Umeå universitets logga

umu.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Kohler, Andreas, Dr. rer. nat.ORCID iD iconorcid.org/0000-0001-6571-2162
Alternativa namn
Publikationer (10 of 28) Visa alla publikationer
Kohler, A. & Kohler, V. (2024). Better together: interorganellar communication in the regulation of proteostasis. Contact, 7, 1-19
Öppna denna publikation i ny flik eller fönster >>Better together: interorganellar communication in the regulation of proteostasis
2024 (Engelska)Ingår i: Contact, ISSN 2515-2564, Vol. 7, s. 1-19Artikel i tidskrift (Refereegranskat) [Forskning på konstnärlig grund] Published
Abstract [en]

An extensive network of chaperones and folding factors is responsible for maintaining a functional proteome, which is the basis for cellular life. The underlying proteostatic mechanisms are not isolated within organelles, rather they are connected over organellar borders via signalling processes or direct association via contact sites. This review aims to provide a conceptual understanding of proteostatic mechanisms across organelle borders, not focussing on individual organelles. This discussion highlights the precision of these finely tuned systems, emphasising the complicated balance between cellular protection and adaptation to stress. In this review, we discuss widely accepted aspects while shedding light on newly discovered perspectives.

Ort, förlag, år, upplaga, sidor
Sage Publications, 2024
Nyckelord
protein homeostasis, reactive oxygen species, stress response, chaperones, protein misfolding, calcium
Nationell ämneskategori
Biologiska vetenskaper
Forskningsämne
biokemi
Identifikatorer
urn:nbn:se:umu:diva-232557 (URN)10.1177/25152564241272245 (DOI)2-s2.0-85206937250 (Scopus ID)
Forskningsfinansiär
Kempestiftelserna, JCSMK23-0157Kempestiftelserna, JCSMK23-0156Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse
Tillgänglig från: 2024-12-03 Skapad: 2024-12-03 Senast uppdaterad: 2024-12-04Bibliografiskt granskad
Kohler, V., Kohler, A., Berglund, L. L., Hao, X., Gersing, S., Imhof, A., . . . Büttner, S. (2024). Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nature Communications, 15(1), Article ID 315.
Öppna denna publikation i ny flik eller fönster >>Nuclear Hsp104 safeguards the dormant translation machinery during quiescence
Visa övriga...
2024 (Engelska)Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 15, nr 1, artikel-id 315Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2024
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-219058 (URN)10.1038/s41467-023-44538-8 (DOI)001142908000001 ()38182580 (PubMedID)2-s2.0-85181445502 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2019-05249Vetenskapsrådet, 2019-04004Vetenskapsrådet, 2019-04052Knut och Alice Wallenbergs Stiftelse, 2017.009Olle Engkvists stiftelse, 207-0527Cancerfonden, 211865Cancerfonden, 201045Cancerfonden, 222488
Tillgänglig från: 2024-01-07 Skapad: 2024-01-07 Senast uppdaterad: 2025-04-24Bibliografiskt granskad
Kohler, A., Carlström, A., Nolte, H., Kohler, V., Jung, S.-j., Sridhara, S., . . . Ott, M. (2023). Early fate decision for mitochondrially encoded proteins by a molecular triage. Molecular Cell, 83(19), 3470-3484
Öppna denna publikation i ny flik eller fönster >>Early fate decision for mitochondrially encoded proteins by a molecular triage
Visa övriga...
2023 (Engelska)Ingår i: Molecular Cell, ISSN 1097-2765, E-ISSN 1097-4164, Vol. 83, nr 19, s. 3470-3484Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.

