umu.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
BETA
Johansson, Alexandra C.
Alternativa namn
Publikationer (10 of 25) Visa alla publikationer
Rutkowski, L., Foltynowicz, A., Schmidt, F. M., Johansson, A. C., Khodabakhsh, A., Kyuberis, A. A., . . . Tennyson, J. (2018). An experimental water line list at 1950 K in the 6250–6670 cm−1 region. Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 213-219
Öppna denna publikation i ny flik eller fönster >>An experimental water line list at 1950 K in the 6250–6670 cm−1 region
Visa övriga...
2018 (Engelska)Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 205, s. 213-219Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

An absorption spectrum of (H2O)-O-16 at 1950 K is recorded in a premixed methane/air flat flame using a cavity-enhanced optical frequency comb-based Fourier transform spectrometer. 2417 absorption lines are identified in the 6250-6670 cm(-1) region with an accuracy of about 0.01 cm(-1). Absolute line intensities are retrieved using temperature and concentration values obtained by tunable diode laser absorption spectroscopy. Line assignments are made using a combination of empirically known energy levels and predictions from the new POKAZATEL variational line list. 2030 of the observed lines are assigned to 2937 transitions, once blends are taken into account. 126 new energy levels of (H2O)-O-16 are identified. The assigned transitions belong to 136 bands and span rotational states up to J = 27.

Nyckelord
Water, Absorption, Fourier transform spectroscopy, Optical cavity, Frequency comb, Calculations
Nationell ämneskategori
Atom- och molekylfysik och optik Astronomi, astrofysik och kosmologi
Identifikatorer
urn:nbn:se:umu:diva-141519 (URN)10.1016/j.jqsrt.2017.10.016 (DOI)000417665000023 ()
Tillgänglig från: 2017-11-06 Skapad: 2017-11-06 Senast uppdaterad: 2018-06-09Bibliografiskt granskad
Johansson, A. C., Rutkowski, L., Filipsson, A., Hausmaninger, T., Zhao, G., Axner, O. & Foltynowicz, A. (2018). Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb. Optics Express, 26(16), 20633-20648
Öppna denna publikation i ny flik eller fönster >>Broadband calibration-free cavity-enhanced complex refractive index spectroscopy using a frequency comb
Visa övriga...
2018 (Engelska)Ingår i: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 26, nr 16, s. 20633-20648Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present broadband cavity-enhanced complex refractive index spectroscopy (CE-CRIS), a technique for calibration-free determination of the complex refractive index of entire molecular bands via direct measurement of transmission modes of a Fabry-Perot cavity filled with the sample. The measurement of the cavity transmission spectrum is done using an optical frequency comb and a mechanical Fourier transform spectrometer with sub-nominal resolution. Molecular absorption and dispersion spectra (corresponding to the imaginary and real parts of the refractive index) are obtained from the cavity mode broadening and shift retrieved from fits of Lorentzian profiles to the individual cavity modes. This method is calibration-free because the mode broadening and shift are independent of the cavity parameters such as the length and mirror reflectivity. In this first demonstration of broadband CE-CRIS we measure simultaneously the absorption and dispersion spectra of three combination bands of CO2 in the range between 1525 nm and 1620 nm and achieve good agreement with theoretical models. This opens up for precision spectroscopy of the complex refractive index of several molecular bands simultaneously. 

Ort, förlag, år, upplaga, sidor
Optical Society of America, 2018
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-151397 (URN)10.1364/OE.26.020633 (DOI)000440803600079 ()30119372 (PubMedID)
Forskningsfinansiär
Vetenskapsrådet, 2016-03593Vetenskapsrådet, 2015-04374Knut och Alice Wallenbergs Stiftelse, KAW 2015.0159
Tillgänglig från: 2018-09-04 Skapad: 2018-09-04 Senast uppdaterad: 2018-11-13Bibliografiskt granskad
Johansson, A. C., Filipsson, A., Rutkowski, L., Maslowski, P. & Foltynowicz, A. (2018). CO2 Line Parameter Retrieval Beyond the Voigt Profile Using Comb-Based Fourier Transform Spectroscopy. In: Conference on Lasers and Electro-Optics: . Paper presented at Conference on Lasers and Electro-Optics (CLEO, Science and innovations), San Jose, CA, USA, May 13-18, 2018.. Optical Society of America
Öppna denna publikation i ny flik eller fönster >>CO2 Line Parameter Retrieval Beyond the Voigt Profile Using Comb-Based Fourier Transform Spectroscopy
Visa övriga...
2018 (Engelska)Ingår i: Conference on Lasers and Electro-Optics, Optical Society of America, 2018Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We measure absorption spectra of the CO213 band at 1.57 μm using optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and retrieve line shape parameters using multiline fitting with the speed-dependent Voigt profile.

