a useful signal (often called a BOLD-signal). For a 
more comprehensive description of fMRI see for example Huettel (2014). 

4.2.2 A downside to fMRI 
A weakness of this imaging technique is that the fMRI-scanner gives us an 
indirect image of neural activation. This means that we can’t be absolutely 
sure that the increase of blood flow indicates that the main activity is depicted. 
The scanner can’t distinguish between neuron clusters forwarding 
information and clusters that does the actual processing of the information. 
This makes it even more important to use a good experiment design and 
relevant contrasts (e.g., comparisons between a) reading and finding spelling 
errors and b) reading and solving mathematics tasks) to make sure that what 
is being measured is the active brain area (Huettel, 2014).  

4.2.3 fMRI and Mathematics 
There has been quite extensive research in cognitive neuroscience about 
which brain areas that are active when mathematics is involved. However, 
most of the studies are done concerning quite simple mathematical concepts, 
e.g., addition, subtraction or one-digit multiplication. This is partly because 
the fMRI-technique is comparatively new but also due to the fact that the 
technique places restrictions on the experiment design. Time constraints are 
a reason that more complex mathematical procedures have not been studied 
in fMRI. A long exposure time would decrease the signal-to-noise ratio and 
give few results or results that are difficult to interpret. There is also a problem 
with complex tasks that would demand pen and paper or similar tools to be 
solvable, since physical movement or speech also generate brain activity. This 
would add activation patterns to the result and can sometimes be hard to 
distinguish from the pattern that you are really interested in (Huettel, 2014). 
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The studies that have been made (e.g., Dehaene, Piazza, Pinel, & Cohen, 
2003; Delazer et al., 2003; Houde, Rossi, Lubin, & Joliot, 2010; Ischebeck, 
Zamarian, Egger, Schocke, & Delazer, 2007; Wirebring et al., 2015a; 
Zamarian, Ischebeck, & Delazer, 2009) have all identified interesting neural 
networks that are in use while making calculations, solving novel tasks, or 
recalling from memory. Some of these networks are common with other 
subjects as well (e.g., connections to long-term memory or processing of 
complex tasks) and some are more specifically linked to mathematics (e.g., 
abstract number sense or calculations). In the following section I will describe 
the main neural networks and their connection to mathematics based on their 
function.  

4.2.4 Brain functions connected to mathematics 
There are some basic functions that are in use when a person is doing 
calculations or more complex mathematics. There are rules or principles that 
we have learned some time ago that need to be retrieved from memory. We 
have to make simple calculations using for example addition or multiplication. 
While we do this there is a need for our working memory to briefly store and 
retrieve information that is being processed. If the task at hand is novel or 
complex we need to figure out how to handle this new situation and how to 
use our prior knowledge to solve the task. There might also be visual 
representations to consider or to manipulate in some way. All this is handled 
by the brain although in different areas. The brain is a very complex and 
interconnected organ and most processes activate large portions of the brain.  

4.2.4.1 Memory retrieval 
Retrieval from long-term memory is important for all tasks, mathematical or 
not. Important ideas, rules, or rote learned knowledge can be found here and 
can be more or less easy to retrieve. It is fairly simple to recall rote-learned 
information (e.g., the multiplication table) which can be useful to relieve our 
working memory by automatization. However, since rote-learned information 
does not carry information on underlying ideas or basic concepts it is not 
always obvious which rote-learned knowledge that should be used. For 
example, I still recall a few German words that were supposed to control direct 
object (durch, für, gegen, ohne, um), but since I cannot remember what a 
direct object is I have little use of them. As discussed previously, knowledge 
that is achieved with some effort will be easier to recall (e.g., Bjork & Bjork, 
2011; Jonsson et al., 2016). For example, Wirebring et al. (2015a) (study 3 in 
this thesis) showed that students that learned mathematics by a given solution 
method had to work harder to recall this method than students that 
constructed the solution method themselves. The former group also showed a 
higher activation was in the Angular Gyrus (AG), an area related to for 
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example reading, mathematics, memory retrieval and social cognition 
(Seghier, 2013).  

Dehaene et al. (2003) argue that the angular gyrus is active during 
mathematics since verbal or linguistic properties are the basis of arithmetic 
tasks. They also propose that rote learned addition and multiplication are 
stored in verbal memory in the same way that grammatical rules can be 
remembered as a ditty. This view is shared with Ischebeck et al. (2007) as they 
observe that the angular gyrus and temporal lobes are activated when 
retrieving rote-learned mathematics, i.e., simple addition and the 
multiplication table. Perhaps this activation of the angular gyrus is a marker 
for memory retrieval (Grabner et al., 2009) or maybe it is an indication that 
the trained “knowledge” is manifested verbally (Delazer et al., 2003; Zamarian 
et al., 2009). The AG has been found to be active in non-mathematical tasks 
as well and this could indicate the verbal connection. 

4.2.4.2 Novel and complex tasks 
When a person encounters a novel or complex task, working memory will be 
activated to a higher degree. There is also need for memory retrieval and 
structuring of information and prior knowledge. Much if this work is done in 
the frontal lobe of the brain although there are also other parts of the brain 
that seem to have a part in manipulation of information in working memory 
(Koenigs, Barbey, Postle, & Grafman, 2009). Studies have shown that higher 
complexity yields more activation of the Prefrontal Cortex, an area connected 
to problem solving and working memory. This area is more active during 
childhood then during later years (Houde et al., 2010; Zamarian et al., 2009). 
This might not be unexpected since more tasks are novel as you are younger. 
Complex tasks often have a visual component as well, either as a sketch, 
diagram or graph or as information which induce the solver to make mental 
pictures. The visuo-spatial processing is conducted in the Posterior Superior 
Parietal Lobule, further back in the brain (Dehaene et al., 2003). This 
indicates that a truly complex mathematics task will be hard to study in fMRI 
since there are so many areas active at the same time. There is also the 
temporal difficulty mentioned previously, that a lasting task will decrease 
signal-to-noise ratio and give results that are harder to analyze. 

4.2.4.3 Calculation and number sense 
Most mathematics, at least in pre-university schooling, include numbers and 
calculations with numbers to some degree. Some of the rote-learned 
computations can be retrieved from long-term memory without the need for 
processing, but mental arithmetic is still needed to solve even the simpler 
tasks. Much calculation is conducted in working memory but there is also an 
area that seem to be activated only during mathematics, the Horizontal Intra-
Parietal Sulcus. Dehaene et al. (2003) observed that this area was not 
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activated by words in general but by number words, which led them to 
conclude that this area was the most mathematically specific of the three they 
studied. The horizontal intra-parietal sulcus is proposed to code the abstract 
meaning of numbers and is activated by mental arithmetic, e.g., subtraction.  