Ort, förlag, år, upplaga, sidor
Cell Press, 2023
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-214999 (URN)10.1016/j.molcel.2023.09.001 (DOI)
Tillgänglig från: 2023-10-05 Skapad: 2023-10-05 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Kohler, V., Braun, R. J. & Kohler, A. (2023). Editorial: Mitochondria as a hub for neurodegenerative disorders. Frontiers in Molecular Neuroscience, 16, Article ID 1147468.
Öppna denna publikation i ny flik eller fönster >>Editorial: Mitochondria as a hub for neurodegenerative disorders
2023 (Engelska)Ingår i: Frontiers in Molecular Neuroscience, ISSN 1662-5099, Vol. 16, artikel-id 1147468Artikel i tidskrift, Editorial material (Övrigt vetenskapligt) Published
Ort, förlag, år, upplaga, sidor
Frontiers Media S.A., 2023
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-215003 (URN)10.3389/fnmol.2023.1147468 (DOI)000935069000001 ()2-s2.0-85148508309 (Scopus ID)
Tillgänglig från: 2023-10-05 Skapad: 2023-10-05 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Kohler, A., Barrientos, A., Fontanesi, F. & Ott, M. (2023). The functional significance of mitochondrial respiratory chain supercomplexes. EMBO Reports, Article ID e57092.
Öppna denna publikation i ny flik eller fönster >>The functional significance of mitochondrial respiratory chain supercomplexes
2023 (Engelska)Ingår i: EMBO Reports, ISSN 1469-221X, E-ISSN 1469-3178, artikel-id e57092Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The mitochondrial respiratory chain (MRC) is a key energy transducer in eukaryotic cells. Four respiratory chain complexes cooperate in the transfer of electrons derived from various metabolic pathways to molecular oxygen, thereby establishing an electrochemical gradient over the inner mitochondrial membrane that powers ATP synthesis. This electron transport relies on mobile electron carries that functionally connect the complexes. While the individual complexes can operate independently, they are in situ organized into large assemblies termed respiratory supercomplexes. Recent structural and functional studies have provided some answers to the question of whether the supercomplex organization confers an advantage for cellular energy conversion. However, the jury is still out, regarding the universality of these claims. In this review, we discuss the current knowledge on the functional significance of MRC supercomplexes, highlight experimental limitations, and suggest potential new strategies to overcome these obstacles.

Ort, förlag, år, upplaga, sidor
EMBO Press, 2023
Nyckelord
bioenergetics; electron transfer; Mitochondria; respiratory chain; supercomplexes
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-215332 (URN)10.15252/embr.202357092 (DOI)
Forskningsfinansiär
NIH (National Institutes of Health), GM118141Knut och Alice Wallenbergs Stiftelse, 2019.0319Knut och Alice Wallenbergs Stiftelse, 2017.0091Vetenskapsrådet, 2014‐4116Vetenskapsrådet, 2018‐03694
Tillgänglig från: 2023-10-18 Skapad: 2023-10-18 Senast uppdaterad: 2023-10-18Bibliografiskt granskad
Aufschnaiter, A., Carlström, A. & Ott, M. (2023). Yeast Mitoribosome Purification and Analyses by Sucrose Density Centrifugation and Immunoprecipitation. In: Antoni Barrientos and Flavia Fontanesi (Ed.), The Mitoribosome: Methods and Protocols (pp. 119-132). Humana Press
Öppna denna publikation i ny flik eller fönster >>Yeast Mitoribosome Purification and Analyses by Sucrose Density Centrifugation and Immunoprecipitation
2023 (Engelska)Ingår i: The Mitoribosome: Methods and Protocols / [ed] Antoni Barrientos and Flavia Fontanesi, Humana Press, 2023, s. 119-132Kapitel i bok, del av antologi (Övrigt vetenskapligt)
Abstract [en]

Mitochondrial protein biosynthesis is maintained by an interplay between the mitochondrial ribosome (mitoribosome) and a large set of protein interaction partners. This interactome regulates a diverse set of functions, including mitochondrial gene expression, translation, protein quality control, and respiratory chain assembly. Hence, robust methods to biochemically and structurally analyze this molecular machinery are required to understand the sophisticated regulation of mitochondrial protein biosynthesis. In this chapter, we present detailed protocols for immunoprecipitation, sucrose cushions, and linear sucrose gradients to purify and analyze mitoribosomes and their interaction partners.

