Umeå universitets logga

umu.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (5 of 5) Visa alla publikationer
Abrahamsson, A., Berner, A., Golebiewska-Pikula, J., Chaudhari, N., Keskitalo, E., Lindgren, C., . . . Chorell, E. (2025). Linker design principles for the precision targeting of oncogenic G-quadruplex DNA with G4-ligand-conjugated oligonucleotides. Bioconjugate chemistry, 36(4), 724-736
Öppna denna publikation i ny flik eller fönster >>Linker design principles for the precision targeting of oncogenic G-quadruplex DNA with G4-ligand-conjugated oligonucleotides
Visa övriga...
2025 (Engelska)Ingår i: Bioconjugate chemistry, ISSN 1043-1802, E-ISSN 1520-4812, Vol. 36, nr 4, s. 724-736Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

G-quadruplex (G4) DNA structures are noncanonical secondary structures found in key regulatory regions of the genome, including oncogenic promoters and telomeres. Small molecules, known as G4 ligands, capable of stabilizing G4s hold promise as chemical probes and therapeutic agents. Nevertheless, achieving precise specificity for individual G4 structures within the human genome remains a significant challenge. To address this, we expand upon G4-ligand-conjugated oligonucleotides (GL-Os), a modular platform combining the stabilizing properties of G4-ligands with the sequence specificity of guide DNA oligonucleotides. Central to this strategy is the linker that bridges the G4 ligand and the guide oligonucleotide. In this study, we develop multiple conjugation strategies for the GL-Os that enabled a systematic investigation of the linker in both chemical composition and length, enabling a thorough assessment of their impact on targeting oncogenic G4 DNA. Biophysical, biochemical, and computational evaluations revealed GL-Os with optimized linkers that exhibited enhanced binding to target G4s, even under thermal or structural stress. Notably, longer linkers broadened the range of targetable sequences without introducing steric hindrance, thereby enhancing the platform’s applicability across diverse genomic contexts. These findings establish GL-Os as a robust and versatile tool for the selective targeting of individual G4s. By facilitating precise investigations of G4 biology, this work provides a foundation for advancing G4-targeted therapeutic strategies and exploring their role in disease contexts.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2025
Nationell ämneskategori
Biokemi
Identifikatorer
urn:nbn:se:umu:diva-237287 (URN)10.1021/acs.bioconjchem.5c00008 (DOI)001448909600001 ()40112195 (PubMedID)2-s2.0-105000394779 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, VR-MH 2023-02160Vetenskapsrådet, VR-NT 2021-04805Kempestiftelserna, JCK-3159Kempestiftelserna, SMK21-0059Knut och Alice Wallenbergs StiftelseCancerfonden, 23 2793 PjVetenskapsrådet, VR-MH 2023-02160Vetenskapsrådet, VR-NT 2021-04805Kempestiftelserna, JCK-3159Kempestiftelserna, SMK21-0059Knut och Alice Wallenbergs StiftelseCancerfonden, 23 2793 Pj
Tillgänglig från: 2025-04-07 Skapad: 2025-04-07 Senast uppdaterad: 2025-05-28Bibliografiskt granskad
Golebiewska-Pikula, J., Abrahamsson, A. & Chorell, E. (2025). Phosphate triester-based multifunctional handles for post-synthetic oligonucleotide functionalization. Bioorganic chemistry, 157, Article ID 108259.
Öppna denna publikation i ny flik eller fönster >>Phosphate triester-based multifunctional handles for post-synthetic oligonucleotide functionalization
2025 (Engelska)Ingår i: Bioorganic chemistry, ISSN 0045-2068, Vol. 157, artikel-id 108259Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The continued advancement of oligonucleotide-based strategies in research and therapeutics relies on expanding the repertoire of chemical modifications to overcome persistent challenges, such as improving cellular uptake and delivery. Addressing these obstacles requires innovative bioconjugation approaches that integrate seamlessly with oligonucleotide modalities. Here, we report the development of a novel phosphotriester trifunctional probe based on the H-phosphonate derivative ammonium (9H-fluoren-9-yl)methyl, introducing significant advancements in synthetic phosphate chemistry. This platform supports robust and versatile chemical transformations, enabling the incorporation of diverse functionalities, such as biotin, fluorescent markers, G4-stabilizing ligands, and azido groups, into oligonucleotide backbones. The resulting multifunctional probes are compatible with different conjugation strategies and phosphorothioate modifications, allowing late-stage functionalization in solution without requiring solid-phase synthesis. We demonstrate the utility of this approach through the synthesis of G4-ligand-conjugated oligonucleotides (GL-Os) designed to target individual G4 structures. However, the strategy's adaptability ensures compatibility with a wide range of oligonucleotide-based applications that benefit from the addition of functional probes. This flexibility broadens accessibility and applicability, facilitating the development of oligonucleotide tools for advanced chemical biology studies, including fluorescence-based imaging and pull-down experiments.