Ort, förlag, år, upplaga, sidor
Optical Society of America, 2018
Serie
OSA Technical Digest
Nyckelord
Spectroscopy, Fourier transforms (300.6300), Absorption (300.1030), Line shapes and shifts (020.3690).
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-153175 (URN)10.1364/CLEO_SI.2018.STu3P.6 (DOI)
Konferens
Conference on Lasers and Electro-Optics (CLEO, Science and innovations), San Jose, CA, USA, May 13-18, 2018.
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW 2015.0159Vetenskapsrådet, 2016-03593
Anmärkning

Paper STu3P.6

Tillgänglig från: 2018-11-12 Skapad: 2018-11-12 Senast uppdaterad: 2018-11-14Bibliografiskt granskad
Johansson, A. C., Westberg, J., Wysocki, G. & Foltynowicz, A. (2018). Optical frequency comb Faraday rotation spectroscopy. Applied physics. B, Lasers and optics (Print), 124(5), Article ID 79.
Öppna denna publikation i ny flik eller fönster >>Optical frequency comb Faraday rotation spectroscopy
2018 (Engelska)Ingår i: Applied physics. B, Lasers and optics (Print), ISSN 0946-2171, E-ISSN 1432-0649, Vol. 124, nr 5, artikel-id 79Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We demonstrate optical frequency comb Faraday rotation spectroscopy (OFC-FRS) for broadband interference-free detection of paramagnetic species. The system is based on a femtosecond doubly resonant optical parametric oscillator and a fast-scanning Fourier transform spectrometer (FTS). The sample is placed in a DC magnetic field parallel to the light propagation. Efficient background suppression is implemented via switching the direction of the field on consecutive FTS scans and subtracting the consecutive spectra, which enables long-term averaging. In this first demonstration, we measure the entire Q- and R-branches of the fundamental band of nitric oxide in the 5.2–5.4 μm range and achieve good agreement with a theoretical model.

Ort, förlag, år, upplaga, sidor
Springer, 2018
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-148020 (URN)10.1007/s00340-018-6951-8 (DOI)000431906400001 ()
Tillgänglig från: 2018-05-30 Skapad: 2018-05-30 Senast uppdaterad: 2018-11-13Bibliografiskt granskad
Johansson, A. C. (2018). Optical Frequency Comb Fourier Transform Spectroscopy. (Doctoral dissertation). Umeå: Umeå Universitet
Öppna denna publikation i ny flik eller fönster >>Optical Frequency Comb Fourier Transform Spectroscopy
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Fourier transform spectroscopy (FTS) based on optical frequency combs is an excellent spectroscopic tool as it provides broadband molecular spectra with high spectral resolution and an absolutely calibrated frequency scale. Moreover, the equidistant comb mode structure enables efficient coupling of the comb to enhancement cavities, yielding high detection sensitivity. This thesis focuses on further advances in comb-based FTS to improve its performance and extend its capabilities for broadband precision spectroscopy, particularly in terms of i) spectral resolution, ii) accuracy and precision of molecular parameters as well as concentrations retrieved from fitting models to spectra, and iii) species selectivity.

To improve the spectral resolution we developed a new methodology to acquire and analyze comb-based FTS signals that yields spectra with a resolution limited by the comb linewidth rather than the optical path difference of the FTS, referred to as the sub-nominal resolution method. This method enables measurements of narrow features, e.g. low-pressure absorption spectra and modes of enhancement cavities, with frequency scale accuracy and precision provided by the comb. Using the technique we measured low-pressure spectra of the entire 3ν13 carbon dioxide (CO2) band at 1575 nm with sufficient signal-to-noise ratio and precision to observe collision narrowing of the absorption lineshape, which was for the first time with a comb-based spectroscopic technique. This allowed retrieval of spectral line parameters for this CO2 band using the speed-dependent Voigt profile.

Using the sub-nominal resolution method, we measured the transmission modes of a Fabry-Perot cavity over 15 THz of bandwidth with kHz resolution and characterized the cavity modes in terms of their center frequency, linewidth, and amplitude. From the mode center frequencies, we retrieved the group delay dispersion of cavity mirror coatings and intracavity gas with an unprecedented combination of spectral bandwidth and resolution. By measuring both the mode broadening and frequency shift simultaneously we performed broadband cavity-enhanced complex refractive index spectroscopy (CE-CRIS), which allows for simultaneous and calibration-free assessment of the absorption and dispersion spectra of intracavity gas. In this first demonstration we measured the absorption and dispersion spectra of three combination bands of CO2 in the 1525 to 1620 nm range.