4.3 Summary 
As mathematics is activating a large portion of the brain, most studies have to 
be designed to pinpoint specific brain functions or type of mathematics. 
Additionally, increased time for reflection would add interference to the fMRI 
signals, and so would also aid in form of pen and paper, calculators or asking 
questions do. Put together, examining mathematics with fMRI is not an easy 
task but with considerable thought on experiment design it still is possible to 
distinguish brain activation connected to mathematics from other cognitive 
tasks (e.g., reading). One such experiment is reported in study 3 in this thesis. 

The previous sections have given us an overview over the fMRI-technique 
and results from some previous studies connecting brain activity to the 
learning of mathematics. There are some benefits in using this kind of 
methodology since fMRI can give a deeper insight into the brain processes that 
govern our behavior. The fMRI-technique can also help to sort out processes 
that behavioral studies will have a harder time to pick out. For example, in 
study 3 we used fMRI to help with the explanation to the significant advantage 
of CMR-practice over AR-practice in study 1. In study 3 we could see that the 
CMR-group activated brain areas connected to memory retrieval processes in 
a significantly lesser degree than the AR-group did. The AR-group also had 
higher activation in areas connected to working memory. Together with the 
results from study 1 this could explain how AR-practice differs from CMR-
practice. Students that practice with CMR seems to have an easier access to 
the practiced solution methods and easier to apply them than the AR-students 
will have. This was of course implicated by the behavioral results in study 1 as 
well, but the question about if the difference in test results in study 1 could 
have been due to a higher activation for CMR-students in other areas where 
complex tasks are processed. However, study 3 showed no other areas within 
the mathematics network where the CMR-students had higher activation 
levels than the AR-students. Therefore, the reason for the significant 
advantage of CMR over AR is somehow connected to the deeper encoding and 
ease of retrieval of CMR-practiced solution methods. This result could maybe 
have been found out in a series of behavioral studies as well but the use of 
fMRI gave us this result in a single experiment. The fMRI-experiment also 
gave us implications in what to pin-point in coming studies, namely, the 
reason for the deeper encoding of CMR-practiced solution methods. 
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5 Method  

When the project ‘Learning mathematics by Imitative and Creative Reasoning’ 
began the project group was formed by researchers from mathematics 
education, cognitive psychology, and cognitive neuro-science. One of the 
benefits of this constellation was that there were different methodologies that 
met and, as all involved were interested to learn from each other, there has 
been both interesting discussion and education during the design processes. 
Within the studies that this thesis is based upon there are many different 
methods used and the following sections will address them and connect them 
to both mathematics and the object of study in each study. As a member of the 
project group my work has comprised task design, experiment design, data 
collection, data analysis, and writing. The task- and experiment design phases 
have taken quite a lot of time during the start of the project and later on, data 
collection and analysis took their time as well. In the beginning of the project 
extensive piloting was done, since the interventions (and partially also the 
analysis method) were completely new, to secure that the students were able 
to solve the tasks and that the tasks did promote the desired reasoning. 
Therefore, the articles were not submitted until later on in my doctoral 
studies. In the following sections the design process will be elaborated to 
describe the different development stages involved. 

5.1 Task design 
In all studies mathematics tasks are important. In three of the studies (1, 2, 
and 3) the tasks were designed by researchers to be as tightly connected to 
specific reasoning types as possible. This was important since these studies 
focused the outcome of specific reasoning. This will be addressed further in 
section 5.1.1. In the last study the tasks we study as part of the students 
reasoning, are designed by the teachers as part of their ordinary preparation 
for the lessons. These tasks were not as strictly formulated as the tasks in study 
1-3 and therefore not as easily distinguished as to what type of reasoning they 
would promote. The teacher-designed tasks are discussed further in section 
5.1.2. 

5.1.1 Design by researchers  
The tasks in studies 1-3 were designed by researchers to promote either AR or 
CMR. The goal was that both these versions of the tasks should have the same 
target knowledge (i.e., a solution method in the shape of a formula). The AR-
tasks would need to explicitly give the solution method while the CMR-tasks 
required the students to be able to construct the solution method by 
themselves. To increase the likelihood of this we designed the CMR-tasks with 
three sub-tasks as elaborated below. The design would be as similar as 
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possible to eliminate that eventual layout differences would influence the 
results. 

The design of the tasks was an extensive process that took place during a 
couple of years where a lot of different tasks were tried out and adjusted to be 
tried again, through several pilot-studies. The main reasons for the extended 
design process was the need to find tasks that a) could reach the same target 
knowledge either via AR or CMR, b) were not familiar to the students so that 
they already knew the solution method in advance c) not too difficult to solve 
by CMR and d) not so easy that solving by CMR provided no challenge. This 
left us a comparatively small window of implementation where the tasks were 
just hard enough to be solved by CMR, without the students falling into an 
AR-mode of reasoning because of familiarity with the tasks. 

The first pilot-study was a think-aloud study with four students, where we 
video-recorded their work. The analysis indicated that our hypothesis 
concerning the importance of CMR held but also that the initial tasks were to 
extensive to be used in a large-scale study. Therefore, the tasks were adjusted 
and new tasks were constructed for a second pilot-study. This time two classes 
were involved and the students solved several multiple-choice tasks 
individually on a computer, with an observer seated next to them. The task 
solving process was recorded and after all tasks were solved the observer and 
the student went through the recording and discussed difficulties and the 
choices made by the students4. Analysis showed that some of the tasks were 
not suitable. These tasks were based on fictitious mathematics which did not 
engage the students. The third pilot-study tested some of the old tasks and 
some new tasks and this time the students (two classes) both practiced and 
were tested with a computer where the software also recorded their answers. 
The data was purely quantitative and comprised answers and solution times. 
After this trial, smaller changes were made to the tasks and instruction and 
then we regarded the tasks ready for the larger data-collection. 

Basically, students that are solving AR-tasks are presented with a formula 
and the task leaves it up to the students to decide whether or not to think about 
the mathematical properties behind the formula (Figure 4). It is not necessary 
to do so to solve the task but it is possible. During the first two pilot-trials we 
observed a few AR-students that applied CMR in the first couple of AR-tasks 
but this was not common practice. One of these students explained afterwards 
that he wanted to check if we tried to fool him with an erroneous formula, but 
when the first formula checked out he trusted the tasks and continued without 
controlling the properties. 