Ort, förlag, år, upplaga, sidor
Humana Press, 2023
Serie
Methods in Molecular Biology, ISSN 1064-3745, E-ISSN 1940-6029 ; 2661
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-215177 (URN)10.1007/978-1-0716-3171-3_8 (DOI)37166635 (PubMedID)2-s2.0-85159451845 (Scopus ID)978-1-0716-3170-6 (ISBN)978-1-0716-3171-3 (ISBN)
Tillgänglig från: 2023-10-10 Skapad: 2023-10-10 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Aufschnaiter, A. & Ott, M. (2022). Fließbandfertigung von Atmungskettenkomplexen in Mitochondrien. BIOspektrum, 28(4), 366-369
Öppna denna publikation i ny flik eller fönster >>Fließbandfertigung von Atmungskettenkomplexen in Mitochondrien
2022 (Tyska)Ingår i: BIOspektrum, ISSN 0947-0867, Vol. 28, nr 4, s. 366-369Artikel i tidskrift (Övrigt vetenskapligt) Published
Abstract [en]

A key function of mitochondria consists of energy conversion, performed with the help of the respiratory chain and the ATP synthase. Biogenesis of these essential molecular machines requires expression of nuclear and mitochondrially encoded genes. We describe our current understanding how these processes are coordinated and how they are organized in specific areas of the inner membrane to facilitate the assembly of these sophisticated complexes.

Ort, förlag, år, upplaga, sidor
Springer Nature, 2022
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-215189 (URN)10.1007/s12268-022-1783-9 (DOI)2-s2.0-85132125915 (Scopus ID)
Tillgänglig från: 2023-10-10 Skapad: 2023-10-10 Senast uppdaterad: 2025-02-20Bibliografiskt granskad
Dickinson, Q., Kohler, A., Ott, M. & Meyer, J. G. (2022). Multi-omic integration by machine learning (MIMaL). Bioinformatics, 38(21), 4908-4918
Öppna denna publikation i ny flik eller fönster >>Multi-omic integration by machine learning (MIMaL)
2022 (Engelska)Ingår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 38, nr 21, s. 4908-4918Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Motivation: Cells respond to environments by regulating gene expression to exploit resources optimally. Recent advances in technologies allow for measuring the abundances of RNA, proteins, lipids and metabolites. These highly complex datasets reflect the states of the different layers in a biological system. Multi-omics is the integration of these disparate methods and data to gain a clearer picture of the biological state. Multi-omic studies of the proteome and metabolome are becoming more common as mass spectrometry technology continues to be democratized. However, knowledge extraction through the integration of these data remains challenging.