Another comb-based FTS technique is noise-immune cavity-enhanced optical frequency comb spectroscopy (NICE-OFCS), which combines phase modulation and cavity-enhancement to obtain broadband and highly sensitive absorption spectra. In this thesis we improved the NICE-OFCS technique in terms of stability, sensitivity and modeling of the NICE-OFCS signal. We implemented a model of the NICE-OFCS signal with multiline fitting for assessment of gas concentration. We also identified the optimum operating conditions of the NICE-OFCS systems for accurate gas concentration assessment.

Finally, to improve the species selectivity we combined comb-based FTS with the Faraday rotation spectroscopy (FRS) technique. In this first demonstration of optical frequency comb Faraday rotation spectroscopy (OFC-FRS), we measured background and interference-free spectra of the entire Q- and R-branches of the fundamental vibrational band of nitric oxide at 5.3 μm showing good agreement with the theoretical model.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå Universitet, 2018. s. 155
Nyckelord
Optical frequency comb spectroscopy, Fourier transform, molecular absorption & dispersion
Nationell ämneskategori
Atom- och molekylfysik och optik
Forskningsämne
fysik
Identifikatorer
urn:nbn:se:umu:diva-153239 (URN)978-91-7601-983-2 (ISBN)
Disputation
2018-12-07, N430, Naturvetarhuset, Umeå, 09:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-11-16 Skapad: 2018-11-13 Senast uppdaterad: 2018-11-14Bibliografiskt granskad
Rutkowski, L., Masłowski, P., Johansson, A. C., Khodabakhsh, A. & Foltynowicz, A. (2018). Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and precision beyond the Voigt profile. Journal of Quantitative Spectroscopy and Radiative Transfer, 204, 63-73
Öppna denna publikation i ny flik eller fönster >>Optical frequency comb Fourier transform spectroscopy with sub-nominal resolution and precision beyond the Voigt profile
Visa övriga...
2018 (Engelska)Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 204, s. 63-73Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Broadband precision spectroscopy is indispensable for providing high fidelity molecular parameters for spectroscopic databases. We have recently shown that mechanical Fourier transform spectrometers based on optical frequency combs can measure broadband high-resolution molecular spectra undistorted by the instrumental line shape (ILS) and with a highly precise frequency scale provided by the comb. The accurate measurement of the power of the comb modes interacting with the molecular sample was achieved by acquiring single-burst interferograms with nominal resolution matched to the comb mode spacing. Here we describe in detail the experimental and numerical steps needed to achieve sub-nominal resolution and retrieve ILS-free molecular spectra, i.e. with ILS-induced distortion below the noise level. We investigate the accuracy of the transition line centers retrieved by fitting to the absorption lines measured using this method. We verify the performance by measuring an ILS-free cavity-enhanced low-pressure spectrum of the 3ν1 + ν3 band of CO2 around 1575 nm with line widths narrower than the nominal resolution. We observe and quantify collisional narrowing of absorption line shape, for the first time with a comb-based spectroscopic technique. Thus retrieval of line shape parameters with accuracy not limited by the Voigt profile is now possible for entire absorption bands acquired simultaneously.

Ort, förlag, år, upplaga, sidor
Elsevier, 2018
Nyckelord
Optical frequency combs, Fourier transform spectroscopy, High resolution spectroscopy, Line shapes
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-142443 (URN)10.1016/j.jqsrt.2017.09.001 (DOI)000414880500009 ()
Tillgänglig från: 2017-12-06 Skapad: 2017-12-06 Senast uppdaterad: 2018-11-13Bibliografiskt granskad
Rutkowski, L., Johansson, A. C., Khodabakhsh, A. & Foltynowicz, A. (2017). Broadband and High Resolution Direct Measurement of Cavity Resonances. In: 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC): . Paper presented at Conference on Lasers and Electro-Optics Europe / European Quantum Electronics Conference (CLEO/Europe-EQEC), JUN 25-29, 2017, Munich, GERMANY. IEEE
Öppna denna publikation i ny flik eller fönster >>Broadband and High Resolution Direct Measurement of Cavity Resonances
2017 (Engelska)Ingår i: 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), IEEE, 2017Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Summary form only given. Optical frequency combs offer unprecedented combination of broad bandwidth and high resolution and their coupling to enhancement cavities provides high sensitivity for spectroscopic measurements. Here we use a frequency-comb-based Fourier transform spectrometer (FTS) to measure the narrow resonances of a high-finesse cavity over a bandwidth of 100 nm around 1.55 μm and derive the group delay dispersion (GDD) of the cavity mirrors with precision below 1 fs 2 from the cavity resonance frequencies. We do this using a method that allows precise sampling of the comb intensities using an FTS with nominal resolution matched to the comb repetition rate (f rep ) [1, 2], and we demonstrate that sub-MHz resolution is achieved.