 
 

                                                             
4  Some results from this pilot-study was analyzed and reported in (Liljekvist, Lithner, Norqvist, & Jonsson, 
2014). 
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Figure 4: Example of an AR-task 

 
In one of the studies (study 2) XAR-tasks were used. They were constructed 

by reuse of the AR-tasks but with an additional explanation of why the given 
solution method works. In some cases, an extra picture was added to clarify 
the explanation further (see Figure 5). The given explanations where 
controlled by four experienced teachers before the study to see if the 
explanations were reasonable in comparison to explanations in textbooks. 
 

 
Figure 5: Example of a XAR-task 

 
Students that solve CMR-tasks will not have a choice. They are forced to 

consider the mathematical properties in order to be able to solve the tasks 
(unless they are guessing, and strict guessing can almost never yield a correct 
answer). The tasks were designed to give them a first task that could be solved 
by observing and mentally extending the accompanying figure a few steps, a 
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second task that forced them to consider a more generalized idea and, a third 
task that asked for a formalized algebraic expression (Figure 6). 

 

 

 

 
Figure 6: Example of a CMR-task (top), second CMR-task 
(middle), and last CMR-task (bottom). 
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5.1.2 Authentic, design by teachers 
In study 4 we observed students’ work with authentic teacher made tasks5. 
These tasks were not primarily designed to capture all aspects of CMR but 
were rather chosen as tasks with potential for CMR from a larger number of 
tasks that the teacher planned to use. We judged the task to have potential for 
CMR based on the novelty aspect in mind.  

Two of the tasks were problem solving tasks with geometrical focus (i.e., 
optimizing volume of a cylinder and calculating area of a trapezoid). Both 
tasks had a clear goal and a given start, but little instruction on how to reach 
the goal. Both these tasks were classified as CMR-tasks. The teacher explained 
that the purpose of the task was for the students to practice problem solving. 
The other task in this study had clear instructions on how to proceed until the 
last subtask which had less instruction and was judged to have CMR-potential. 
The teachers ambition with the task was to let the students build on previous 
knowledge about differentiation to find a new method of differentiation 
connected to rational functions (i.e., the quotient rule). 

5.2 Data collection 

The included studies report on three experimental studies (study 1-3) and one 
observational study (study 4). In the following sections I will describe the 
methods used in these four studies to present similarities and differences 
between them regarding research design and sample. All participants in all 
studies were given and signed a written informed consent. 

5.2.1 Behavioral-experiments 
The experiment design in two of the studies (study 1 and 2) addressed 
differences in learning depending on the type of reasoning that the practice 
tasks promoted (i.e., AR, CMR, and in study 2 also XAR). In both experiments 
the sample comprised natural-science students from Swedish upper-
secondary school (16-17 year olds). In study 1 we had 91 participants and in 
study 2 there were 104 participants, which we met for three sessions that took 
about 45 minutes each.  

During the first session the students took two cognitive tests, Raven’s 
Progressive Matrices and Operation Span, to measure fluid intelligence and 
working memory respectively. The students also provided background 
information (i.e., mathematics grade, age, and gender). These measures were 
then used to match the participants into two (study 1) or three (study 2) 
similar groups for the following session. 

The second session consisted of a practice session where the students 
solved practice tasks via a computer program. The software saved their 
                                                             
5 See study 4 for the complete tasks. 
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progress (i.e., solution time and answers) on a server. Within each of the 
practice groups students solved either AR-, CMR-, or XAR6-tasks. The AR- 
and XAR-groups solved a total of 70 sub-tasks while the CMR-group solved 
42 sub-tasks, due to the additional time needed to complete the CMR-tasks. 
After practice the students had encountered 14 different tasks with different 
solution methods that we later tested for during the last session. 

A week after the second session we met the students for the last time while 
they took the test. They were tested on all 14 solution methods with three test-
tasks for each method. The first test-task explicitly asked them for the 
algebraic expression they used during practice. The time on this task was 
restricted to 30 seconds to restrict (re)construction of forgotten information. 
We hypothesized that the students that did not remember the formula could 
perhaps remember the solution idea they used during practice, therefore the 
second test-task asked for a numerical answer and was also restricted to 30 
seconds for the same reasons as the first test-task. The third test-task asked 
for the same numerical answer as the second but with no time restrictions to 
allow for eventual (re)construction. During the test-session the software again 
recorded solution times and answers.  

The AR-practice and the test tasks were designed to be as similar to 
textbook tasks and teacher made tests as possible, asking for solution methods 
that were practiced during the second session and for the use of these 
methods. This was done to try to ensure that the test did not especially benefit 
the CMR-students. A follow-up study have also shown that the reason that 
CMR seems to be more effective is not connected to any similarity between 
practice and test tasks (Jonsson et al., 2016). 

5.2.2 fMRI-experiment 
The fMRI-study (paper 3) focused on the eventual difference in brain activity 
during the test, after practicing via AR or CMR. In this study 40 of the 72 
participants were upper-secondary students (18-20 yo) while the rest were 
first year university students (18-22 yo). Practice was again made at a 
computer that recorded practice data. The practice groups were matched into 
two similar groups based on mathematics grade, gender, and their score on 
Raven’s matrices. The test session was done individually in an fMRI-scanner 
which put some restrictions on the experiment design. 

As the fMRI-scanner registers all brain activity it would be very hard to 
distinguish the mathematics from eventual activity pertaining motoric 
functions, speech etc. Hence the test was done with multiple choice questions 
where the participant left his/her answers via a response-pad where each 
finger corresponded to an answer. Because of this the first test-task (i.e., 
recalling the formula) was removed and the second and third test-tasks were 
                                                             
6 Only used in the study of paper 2. 
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adjusted to different numerical questions with the same time restriction (30 
seconds to read the task + 6 seconds to choose an answer). After each test-task 
there was a baseline task to control for perception, attention, and reading. This 
task asked the participants to identify if there were any spelling errors in a text 
with the same layout as the mathematics tasks. This base-line task was then 
used to single out the mathematics specific processes from for example, 
reading and visual processing. 

5.2.3 Observations 
The observational study (paper 4) had a completely different approach. We 
started out by constructing an observational instrument (i.e., a document that 
let us structure our notes). This was piloted in an upper-secondary class 
followed by a rudimentary analysis process which led us to reconsider some 
parts of the observational instrument. We also realized the need for pre- and 
post-interviews with the teacher and post-interviews with the student groups 
that we observed. We also added a curriculum reading log in which the teacher 
elaborated on the materials used in preparation and what would be used 
during class. Another pilot study was made to try out the new tools, also in an 
upper-secondary class. This time we saw that the tools worked out so we went 
on by trying to find teachers that wanted to participate in the study.  