Ort, förlag, år, upplaga, sidor
Elsevier, 2025
Nyckelord
G4-Ligand conjugated oligonucleotides, H-phosphonate, Multifunctionalization, Oligonucleotide conjugation, Phosphate triester, Post-synthetic modification
Nationell ämneskategori
Organisk kemi Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-235720 (URN)10.1016/j.bioorg.2025.108259 (DOI)001434245700001 ()2-s2.0-85217700018 (Scopus ID)
Forskningsfinansiär
Kempestiftelserna, JCK-3159Vetenskapsrådet, VR-NT 2021-04805Cancerforskningsfonden i Norrland, LP 24-2352Cancerfonden, 23 2793 Pj
Tillgänglig från: 2025-02-24 Skapad: 2025-02-24 Senast uppdaterad: 2025-04-24Bibliografiskt granskad
Andréasson, M., Donzel, M., Abrahamsson, A., Berner, A., Doimo, M., Quiroga, A., . . . Chorell, E. (2024). Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands. Journal of Medicinal Chemistry, 67(3), 2202-2219
Öppna denna publikation i ny flik eller fönster >>Exploring the dispersion and electrostatic components in arene-arene interactions between ligands and G4 DNA to develop G4-ligands
Visa övriga...
2024 (Engelska)Ingår i: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 67, nr 3, s. 2202-2219Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

G-Quadruplex (G4) DNA structures are important regulatory elements in central biological processes. Small molecules that selectively bind and stabilize G4 structures have therapeutic potential, and there are currently >1000 known G4 ligands. Despite this, only two G4 ligands ever made it to clinical trials. In this work, we synthesized several heterocyclic G4 ligands and studied their interactions with G4s (e.g., G4s from the c-MYC, c-KIT, and BCL-2 promoters) using biochemical assays. We further studied the effect of selected compounds on cell viability, the effect on the number of G4s in cells, and their pharmacokinetic properties. This identified potent G4 ligands with suitable properties and further revealed that the dispersion component in arene-arene interactions in combination with electron-deficient electrostatics is central for the ligand to bind with the G4 efficiently. The presented design strategy can be applied in the further development of G4-ligands with suitable properties to explore G4s as therapeutic targets.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2024
Nationell ämneskategori
Läkemedelskemi
Identifikatorer
urn:nbn:se:umu:diva-220319 (URN)10.1021/acs.jmedchem.3c02127 (DOI)001160609500001 ()38241609 (PubMedID)2-s2.0-85183093324 (Scopus ID)
Forskningsfinansiär
Kempestiftelserna, JCK-3159Kempestiftelserna, SMK-1632Vetenskapsrådet, 2017-05235Vetenskapsrådet, 2021-04805Knut och Alice Wallenbergs Stiftelse
Tillgänglig från: 2024-02-13 Skapad: 2024-02-13 Senast uppdaterad: 2025-04-24Bibliografiskt granskad
Berner, A., Das, R. N., Bhuma, N., Golebiewska, J., Abrahamsson, A., Andréasson, M., . . . Chorell, E. (2024). G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures. Journal of the American Chemical Society, 146(10), 6926-6935
Öppna denna publikation i ny flik eller fönster >>G4-ligand-conjugated oligonucleotides mediate selective binding and stabilization of individual G4 DNA structures
Visa övriga...
2024 (Engelska)Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 146, nr 10, s. 6926-6935Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