Ort, förlag, år, upplaga, sidor
IEEE, 2017
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-152157 (URN)10.1109/CLEOE-EQEC.2017.8087461 (DOI)000432564601222 ()978-1-5090-6736-7 (ISBN)
Konferens
Conference on Lasers and Electro-Optics Europe / European Quantum Electronics Conference (CLEO/Europe-EQEC), JUN 25-29, 2017, Munich, GERMANY
Forskningsfinansiär
Vetenskapsrådet, 2016-03593Stiftelsen för strategisk forskning (SSF), ICA12-0031Knut och Alice Wallenbergs Stiftelse, KAW 2015.0159
Tillgänglig från: 2018-10-01 Skapad: 2018-10-01 Senast uppdaterad: 2018-10-01Bibliografiskt granskad
Khodabakhsh, A., Rutkowski, L., Morville, J., Johansson, A. C., Soboń, G. & Foltynowicz, A. (2017). Cavity-Enhanced Continuous-Filtering Vernier Spectroscopy at 3.3 mu m using a Femtosecond Optical Parametric Oscillator. In: 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC): . Paper presented at 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Munich Germany, 25–29 June 2017 (pp. CH_2_2). IEEE
Öppna denna publikation i ny flik eller fönster >>Cavity-Enhanced Continuous-Filtering Vernier Spectroscopy at 3.3 mu m using a Femtosecond Optical Parametric Oscillator
Visa övriga...
2017 (Engelska)Ingår i: 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), IEEE , 2017, s. CH_2_2-Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Optical frequency comb spectroscopy in the mid-infrared fingerprint region combines broad spectral bandwidth with high detection sensitivity and allows simultaneous detection of trace amounts of many molecular species. We have recently demonstrated a continuous-filtering Vernier spectrometer based on a mid-infrared optical frequency comb and an enhancement cavity for fast and sensitive detection of CH4 [1]. Here we present an improved, fully automatized and frequency calibrated continuous-filtering Vernier spectrometer, schematically shown in Fig. 1(a). The comb source is a doubly resonant optical parametric oscillator (DROPO) based on an orientation-patterned GaAs crystal synchronously pumped by a Tm:fiber femtosecond laser (125 MHz repetition rate, frep). The signal comb (3.1–3.4 µm, 30 mW) is mode matched to a 60-cm long Vernier enhancement cavity with a finesse of ~350 at 3.25 μm, placed in an enclosure that can be filled with the gas sample. The output mirror is attached to a PZT and mounted on a translation stage. When the cavity free spectral range is perfectly matched to twice the frep (250 MHz) every other signal comb mode is transmitted through the cavity. By detuning the cavity length from this perfect match position the cavity resonances act as a filter and transmit groups of comb modes called Vernier orders [2]. A diffraction grating mounted on a galvo-scanner separates these orders after the cavity and the chosen order is sent to the detection system. The Vernier order is tuned across the signal comb spectrum by scanning the cavity length (at 20 Hz) and the grating is rotated synchronously to fix the order in space and allow acquisition of the entire spectrum in 25 ms. Any residual mismatch between the cavity length scan and the grating rotation is compensated by a feedback loop acting on the frep of the pump laser and the PZT of the Vernier cavity [2]. A Fabry-Perot etalon is used for frequency calibration of the spectrometer. Figure 1(b) shows in black the normalized transmission spectrum of a sample containing 5.0 ppm CH4 and 160 ppm water. The red and blue curves show the corresponding fit of the Vernier spectrum [3] of CH4 and water, respectively, calculated using Voigt profiles, line parameters from the HITRAN database, and the experimentally determined cavity finesse. The figure of merit of the spectrometer is 1×10−9cm−1 Hz−1∕2 per spectral element and multiline fitting yields minimum detectable concentration of CH4 of 2 ppb in 25 ms, translating into 400 ppt Hz−1∕2 Since the spectrum of the signal comb covers the fundamental C-H stretch transitions we expect low detection limits for other hydrocarbons as well. In conclusion, mid-infrared comb-based continuous-filtering Vernier spectroscopy allows fast and highly sensitive measurement of broadband absorption spectra using a robust and compact detection system.