We visited four teachers at a Swedish upper-secondary school. The teachers 
all agreed to participate but since only two of them had planned to use tasks 
with potential for CMR during their lessons we included these two teachers in 
the study. Within each lesson we randomly selected two student groups to 
observe while they solved the mentioned tasks. This was done to be able to 
have a closer look at how the reasoning sequences unfolded and how their 
progression through the task was connected to their reasoning.  

We used observational notes, audio-recordings, and pictures to capture the 
discussion and work of the students. We also gathered information on the 
class and the intention for the lessons from the teachers and had a post 
interview with the students to entangle some critical moments that we 
observed. Altogether we observed four student groups (three pairs and one 
triplet).  

5.3 Methods of analyses 
The method of analysis differed a bit between the four studies since study 1-3 
used quantitative data and study 4 relied on qualitative data. In the following 
sections I will describe the analysis methods and how they differed from each 
other.  
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5.3.1 Statistical 
All results in studies 1-3 were quantitative and therefore analyzed statistically. 
Study 1 and 2 only used behavioral data and this was quantified by the 
software that we used to collect it. The same was true for study 3 but here 
additional fMRI-data was analyzed. The behavioral data was first scanned for 
outliers. After this a statistical analysis was chosen and performed depending 
on the nature of the data. In study 1 we chose to perform an analysis of 
variance with practice group (AR or CMR) as the fixed factor and the test score 
as the dependent variable. We also performed a linear regression analyses to 
evaluate the impact of the different measured factors (practice result, 
mathematics grade, cognitive index and gender) on the test score. Study 2 was 
analyzed with a multiple analysis of co-variance since there were two 
dependent variables (practice score and test score) and three practice groups, 
and since the matching of cognitive proficiency between the groups got 
disrupted by drop-outs it was controlled for as a co-variate. There were also 
linear regression analyses made that evaluated the predictors of the test score, 
similarly to the first study. In the third study the behavioral data was analyzed 
with an analysis of variance where the dependent variable was evaluated with 
practice group as the fixed factor. The fMRI-data was analyzed in several steps 
to sort out the activation depending on the practice condition. First the fMRI-
images were adjusted for time and spatial differences, secondly the 
mathematics condition was compared to a reading condition to delimit a 
mathematics network and finally the activity within the mathematics network 
was analyzed to distinguish any differences between the two practice groups. 
In study 1 and 2 all statistical analyzes were conducted in SPSS7 and in study 
3 the analysis was done in SPM88.  

5.3.2 Qualitative analysis 
As the data in study 4 was of the qualitative kind (e.g., transcripts, notes, and 
pictures) we needed to find a different way to analyze it and this took quite 
some time. The audio recordings were transcribed and we started to identify 
moments when the reasoning sequence took a new direction. These vertices 
were then categorized in regards to the reason for the change in solution 
method. We also controlled if the next vertex indicated a progress in the task 
solving process to be able to distinguish if the solution method brought the 
students closer to the solution or not. The edges between the vertices were 
then analyzed according to which type of reasoning dominated each edge. 

When we had the vertices, edges, and all classifications ready, we visualized 
the complete reasoning sequence in a graph where the x-axis represented the 
turns in the students’ discussion and the y-axis represented progression 
                                                             
7 Statistical Package for the Social Sciences, version 22 and 23. 
8 Statistical Parametric Mapping, version 8, which is an add-on to Matlab. 
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towards the answer. The graphs were then analyzed to see if we could find 
patters and co-occurrences that were connected to the task design (AR or 
CMR), the reasoning of the student group, and the student groups motivation 
and persistence. A much more elaborate description of the methodology can 
be found in the included manuscript (i.e., study 4). 
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6 Summary of the articles/Result 
In this section I will give a short summary of each of the included studies. I 
will also present an additional result from studies 1-3 that was not reported in 
the articles. The additional result concerns information about the practice 
sessions and can serve as a comparison to the test results that are reported in 
the included studies. 

6.1 Study 1 – Learning mathematics through algorithmic 
and creative reasoning 

The aim of this study was to investigate the learning effects of practicing 
mathematical tasks through AR and CMR on task-solving performance.  

We let 131 upper secondary students from the natural-science program in 
Sweden practice on solution methods to 14 different tasks, either by AR or 
CMR. The two groups were matched on cognitive prerequisites, mathematics 
grade and gender. The AR-group got five practice tasks where a solution 
method (i.e., a formula) was presented and this was repeated for all 14 solution 
methods. The CMR-group got three tasks with increasing difficulty for each 
solution method where the last task was to construct a mathematical formula 
that described the sought after relation. One week later we gave both groups 
the same test on the 14 solution methods. The test asked three questions for 
each solution method. The first asked for the formula and was restricted to 30 
seconds. This was to ensure that they had to remember the formula and not 
have time to (re)construct it. The second question asked for a numerical 
answer and was also restricted to 30 seconds, again to ensure that no 
(re)construction would take place. The third question was the same as the 
second but now with a 300 second time limit to give enough time for eventual 
(re)construction of a forgotten formula. 

After excluding participants from the sample due to attrition and in a few 
cases to prevent ceiling effects we were left with 91 students (48 AR and 43 
CMR). The result showed that the CMR-group significantly outperformed the 
AR-group on the test, both on the composite level (see Figure 7) and on the 
three different tasks. A closer study of the data also revealed that high 
cognitive capacity was more important for the AR-group to perform well 
during the post-test than for the CMR-group. This is contrary to common 
beliefs as many regard problem solving and similar tasks as “only for the high 
achievers”.  

In the discussion we try to find reasons to why CMR seems to be more 
efficient. One reason that comes up is that the CMR-group has to struggle with 
mathematical properties of the task to find a solution to do this. The AR-
students get to see and use the correct formula repeatedly but do not have to 
struggle at all. The positive struggle that the CMR-group is subjected to might 
be one reason to why they perform better. The theory of didactical situations 
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also suggest that you learn better by constructing the solution compared to 
imitating a given method. Thus, CMR will produce better opportunities to 
understand and learn mathematics. 

 

 
 
Figure 7: Practice and test scores on composite 
level as retrieved from Jonsson et al. (2014). 

 

6.2 Study 2 – The affect of explanations on mathematical 
reasoning tasks 

The aim of this study was to see if the addition of an explanation of the 
mathematical principle behind the formula in the AR-task would enhance the 
efficiency of the AR-tasks.  