Results: Connections between molecules in different omic layers were discovered through a combination of machine learning and model interpretation. Discovered connections reflected protein control (ProC) over metabolites. Proteins discovered to control citrate were mapped onto known genetic and metabolic networks, revealing that these protein regulators are novel. Further, clustering the magnitudes of ProC over all metabolites enabled the prediction of five gene functions, each of which was validated experimentally. Two uncharacterized genes, YJR120W and YDL157C, were accurately predicted to modulate mitochondrial translation. Functions for three incompletely characterized genes were also predicted and validated, including SDH9, ISC1 and FMP52. A website enables results exploration and also MIMaL analysis of user-supplied multi-omic data.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2022
Nationell ämneskategori
Naturvetenskap
Identifikatorer
urn:nbn:se:umu:diva-215178 (URN)10.1093/bioinformatics/btac631 (DOI)000862056200001 ()36106996 (PubMedID)2-s2.0-85141003942 (Scopus ID)
Forskningsfinansiär
NIH (National Institutes of Health), R35 GM142502VetenskapsrådetKnut och Alice Wallenbergs Stiftelse
Tillgänglig från: 2023-10-10 Skapad: 2023-10-10 Senast uppdaterad: 2023-10-10Bibliografiskt granskad
Saini, P. K., Dawitz, H., Kohler, A., Bondarev, S., Thomas, J., Amblard, A., . . . Pierrel, F. (2022). The [PSI+] prion modulates cytochrome c oxidase deficiency caused by deletion of COX12. Molecular Biology of the Cell, 33(14), Article ID 130.
Öppna denna publikation i ny flik eller fönster >>The [PSI+] prion modulates cytochrome c oxidase deficiency caused by deletion of COX12
Visa övriga...
2022 (Engelska)Ingår i: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 33, nr 14, artikel-id 130Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cytochrome c oxidase (CcO) is a pivotal enzyme of the mitochondrial respiratory chain, which sustains bioenergetics of eukaryotic cells. Cox12, a peripheral subunit of CcO oxidase, is required for full activity of the enzyme, but its exact function is unknown. Here experimental evolution of a Saccharomyces cerevisiae Δcox12 strain for ∼300 generations allowed to restore the activity of CcO oxidase. In one population, the enhanced bioenergetics was caused by a A375V mutation in the cytosolic AAA+ disaggregase Hsp104. Deletion or overexpression of HSP104 also increased respiration of the Δcox12 ancestor strain. This beneficial effect of Hsp104 was related to the loss of the [PSI+] prion, which forms cytosolic amyloid aggregates of the Sup35 protein. Overall, our data demonstrate that cytosolic aggregation of a prion impairs the mitochondrial metabolism of cells defective for Cox12. These findings identify a new functional connection between cytosolic proteostasis and biogenesis of the mitochondrial respiratory chain.

Ort, förlag, år, upplaga, sidor
American Society for Cell Biology (ASCB), 2022
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-215180 (URN)10.1091/mbc.e21-10-0499 (DOI)000890129900006 ()36129767 (PubMedID)2-s2.0-85142403724 (Scopus ID)
Tillgänglig från: 2023-10-10 Skapad: 2023-10-10 Senast uppdaterad: 2023-10-10Bibliografiskt granskad
Habernig, L., Broeskamp, F., Aufschnaiter, A., Diessl, J., Peselj, C., Urbauer, E., . . . Büttner, S. (2021). Ca2+ administration prevents α-synuclein proteotoxicity by stimulating calcineurin-dependent lysosomal proteolysis. PLOS Genetics, 17(11), Article ID e1009911.
Öppna denna publikation i ny flik eller fönster >>Ca2+ administration prevents α-synuclein proteotoxicity by stimulating calcineurin-dependent lysosomal proteolysis
Visa övriga...
2021 (Engelska)Ingår i: PLOS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 17, nr 11, artikel-id e1009911Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson's disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boosts lysosomal proteolysis. Heterologous expression of human α-synuclein (αSyn), a protein critically linked to Parkinson's disease, selectively increases total cellular Ca2+ content, while the levels of manganese and iron remain unchanged. Disrupted Ca2+ homeostasis results in inhibition of the lysosomal protease cathepsin D and triggers premature cellular and organismal death. External administration of Ca2+ reduces αSyn oligomerization, stimulates cathepsin D activity and in consequence restores survival, which critically depends on the Ca2+/calmodulin-dependent phosphatase calcineurin. In flies, increasing the availability of Ca2+ discloses a neuroprotective role of αSyn upon manganese overload. In sum, we establish a molecular interplay between cathepsin D and calcineurin that can be activated by Ca2+ administration to counteract αSyn proteotoxicity. 

Ort, förlag, år, upplaga, sidor
Public Library of Science (PLoS), 2021
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:umu:diva-215181 (URN)10.1371/journal.pgen.1009911 (DOI)000727767200006 ()34780474 (PubMedID)2-s2.0-85119910139 (Scopus ID)
Forskningsfinansiär
Vetenskapsrådet, 2015-05468Vetenskapsrådet, 2019-05249Knut och Alice Wallenbergs Stiftelse, 2017.0091Olle Engkvists stiftelse, 194-0681
Tillgänglig från: 2023-10-10 Skapad: 2023-10-10 Senast uppdaterad: 2023-10-10Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-6571-2162

Sök vidare i DiVA

Visa alla publikationer