G-quadruplex (G4) DNA structures are prevalent secondary DNA structures implicated in fundamental cellular functions, such as replication and transcription. Furthermore, G4 structures are directly correlated to human diseases such as cancer and have been highlighted as promising therapeutic targets for their ability to regulate disease-causing genes, e.g., oncogenes. Small molecules that bind and stabilize these structures are thus valuable from a therapeutic perspective and helpful in studying the biological functions of the G4 structures. However, there are hundreds of thousands of G4 DNA motifs in the human genome, and a long-standing problem in the field is how to achieve specificity among these different G4 structures. Here, we developed a strategy to selectively target an individual G4 DNA structure. The strategy is based on a ligand that binds and stabilizes G4s without selectivity, conjugated to a guide oligonucleotide, that specifically directs the G4-Ligand-conjugated oligo (GL-O) to the single target G4 structure. By employing various biophysical and biochemical techniques, we show that the developed method enables the targeting of a unique, specific G4 structure without impacting other off-target G4 formations. Considering the vast amount of G4s in the human genome, this represents a promising strategy to study the presence and functions of individual G4s but may also hold potential as a future therapeutic modality.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2024
Nationell ämneskategori
Medicinsk bioteknologi (med inriktning mot cellbiologi (inklusive stamcellsbiologi), molekylärbiologi, mikrobiologi, biokemi eller biofarmaci)
Identifikatorer
urn:nbn:se:umu:diva-222294 (URN)10.1021/jacs.3c14408 (DOI)001179314400001 ()38430200 (PubMedID)2-s2.0-85186374110 (Scopus ID)
Forskningsfinansiär
Kempestiftelserna, JCK-3159Kempestiftelserna, SMK-1632Kempestiftelserna, SMK21-0059Vetenskapsrådet, 2017-05235Vetenskapsrådet, 2021-04805Vetenskapsrådet, 2018-0278Cancerforskningsfonden i Norrland, AMP19-968Knut och Alice Wallenbergs Stiftelse, SMK21-0059
Tillgänglig från: 2024-03-20 Skapad: 2024-03-20 Senast uppdaterad: 2025-04-07Bibliografiskt granskad
Doimo, M., Chaudhari, N., Abrahamsson, S., L'Hôte, V., Nguyen, T. V. H., Berner, A., . . . Wanrooij, S. (2023). Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells. Nucleic Acids Research, 51(14), 7392-7408
Öppna denna publikation i ny flik eller fönster >>Enhanced mitochondrial G-quadruplex formation impedes replication fork progression leading to mtDNA loss in human cells
Visa övriga...
2023 (Engelska)Ingår i: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 51, nr 14, s. 7392-7408Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Mitochondrial DNA (mtDNA) replication stalling is considered an initial step in the formation of mtDNA deletions that associate with genetic inherited disorders and aging. However, the molecular details of how stalled replication forks lead to mtDNA deletions accumulation are still unclear. Mitochondrial DNA deletion breakpoints preferentially occur at sequence motifs predicted to form G-quadruplexes (G4s), four-stranded nucleic acid structures that can fold in guanine-rich regions. Whether mtDNA G4s form in vivo and their potential implication for mtDNA instability is still under debate. In here, we developed new tools to map G4s in the mtDNA of living cells. We engineered a G4-binding protein targeted to the mitochondrial matrix of a human cell line and established the mtG4-ChIP method, enabling the determination of mtDNA G4s under different cellular conditions. Our results are indicative of transient mtDNA G4 formation in human cells. We demonstrate that mtDNA-specific replication stalling increases formation of G4s, particularly in the major arc. Moreover, elevated levels of G4 block the progression of the mtDNA replication fork and cause mtDNA loss. We conclude that stalling of the mtDNA replisome enhances mtDNA G4 occurrence, and that G4s not resolved in a timely manner can have a negative impact on mtDNA integrity.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2023
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-214069 (URN)10.1093/nar/gkad535 (DOI)001030190900001 ()37351621 (PubMedID)2-s2.0-85168980694 (Scopus ID)
Forskningsfinansiär
Knut och Alice Wallenbergs StiftelseVetenskapsrådet, VR-MH 2018-0278Vetenskapsrådet, VR-NT 2017-05235Kempestiftelserna, SMK-1632Wenner-Gren StiftelsernaEU, Horisont 2020, 751474Stiftelsen för strategisk forskning (SSF), RIF14-0081
Tillgänglig från: 2023-09-05 Skapad: 2023-09-05 Senast uppdaterad: 2025-04-07Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0009-0004-3292-1637

Sök vidare i DiVA

Visa alla publikationer