104 upper secondary students from the natural-science program in Sweden 
were recruited to participate in the study. The method was similar to study 1 
and the AR and CMR-tasks were the same but another group, XAR, was 
added. The XAR-group got the same tasks as the AR-group but with an 
additional explanation that briefly but carefully described the principle behind 
the given formula. In other words, while the AR-tasks included information 
about how to solve the task the XAR-tasks also included mathematical 
arguments clarifying why the suggested method was correct. 

All three groups were matched on cognitive capacity (i.e., Ravens matrices 
and operation span), mathematics grade and gender. One week after the 
practice session the students took the same test as in the previous study. The 
results indicate that the added explanation did not give any significant effect 
on performance compared to the AR-group. The tendency from the earlier 
study that the CMR-group outperformed the AR-group was still there but with 
fewer participants it did not show up as significant. Compared to the XAR-
group though, the CMR-group performed significantly better (see Figure 8). 
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Cognitive capacity was still more important for the AR-groups than for the 
CMR-group but the added explanation seemed to lessen this effect slightly for 
the XAR-group.  

In the discussion the non-effect from the added explanation is discussed in 
terms of how Brousseau’s theory of Didactical Situations (1997) actually 
predicts this result. The importance of struggle again comes into play and the 
eventual lack of engagement in the explanation is also hypothesized to be an 
explanation. 

 

 
Figure 8: Practice and test scores as retrieved from Norqvist 
(2016). 

 

6.3 Study 3 – Learning mathematics without a suggested 
method: Durable effects on performance and brain 
activity 

The aim of this study was to replicate parts of the first study and add the 
perspective of brain activity. Hypothetically, the performance would be 
similar to the first study but since the test was made in an fMRI-scanner with 
multiple-choice questions we could not be sure. Another hypothesis was that 
the CMR-group would show less activity in the left angular gyrus since study 
1 had shown that CMR-practice yielded a better recollection of the solution 
methods than AR-practice. 

73 students, 40 from the third year at upper secondary school and 33 first 
year engineering students were recruited to participate. All were right-handed 
and had normal or corrected-to-normal vision. The participants were divided 
into two matched groups, AR and CMR, based on cognitive prerequisites, 
mathematics grade and gender. The students practiced on nine different task 
types with different solution methods and the practice method was the same 
as in study 1. Six days after practice the students took a test while in an fMRI-
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scanner. This test consisted of one multiple-choice for each solution method. 
Between each mathematical test task there was a baseline task, checking for 
spelling errors, that served as a contrast in the later analysis. 

The result showed that the CMR-group outperformed the AR-group on the 
test (see Figure 9A). It was also apparent that the AR-group had a higher 
activation of the left angular gyrus (see Figure 9B) and the left precentral 
cortex. The results also show that the right superior parietal cortex is 
important for mathematical performance. 

 
A 

 

B 

 
 

Figure 9: (A) Mathematics test scores for the two groups. (B) Difference in activation 
between groups in Left Angular Gyrus, as retrieved from Wirebring et al. (2015) 

 
We concluded that the CMR-group again outperformed the AR-group on 

the post test. We also discussed the two indicated areas where the AR-group 
had a higher activation rate than the CMR-group. The higher activity in the 
angular gyrus indicates that the AR-students have to work harder to retrieve 
the formula from memory. The difference in the precentral cortex indicates 
that there is more stress on working memory in the AR-group.  

6.4 Study 4 – Unraveling students’ reasoning: analyzing 
small-group discussions during task solving 

The aim of this study was to examine students’ reasoning to see how the 
reasoning sequence would unfold in actual classroom situations. We were also 
interested in how students’ reasoning would influence their progression 
towards a solution.  

We visited two classrooms in an upper secondary school and observed two 
student groups in each classroom for the time it took them to complete a task, 
constructed and presented to them by the teacher. One of the four student 
groups did not complete the given task during the observed lesson. Initial 
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analysis showed that there were two interesting dimensions to regard, group 
characteristics (i.e., the student-group’s motivation and persistence) and task 
design (i.e., AR or CMR). After transcribing the audio-recordings we have 
segmented them into sections by utilizing Lithner’s (2008) framework of 
mathematical reasoning. A moment when the students’ reasoning took a new 
trajectory was called a vertex and the segment between two such vertices was 
called an edge (Lithner, 2008). After the classification we compared the 
vertices and determined how they compared to each other regarding progress 
towards the answer (i.e., return to previous ideas – step down, no progression 
– horizontal edge, or progress – rising edge or step up). The edges were then 
categorized according to the students’ reasoning (i.e., either CMR or AR). We 
then visualized the students’ reasoning in graphs (see Figure 10) and analyzed 
the patterns, the amount of rising edges and types of reasoning, as well as how 
the group characteristics and task design would influence reasoning and 
progress. 

 

 
Figure 10: Example of visualization of reasoning sequence as retrieved from Van 
Steenbrugge & Norqvist (2016). Blue indicates AR, Yellow CMR, and Black un-characterized 
reasoning (all other markings are explained in the included paper (Study 4)). 

 
The result showed that task design is important for which reasoning the 

students will use. Although an AR-task does not exclude CMR, it only occurs 
in our data if the students have difficulties and strive to handle them by 
themselves. We also observed that group characteristics were important for 
the chosen reasoning type. Student groups that were less motivated and less 
persistent were more prone to giving up and using AR than the more 
motivated and more persistent student groups.  
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6.5 Additional result 
In study 1-3 we also gathered data on the practice session. However, we did 
not report or discuss this extensively in the studies. What is obvious is that 
CMR-practice is much more taxing on the cognitive abilities than AR-practice. 
This becomes evident if we observe which variables that predicts the practice 
result. For AR-practice none of the included variables (i.e., gender, cognitive 
proficiency index, mathematics grade, practice time) are predictive of the 
practice result while the CMR-practice result is highly dependent on cognitive 
capacity and mathematics grade (see Table 1). This is consistent throughout 
study 1 and 2 but not apparent in study 3, maybe because of the smaller 
sample9. This is almost the opposite to the result from the test where the AR-
groups test result was predicted by cognitive measures and to some degree 
mathematics grade and gender while the CMR-groups test result was 
predicted by their practice result (see Table 2). In the tables below the XAR-
condition from study 2 is merged with the AR-condition since they performed 
similarly. 