Ort, förlag, år, upplaga, sidor
IEEE, 2017
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-155053 (URN)000432564600616 ()978-1-5090-6736-7 (ISBN)
Konferens
2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference, Munich Germany, 25–29 June 2017
Tillgänglig från: 2019-01-07 Skapad: 2019-01-07 Senast uppdaterad: 2019-01-07Bibliografiskt granskad
Khodabakhsh, A., Rutkowski, L., Morville, J., Johansson, A. C., Soboń, G. & Foltynowicz, A. (2017). Continuous-Filtering Vernier Spectroscopy at 3.3 mu m Using a Femtosecond Optical Parametric Oscillator. In: 2017 conference on lasers and elecro-optics (CLEO): Science and innovations. Paper presented at Conference on Lasers and Electro-Optics (CLEO), MAY 14-19, 2017, San Jose, CA. IEEE, Article ID SW1L.5.
Öppna denna publikation i ny flik eller fönster >>Continuous-Filtering Vernier Spectroscopy at 3.3 mu m Using a Femtosecond Optical Parametric Oscillator
Visa övriga...
2017 (Engelska)Ingår i: 2017 conference on lasers and elecro-optics (CLEO): Science and innovations, IEEE , 2017, artikel-id SW1L.5Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Using a cavity-enhanced continuous-filtering Vernier spectrometer based on a femtosecond optical parametric oscillator we measure broadband spectra of atmospheric water and CH4 around 3.3 mu m reaching 4 ppb detection limit for CH4 in 15 ms.

Ort, förlag, år, upplaga, sidor
IEEE, 2017
Serie
Conference on Lasers and Electro-Optics, ISSN 2160-9020
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-146824 (URN)10.1364/CLEO_SI.2017.SW1L.5 (DOI)000427296203060 ()978-1-9435-8027-9 (ISBN)
Konferens
Conference on Lasers and Electro-Optics (CLEO), MAY 14-19, 2017, San Jose, CA
Tillgänglig från: 2018-04-23 Skapad: 2018-04-23 Senast uppdaterad: 2018-06-09Bibliografiskt granskad
Rutkowski, L., Johansson, A. C., Khodabakhsh, A., Valiev, D., Lodi, L., Yurchenko, S., . . . Foltynowicz, A. (2017). Detection of OH and H2O in an Atmospheric Flame by Near-Infrared Optical Frequency Comb Spectroscopy. In: 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC): . Paper presented at Conference on Lasers and Electro-Optics Europe / European Quantum Electronics Conference (CLEO/Europe-EQEC), JUN 25-29, 2017, Munich, GERMANY. IEEE
Öppna denna publikation i ny flik eller fönster >>Detection of OH and H2O in an Atmospheric Flame by Near-Infrared Optical Frequency Comb Spectroscopy
Visa övriga...
2017 (Engelska)Ingår i: 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), IEEE, 2017Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Absorption spectroscopy is attractive for combustion diagnostics because it allows in-situ and calibration-free quantification of reactants/products and thermometry. However, spectra measured at atmospheric pressure in the near-infrared telecom range, where laser sources and optical components are readily available, suffer from strong water interference. Cavity-enhanced optical frequency comb spectroscopy (CE-OFCS) is well suited for detection of other species, as it provides broad bandwidth with high signal-to-noise ratio and resolution, and allows de-convolving the spectra hidden among water transitions. Here we report detection of OH in the presence of H2O in an atmospheric premixed methane/air flat flame by CE-OFCS at 1.57 μm. We demonstrate a new water line list that is more accurate than HITEMP [1] and we isolate the OH lines by dividing spectra taken at different heights above the burner (HABs) to retrieve OH concentration and flame temperature.

Ort, förlag, år, upplaga, sidor
IEEE, 2017
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:umu:diva-152156 (URN)10.1109/CLEOE-EQEC.2017.8086912 (DOI)000432564600671 ()978-1-5090-6736-7 (ISBN)
Konferens
Conference on Lasers and Electro-Optics Europe / European Quantum Electronics Conference (CLEO/Europe-EQEC), JUN 25-29, 2017, Munich, GERMANY
Forskningsfinansiär
Vetenskapsrådet, 621-2012-3650Stiftelsen för strategisk forskning (SSF), ICA12-0031Knut och Alice Wallenbergs Stiftelse, KAW 2015.0159
Tillgänglig från: 2018-10-01 Skapad: 2018-10-01 Senast uppdaterad: 2018-10-01Bibliografiskt granskad
Organisationer

Sök vidare i DiVA

Visa alla publikationer