 
Table	1	
Regression	Analysis	Summary	For	Variables	Predicting	Practice	Result	
	 AR	 	 CMR	

Variables	 B	 		 SE	B	 		 ß	 		 B	 		 SE	B	 		 ß	
Study	1	 	 		 	 		 	 	 	 		 	 		 	
		Cognitive	index	 .031	 	 .014	 	 .349*	 	 .079	 	 .047	 	 .249	
		Mathematics	grade	 .004	 	 .004	 	 .151	 	 .031	 	 .011	 	 .418**	
		Gender	 .022	 	 .023	 	 .131	 	 .060	 	 .058	 	 .135	
Study	2	 	 	 	 	 	 	 	 	 	 	 	
		Cognitive	index	 .008	 	 .008	 	 .120	 	 .128	 	 .033	 	 .432***	
		Mathematics	grade	 .006	 	 .002	 	 .375**	 	 .041	 	 .008	 	 .555***	
		Gender	 .013	 	 .012	 	 .120	 	 -.068	 	 .053	 	 -.144	
Study	3†	 	 	 	 	 	 	 	 	 	 	 	
		Raven’s	matrices	 -.895	 	 1.825	 	 -.129	 	 2.088	 	 3.847	 	 .126	
		Mathematics	grade	 -.344	 	 .343	 	 -.272	 	 .986	 	 .801	 	 .288	
		Gender	 -4.794	 		 3.408	 		 -.353	 		 3.063	 		 7.789	 		 .089	
*p<.001,	**p<.01,	***p<.05.	
†	includes	one	of	the	sample	groups	(students).	

 
  

                                                             
9 Only data from one of the sample groups were available from study 3 at the time of writing this thesis. 
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Table	2	
Regression	Analysis	Summary	For	Variables	Predicting	Test	Result	

	 AR	 	 CMR	

Variables	 				B	 		 SE	B	 		 ß	 		 		B	 		 SE	B	 		 ß	

Study	1	 	 		 	 		 	 	 	 		 	 		 	

		Cognitive	index	 .151	 	 .047	 	 .492**	 	 -.003	 	 .039	 	 -.010	

		Mathematics	grade	 .013	 	 .013	 	 .155	 	 .004	 	 .010	 	 .046	

		Practice	score	 -.027	 	 .472	 	 -.008	 	 .897	 	 .131	 	 .811***	

		Gender	 -.005	 	 .072	 	 -.009	 	 -.034	 	 .048	 	 -.069	

Study	2	 	 	 	 	 	 	 	 	 	 	 	

		Cognitive	index	 .059	 	 .018	 	 .282**	 	 .032	 	 .024	 	 .172	

		Mathematics	grade	 .030	 	 .005	 	 .588***	 	 .010	 	 .007	 	 .219	

		Practice	score	 -.060	 	 .286	 	 -.019	 	 .382	 	 .110	 	 .597**	

		Gender	 .117	 	 .028	 	 .342***	 	 .018	 	 .032	 	 .060	

Study	3†	 	 	 	 	 	 	 	 	 	 	 	

		Raven’s	matrices	 9.046	 	 3.806	 	 .472*	 	 2.071	 	 4.074	 	 .102	

		Mathematics	grade	 1.726	 	 .733	 	 .494*	 	 .830	 	 .872	 	 .198	

		Practice	score	 1.087	 	 .534	 	 .534	 	 .607	 	 .253	 	 .497*	

		Gender	 17.363	 		 7.502	 		 .463*	 		 2.825	 		 8.159	 		 .067	

*p<.05.	**p<.01.	***p<.001.	
†	includes	one	of	the	sample	groups	(students).	
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7 Discussion 
In the included studies there are some coherence in results that could be 
noted. First, studies 1-3 show that CMR is more effective than (X)AR10 
regarding both memory retrieval and re-construction of practiced solution 
methods. Second, studies 1-3 also show that practicing by (X)AR gives rise to 
higher taxation on cognitive abilities during the test situation than CMR-
practice does. This is confirmed by the neuro-cognitive data in study 3, which 
shows that AR is more neurologically demanding during the test situation. 
Third, the additional data shows that CMR-practice will however tax cognitive 
proficiency during practice while (X)AR-practice does not to the same extent. 
Fourth, study 4 confirms that if CMR is preferred, the task design is very 
important. Even though CMR is not excluded when (X)AR-information is 
available, it is much less likely to occur, especially if the students lack 
motivation and persistence. Bear in mind that the discussion is limited to the 
results in the four included studies and the additional result in the previous 
chapter, hence the word “shows” is used to mean in the context of these 
studies.  

During the remainder of this chapter these results will be discussed in 
relation to the research questions (Sections 7.1-7.3) as well as in relation to 
limitations, generalizability, and implications for further studies and teaching 
practice (Section 7.4) 

7.1  How will the task design influence students’ solutions 
process, mathematical reasoning, and brain activity? 

From a theoretical point of view both Brousseau (1997) and Lithner (2008) 
argue that tasks that contain prescriptive solution methods will most likely be 
solved with said methods. And according to Brousseau (1997), this will not 
lead to the creation of any new knowledge. Tasks should instead be designed 
to promote the construction of new knowledge by emphasizing important 
concepts or mathematical properties and at the same time not give away the 
entire solution method. This is basically what happens in tasks with potential 
for CMR. In study 4, it was clear that students preferred to use AR as far as 
possible and as long as the task was designed with given methods these were 
used. The lack of effect from the provided explanations in study 2 can also be 
seen as a sign of that students prefer clean AR and do not bother with 
redundant information. However, in a few instances in study 4 students did 
use CMR when solving AR-tasks. Common for these instances was that the 
students had difficulties in solving the task with the given method, which led 
them to discuss the mathematical properties that was important and decide 
on how to move on.  
                                                             
10 (X)AR denotes both AR and XAR 
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The student-group’s motivation and persistence also seemed to be 
important factors for CMR to occur. One of the groups in study 4 was less 
motivated and less persistent than the others and when they met a CMR-task 
they never chose to reason creatively. Their reasoning was based upon 
formerly known methods and when they did not work the students started 
exploring methods by random. This could also be due to what Bjork and Bjork 
(2011) calls undesirable difficulties (e.g., an unbridgeable gap between prior 
knowledge and task requirements). The extra effort that can be so beneficial 
for mathematics learning (e.g., Bjork & Bjork, 2011; Hiebert & Grouws, 2007) 
and which is needed to perform CMR (Jonsson et al., 2016) will of course 
require tasks that are within reach for the students’ resources and heuristics 
(Schoenfeld, 1985). 

By design, tasks that focus the use of a given solution method will promote 
AR. CMR is not excluded from this type of task but is much less likely to occur 
than AR. Providing an explanation as was done in study 2 (i.e., an explanation 
to why a solution method works and is valid), does not seem to increase test 
scores, although the explanation is focusing the important mathematical 
properties. The explanation will not induce the productive struggle that CMR 
does by definition, and this might be why XAR-information does not improve 
test results compared to AR. 

CMR-practice also seems, according to the results in study 3, to contribute 
to less effortful memory retrieval and less brain activity during the test-
situation. The students that practiced by AR had a significantly higher 
activation in a part of the brain that is connected to verbal memory retrieval, 
the left Angular Gyrus (e.g., Delazer et al., 2003; Ischebeck et al., 2007; 
Seghier, 2013). This would indicate that the solution methods were encoded 
as a string of words, much like an automated multiplication table, rather than 
as mathematical relations or properties. As will be discussed in the next 
section, this lack in retention of mathematical relations or properties can 
affect the test situation by inducing higher strain on cognitive abilities. That 
our results showed no areas where brain activity was higher for the group that 
practiced with CMR-tasks than with the AR-tasks confirms that retrieval and 
eventual reconstruction during the test was less effortful for the CMR-group. 

Although this thesis indicates that promoting CMR is preferable, AR can 
sometimes be the appropriate choice. There are some concepts or properties 
that are difficult to grasp or construct for students until later on in their 
schooling, for example that if you multiply two negative numbers the answer 
will be positive. There is also need for automatization of procedures to be able 
to focus one’s cognitive abilities to the difficult parts of a problem. It would be 
impractical if every little calculation would need the full attention of the 
brain’s mathematics network. The problem is therefore not that AR occurs or 
that rote-learning is common, but that these types of non-reflective learning 
is too common. When learning occurs without connection to mathematical 
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properties or concepts it becomes fragmented, hard to remember, and as 
Boaler (1998) saw irrelevant. 

7.2 How will students’ cognitive variation affect their 
solution rate and does task design matter? 

In studies 1-3 cognition plays a significant role in the test-situation, and to a 
larger extent if the students have practiced by AR or XAR. The CMR-students 
do not seem to be as influenced by cognitive proficiency during the test 
situation, but rather by the extent of how well they have performed during 
practice. This conclusion was also confirmed by fMRI in study 3, where AR 
showed to be more demanding during the test situation. However, as the 
additional results show, CMR is taxing high on cognition during practice while 
(X)AR does not. So, in a sense, test-results for CMR-students are also a 
dependent on cognitive abilities, although in an indirect way. 

In our studies students that practiced by CMR performed better than the 
(X)AR-students during the test. One could argue that this difference is due to 
a performance boost of the capable and high achieving students that would 
benefit most from creative reasoning. However, in study 1 the largest 
difference in test result, between the two practice groups, can be found in the 
lowest cognitive tertile.  

The struggle provided by the CMR-tasks could be one reason to why these 
tasks render higher test results, even though many students did not solve all 
practice tasks. As was suggested by Hiebert and Grouws (2007), discussed in 
studies 1-3, and later on supported by Jonsson et al. (2016), effortful struggle 
with important mathematical concepts and properties is essential for 
mathematical understanding. Jonsson et al. (2016) also concluded that task 
design is vital for what level of effort students will allocate to the solving 
process. Furthermore, Bjork and Bjork (2011) points out that practicing with 
desirable difficulties does not only increase test results but also improve long-
turn retention and transfer of skills. The importance of devoting effort to a 
task was also argued for by Brousseau (1997) in the theory of didactical 
situations, where he suggests that the teacher should delegate the 
responsibility of the task solution to the students within the a-didactical 
situation. Thus, there are both theoretical and empirical arguments that CMR 
may be considered in the teaching practice.  

7.3 How can these results influence teaching practice? 
The result that (X)AR-practice puts less strain on cognition than CMR-

practice, and that the opposite is true during tests is maybe not surprising but 
can be rather alarming. If practice in the classroom does not prepare the 
students to cope with the coming test situation, then what we test is not 
whether or not students have learned mathematics, but rather the students’ 
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cognitive abilities. This could be deceitful for both students and teachers. If 
the teacher observes that the students can solve most tasks they may believe 
that the students are learning. If the difference between the practice- and test 
scores from study 1-3 would be seen as indications of what could happen in a 
classroom, there could be a significant drop in performance from practice to 
test. Of course the experiment scores are somewhat an extreme case of this 
but, from discussions with teachers from lower secondary school to university, 
it does not seem uncommon that they meet students that are either 
underestimating or overestimating their abilities, especially when it comes to 
clearing or failing tests. Bear in mind that the students practiced by 
themselves without any help from teacher or peers. This means that all 
difficulties that the students met during their practice had to be either 
overcome by themselves or left behind. What the result would be if the 
students would have received help is a question left to another study, but from 
the results of Stein et al. (1996) we can assume that the results might be even 
better for the CMR-group, provided that the help was of good quality (i.e., 
addressed conceptual hurdles) that did not collapse the didactical situation. 

Since much lesson time is devoted to solving tasks (Mullis et al., 2012; 
Wakefield, 2006), some of these problems could be solved by presenting the 
students with more well designed and mathematically challenging tasks that 
focus creative reasoning and mathematical properties rather than 
unconnected procedures. Constructing and designing new tasks can however 
be tedious work, but many textbook tasks have all components needed. The 
problem is often that there is too much information for the tasks to have 
potential for CMR. The following example from an upper-secondary textbook 
can illustrate this: 

 
422. In a rectangle the sides are 8 cm and 6 cm long. The long sides will 
be shortened by 30% and the short sides will be increased by 25%.  
a) How long are the sides in the new rectangle? 
b) What is the area of the new rectangle? 
c) What is the percentual difference between the areas of the old and new 
rectangles? 

 
To construct a task with higher potential for CMR we could just remove 

some of the explicit sub steps and thereby leave it up to the student to consider 
which steps that are needed to solve the tasks (provided that the student does 
not know any solution methods by heart). Hence, we would end up with this 
task: 

 
422. In a rectangle the sides are 8 cm and 6 cm long. The long sides will 
be shortened by 30% and the short sides will be increased by 25%. What is 
the percentual difference between the areas of the old and new rectangles? 
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We could even remove the lengths so that the students would have to make 

an assumption about how long the sides are, or try to make a more general 
solution.  

By removing the prescriptive parts of the task it becomes more effortful and 
creative. Now each student can have an idea on how the task could be solved 
and a discussion between classmates could focus on the mathematical 
properties rather than on implementation of known procedures. The teacher 
also has the opportunity to easily adjust the tasks to individual students by 
removing more or less of the guiding steps, and by helping students with 
conceptual problems. This adjustment takes much less time than having to 
construct the task from scratch and though the original task probably will be 
solved faster there will be less struggle with important mathematics. This 
might be one way of utilizing the CMR-idea as a way to construct tasks that 
are more effortful for the students but still concerns the content that the 
textbook prescribes.  

It is also necessary to consider the result that AR-practice (as discussed 
under 7.2) is more cognitively demanding during test than during practice. If 
students fulfill the learning goals by rote learning and if these learning goals 
were best assessed by giving the students cognitively demanding test tasks, all 
would be well. However, as many studies show, this is not the case. If we want 
students to become proficient in mathematics, rote learning alone will not be 
enough (e.g., Bjork & Bjork, 2011; Hiebert, 2003; Schoenfeld, 1985). 
Personally I do not think that this is fair to the students. If students are 
supposed to solve mathematical problems and reason creatively they must get 
a chance to practice these competencies as well as the necessary procedures. 

Studies 1-3 are made in an experimental setting and the classroom 
environment is of course much more complex. However, the studies of this 
thesis combined with many other studies in mathematics education give us 
reasonable evidence that task design and students reasoning are important 
aspects to consider when discussing students’ mathematical learning.  

In classroom practice the teacher could address the question about task 
appropriateness by choosing tasks that will fit into the curriculum and 
presenting them at a moment where the students can solve the task but do not 
know a simple procedure to do so. The teacher also has the possibility to 
present new content in such a way that the students has to consider 
mathematical properties instead of being served pre-defined procedures. 

7.4 Limitations and implications for further studies 
The included studies give indications on how to take the idea of creative 
reasoning into a classroom study. The involved teachers would have to be 
either educated in the different types of reasoning to be able to work as 
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creatively as possible, or scripted as to what help and which response they 
would give the students. The teacher introductions and the tasks that the class 
would be working with have to a larger extent to be designed with CMR in 
mind to engage as many students as possible in this type of reasoning. It would 
also be good for a study if it could encompass a complete section of the subject 
knowledge that the class should learn that year (e.g., percentages or linear 
equations).  

Designing tasks that would fit the rather small window comprising what the 
students know and what they are about to learn has also been a difficulty that 
we have encountered. As have been addressed earlier, CMR-tasks need to be 
solvable but not by any previously known solution method, and this have been 
a challenge for the research group during the task design process since we 
have little direct evidence of what the students’ prior knowledge were. We 
chose not to test the students’ prior knowledge since a test of the particular 
solution methods in the experiment would have influenced both the practice 
and post-test. Therefore, we decided to rely on more indirect sources (i.e., 
which tasks the students had met in the textbook and their mathematics 
grade) as a measure of prior knowledge. It would have been of interest for the 
tasks to address topics in the current curriculum and as we only visited the 
classrooms thrice it was hard to find tasks that fit. 

It would also be interesting to meet with textbook authors and discuss the 
development and testing of a new type of textbook that could put more focus 
on creative reasoning from the beginning of each chapter. Such a textbook 
could be evaluated by comparing observations of students’ work with it and 
with one of the common textbooks, as well as with pre- and post-tests of 
knowledge. However, a new textbook alone is insufficient unless teaching is 
adopted to match the intentions of the new material.  

There are also many adjustments that could be made to the existing studies 
to examine how, for example, repeated practice, delayed tests, or different 
student groups would influence the results. In fact, one such study has already 
been made by one of our pre-service teachers, where the object was to see if a 
more heterogeneous and slightly younger group of students would yield the 
same result as study 1. The result showed that the same pattern occurs during 
practice and also the importance of the need to think through the tasks for this 
group of students (Wikman, 2015).  

Since studies 1-3 were pseudo-experiments, we tried to reduce complexity 
as much as possible to be able to study the influence of the tasks rather that of 
something else. This meant that information to the students were scripted and 
quite vague when it came to the the purpose of the different sessions. The fact 
that the students did not know that they were going to be tested could also 
have been important for their test performance. Students could have 
concentrated harder to remember the solution methods and maybe even tried 
to rehearse them before the test. Then again, it was not a high-stake test so the 
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students might not have bothered to engage in rehearsing since they have 
plenty of other school-related and higher-stake-tasks to attend to.   

Letting students talk to each other while solving the tasks could also be 
interesting to study. From a result perspective this could increase the CMR-
students practice performance and according to the results in study 1-3, the 
test scores. On the other hand, the help the students give each other could be 
of an AR-type which might lessen the focus on important mathematical 
properties and hence decrease the test-scores. It would also be interesting to 
observe the student discussions, the questions and help they give each other, 
both in the CMR-group and the AR-group, to notice if the task design will be 
important for the quality of these discussions. 

Another interesting but maybe impractical study would be to make an 
fMRI-study of the practice situation. It would be very interesting to see how 
the CMR-practice would compare to the AR-practice on a brain activation 
level. Alas, at the moment I have no inkling on how such a study would be 
designed or which parts of the practice situation that could be or should be 
observed. Since the fMRI-environment puts restraints on the experiment 
design a lengthy creative reasoning sequence would be hard to observe, with 
all the noise that would infiltrate the data. Maybe some parts of the reasoning 
process could be focused or maybe some sort of multiple choice questions 
could lessen the time needed to construct a solution method. Maybe the 
productive struggle could be isolated and observed but as I said, at this 
moment I am just speculating. This kind of study could however give us deeper 
insight into why CMR-practice seems to be so effective compared to AR-
practice and which brain processes that are active in sustaining this difference.  

7.5 Conclusion 
The studies included in this thesis confirm that task design is important for 
what type of reasoning the students will engage in, and that the reasoning is 
subsequently important for what is learned, just as Brousseau (1997) and 
Lithner (2008) argued. The included studies also suggest that creative 
reasoning is not only beneficial for the high achievers but equally (if not more) 
fruitful for cognitively less proficient students. As a complement, the 
additional result indicate that CMR-practice is highly taxing on cognition 
while during the test practice performance becomes more important. 
Conversely, practicing by AR seems to be quite effortless while the test seems 
to place a higher demand on cognition. The results of study 4 also informed 
us that CMR is important for progression through demanding tasks and that 
the reasoning also is dependent on student characteristics, such as motivation 
and perseverance along with subject knowledge.  

These findings are of importance for both teacher practice and textbook 
design. It is essential that students are well prepared for coming tests as well 
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as for future life and none of these will benefit from knowing a lot of superficial 
procedures. Even if creative mathematical reasoning always can be used to 
understand concepts and mathematical properties, task solvers may rather 
use an available algorithm to solve a task as rapidly as possible. If students are 
taught mathematics mostly based upon becoming proficient in using different 
procedures, they may be even less likely to engage in creative reasoning if it is 
not required from the task (Schoenfeld, 1985). Therefore, including more 
creative mathematically founded reasoning tasks, and teaching that supports 
students’ work with such tasks, is important if we want students to grow up to 
become mathematically literate. 
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